51
|
Van Stappen C, Davydov R, Yang ZY, Fan R, Guo Y, Bill E, Seefeldt LC, Hoffman BM, DeBeer S. Spectroscopic Description of the E 1 State of Mo Nitrogenase Based on Mo and Fe X-ray Absorption and Mössbauer Studies. Inorg Chem 2019; 58:12365-12376. [PMID: 31441651 PMCID: PMC6751781 DOI: 10.1021/acs.inorgchem.9b01951] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Indexed: 11/29/2022]
Abstract
Mo nitrogenase (N2ase) utilizes a two-component protein system, the catalytic MoFe and its electron-transfer partner FeP, to reduce atmospheric dinitrogen (N2) to ammonia (NH3). The FeMo cofactor contained in the MoFe protein serves as the catalytic center for this reaction and has long inspired model chemistry oriented toward activating N2. This field of chemistry has relied heavily on the detailed characterization of how Mo N2ase accomplishes this feat. Understanding the reaction mechanism of Mo N2ase itself has presented one of the most challenging problems in bioinorganic chemistry because of the ephemeral nature of its catalytic intermediates, which are difficult, if not impossible, to singly isolate. This is further exacerbated by the near necessity of FeP to reduce native MoFe, rendering most traditional means of selective reduction inept. We have now investigated the first fundamental intermediate of the MoFe catalytic cycle, E1, as prepared both by low-flux turnover and radiolytic cryoreduction, using a combination of Mo Kα high-energy-resolution fluorescence detection and Fe K-edge partial-fluorescence-yield X-ray absorption spectroscopy techniques. The results demonstrate that the formation of this state is the result of an Fe-centered reduction and that Mo remains redox-innocent. Furthermore, using Fe X-ray absorption and 57Fe Mössbauer spectroscopies, we correlate a previously reported unique species formed under cryoreducing conditions to the natively formed E1 state through annealing, demonstrating the viability of cryoreduction in studying the catalytic intermediates of MoFe.
Collapse
Affiliation(s)
- Casey Van Stappen
- Max Planck Institute
for Chemical Energy Conversion, Stiftstrasse 34−36, 45470 Mülheim an der Ruhr, Germany
| | - Roman Davydov
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Zhi-Yong Yang
- Department of Chemistry and Biochemistry, Utah State University, Logan, Utah 84322, United States
| | - Ruixi Fan
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Yisong Guo
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Eckhard Bill
- Max Planck Institute
for Chemical Energy Conversion, Stiftstrasse 34−36, 45470 Mülheim an der Ruhr, Germany
| | - Lance C. Seefeldt
- Department of Chemistry and Biochemistry, Utah State University, Logan, Utah 84322, United States
| | - Brian M. Hoffman
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Serena DeBeer
- Max Planck Institute
for Chemical Energy Conversion, Stiftstrasse 34−36, 45470 Mülheim an der Ruhr, Germany
| |
Collapse
|
52
|
Mus F, Colman DR, Peters JW, Boyd ES. Geobiological feedbacks, oxygen, and the evolution of nitrogenase. Free Radic Biol Med 2019; 140:250-259. [PMID: 30735835 DOI: 10.1016/j.freeradbiomed.2019.01.050] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 01/31/2019] [Indexed: 12/21/2022]
Abstract
Biological nitrogen fixation via the activity of nitrogenase is one of the most important biological innovations, allowing for an increase in global productivity that eventually permitted the emergence of higher forms of life. The complex metalloenzyme termed nitrogenase contains complex iron-sulfur cofactors. Three versions of nitrogenase exist that differ mainly by the presence or absence of a heterometal at the active site metal cluster (either Mo or V). Mo-dependent nitrogenase is the most common while V-dependent or heterometal independent (Fe-only) versions are often termed alternative nitrogenases since they have apparent lower activities for N2 reduction and are expressed in the absence of Mo. Phylogenetic data indicates that biological nitrogen fixation emerged in an anaerobic, thermophilic ancestor of hydrogenotrophic methanogens and later diversified via lateral gene transfer into anaerobic bacteria, and eventually aerobic bacteria including Cyanobacteria. Isotopic evidence suggests that nitrogenase activity existed at 3.2 Ga, prior to the advent of oxygenic photosynthesis and rise of oxygen in the atmosphere, implying the presence of favorable environmental conditions for oxygen-sensitive nitrogenase to evolve. Following the proliferation of oxygenic phototrophs, diazotrophic organisms had to develop strategies to protect nitrogenase from oxygen inactivation and generate the right balance of low potential reducing equivalents and cellular energy for growth and nitrogen fixation activity. Here we review the fundamental advances in our understanding of biological nitrogen fixation in the context of the emergence, evolution, and taxonomic distribution of nitrogenase, with an emphasis placed on key events associated with its emergence and diversification from anoxic to oxic environments.
Collapse
Affiliation(s)
- Florence Mus
- Institute of Biological Chemistry, Washington State University, Pullman, WA, USA
| | - Daniel R Colman
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT, USA
| | - John W Peters
- Institute of Biological Chemistry, Washington State University, Pullman, WA, USA.
| | - Eric S Boyd
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT, USA.
| |
Collapse
|
53
|
Abstract
Biological nitrogen fixation, the conversion of dinitrogen (N2) into ammonia (NH3), stands as a particularly challenging chemical process. As the entry point into a bioavailable form of nitrogen, biological nitrogen fixation is a critical step in the global nitrogen cycle. In Nature, only one enzyme, nitrogenase, is competent in performing this reaction. Study of this complex metalloenzyme has revealed a potent substrate reduction system that utilizes some of the most sophisticated metalloclusters known. This chapter discusses the structure and function of nitrogenase, covers methods that have proven useful in the elucidation of enzyme properties, and provides an overview of the three known nitrogenase variants.
Collapse
|
54
|
Pernil R, Schleiff E. Metalloproteins in the Biology of Heterocysts. Life (Basel) 2019; 9:E32. [PMID: 30987221 PMCID: PMC6616624 DOI: 10.3390/life9020032] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 03/18/2019] [Accepted: 03/28/2019] [Indexed: 12/15/2022] Open
Abstract
Cyanobacteria are photoautotrophic microorganisms present in almost all ecologically niches on Earth. They exist as single-cell or filamentous forms and the latter often contain specialized cells for N₂ fixation known as heterocysts. Heterocysts arise from photosynthetic active vegetative cells by multiple morphological and physiological rearrangements including the absence of O₂ evolution and CO₂ fixation. The key function of this cell type is carried out by the metalloprotein complex known as nitrogenase. Additionally, many other important processes in heterocysts also depend on metalloproteins. This leads to a high metal demand exceeding the one of other bacteria in content and concentration during heterocyst development and in mature heterocysts. This review provides an overview on the current knowledge of the transition metals and metalloproteins required by heterocysts in heterocyst-forming cyanobacteria. It discusses the molecular, physiological, and physicochemical properties of metalloproteins involved in N₂ fixation, H₂ metabolism, electron transport chains, oxidative stress management, storage, energy metabolism, and metabolic networks in the diazotrophic filament. This provides a detailed and comprehensive picture on the heterocyst demands for Fe, Cu, Mo, Ni, Mn, V, and Zn as cofactors for metalloproteins and highlights the importance of such metalloproteins for the biology of cyanobacterial heterocysts.
Collapse
Affiliation(s)
- Rafael Pernil
- Institute for Molecular Biosciences, Goethe University Frankfurt, Max-von-Laue-Straβe 9, 60438 Frankfurt am Main, Germany.
| | - Enrico Schleiff
- Institute for Molecular Biosciences, Goethe University Frankfurt, Max-von-Laue-Straβe 9, 60438 Frankfurt am Main, Germany.
- Frankfurt Institute for Advanced Studies, Ruth-Moufang-Straße 1, 60438 Frankfurt am Main, Germany.
- Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt, Max-von-Laue-Straβe 15, 60438 Frankfurt am Main, Germany.
| |
Collapse
|
55
|
Schut GJ, Mohamed-Raseek N, Tokmina-Lukaszewska M, Mulder DW, Nguyen DMN, Lipscomb GL, Hoben JP, Patterson A, Lubner CE, King PW, Peters JW, Bothner B, Miller AF, Adams MWW. The catalytic mechanism of electron-bifurcating electron transfer flavoproteins (ETFs) involves an intermediary complex with NAD<sup/>. J Biol Chem 2019; 294:3271-3283. [PMID: 30567738 PMCID: PMC6398123 DOI: 10.1074/jbc.ra118.005653] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 12/11/2018] [Indexed: 12/20/2022] Open
Abstract
Electron bifurcation plays a key role in anaerobic energy metabolism, but it is a relatively new discovery, and only limited mechanistic information is available on the diverse enzymes that employ it. Herein, we focused on the bifurcating electron transfer flavoprotein (ETF) from the hyperthermophilic archaeon Pyrobaculum aerophilum The EtfABCX enzyme complex couples NADH oxidation to the endergonic reduction of ferredoxin and exergonic reduction of menaquinone. We developed a model for the enzyme structure by using nondenaturing MS, cross-linking, and homology modeling in which EtfA, -B, and -C each contained FAD, whereas EtfX contained two [4Fe-4S] clusters. On the basis of analyses using transient absorption, EPR, and optical titrations with NADH or inorganic reductants with and without NAD+, we propose a catalytic cycle involving formation of an intermediary NAD+-bound complex. A charge transfer signal revealed an intriguing interplay of flavin semiquinones and a protein conformational change that gated electron transfer between the low- and high-potential pathways. We found that despite a common bifurcating flavin site, the proposed EtfABCX catalytic cycle is distinct from that of the genetically unrelated bifurcating NADH-dependent ferredoxin NADP+ oxidoreductase (NfnI). The two enzymes particularly differed in the role of NAD+, the resting and bifurcating-ready states of the enzymes, how electron flow is gated, and the two two-electron cycles constituting the overall four-electron reaction. We conclude that P. aerophilum EtfABCX provides a model catalytic mechanism that builds on and extends previous studies of related bifurcating ETFs and can be applied to the large bifurcating ETF family.
Collapse
Affiliation(s)
- Gerrit J Schut
- From the Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia 30602-7229
| | | | | | - David W Mulder
- the Biosciences Center, National Renewable Energy Laboratory, Golden, Colorado 80401, and
| | - Diep M N Nguyen
- From the Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia 30602-7229
| | - Gina L Lipscomb
- From the Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia 30602-7229
| | - John P Hoben
- the Department of Chemistry, University of Kentucky, Lexington, Kentucky 40506
| | - Angela Patterson
- the Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana 59717
| | - Carolyn E Lubner
- the Biosciences Center, National Renewable Energy Laboratory, Golden, Colorado 80401, and
| | - Paul W King
- the Biosciences Center, National Renewable Energy Laboratory, Golden, Colorado 80401, and
| | - John W Peters
- the Institute of Biological Chemistry, Washington State University, Pullman, Washington 99164
| | - Brian Bothner
- the Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana 59717
| | - Anne-Frances Miller
- the Department of Chemistry, University of Kentucky, Lexington, Kentucky 40506
| | - Michael W W Adams
- From the Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia 30602-7229,
| |
Collapse
|
56
|
Survey of the Geometric and Electronic Structures of the Key Hydrogenated Forms of FeMo-co, the Active Site of the Enzyme Nitrogenase: Principles of the Mechanistically Significant Coordination Chemistry. INORGANICS 2019. [DOI: 10.3390/inorganics7010008] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The enzyme nitrogenase naturally hydrogenates N2 to NH3, achieved through the accumulation of H atoms on FeMo-co, the Fe7MoS9C(homocitrate) cluster that is the catalytically active site. Four intermediates, E1H1, E2H2, E3H3, and E4H4, carry these hydrogen atoms. I report density functional calculations of the numerous possibilities for the geometric and electronic structures of these poly-hydrogenated forms of FeMo-co. This survey involves more than 100 structures, including those with bound H2, and assesses their relative energies and most likely electronic states. Twelve locations for bound H atoms in the active domain of FeMo-co, including Fe–H–Fe and Fe–H–S bridges, are studied. A significant result is that transverse Fe–H–Fe bridges (transverse to the pseudo-threefold axis of FeMo-co and shared with triply-bridging S) are not possible geometrically unless the S is hydrogenated to become doubly-bridging. The favourable Fe–H–Fe bridges are shared with doubly-bridging S. ENDOR data for an E4H4 intermediate trapped at low temperature, and interpretations in terms of the geometrical and electronic structure of E4H4, are assessed in conjunction with the calculated possibilities. The results reported here yield a set of 24 principles for the mechanistically significant coordination chemistry of H and H2 on FeMo-co, in the stages prior to N2 binding.
Collapse
|
57
|
Badalyan A, Yang ZY, Seefeldt LC. A Voltammetric Study of Nitrogenase Catalysis Using Electron Transfer Mediators. ACS Catal 2019. [DOI: 10.1021/acscatal.8b04290] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Artavazd Badalyan
- Department of Chemistry and Biochemistry, Utah State University, 0300 Old Main Hill, Logan, Utah 84322, United States
| | - Zhi-Yong Yang
- Department of Chemistry and Biochemistry, Utah State University, 0300 Old Main Hill, Logan, Utah 84322, United States
| | - Lance C. Seefeldt
- Department of Chemistry and Biochemistry, Utah State University, 0300 Old Main Hill, Logan, Utah 84322, United States
| |
Collapse
|
58
|
Abstract
The biological reduction of nitrogen gas to ammonia is limited to a select group of nitrogen-fixing prokaryotes. While nitrogenase is the catalyst of nitrogen fixation in these biological systems, a consortium of additional gene products is required for the synthesis, activation, and catalytic competency of this oxygen-sensitive metalloenzyme. Thus, the biochemical complexity of this process often requires functional studies and isolation of gene products from the native nitrogen-fixing organisms. The strict aerobe Azotobacter vinelandii is the best-studied model bacterium among diazotrophs. This chapter provides a description of procedures for targeted genomic manipulation and isolation of A. vinelandii strains. These methods have enabled identification and characterization of gene products with roles in nitrogen fixation and other related aspects of metabolism. The ability to modify and control expression levels of targeted sequences provides a biotechnological tool to uncover molecular details associated with nitrogen fixation, as well as to exploit this model system as a host for expression of oxygen-sensitive proteins.
Collapse
|
59
|
Harris DF, Yang ZY, Dean DR, Seefeldt LC, Hoffman BM. Kinetic Understanding of N 2 Reduction versus H 2 Evolution at the E 4(4H) Janus State in the Three Nitrogenases. Biochemistry 2018; 57:5706-5714. [PMID: 30183278 DOI: 10.1021/acs.biochem.8b00784] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The enzyme nitrogenase catalyzes the reduction of N2 to ammonia but also that of protons to H2. These reactions compete at the mechanistically central 'Janus' intermediate, denoted E4(4H), which has accumulated 4e-/4H+ as two bridging Fe-H-Fe hydrides on the active-site cofactor. This state can lose e-/H+ by hydride protonolysis (HP) or become activated by reductive elimination ( re) of the two hydrides and bind N2 with H2 loss, yielding an E4(2N2H) state that goes on to generate two NH3 molecules. Thus, E4(4H) represents the key branch point for these competing reactions. Here, we present a steady-state kinetic analysis that precisely describes this competition. The analysis demonstrates that steady-state, high-electron flux turnover overwhelmingly populates the E4 states at the expense of less reduced states, quenching HP at those states. The ratio of rate constants for E4(4H) hydride protonolysis ( kHP) versus reductive elimination ( kre) provides a sensitive measure of competition between these two processes and thus is a central parameter of nitrogenase catalysis. Analysis of measurements with the three nitrogenase variants (Mo-nitrogenase, V-nitrogenase, and Fe-nitrogenase) reveals that at a fixed N2 pressure their tendency to productively react with N2 to produce two NH3 molecules and an accompanying H2, rather than diverting electrons to the side reaction, HP production of H2, decreases with their ratio of rate constants, k re/ kHP: Mo-nitrogenase, 5.1 atm-1; V-nitrogenase, 2 atm-1; and Fe-nitrogenase, 0.77 atm-1 (namely, in a 1:0.39:0.15 ratio). Moreover, the lower catalytic effectiveness of the alternative nitrogenases, with more H2 production side reaction, is not caused by a higher kHP but by a significantly lower k re.
Collapse
Affiliation(s)
- Derek F Harris
- Department of Chemistry and Biochemistry , Utah State University , Logan , Utah 84322 , United States
| | - Zhi-Yong Yang
- Department of Chemistry and Biochemistry , Utah State University , Logan , Utah 84322 , United States
| | - Dennis R Dean
- Department of Biochemistry , Virginia Tech , Blacksburg , Virginia 24061 , United States
| | - Lance C Seefeldt
- Department of Chemistry and Biochemistry , Utah State University , Logan , Utah 84322 , United States
| | - Brian M Hoffman
- Department of Chemistry , Northwestern University , Evanston , Illinois 60208 , United States
| |
Collapse
|
60
|
Seefeldt LC, Hoffman BM, Peters JW, Raugei S, Beratan DN, Antony E, Dean DR. Energy Transduction in Nitrogenase. Acc Chem Res 2018; 51:2179-2186. [PMID: 30095253 DOI: 10.1021/acs.accounts.8b00112] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Nitrogenase is a complicated two-component enzyme system that uses ATP binding and hydrolysis energy to achieve one of the most difficult chemical reactions in nature, the reduction of N2 to NH3. One component of the Mo-based nitrogenase system, Fe protein, delivers electrons one at a time to the second component, the catalytic MoFe protein. This process occurs through a series of synchronized events collectively called the "Fe protein cycle". Elucidating details of the events associated with this cycle has constituted an important challenge in understanding the nitrogenase mechanism. Electron delivery is a multistep process involving three metal clusters with intra- and interprotein events. It is proposed that the first electron transfer event is a gated intraprotein transfer of one electron from the MoFe protein P-cluster to the FeMo cofactor. Measurement of the effect of osmotic pressure on the rate of this electron transfer process revealed that it is gated by protein conformational changes. This first electron transfer is activated by binding of the Fe protein containing two bound ATP molecules. The mechanism of how this protein-protein association triggers electron transfer remains unknown. The second electron transfer event is proposed to be a rapid interprotein "backfill" with transfer of one electron from the reduced Fe protein 4Fe-4S cluster to the oxidized P-cluster. In this way, electron delivery can be viewed as a case of "deficit spending". Such a deficit-spending electron transfer process can be envisioned as a way to achieve one-direction electron flow, limiting the potential for back electron flow. Hydrolysis of two ATP molecules associated with the Fe protein occurs after the electron transfer and therefore is not used to directly drive the electron transfer. Rather, ATP hydrolysis is proposed to contribute to relaxation of the "activated" conformational state associated with the ATP form of the complex, with the free energy from ATP hydrolysis being used to pay back energy associated with component protein association and electron transfer. Release of inorganic phosphate (Pi) and protein-protein dissociation follow electron transfer and ATP hydrolysis. The rate-limiting step for the Fe protein cycle is not dissociation of the two proteins, as previously believed, but rather is release of Pi after ATP hydrolysis, which is then followed by rapid protein-protein complex dissociation. Nitrogenase is composed of two catalytic halves that do not function independently but rather exhibit anticooperative nuclear motion in which electron transfer in one-half of the complex partially inhibits electron transfer and ATP hydrolysis in the other half. Calculations indicated the existence of anticooperative interactions across the entire nitrogenase complex, suggesting a mechanism for the control of events on opposite ends of this large complex. The mechanistic necessity for this anticooperative process remains unknown. This Account presents a working model for how all of these processes work together in the nitrogenase "machine" to transduce the energy from ATP binding and hydrolysis to drive N2 reduction.
Collapse
Affiliation(s)
- Lance C. Seefeldt
- Department of Chemistry and Biochemistry, Utah State University, Logan, Utah 84322, United States
- Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Brian M. Hoffman
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - John W. Peters
- Pacific Northwest National Laboratory, Richland, Washington 99352, United States
- Institute of Biological Chemistry, Washington State University, Pullman, Washington 99163, United States
| | - Simone Raugei
- Pacific Northwest National Laboratory, Richland, Washington 99352, United States
- Institute of Biological Chemistry, Washington State University, Pullman, Washington 99163, United States
| | - David N. Beratan
- Department of Chemistry and Department of Physics, Duke University, Durham, North Carolina 27708, United States
- Department of Biochemistry, Duke University, Durham, North Carolina 27710, United States
| | - Edwin Antony
- Department of Biological Sciences, Marquette University, Milwaukee, Wisconsin 53201, United States
| | - Dennis R. Dean
- Department of Biochemistry, Virginia Tech, Blacksburg, Virginia 24061, United States
| |
Collapse
|
61
|
Seefeldt LC, Peters JW, Beratan DN, Bothner B, Minteer SD, Raugei S, Hoffman BM. Control of electron transfer in nitrogenase. Curr Opin Chem Biol 2018; 47:54-59. [PMID: 30205289 DOI: 10.1016/j.cbpa.2018.08.011] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 07/06/2018] [Accepted: 08/21/2018] [Indexed: 11/30/2022]
Abstract
The bacterial enzyme nitrogenase achieves the reduction of dinitrogen (N2) to ammonia (NH3) utilizing electrons, protons, and energy from the hydrolysis of ATP. Building on earlier foundational knowledge, recent studies provide molecular-level details on how the energy of ATP hydrolysis is utilized, the sequencing of multiple electron transfer events, and the nature of energy transduction across this large protein complex. Here, we review the state of knowledge about energy transduction in nitrogenase.
Collapse
Affiliation(s)
- Lance C Seefeldt
- Department of Chemistry and Biochemistry, Utah State University, 0300 Old Main Hill, Logan, UT 84322, USA.
| | - John W Peters
- Institute of Biological Chemistry, Washington State University, 287 Clark Hall, Pullman, WA 99164, USA
| | - David N Beratan
- Departments of Chemistry, Physics, and Biochemistry, Duke University, Durham, NC 27708 and 27710, USA
| | - Brian Bothner
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT 59717, USA
| | - Shelley D Minteer
- Departments of Chemistry and Materials Science & Engineering, University of Utah, 315 S 1400 E, Salt Lake City, UT 84112, USA
| | - Simone Raugei
- Physical and Computational Sciences, Pacific Northwestern National Laboratory, 602 Battelle Blvd, Richland, WA 99352, USA
| | - Brian M Hoffman
- Department of Chemistry, Northwestern University, Evanston, IL 60208, USA
| |
Collapse
|
62
|
Fixen KR, Pal Chowdhury N, Martinez‐Perez M, Poudel S, Boyd ES, Harwood CS. The path of electron transfer to nitrogenase in a phototrophic alpha‐proteobacterium. Environ Microbiol 2018; 20:2500-2508. [DOI: 10.1111/1462-2920.14262] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 04/23/2018] [Accepted: 04/27/2018] [Indexed: 11/28/2022]
Affiliation(s)
| | | | | | - Saroj Poudel
- Department of Microbiology and ImmunologyMontana State UniversityBozeman MT USA
| | - Eric S. Boyd
- Department of Microbiology and ImmunologyMontana State UniversityBozeman MT USA
| | | |
Collapse
|
63
|
Foster SL, Bakovic SIP, Duda RD, Maheshwari S, Milton RD, Minteer SD, Janik MJ, Renner JN, Greenlee LF. Catalysts for nitrogen reduction to ammonia. Nat Catal 2018. [DOI: 10.1038/s41929-018-0092-7] [Citation(s) in RCA: 676] [Impact Index Per Article: 96.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
64
|
Tokmina-Lukaszewska M, Patterson A, Berry L, Scott L, Balasubramanian N, Bothner B. The Role of Mass Spectrometry in Structural Studies of Flavin-Based Electron Bifurcating Enzymes. Front Microbiol 2018; 9:1397. [PMID: 30026733 PMCID: PMC6041385 DOI: 10.3389/fmicb.2018.01397] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Accepted: 06/07/2018] [Indexed: 12/01/2022] Open
Abstract
For decades, biologists and biochemists have taken advantage of atomic resolution structural models of proteins from X-ray crystallography, nuclear magnetic resonance spectroscopy, and more recently cryo-electron microscopy. However, not all proteins relent to structural analyses using these approaches, and as the depth of knowledge increases, additional data elucidating a mechanistic understanding of protein function is desired. Flavin-based electron bifurcating enzymes, which are responsible for producing high energy compounds through the simultaneous endergonic and exergonic reduction of two intercellular electron carriers (i.e., NAD+ and ferredoxin) are one class of proteins that have challenged structural biologists and in which there is great interest to understand the mechanism behind electron gating. A limited number of X-ray crystallography projects have been successful; however, it is clear that to understand how these enzymes function, techniques that can reveal detailed in solution information about protein structure, dynamics, and interactions involved in the bifurcating reaction are needed. In this review, we cover a general set of mass spectrometry-based techniques that, combined with protein modeling, are capable of providing information on both protein structure and dynamics. Techniques discussed include surface labeling, covalent cross-linking, native mass spectrometry, and hydrogen/deuterium exchange. We cover how biophysical data can be used to validate computationally generated protein models and develop mechanistic explanations for regulation and performance of enzymes and protein complexes. Our focus will be on flavin-based electron bifurcating enzymes, but the broad applicability of the techniques will be showcased.
Collapse
Affiliation(s)
| | - Angela Patterson
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT, United States
| | - Luke Berry
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT, United States
| | - Liam Scott
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT, United States
| | | | - Brian Bothner
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT, United States
| |
Collapse
|
65
|
Sippel D, Rohde M, Netzer J, Trncik C, Gies J, Grunau K, Djurdjevic I, Decamps L, Andrade SLA, Einsle O. A bound reaction intermediate sheds light on the mechanism of nitrogenase. Science 2018; 359:1484-1489. [PMID: 29599235 DOI: 10.1126/science.aar2765] [Citation(s) in RCA: 205] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Accepted: 01/31/2018] [Indexed: 01/26/2023]
Abstract
Reduction of N2 by nitrogenases occurs at an organometallic iron cofactor that commonly also contains either molybdenum or vanadium. The well-characterized resting state of the cofactor does not bind substrate, so its mode of action remains enigmatic. Carbon monoxide was recently found to replace a bridging sulfide, but the mechanistic relevance was unclear. Here we report the structural analysis of vanadium nitrogenase with a bound intermediate, interpreted as a μ2-bridging, protonated nitrogen that implies the site and mode of substrate binding to the cofactor. Binding results in a flip of amino acid glutamine 176, which hydrogen-bonds the ligand and creates a holding position for the displaced sulfide. The intermediate likely represents state E6 or E7 of the Thorneley-Lowe model and provides clues to the remainder of the catalytic cycle.
Collapse
Affiliation(s)
- Daniel Sippel
- Institut für Biochemie, Albert-Ludwigs-Universität Freiburg, Albertstraße 21, 79104 Freiburg, Germany
| | - Michael Rohde
- Institut für Biochemie, Albert-Ludwigs-Universität Freiburg, Albertstraße 21, 79104 Freiburg, Germany
| | - Julia Netzer
- Institut für Biochemie, Albert-Ludwigs-Universität Freiburg, Albertstraße 21, 79104 Freiburg, Germany
| | - Christian Trncik
- Institut für Biochemie, Albert-Ludwigs-Universität Freiburg, Albertstraße 21, 79104 Freiburg, Germany
| | - Jakob Gies
- Institut für Biochemie, Albert-Ludwigs-Universität Freiburg, Albertstraße 21, 79104 Freiburg, Germany
| | - Katharina Grunau
- Institut für Biochemie, Albert-Ludwigs-Universität Freiburg, Albertstraße 21, 79104 Freiburg, Germany
| | - Ivana Djurdjevic
- Institut für Biochemie, Albert-Ludwigs-Universität Freiburg, Albertstraße 21, 79104 Freiburg, Germany
| | - Laure Decamps
- Institut für Biochemie, Albert-Ludwigs-Universität Freiburg, Albertstraße 21, 79104 Freiburg, Germany
| | - Susana L A Andrade
- Institut für Biochemie, Albert-Ludwigs-Universität Freiburg, Albertstraße 21, 79104 Freiburg, Germany.,BIOSS Centre for Biological Signalling Studies, Schänzlestraße 1, 79104 Freiburg, Germany
| | - Oliver Einsle
- Institut für Biochemie, Albert-Ludwigs-Universität Freiburg, Albertstraße 21, 79104 Freiburg, Germany. .,BIOSS Centre for Biological Signalling Studies, Schänzlestraße 1, 79104 Freiburg, Germany.,Freiburg Institute for Advanced Studies, 79104 Freiburg, Germany
| |
Collapse
|
66
|
Electron Transfer to Nitrogenase in Different Genomic and Metabolic Backgrounds. J Bacteriol 2018; 200:JB.00757-17. [PMID: 29483165 DOI: 10.1128/jb.00757-17] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 02/16/2018] [Indexed: 11/20/2022] Open
Abstract
Nitrogenase catalyzes the reduction of dinitrogen (N2) using low-potential electrons from ferredoxin (Fd) or flavodoxin (Fld) through an ATP-dependent process. Since its emergence in an anaerobic chemoautotroph, this oxygen (O2)-sensitive enzyme complex has evolved to operate in a variety of genomic and metabolic backgrounds, including those of aerobes, anaerobes, chemotrophs, and phototrophs. However, whether pathways of electron delivery to nitrogenase are influenced by these different metabolic backgrounds is not well understood. Here, we report the distribution of homologs of Fds, Flds, and Fd-/Fld-reducing enzymes in 359 genomes of putative N2 fixers (diazotrophs). Six distinct lineages of nitrogenase were identified, and their distributions largely corresponded to differences in the host cells' ability to integrate O2 or light into energy metabolism. The predicted pathways of electron transfer to nitrogenase in aerobes, facultative anaerobes, and phototrophs varied from those in anaerobes at the levels of Fds/Flds used to reduce nitrogenase, the enzymes that generate reduced Fds/Flds, and the putative substrates of these enzymes. Proteins that putatively reduce Fd with hydrogen or pyruvate were enriched in anaerobes, while those that reduce Fd with NADH/NADPH were enriched in aerobes, facultative anaerobes, and anoxygenic phototrophs. The energy metabolism of aerobic, facultatively anaerobic, and anoxygenic phototrophic diazotrophs often yields reduced NADH/NADPH that is not sufficiently reduced to drive N2 reduction. At least two mechanisms have been acquired by these taxa to overcome this limitation and to generate electrons with potentials capable of reducing Fd. These include the bifurcation of electrons or the coupling of Fd reduction to reverse ion translocation.IMPORTANCE Nitrogen fixation supplies fixed nitrogen to cells from a variety of genomic and metabolic backgrounds, including those of aerobes, facultative anaerobes, chemotrophs, and phototrophs. Here, using informatics approaches applied to genomic data, we show that pathways of electron transfer to nitrogenase in metabolically diverse diazotrophic taxa have diversified primarily in response to host cells' acquired ability to integrate O2 or light into their energy metabolism. The acquisition of two key enzyme complexes enabled aerobic and facultatively anaerobic phototrophic taxa to generate electrons of sufficiently low potential to reduce nitrogenase: the bifurcation of electrons via the Fix complex or the coupling of Fd reduction to reverse ion translocation via the Rhodobacter nitrogen fixation (Rnf) complex.
Collapse
|
67
|
Noar JD, Bruno-Bárcena JM. Azotobacter vinelandii: the source of 100 years of discoveries and many more to come. MICROBIOLOGY-SGM 2018. [PMID: 29533747 DOI: 10.1099/mic.0.000643] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Azotobacter vinelandii has been studied for over 100 years since its discovery as an aerobic nitrogen-fixing organism. This species has proved useful for the study of many different biological systems, including enzyme kinetics and the genetic code. It has been especially useful in working out the structures and mechanisms of different nitrogenase enzymes, how they can function in oxic environments and the interactions of nitrogen fixation with other aspects of metabolism. Interest in studying A. vinelandii has waned in recent decades, but this bacterium still possesses great potential for new discoveries in many fields and commercial applications. The species is of interest for research because of its genetic pliability and natural competence. Its features of particular interest to industry are its ability to produce multiple valuable polymers - bioplastic and alginate in particular; its nitrogen-fixing prowess, which could reduce the need for synthetic fertilizer in agriculture and industrial fermentations, via coculture; its production of potentially useful enzymes and metabolic pathways; and even its biofuel production abilities. This review summarizes the history and potential for future research using this versatile microbe.
Collapse
Affiliation(s)
- Jesse D Noar
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, North Carolina, USA
| | - Jose M Bruno-Bárcena
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, North Carolina, USA
| |
Collapse
|
68
|
Negative cooperativity in the nitrogenase Fe protein electron delivery cycle. Proc Natl Acad Sci U S A 2018; 113:E5783-E5791. [PMID: 27698129 DOI: 10.1073/pnas.1613089113] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Nitrogenase catalyzes the ATP-dependent reduction of dinitrogen (N2) to two ammonia (NH3) molecules through the participation of its two protein components, the MoFe and Fe proteins. Electron transfer (ET) from the Fe protein to the catalytic MoFe protein involves a series of synchronized events requiring the transient association of one Fe protein with each αβ half of the α2β2 MoFe protein. This process is referred to as the Fe protein cycle and includes binding of two ATP to an Fe protein, association of an Fe protein with the MoFe protein, ET from the Fe protein to the MoFe protein, hydrolysis of the two ATP to two ADP and two Pi for each ET, Pi release, and dissociation of oxidized Fe protein-(ADP)2 from the MoFe protein. Because the MoFe protein tetramer has two separate αβ active units, it participates in two distinct Fe protein cycles. Quantitative kinetic measurements of ET, ATP hydrolysis, and Pi release during the presteady-state phase of electron delivery demonstrate that the two halves of the ternary complex between the MoFe protein and two reduced Fe protein-(ATP)2 do not undergo the Fe protein cycle independently. Instead, the data are globally fit with a two-branch negative-cooperativity kinetic model in which ET in one-half of the complex partially suppresses this process in the other. A possible mechanism for communication between the two halves of the nitrogenase complex is suggested by normal-mode calculations showing correlated and anticorrelated motions between the two halves.
Collapse
|
69
|
Harris DF, Lukoyanov DA, Shaw S, Compton P, Tokmina-Lukaszewska M, Bothner B, Kelleher N, Dean DR, Hoffman BM, Seefeldt LC. Mechanism of N 2 Reduction Catalyzed by Fe-Nitrogenase Involves Reductive Elimination of H 2. Biochemistry 2018; 57:701-710. [PMID: 29283553 PMCID: PMC5837051 DOI: 10.1021/acs.biochem.7b01142] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Of the three forms of nitrogenase (Mo-nitrogenase, V-nitrogenase, and Fe-nitrogenase), Fe-nitrogenase has the poorest ratio of N2 reduction relative to H2 evolution. Recent work on the Mo-nitrogenase has revealed that reductive elimination of two bridging Fe-H-Fe hydrides on the active site FeMo-cofactor to yield H2 is a key feature in the N2 reduction mechanism. The N2 reduction mechanism for the Fe-nitrogenase active site FeFe-cofactor was unknown. Here, we have purified both component proteins of the Fe-nitrogenase system, the electron-delivery Fe protein (AnfH) plus the catalytic FeFe protein (AnfDGK), and established its mechanism of N2 reduction. Inductively coupled plasma optical emission spectroscopy and mass spectrometry show that the FeFe protein component does not contain significant amounts of Mo or V, thus ruling out a requirement of these metals for N2 reduction. The fully functioning Fe-nitrogenase system was found to have specific activities for N2 reduction (1 atm) of 181 ± 5 nmol NH3 min-1 mg-1 FeFe protein, for proton reduction (in the absence of N2) of 1085 ± 41 nmol H2 min-1 mg-1 FeFe protein, and for acetylene reduction (0.3 atm) of 306 ± 3 nmol C2H4 min-1 mg-1 FeFe protein. Under turnover conditions, N2 reduction is inhibited by H2 and the enzyme catalyzes the formation of HD when presented with N2 and D2. These observations are explained by the accumulation of four reducing equivalents as two metal-bound hydrides and two protons at the FeFe-cofactor, with activation for N2 reduction occurring by reductive elimination of H2.
Collapse
Affiliation(s)
- Derek F. Harris
- Department of Chemistry and Biochemistry, Utah State University, Logan, Utah 84322, United States
| | - Dmitriy A. Lukoyanov
- Departments of Chemistry and Molecular Biosciences, Northwestern University, Evanston, Illinois 60208, United States
| | - Sudipta Shaw
- Department of Chemistry and Biochemistry, Utah State University, Logan, Utah 84322, United States
| | - Phil Compton
- Departments of Chemistry and Molecular Biosciences, Northwestern University, Evanston, Illinois 60208, United States
| | - Monika Tokmina-Lukaszewska
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana 59717, United States
| | - Brian Bothner
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana 59717, United States
| | - Neil Kelleher
- Departments of Chemistry and Molecular Biosciences, Northwestern University, Evanston, Illinois 60208, United States
| | - Dennis R. Dean
- Department of Biochemistry, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, United States
| | - Brian M. Hoffman
- Departments of Chemistry and Molecular Biosciences, Northwestern University, Evanston, Illinois 60208, United States
| | - Lance C. Seefeldt
- Department of Chemistry and Biochemistry, Utah State University, Logan, Utah 84322, United States
| |
Collapse
|
70
|
Abstract
Although the nitrogen-fixing enzyme nitrogenase critically requires both a reductase component (Fe protein) and a catalytic component, considerably more work has focused on the latter species. Properties of the catalytic component, which contains two highly complex metallocofactors and catalyzes the reduction of N2 into ammonia, understandably making it the “star” of nitrogenase. However, as its obligate redox partner, the Fe protein is a workhorse with multiple supporting roles in both cofactor maturation and catalysis. In particular, the nitrogenase Fe protein utilizes nucleotide binding and hydrolysis in concert with electron transfer to accomplish several tasks of critical importance. Aside from the ATP-coupled transfer of electrons to the catalytic component during substrate reduction, the Fe protein also functions in a maturase and insertase capacity to facilitate the biosynthesis of the two-catalytic component metallocofactors: fusion of the [Fe8S7] P-cluster and insertion of Mo and homocitrate to form the matured [(homocitrate)MoFe7S9C] M-cluster. These and key structural-functional relationships of the indispensable Fe protein and its complex with the catalytic component will be covered in this review.
Collapse
|
71
|
Hu B, Harris DF, Dean DR, Liu TL, Yang ZY, Seefeldt LC. Electrocatalytic CO 2 reduction catalyzed by nitrogenase MoFe and FeFe proteins. Bioelectrochemistry 2017; 120:104-109. [PMID: 29223886 DOI: 10.1016/j.bioelechem.2017.12.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 11/30/2017] [Accepted: 12/01/2017] [Indexed: 11/26/2022]
Abstract
Nitrogenases catalyze biological dinitrogen (N2) reduction to ammonia (NH3), and also reduce a number of non-physiological substrates, including carbon dioxide (CO2) to formate (HCOO-) and methane (CH4). Three versions of nitrogenase are known (Mo-, V-, and Fe-nitrogenase), each showing different reactivities towards various substrates. Normally, electrons for substrate reduction are delivered by the Fe protein component of nitrogenase, with energy coming from the hydrolysis of 2 ATP to 2 ADP+2 Pi for each electron transferred. Recently, it has been demonstrated that energy and electrons can be delivered from an electrode to the catalytic nitrogenase MoFe-protein without the need for Fe protein or ATP hydrolysis. Here, it is demonstrated that both the MoFe- and FeFe-protein can be immobilized as a polymer layer on an electrode and that electron transfer mediated by cobaltocene can drive CO2 reduction to formate in this system. It was also found that the FeFe-protein diverts a greater percentage of electrons to CO2 reduction versus proton reduction compared to the MoFe-protein. Quantification of electron flow to products exhibited Faradaic efficiencies of CO2 conversion to formate of 9% for MoFe protein and 32% for FeFe-protein, with the remaining electrons going to proton reduction to make H2.
Collapse
Affiliation(s)
- Bo Hu
- Department of Chemistry and Biochemistry, Utah State University, Logan, UT 84322, USA
| | - Derek F Harris
- Department of Chemistry and Biochemistry, Utah State University, Logan, UT 84322, USA
| | - Dennis R Dean
- Department of Biochemistry, Virginia Tech, Blacksburg, VA 24061, USA
| | - T Leo Liu
- Department of Chemistry and Biochemistry, Utah State University, Logan, UT 84322, USA
| | - Zhi-Yong Yang
- Department of Chemistry and Biochemistry, Utah State University, Logan, UT 84322, USA.
| | - Lance C Seefeldt
- Department of Chemistry and Biochemistry, Utah State University, Logan, UT 84322, USA.
| |
Collapse
|
72
|
Khadka N, Milton RD, Shaw S, Lukoyanov D, Dean DR, Minteer SD, Raugei S, Hoffman BM, Seefeldt LC. Mechanism of Nitrogenase H 2 Formation by Metal-Hydride Protonation Probed by Mediated Electrocatalysis and H/D Isotope Effects. J Am Chem Soc 2017; 139:13518-13524. [PMID: 28851217 DOI: 10.1021/jacs.7b07311] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Nitrogenase catalyzes the reduction of dinitrogen (N2) to two ammonia (NH3) at its active site FeMo-cofactor through a mechanism involving reductive elimination of two [Fe-H-Fe] bridging hydrides to make H2. A competing reaction is the protonation of the hydride [Fe-H-Fe] to make H2. The overall nitrogenase rate-limiting step is associated with ATP-driven electron delivery from Fe protein, precluding isotope effect measurements on substrate reduction steps. Here, we use mediated bioelectrocatalysis to drive electron delivery to the MoFe protein allowing examination of the mechanism of H2 formation by the metal-hydride protonation reaction. The ratio of catalytic current in mixtures of H2O and D2O, the proton inventory, was found to change linearly with the D2O/H2O ratio, revealing that a single H/D is involved in the rate-limiting step of H2 formation. Kinetic models, along with measurements that vary the electron/proton delivery rate and use different substrates, reveal that the rate-limiting step under these conditions is the H2 formation reaction. Altering the chemical environment around the active site FeMo-cofactor in the MoFe protein, either by substituting nearby amino acids or transferring the isolated FeMo-cofactor into a different peptide matrix, changes the net isotope effect, but the proton inventory plot remains linear, consistent with an unchanging rate-limiting step. Density functional theory predicts a transition state for H2 formation where the S-H+ bond breaks and H+ attacks the Fe-hydride, and explains the observed H/D isotope effect. This study not only reveals the nitrogenase mechanism of H2 formation by hydride protonation, but also illustrates a strategy for mechanistic study that can be applied to other oxidoreductase enzymes and to biomimetic complexes.
Collapse
Affiliation(s)
- Nimesh Khadka
- Department of Chemistry and Biochemistry, Utah State University , Logan, Utah 84322, United States
| | - Ross D Milton
- Department of Chemistry, University of Utah , Salt Lake City, Utah 84112, United States
| | - Sudipta Shaw
- Department of Chemistry and Biochemistry, Utah State University , Logan, Utah 84322, United States
| | - Dmitriy Lukoyanov
- Department of Chemistry, Northwestern University , Evanston, Illinois 60208, United States
| | - Dennis R Dean
- Department of Biochemistry, Virginia Tech , Blacksburg, Virginia 24061, United States
| | - Shelley D Minteer
- Department of Chemistry, University of Utah , Salt Lake City, Utah 84112, United States
| | - Simone Raugei
- Pacific Northwest National Laboratory , Richland, Washington 99352, United States
| | - Brian M Hoffman
- Department of Chemistry, Northwestern University , Evanston, Illinois 60208, United States
| | - Lance C Seefeldt
- Department of Chemistry and Biochemistry, Utah State University , Logan, Utah 84322, United States
| |
Collapse
|
73
|
Segal HM, Spatzal T, Hill MG, Udit AK, Rees DC. Electrochemical and structural characterization of Azotobacter vinelandii flavodoxin II. Protein Sci 2017; 26:1984-1993. [PMID: 28710816 PMCID: PMC5606536 DOI: 10.1002/pro.3236] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 07/08/2017] [Accepted: 07/10/2017] [Indexed: 01/07/2023]
Abstract
Azotobacter vinelandii flavodoxin II serves as a physiological reductant of nitrogenase, the enzyme system mediating biological nitrogen fixation. Wildtype A. vinelandii flavodoxin II was electrochemically and crystallographically characterized to better understand the molecular basis for this functional role. The redox properties were monitored on surfactant-modified basal plane graphite electrodes, with two distinct redox couples measured by cyclic voltammetry corresponding to reduction potentials of -483 ± 1 mV and -187 ± 9 mV (vs. NHE) in 50 mM potassium phosphate, 150 mM NaCl, pH 7.5. These redox potentials were assigned as the semiquinone/hydroquinone couple and the quinone/semiquinone couple, respectively. This study constitutes one of the first applications of surfactant-modified basal plane graphite electrodes to characterize the redox properties of a flavodoxin, thus providing a novel electrochemical method to study this class of protein. The X-ray crystal structure of the flavodoxin purified from A. vinelandii was solved at 1.17 Å resolution. With this structure, the native nitrogenase electron transfer proteins have all been structurally characterized. Docking studies indicate that a common binding site surrounding the Fe-protein [4Fe:4S] cluster mediates complex formation with the redox partners Mo-Fe protein, ferredoxin I, and flavodoxin II. This model supports a mechanistic hypothesis that electron transfer reactions between the Fe-protein and its redox partners are mutually exclusive.
Collapse
Affiliation(s)
- Helen M Segal
- Division of Chemistry and Chemical Engineering, Howard Hughes Medical Institute, California Institute of Technology, Pasadena, California, 91125
| | - Thomas Spatzal
- Division of Chemistry and Chemical Engineering, Howard Hughes Medical Institute, California Institute of Technology, Pasadena, California, 91125
| | - Michael G Hill
- Division of Chemistry, Occidental College, Los Angeles, California, 90041
| | - Andrew K Udit
- Division of Chemistry, Occidental College, Los Angeles, California, 90041
| | - Douglas C Rees
- Division of Chemistry and Chemical Engineering, Howard Hughes Medical Institute, California Institute of Technology, Pasadena, California, 91125
| |
Collapse
|
74
|
Pence N, Tokmina-Lukaszewska M, Yang ZY, Ledbetter RN, Seefeldt LC, Bothner B, Peters JW. Unraveling the interactions of the physiological reductant flavodoxin with the different conformations of the Fe protein in the nitrogenase cycle. J Biol Chem 2017; 292:15661-15669. [PMID: 28784660 DOI: 10.1074/jbc.m117.801548] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2017] [Revised: 08/02/2017] [Indexed: 01/21/2023] Open
Abstract
Nitrogenase reduces dinitrogen (N2) to ammonia in biological nitrogen fixation. The nitrogenase Fe protein cycle involves a transient association between the reduced, MgATP-bound Fe protein and the MoFe protein and includes electron transfer, ATP hydrolysis, release of Pi, and dissociation of the oxidized, MgADP-bound Fe protein from the MoFe protein. The cycle is completed by reduction of oxidized Fe protein and nucleotide exchange. Recently, a kinetic study of the nitrogenase Fe protein cycle involving the physiological reductant flavodoxin reported a major revision of the rate-limiting step from MoFe protein and Fe protein dissociation to release of Pi Because the Fe protein cannot interact with flavodoxin and the MoFe protein simultaneously, knowledge of the interactions between flavodoxin and the different nucleotide states of the Fe protein is critically important for understanding the Fe protein cycle. Here we used time-resolved limited proteolysis and chemical cross-linking to examine nucleotide-induced structural changes in the Fe protein and their effects on interactions with flavodoxin. Differences in proteolytic cleavage patterns and chemical cross-linking patterns were consistent with known nucleotide-induced structural differences in the Fe protein and indicated that MgATP-bound Fe protein resembles the structure of the Fe protein in the stabilized nitrogenase complex structures. Docking models and cross-linking patterns between the Fe protein and flavodoxin revealed that the MgADP-bound state of the Fe protein has the most complementary docking interface with flavodoxin compared with the MgATP-bound state. Together, these findings provide new insights into the control mechanisms in protein-protein interactions during the Fe protein cycle.
Collapse
Affiliation(s)
- Natasha Pence
- From the Institute of Biological Chemistry, Washington State University, Pullman, Washington 99164.,the Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana 59717, and
| | | | - Zhi-Yong Yang
- the Department of Chemistry and Biochemistry, Utah State University, Logan, Utah 84322
| | - Rhesa N Ledbetter
- the Department of Chemistry and Biochemistry, Utah State University, Logan, Utah 84322
| | - Lance C Seefeldt
- the Department of Chemistry and Biochemistry, Utah State University, Logan, Utah 84322
| | - Brian Bothner
- the Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana 59717, and
| | - John W Peters
- From the Institute of Biological Chemistry, Washington State University, Pullman, Washington 99164, .,the Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana 59717, and
| |
Collapse
|
75
|
Ledbetter RN, Garcia Costas AM, Lubner CE, Mulder DW, Tokmina-Lukaszewska M, Artz JH, Patterson A, Magnuson TS, Jay ZJ, Duan HD, Miller J, Plunkett MH, Hoben JP, Barney BM, Carlson RP, Miller AF, Bothner B, King PW, Peters JW, Seefeldt LC. The Electron Bifurcating FixABCX Protein Complex from Azotobacter vinelandii: Generation of Low-Potential Reducing Equivalents for Nitrogenase Catalysis. Biochemistry 2017; 56:4177-4190. [PMID: 28704608 DOI: 10.1021/acs.biochem.7b00389] [Citation(s) in RCA: 104] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The biological reduction of dinitrogen (N2) to ammonia (NH3) by nitrogenase is an energetically demanding reaction that requires low-potential electrons and ATP; however, pathways used to deliver the electrons from central metabolism to the reductants of nitrogenase, ferredoxin or flavodoxin, remain unknown for many diazotrophic microbes. The FixABCX protein complex has been proposed to reduce flavodoxin or ferredoxin using NADH as the electron donor in a process known as electron bifurcation. Herein, the FixABCX complex from Azotobacter vinelandii was purified and demonstrated to catalyze an electron bifurcation reaction: oxidation of NADH (Em = -320 mV) coupled to reduction of flavodoxin semiquinone (Em = -460 mV) and reduction of coenzyme Q (Em = 10 mV). Knocking out fix genes rendered Δrnf A. vinelandii cells unable to fix dinitrogen, confirming that the FixABCX system provides another route for delivery of electrons to nitrogenase. Characterization of the purified FixABCX complex revealed the presence of flavin and iron-sulfur cofactors confirmed by native mass spectrometry, electron paramagnetic resonance spectroscopy, and transient absorption spectroscopy. Transient absorption spectroscopy further established the presence of a short-lived flavin semiquinone radical, suggesting that a thermodynamically unstable flavin semiquinone may participate as an intermediate in the transfer of an electron to flavodoxin. A structural model of FixABCX, generated using chemical cross-linking in conjunction with homology modeling, revealed plausible electron transfer pathways to both high- and low-potential acceptors. Overall, this study informs a mechanism for electron bifurcation, offering insight into a unique method for delivery of low-potential electrons required for energy-intensive biochemical conversions.
Collapse
Affiliation(s)
- Rhesa N Ledbetter
- Department of Chemistry and Biochemistry, Utah State University , Logan, Utah 84322, United States
| | - Amaya M Garcia Costas
- Department of Chemistry and Biochemistry, Montana State University , Bozeman, Montana 59717, United States
| | - Carolyn E Lubner
- National Renewable Energy Laboratory , Golden, Colorado 80401, United States
| | - David W Mulder
- National Renewable Energy Laboratory , Golden, Colorado 80401, United States
| | - Monika Tokmina-Lukaszewska
- Department of Chemistry and Biochemistry, Montana State University , Bozeman, Montana 59717, United States
| | - Jacob H Artz
- Institute of Biological Chemistry, Washington State University , Pullman, Washington 99163, United States
| | - Angela Patterson
- Department of Chemistry and Biochemistry, Montana State University , Bozeman, Montana 59717, United States
| | - Timothy S Magnuson
- Department of Biological Sciences, Idaho State University , Pocatello, Idaho 83201, United States
| | - Zackary J Jay
- Department of Chemical and Biological Engineering, Center for Biofilm Engineering and Thermal Biology Institute, Montana State University , Bozeman, Montana 59717, United States
| | - H Diessel Duan
- Department of Chemistry, University of Kentucky , Lexington, Kentucky 40506, United States
| | - Jacquelyn Miller
- Department of Chemistry and Biochemistry, Montana State University , Bozeman, Montana 59717, United States
| | - Mary H Plunkett
- Department of Bioproducts and Biosystems Engineering and Biotechnology Institute, University of Minnesota , St. Paul, Minnesota 55108, United States
| | - John P Hoben
- Department of Chemistry, University of Kentucky , Lexington, Kentucky 40506, United States
| | - Brett M Barney
- Department of Bioproducts and Biosystems Engineering and Biotechnology Institute, University of Minnesota , St. Paul, Minnesota 55108, United States
| | - Ross P Carlson
- Department of Chemical and Biological Engineering, Center for Biofilm Engineering and Thermal Biology Institute, Montana State University , Bozeman, Montana 59717, United States
| | - Anne-Frances Miller
- Department of Chemistry, University of Kentucky , Lexington, Kentucky 40506, United States
| | - Brian Bothner
- Department of Chemistry and Biochemistry, Montana State University , Bozeman, Montana 59717, United States
| | - Paul W King
- National Renewable Energy Laboratory , Golden, Colorado 80401, United States
| | - John W Peters
- Department of Chemistry and Biochemistry, Montana State University , Bozeman, Montana 59717, United States.,Institute of Biological Chemistry, Washington State University , Pullman, Washington 99163, United States
| | - Lance C Seefeldt
- Department of Chemistry and Biochemistry, Utah State University , Logan, Utah 84322, United States
| |
Collapse
|
76
|
Nguyen DMN, Schut GJ, Zadvornyy OA, Tokmina-Lukaszewska M, Poudel S, Lipscomb GL, Adams LA, Dinsmore JT, Nixon WJ, Boyd ES, Bothner B, Peters JW, Adams MWW. Two functionally distinct NADP +-dependent ferredoxin oxidoreductases maintain the primary redox balance of Pyrococcus furiosus. J Biol Chem 2017; 292:14603-14616. [PMID: 28705933 DOI: 10.1074/jbc.m117.794172] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 07/10/2017] [Indexed: 01/08/2023] Open
Abstract
Electron bifurcation has recently gained acceptance as the third mechanism of energy conservation in which energy is conserved through the coupling of exergonic and endergonic reactions. A structure-based mechanism of bifurcation has been elucidated recently for the flavin-based enzyme NADH-dependent ferredoxin NADP+ oxidoreductase I (NfnI) from the hyperthermophillic archaeon Pyrococcus furiosus. NfnI is thought to be involved in maintaining the cellular redox balance, producing NADPH for biosynthesis by recycling the two other primary redox carriers, NADH and ferredoxin. The P. furiosus genome encodes an NfnI paralog termed NfnII, and the two are differentially expressed, depending on the growth conditions. In this study, we show that deletion of the genes encoding either NfnI or NfnII affects the cellular concentrations of NAD(P)H and particularly NADPH. This results in a moderate to severe growth phenotype in deletion mutants, demonstrating a key role for each enzyme in maintaining redox homeostasis. Despite their similarity in primary sequence and cofactor content, crystallographic, kinetic, and mass spectrometry analyses reveal that there are fundamental structural differences between the two enzymes, and NfnII does not catalyze the NfnI bifurcating reaction. Instead, it exhibits non-bifurcating ferredoxin NADP oxidoreductase-type activity. NfnII is therefore proposed to be a bifunctional enzyme and also to catalyze a bifurcating reaction, although its third substrate, in addition to ferredoxin and NADP(H), is as yet unknown.
Collapse
Affiliation(s)
- Diep M N Nguyen
- From the Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia 30602
| | - Gerrit J Schut
- From the Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia 30602
| | - Oleg A Zadvornyy
- the Institute of Biological Chemistry, Washington State University, Pullman, Washington 99164, and
| | | | - Saroj Poudel
- Microbiology and Immunology, Montana State University, Bozeman, Montana 59717
| | - Gina L Lipscomb
- From the Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia 30602
| | - Leslie A Adams
- From the Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia 30602
| | - Jessica T Dinsmore
- From the Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia 30602
| | - William J Nixon
- From the Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia 30602
| | - Eric S Boyd
- Microbiology and Immunology, Montana State University, Bozeman, Montana 59717
| | | | - John W Peters
- the Institute of Biological Chemistry, Washington State University, Pullman, Washington 99164, and
| | - Michael W W Adams
- From the Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia 30602,
| |
Collapse
|
77
|
Sickerman NS, Hu Y, Ribbe MW. Activation of CO
2
by Vanadium Nitrogenase. Chem Asian J 2017; 12:1985-1996. [DOI: 10.1002/asia.201700624] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Indexed: 11/08/2022]
Affiliation(s)
- Nathaniel S. Sickerman
- Department of Molecular Biology and Biochemistry University of California, Irvine Irvine CA 92697-3900 USA
| | - Yilin Hu
- Department of Molecular Biology and Biochemistry University of California, Irvine Irvine CA 92697-3900 USA
| | - Markus W. Ribbe
- Department of Molecular Biology and Biochemistry University of California, Irvine Irvine CA 92697-3900 USA
- Department of Chemistry University of California, Irvine Irvine CA 92697-2025 USA
| |
Collapse
|
78
|
Fourmond V, Léger C. N 2
-Reduktion: Verschaltung von Nitrogenase mit Elektroden. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201701179] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Vincent Fourmond
- Laboratoire de Bioénergétique et Ingénierie des Protéines; Aix Marseille Université, CNRS, UMR7281; Marseille Frankreich
| | - Christophe Léger
- Laboratoire de Bioénergétique et Ingénierie des Protéines; Aix Marseille Université, CNRS, UMR7281; Marseille Frankreich
| |
Collapse
|
79
|
Fourmond V, Léger C. Dinitrogen Reduction: Interfacing the Enzyme Nitrogenase with Electrodes. Angew Chem Int Ed Engl 2017; 56:4388-4390. [PMID: 28300341 DOI: 10.1002/anie.201701179] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Indexed: 11/09/2022]
Abstract
Potential for nitrogenase: Milton, Minteer, and co-workers report the first evidence for the bioelectrochemical reduction of N2 to ammonia by nitrogenase. This complex enzyme could be wired to an electrode by using the soluble mediator methyl viologen; this very simple approach makes it possible to develop a variety of biotechnological devices.
Collapse
Affiliation(s)
- Vincent Fourmond
- Laboratoire de Bioénergétique et Ingénierie des Protéines, Aix Marseille Université, CNRS, UMR7281, Marseille, France
| | - Christophe Léger
- Laboratoire de Bioénergétique et Ingénierie des Protéines, Aix Marseille Université, CNRS, UMR7281, Marseille, France
| |
Collapse
|
80
|
Milton RD, Cai R, Abdellaoui S, Leech D, De Lacey AL, Pita M, Minteer SD. Bioelectrochemical Haber-Bosch Process: An Ammonia-Producing H 2 /N 2 Fuel Cell. Angew Chem Int Ed Engl 2017; 56:2680-2683. [PMID: 28156040 DOI: 10.1002/anie.201612500] [Citation(s) in RCA: 137] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Indexed: 11/12/2022]
Abstract
Nitrogenases are the only enzymes known to reduce molecular nitrogen (N2 ) to ammonia (NH3 ). By using methyl viologen (N,N'-dimethyl-4,4'-bipyridinium) to shuttle electrons to nitrogenase, N2 reduction to NH3 can be mediated at an electrode surface. The coupling of this nitrogenase cathode with a bioanode that utilizes the enzyme hydrogenase to oxidize molecular hydrogen (H2 ) results in an enzymatic fuel cell (EFC) that is able to produce NH3 from H2 and N2 while simultaneously producing an electrical current. To demonstrate this, a charge of 60 mC was passed across H2 /N2 EFCs, which resulted in the formation of 286 nmol NH3 mg-1 MoFe protein, corresponding to a Faradaic efficiency of 26.4 %.
Collapse
Affiliation(s)
- Ross D Milton
- Department of Chemistry, University of Utah, 315 S 1400 E, Salt Lake City, UT, 84112, USA.,School of Chemistry, National University of Ireland Galway, University Road, Galway, Ireland
| | - Rong Cai
- Department of Chemistry, University of Utah, 315 S 1400 E, Salt Lake City, UT, 84112, USA
| | - Sofiene Abdellaoui
- Department of Chemistry, University of Utah, 315 S 1400 E, Salt Lake City, UT, 84112, USA
| | - Dónal Leech
- School of Chemistry, National University of Ireland Galway, University Road, Galway, Ireland
| | - Antonio L De Lacey
- Instituto de Catalisis y Petroleoquimica, CSIC, C/ Marie Curie 2, L10, 28049, Madrid, Spain
| | - Marcos Pita
- Instituto de Catalisis y Petroleoquimica, CSIC, C/ Marie Curie 2, L10, 28049, Madrid, Spain
| | - Shelley D Minteer
- Department of Chemistry, University of Utah, 315 S 1400 E, Salt Lake City, UT, 84112, USA
| |
Collapse
|
81
|
Milton RD, Cai R, Abdellaoui S, Leech D, De Lacey AL, Pita M, Minteer SD. Bioelectrochemical Haber-Bosch Process: An Ammonia-Producing H2
/N2
Fuel Cell. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201612500] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Ross D. Milton
- Department of Chemistry; University of Utah; 315 S 1400 E Salt Lake City UT 84112 USA
- School of Chemistry; National University of Ireland Galway; University Road Galway Ireland
| | - Rong Cai
- Department of Chemistry; University of Utah; 315 S 1400 E Salt Lake City UT 84112 USA
| | - Sofiene Abdellaoui
- Department of Chemistry; University of Utah; 315 S 1400 E Salt Lake City UT 84112 USA
| | - Dónal Leech
- School of Chemistry; National University of Ireland Galway; University Road Galway Ireland
| | - Antonio L. De Lacey
- Instituto de Catalisis y Petroleoquimica; CSIC; C/ Marie Curie 2, L10 28049 Madrid Spain
| | - Marcos Pita
- Instituto de Catalisis y Petroleoquimica; CSIC; C/ Marie Curie 2, L10 28049 Madrid Spain
| | - Shelley D. Minteer
- Department of Chemistry; University of Utah; 315 S 1400 E Salt Lake City UT 84112 USA
| |
Collapse
|