51
|
Chi J, Su M, Xue B, Cheng L, Lian Z, Yun Y, Yang X, Wang X, Xie H, Wang H, Wang Y, Du J, Song Y. Fast and Sensitive Detection of Protein Markers Using an All-Printing Photonic Crystal Microarray via Fingertip Blood. ACS Sens 2023; 8:1742-1749. [PMID: 36966508 DOI: 10.1021/acssensors.3c00029] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2023]
Abstract
With the demand for point-of-care testing (POCT) in cardiovascular diseases, the detection of biomarkers in trace blood samples is of great significance in emergency medicine settings. Here, we demonstrated an all-printed photonic crystal microarray for POCT of protein markers (named "P4 microarray"). The paired nanobodies were printed as probes to target the soluble suppression of tumorigenicity 2 (sST2) as a certified cardiovascular protein marker. Benefiting from photonic crystal-enhanced fluorescence and integrated microarrays, quantitative detection of sST2 is 2 orders of magnitude lower than that of a traditional fluorescent immunoassay. The limit of detection is down to 10 pg/mL with the coefficient of variation being less than 8%. Detection of sST2 via fingertip blood is achieved in 10 min. Moreover, the P4 microarray after 180 days of storage at room temperature showed excellent stability for detection. This P4 microarray, as a convenient and reliable immunoassay for rapid and quantitative detection of protein markers in trace blood samples, has high sensitivity and strong storage stability, which hold great potential to advance cardiovascular precision medicine.
Collapse
Affiliation(s)
- Jimei Chi
- Key Laboratory of Green Printing, Institute of Chemistry, Chinese Academy of Sciences (ICCAS)/Beijing Engineering Research Center of Nanomaterials for Green Printing Technology, Beijing National Laboratory for Molecular Sciences (BNLMS), Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Meng Su
- Key Laboratory of Green Printing, Institute of Chemistry, Chinese Academy of Sciences (ICCAS)/Beijing Engineering Research Center of Nanomaterials for Green Printing Technology, Beijing National Laboratory for Molecular Sciences (BNLMS), Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Bingjie Xue
- Beijing Anzhen Hospital Affiliated to Capital Medical University & Department of Vascular Biology, Beijing Institute of Heart, Lung and Blood Vessel Disease & Key Laboratory of Remodeling-related Cardiovascular Diseases, Ministry of Education & Collaborative Innovation Center for Cardiovascular Disorders, Beijing 100029, P. R. China
| | - Lijun Cheng
- Key Laboratory of Green Printing, Institute of Chemistry, Chinese Academy of Sciences (ICCAS)/Beijing Engineering Research Center of Nanomaterials for Green Printing Technology, Beijing National Laboratory for Molecular Sciences (BNLMS), Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Zewei Lian
- Key Laboratory of Green Printing, Institute of Chemistry, Chinese Academy of Sciences (ICCAS)/Beijing Engineering Research Center of Nanomaterials for Green Printing Technology, Beijing National Laboratory for Molecular Sciences (BNLMS), Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Yang Yun
- Key Laboratory of Green Printing, Institute of Chemistry, Chinese Academy of Sciences (ICCAS)/Beijing Engineering Research Center of Nanomaterials for Green Printing Technology, Beijing National Laboratory for Molecular Sciences (BNLMS), Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Xu Yang
- Key Laboratory of Green Printing, Institute of Chemistry, Chinese Academy of Sciences (ICCAS)/Beijing Engineering Research Center of Nanomaterials for Green Printing Technology, Beijing National Laboratory for Molecular Sciences (BNLMS), Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Xue Wang
- Beijing Anzhen Hospital Affiliated to Capital Medical University & Department of Vascular Biology, Beijing Institute of Heart, Lung and Blood Vessel Disease & Key Laboratory of Remodeling-related Cardiovascular Diseases, Ministry of Education & Collaborative Innovation Center for Cardiovascular Disorders, Beijing 100029, P. R. China
| | - Hongfei Xie
- Key Laboratory of Green Printing, Institute of Chemistry, Chinese Academy of Sciences (ICCAS)/Beijing Engineering Research Center of Nanomaterials for Green Printing Technology, Beijing National Laboratory for Molecular Sciences (BNLMS), Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Huadong Wang
- Key Laboratory of Green Printing, Institute of Chemistry, Chinese Academy of Sciences (ICCAS)/Beijing Engineering Research Center of Nanomaterials for Green Printing Technology, Beijing National Laboratory for Molecular Sciences (BNLMS), Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Yuan Wang
- Beijing Anzhen Hospital Affiliated to Capital Medical University & Department of Vascular Biology, Beijing Institute of Heart, Lung and Blood Vessel Disease & Key Laboratory of Remodeling-related Cardiovascular Diseases, Ministry of Education & Collaborative Innovation Center for Cardiovascular Disorders, Beijing 100029, P. R. China
| | - Jie Du
- Beijing Anzhen Hospital Affiliated to Capital Medical University & Department of Vascular Biology, Beijing Institute of Heart, Lung and Blood Vessel Disease & Key Laboratory of Remodeling-related Cardiovascular Diseases, Ministry of Education & Collaborative Innovation Center for Cardiovascular Disorders, Beijing 100029, P. R. China
| | - Yanlin Song
- Key Laboratory of Green Printing, Institute of Chemistry, Chinese Academy of Sciences (ICCAS)/Beijing Engineering Research Center of Nanomaterials for Green Printing Technology, Beijing National Laboratory for Molecular Sciences (BNLMS), Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
52
|
Zhou S, Jiang L, Dong Z. Overflow Control for Sustainable Development by Superwetting Surface with Biomimetic Structure. Chem Rev 2023; 123:2276-2310. [PMID: 35522923 DOI: 10.1021/acs.chemrev.1c00976] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Liquid flowing around a solid edge, i.e., overflow, is a commonly observed flow behavior. Recent research into surface wetting properties and microstructure-controlled overflow behavior has attracted much attention. Achieving controllable macroscale liquid dynamics by manipulating the micro-nanoscale liquid overflow has stimulated diverse scientific interest and fostered widespread use in practical applications. In this review, we outline the evolution of overflow and present a critical survey of the mechanism of surface wetting properties and microstructure-controlled liquid overflow in multilength scales ranging from centimeter to micro and even nanoscale. We summarize the latest progress in utilizing the mechanisms to manipulate liquid overflow and achieve macroscale liquid dynamics and in emerging applications to manipulate overflow for sustainable development in various fields, along with challenges and perspectives.
Collapse
Affiliation(s)
- Shan Zhou
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.,School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Lei Jiang
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.,School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Zhichao Dong
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.,School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
53
|
Wang Q, Li Y, Xiao J, Xia L. Intelligent Eucommia ulmoides Rubber/Ionomer Blends with Thermally Activated Shape Memory and Self-Healing Properties. Polymers (Basel) 2023; 15:1182. [PMID: 36904423 PMCID: PMC10006959 DOI: 10.3390/polym15051182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 02/16/2023] [Accepted: 02/23/2023] [Indexed: 03/02/2023] Open
Abstract
Intelligent Eucommia ulmoides rubber (EUR) and ionomer Surlyn resin (SR) blends were prepared and studied in this manuscript. This is the first paper to combine EUR with SR to prepare blends with both the shape memory effect and self-healing capability. The mechanical, curing, thermal, shape memory and self-healing properties were studied by a universal testing machine, differential scanning calorimetry (DSC) and dynamic mechanical analysis (DMA), respectively. Experimental results showed that the increase in ionomer content not only improved mechanical and shape memory properties but also endowed the compounds with excellent self-healing ability under the appropriate environmental conditions. Notably, the self-healing efficiency of the composites reached 87.41%, which is much higher than the efficiency of other covalent cross-linking composites. Therefore, these novel shape memory and self-healing blends can expand the use of natural Eucommia ulmoides rubber, such as in special medical devices, sensors and actuators.
Collapse
Affiliation(s)
| | | | | | - Lin Xia
- Key Laboratory of Rubber-Plastics, Ministry of Education/Shandong Provincial Key Laboratory of Rubber-Plastics, School of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| |
Collapse
|
54
|
Li D, Wu J, Liang Z, Li L, Dong X, Chen S, Fu T, Wang X, Wang Y, Song F. Sophisticated yet Convenient Information Encryption/Decryption Based on Synergistically Time-/Temperature-Resolved Photonic Inks. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2206290. [PMID: 36504335 PMCID: PMC9929127 DOI: 10.1002/advs.202206290] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/21/2022] [Indexed: 06/17/2023]
Abstract
Exploring high-safety but convenient encryption and decryption technologies to combat threats of information leakage is urgently needed but remains a great challenge. Here, a synergistically time- and temperature-resolved information coding/decoding solution based on functional photonic inks is demonstrated. Encrypted messages can be stored into multiple channels with dynamic-color patterns, and information decryption is only enabled at appointed temperature and time points. Notably, the ink can be easily processed into quick-response codes and multipixel plates. With high transparency and responsive color variations controlled by ink compositions and ambient temperatures, advanced 3D stacking multichannel coding and Morse coding techniques can be applied for multi-information storage, complex anticounterfeiting, and information interference. This study paves an avenue for the design and development of dynamic photonic inks and complex encryption technologies for high-end anticounterfeiting applications.
Collapse
Affiliation(s)
- Dong Li
- The Collaborative Innovation Center for Eco‐Friendly and Fire‐Safety Polymeric Materials (MoE)National Engineering Laboratory of Eco‐Friendly Polymeric Materials (Sichuan)State Key Laboratory of Polymer Materials EngineeringCollege of ChemistrySichuan UniversityChengdu610064P. R. China
| | - Jia‐Min Wu
- The Collaborative Innovation Center for Eco‐Friendly and Fire‐Safety Polymeric Materials (MoE)National Engineering Laboratory of Eco‐Friendly Polymeric Materials (Sichuan)State Key Laboratory of Polymer Materials EngineeringCollege of ChemistrySichuan UniversityChengdu610064P. R. China
| | - Zheng‐Hong Liang
- The Collaborative Innovation Center for Eco‐Friendly and Fire‐Safety Polymeric Materials (MoE)National Engineering Laboratory of Eco‐Friendly Polymeric Materials (Sichuan)State Key Laboratory of Polymer Materials EngineeringCollege of ChemistrySichuan UniversityChengdu610064P. R. China
| | - Lin‐Yue Li
- The Collaborative Innovation Center for Eco‐Friendly and Fire‐Safety Polymeric Materials (MoE)National Engineering Laboratory of Eco‐Friendly Polymeric Materials (Sichuan)State Key Laboratory of Polymer Materials EngineeringCollege of ChemistrySichuan UniversityChengdu610064P. R. China
| | - Xiu Dong
- The Collaborative Innovation Center for Eco‐Friendly and Fire‐Safety Polymeric Materials (MoE)National Engineering Laboratory of Eco‐Friendly Polymeric Materials (Sichuan)State Key Laboratory of Polymer Materials EngineeringCollege of ChemistrySichuan UniversityChengdu610064P. R. China
| | - Si‐Kai Chen
- The Collaborative Innovation Center for Eco‐Friendly and Fire‐Safety Polymeric Materials (MoE)National Engineering Laboratory of Eco‐Friendly Polymeric Materials (Sichuan)State Key Laboratory of Polymer Materials EngineeringCollege of ChemistrySichuan UniversityChengdu610064P. R. China
| | - Teng Fu
- The Collaborative Innovation Center for Eco‐Friendly and Fire‐Safety Polymeric Materials (MoE)National Engineering Laboratory of Eco‐Friendly Polymeric Materials (Sichuan)State Key Laboratory of Polymer Materials EngineeringCollege of ChemistrySichuan UniversityChengdu610064P. R. China
| | - Xiu‐Li Wang
- The Collaborative Innovation Center for Eco‐Friendly and Fire‐Safety Polymeric Materials (MoE)National Engineering Laboratory of Eco‐Friendly Polymeric Materials (Sichuan)State Key Laboratory of Polymer Materials EngineeringCollege of ChemistrySichuan UniversityChengdu610064P. R. China
| | - Yu‐Zhong Wang
- The Collaborative Innovation Center for Eco‐Friendly and Fire‐Safety Polymeric Materials (MoE)National Engineering Laboratory of Eco‐Friendly Polymeric Materials (Sichuan)State Key Laboratory of Polymer Materials EngineeringCollege of ChemistrySichuan UniversityChengdu610064P. R. China
| | - Fei Song
- The Collaborative Innovation Center for Eco‐Friendly and Fire‐Safety Polymeric Materials (MoE)National Engineering Laboratory of Eco‐Friendly Polymeric Materials (Sichuan)State Key Laboratory of Polymer Materials EngineeringCollege of ChemistrySichuan UniversityChengdu610064P. R. China
| |
Collapse
|
55
|
Sajedi-Moghaddam A, Gholami M, Naseri N. Inkjet Printing of MnO 2 Nanoflowers on Surface-Modified A4 Paper for Flexible All-Solid-State Microsupercapacitors. ACS APPLIED MATERIALS & INTERFACES 2023; 15:3894-3903. [PMID: 36637063 DOI: 10.1021/acsami.2c08939] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Printing technologies are gaining growing attention as a sustainable route for the fabrication of high-performance and flexible power sources such as microsupercapacitors (MSCs). Here, the inkjet printing method is utilized for the fabrication of manganese dioxide (MnO2)-based, flexible all-solid-state MSCs on surface-modified A4 paper substrate. The appropriate rheology of the formulated ethanol-based ink (Fromm number <10) and the proper dimensions of MnO2 nanoflowers (average size ∼600 nm) ensure a reliable inkjet printing process. Moreover, the underlying graphene/Ag nanowire pattern serves as a primer and highly conductive (Rs < 2 Ω sq-1) layer on top of the paper to facilitate the anchoring of MnO2 nanoflowers and rapid electron transportation. The resulting all-solid-state MSCs deliver a maximum areal capacitance of 0.68 mF cm-2 at a current density of 25 μA cm-2, reasonable durability (>80% of capacity remained after 3000 cycles), and remarkable foldability. Additionally, the inkjet-printed MSC devices deliver a superior areal energy density of 0.01 μWh cm-2 and also a power density of 1.19 μW cm-2. This study demonstrates the power of the inkjet printing method to produce MSCs on flexible substrates, which have great potential for flexible/wearable electronics.
Collapse
Affiliation(s)
- Ali Sajedi-Moghaddam
- Department of Physics, Sharif University of Technology, P.O. Box 11155-9161Tehran, I.R. of Iran
| | - Mostafa Gholami
- Department of Physics, Sharif University of Technology, P.O. Box 11155-9161Tehran, I.R. of Iran
| | - Naimeh Naseri
- Department of Physics, Sharif University of Technology, P.O. Box 11155-9161Tehran, I.R. of Iran
| |
Collapse
|
56
|
Vijayakanth T, Sahoo S, Kothavade P, Bhan Sharma V, Kabra D, Zaręba JK, Shanmuganathan K, Boomishankar R. A Ferroelectric Aminophosphonium Cyanoferrate with a Large Electrostrictive Coefficient as a Piezoelectric Nanogenerator. Angew Chem Int Ed Engl 2023; 62:e202214984. [PMID: 36408916 DOI: 10.1002/anie.202214984] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/16/2022] [Accepted: 11/21/2022] [Indexed: 11/22/2022]
Abstract
Hybrid materials possessing piezo- and ferroelectric properties emerge as excellent alternatives to conventional piezoceramics due to their merits of facile synthesis, lightweight nature, ease of fabrication and mechanical flexibility. Inspired by the structural stability of aminophosphonium compounds, here we report the first A3 BX6 type cyanometallate [Ph2 (i PrNH)2 P]3 [Fe(CN)6 ] (1), which shows a ferroelectric saturation polarization (Ps ) of 3.71 μC cm-2 . Compound 1 exhibits a high electrostrictive coefficient (Q33 ) of 0.73 m4 C-2 , far exceeding those of piezoceramics (0.034-0.096 m4 C-2 ). Piezoresponse force microscopy (PFM) analysis demonstrates the polarization switching and domain structure of 1 further confirming its ferroelectric nature. Furthermore, thermoplastic polyurethane (TPU) polymer composite films of 1 were prepared and employed as piezoelectric nanogenerators. Notably, the 15 wt % 1-TPU device gave a maximum output voltage of 13.57 V and a power density of 6.03 μW cm-2 .
Collapse
Affiliation(s)
- Thangavel Vijayakanth
- Department of Chemistry and Centre for Energy Science, Indian Institute of Science Education and Research, Pune, Dr. Homi Bhabha Road, Pune, 411008, India.,Present address: The Shmunis School of Biomedicine and Cancer Research, George S. Wise, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, 6997801, Israel
| | - Supriya Sahoo
- Department of Chemistry and Centre for Energy Science, Indian Institute of Science Education and Research, Pune, Dr. Homi Bhabha Road, Pune, 411008, India
| | - Premkumar Kothavade
- Polymer Science and Engineering Division and Academy of Scientific and Innovative Research, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune, 411008, India
| | - Vijay Bhan Sharma
- Department of Physics, Indian Institute of Technology, Mumbai, 400076, India
| | - Dinesh Kabra
- Department of Physics, Indian Institute of Technology, Mumbai, 400076, India
| | - Jan K Zaręba
- Institute of Advanced Materials, Wrocław University of Science and Technology, 50-370, Wrocław, Poland
| | - Kadhiravan Shanmuganathan
- Polymer Science and Engineering Division and Academy of Scientific and Innovative Research, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune, 411008, India
| | - Ramamoorthy Boomishankar
- Department of Chemistry and Centre for Energy Science, Indian Institute of Science Education and Research, Pune, Dr. Homi Bhabha Road, Pune, 411008, India
| |
Collapse
|
57
|
Luo C, Liu L, Huang Y, Lou X, Xia F, Song Y. Recent Advances in Printable Flexible Optical Devices: From Printing Technology and Optimization Strategies to Perspectives. J Phys Chem Lett 2022; 13:12061-12075. [PMID: 36542750 DOI: 10.1021/acs.jpclett.2c03153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Recently, flexible optical devices have triggered booming developments in various research fields, including display equipment, sensors, energy conversion, and so on, due to their high compatibility, portability, and wearability. With the advantages of strong design ability, high precision, and high integration, printing technologies have been recognized as promising methods to realize flexible optical devices. In this Perspective, recent progress on printing strategies for fabricating flexible optical devices are introduced systematically. First, through adjusting the composition of inks, selecting flexible substrates, and controlling external stimulation, fabrication of flexible optical devices based on inkjet printing is illustrated. Then, flexible optical devices fabricated by template-induced printing, 3D printing, slot-die printing, and screen printing are summarized. Finally, prospects and future development directions based on printing technology for flexible optical devices are proposed.
Collapse
Affiliation(s)
- Cihui Luo
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Material Science and Chemistry, China University of Geosciences, Wuhan430074, P. R. China
| | - Lingxiao Liu
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Material Science and Chemistry, China University of Geosciences, Wuhan430074, P. R. China
| | - Yu Huang
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Material Science and Chemistry, China University of Geosciences, Wuhan430074, P. R. China
- Zhejiang Institute, China University of Geosciences, Hangzhou, 311305, P. R. China
| | - Xiaoding Lou
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Material Science and Chemistry, China University of Geosciences, Wuhan430074, P. R. China
| | - Fan Xia
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Material Science and Chemistry, China University of Geosciences, Wuhan430074, P. R. China
- Zhejiang Institute, China University of Geosciences, Hangzhou, 311305, P. R. China
| | - Yanlin Song
- Key Laboratory of Green Printing, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing100190, China
| |
Collapse
|
58
|
Rong L, Zhao W, Fan Y, Zhou Z, Zhan M, He X, Yuan W, Qian C. Environmentally Stable, Stretchable, Adhesive, and Conductive Organohydrogels with Multiple Dynamic Interactions as High-Performance Strain and Temperature Sensors. ACS APPLIED MATERIALS & INTERFACES 2022; 14:55075-55087. [PMID: 36455289 DOI: 10.1021/acsami.2c16919] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Nowadays, with the rapid development of artificial intelligence, conductive hydrogel-based sensors play an increasingly vital role in health monitoring and temperature sensing. However, the perfect integration of the environmental stability and applied performance of the hydrogel has always been a challenging and significant problem. Herein, we report an environmentally tolerant, stretchable, adhesive, self-healing conductive gel through multiple dynamic interactions in the water/glycerol/ionic liquids medium, which can be used as a high-performance strain and temperature sensor. The random copolymer poly(acrylic acid-co-acetoacetoxyethyl methacrylate) interacts with the branched poly(ethylene imine) (PEI) and Zr4+ ions via the dynamic covalent enamine bonds, coordinations, and electrostatic interactions to improve stretchable (1300%), compressible, fatigue-resistant (1000 cycles at 50% strain), and self-healing performance (95%, 24 h). The combination of water/glycerol/ionic liquids imparts the resulting gel with excellent electrical conductivity, anti-drying, and anti-freezing performance. By means of the above excellent performance, the gel could be used as the flexible strain or pressure sensor with high sensitivity and stability for the detection of the movement, expression, handwriting, pronouncing, and electrocardiogram (ECG) signals in various models. Meanwhile, the resulting gel can be assembled as the temperature sensor to trace the change of temperature accurately and steadily, which has a wide operating window (0 to 100 °C), an ultralow detection limit (0.2 °C), and high sensitivity (2.1% °C-1). It is believed that the strategy for the multifunction and high-performance gel will blaze a new trail for the smart device in health management, temperature detection, and information transmission under various environmental conditions.
Collapse
Affiliation(s)
- Liduo Rong
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Interventional Medical Center, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai519000, P. R. China
| | - Wei Zhao
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Interventional Medical Center, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai519000, P. R. China
| | - Yu Fan
- School of Materials Science and Engineering, Tongji University, Shanghai201804, P. R. China
| | - Zixuan Zhou
- School of Materials Science and Engineering, Tongji University, Shanghai201804, P. R. China
| | - Meixiao Zhan
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Interventional Medical Center, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai519000, P. R. China
| | - Xu He
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Interventional Medical Center, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai519000, P. R. China
| | - Weizhong Yuan
- School of Materials Science and Engineering, Tongji University, Shanghai201804, P. R. China
| | - Chunhua Qian
- Department of Endocrinology and Metabolism, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai200072, P. R. China
| |
Collapse
|
59
|
Hou ZL, Ma X, Zhang J, Li C, Wang Y, Cao M. Fascinating Electrical Transport Behavior of Topological Insulator Bi 2 Te 3 Nanorods: Toward Electrically Responsive Smart Materials. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2205624. [PMID: 36328711 DOI: 10.1002/smll.202205624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 10/14/2022] [Indexed: 06/16/2023]
Abstract
Electrical conductivity and dielectric parameters are general inherent features of materials. Controlling these characteristics through applied bias will add a new dimension to regulate the dynamic response of smart materials. Here, a fascinating electrical transport behavior is observed in topological insulator (TI) Bi2 Te3 nanorods, which will play a vital role in intelligent materials or devices as a unit for information reception, processing or feedback. The Bi2 Te3 nanorod aggregates exhibit a monotonic resistance response to voltage, with observed four-fold change of electrical conductivity in a small range electric field of 1 V mm-1 . The dielectric constant and dielectric loss of Bi2 Te3 nanorod composites also show strong dependences on bias voltage due to the unique electrical transport characteristics. The unique voltage-controlled electrical responses are attributed to the change of Fermi levels within the band structure of disordered TI nanorods, which are non-parallel to the applied electric field. The excellent controllable inherent characteristics through electric field endows Bi2 Te3 nanomaterials bright prospects for applications in smart devices and resistive random access memories.
Collapse
Affiliation(s)
- Zhi-Ling Hou
- College of Mathematics and Physics, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Xiaomei Ma
- College of Mathematics and Physics, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Junying Zhang
- College of Mathematics and Physics, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Chuanjian Li
- College of Mathematics and Physics, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Yilin Wang
- College of Mathematics and Physics, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Maosheng Cao
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, China
| |
Collapse
|
60
|
Bao R, Pan C. Efficient perovskite solar cells with body temperature self-repairing. Sci Bull (Beijing) 2022; 67:2263-2264. [PMID: 36546212 DOI: 10.1016/j.scib.2022.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Rongrong Bao
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100083, China; School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Caofeng Pan
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100083, China; School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
61
|
Zeng X, He P, Hu M, Zhao W, Chen H, Liu L, Sun J, Yang J. Copper inks for printed electronics: a review. NANOSCALE 2022; 14:16003-16032. [PMID: 36301077 DOI: 10.1039/d2nr03990g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Conductive inks have attracted tremendous attention owing to their adaptability and the convenient large-scale fabrication. As a new type of conductive ink, copper-based ink is considered to be one of the best candidate materials for the conductive layer in flexible printed electronics owing to its high conductivity and low price, and suitability for large-scale manufacturing processes. Recently, tremendous progress has been made in the preparation of cooper-based inks for electronic applications, but the antioxidation ability of copper-based nanomaterials within inks or films, that is, long-term reliability upon exposure to water and oxygen, still needs more exploration. In this review, we present a comprehensive overview of copper inks for printed electronics from ink preparation, printing methods and sintering, to antioxidation strategies and electronic applications. The review begins with an overview of the development of copper inks, followed by a demonstration of various preparation methods for copper inks. Then, the diverse printing techniques and post-annealing strategies used to fabricate conductive copper patterns are discussed. In addition, antioxidation strategies utilized to stabilize the mechanical and electrical properties of copper nanomaterials are summarized. Then the diverse applications of copper inks for electronic devices, such as transparent conductive electrodes, sensors, optoelectronic devices, and thin-film transistors, are discussed. Finally, the future development of copper-based inks and the challenges of their application in printed electronics are discussed.
Collapse
Affiliation(s)
- Xianghui Zeng
- Hunan Key Laboratory for Super-Microstructure and Ultrafast Process, School of Physics and Electronics, Central South University, Changsha, 410083, Hunan, People's Republic of China.
| | - Pei He
- Hunan Key Laboratory for Super-Microstructure and Ultrafast Process, School of Physics and Electronics, Central South University, Changsha, 410083, Hunan, People's Republic of China.
| | - Minglu Hu
- Hunan Key Laboratory for Super-Microstructure and Ultrafast Process, School of Physics and Electronics, Central South University, Changsha, 410083, Hunan, People's Republic of China.
| | - Weikai Zhao
- Hunan Key Laboratory for Super-Microstructure and Ultrafast Process, School of Physics and Electronics, Central South University, Changsha, 410083, Hunan, People's Republic of China.
| | - Huitong Chen
- Hunan Key Laboratory for Super-Microstructure and Ultrafast Process, School of Physics and Electronics, Central South University, Changsha, 410083, Hunan, People's Republic of China.
| | - Longhui Liu
- Hunan Key Laboratory for Super-Microstructure and Ultrafast Process, School of Physics and Electronics, Central South University, Changsha, 410083, Hunan, People's Republic of China.
| | - Jia Sun
- Hunan Key Laboratory for Super-Microstructure and Ultrafast Process, School of Physics and Electronics, Central South University, Changsha, 410083, Hunan, People's Republic of China.
| | - Junliang Yang
- Hunan Key Laboratory for Super-Microstructure and Ultrafast Process, School of Physics and Electronics, Central South University, Changsha, 410083, Hunan, People's Republic of China.
| |
Collapse
|
62
|
Xie H, Pan Q, Wu D, Qin F, Chen S, Sun W, Yang X, Chen S, Wu T, Chi J, Huang Z, Wang H, Zhang Z, Chen B, Carmeliet J, Su M, Song Y. Lateral Heterostructured Vis-NIR Photodetectors with Multimodal Detection for Rapid and Precise Classification of Glioma. ACS NANO 2022; 16:16563-16573. [PMID: 36201316 DOI: 10.1021/acsnano.2c06004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Precise diagnosis of the boundary and grade of tumors is especially important for surgical dissection. Recently, visible and near-infrared (Vis-NIR) absorption differences of tumors are demonstrated for a precise tumor diagnosis. Here, a template-assisted sequential printing strategy is investigated to construct lateral heterostructured Vis-NIR photodetectors, relying on the up-conversion nanoparticles (UCNPs)/perovskite arrays. Under the sequential printing process, the synergistic effect and co-confinement are demonstrated to induce the UCNPs to cover both sides of the perovskite microwire. The side-wrapped lateral heterogeneous UCNPs/perovskite structure exhibits more satisfactory responsiveness to Vis-NIR light than the common fully wrapped structure, due to sufficient visible-light-harvesting ability. The Vis-NIR photodetectors with R reaching 150 mA W-1 at 980 nm and 1084 A W-1 at 450 nm are employed for the rapid classification of glioma. The detection accuracy rate of 99.3% is achieved through a multimodal analysis covering the Vis-NIR light, which provides a reliable basis for glioma grade diagnosis. This work provides a concrete example for the application of photodetectors in tumor detection and surgical diagnosis.
Collapse
Affiliation(s)
- Hongfei Xie
- Key Laboratory of Green Printing, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences (ICCAS), Beijing Engineering Research Center of Nanomaterials for Green Printing Technology, Beijing National Laboratory for Molecular Sciences (BNLMS)Beijing100190, China
- University of Chinese Academy of Sciences, Beijing100049, China
| | - Qi Pan
- Key Laboratory of Green Printing, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences (ICCAS), Beijing Engineering Research Center of Nanomaterials for Green Printing Technology, Beijing National Laboratory for Molecular Sciences (BNLMS)Beijing100190, China
| | - Dongdong Wu
- Department of Neurosurgery, The First Medical Centre, Chinese PLA General Hospital, Beijing100853, China
- Medical School of Chinese PLA Hospital, Beijing100853, China
| | - Feifei Qin
- Department of Mechanical and Process Engineering, Swiss Federal Institute of Technology in Zürich (ETH Zürich), Zürich8092, Switzerland
| | - Shuoran Chen
- Research Center for Green Printing Nanophotonic Materials, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Wei Sun
- Institute of Software, Chinese Academy of Sciences, Beijing100049, China
| | - Xu Yang
- Key Laboratory of Green Printing, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences (ICCAS), Beijing Engineering Research Center of Nanomaterials for Green Printing Technology, Beijing National Laboratory for Molecular Sciences (BNLMS)Beijing100190, China
- University of Chinese Academy of Sciences, Beijing100049, China
| | - Sisi Chen
- Key Laboratory of Green Printing, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences (ICCAS), Beijing Engineering Research Center of Nanomaterials for Green Printing Technology, Beijing National Laboratory for Molecular Sciences (BNLMS)Beijing100190, China
- University of Chinese Academy of Sciences, Beijing100049, China
| | - Tingqing Wu
- Key Laboratory of Green Printing, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences (ICCAS), Beijing Engineering Research Center of Nanomaterials for Green Printing Technology, Beijing National Laboratory for Molecular Sciences (BNLMS)Beijing100190, China
- University of Chinese Academy of Sciences, Beijing100049, China
| | - Jimei Chi
- Key Laboratory of Green Printing, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences (ICCAS), Beijing Engineering Research Center of Nanomaterials for Green Printing Technology, Beijing National Laboratory for Molecular Sciences (BNLMS)Beijing100190, China
- University of Chinese Academy of Sciences, Beijing100049, China
| | - Zengqi Huang
- Key Laboratory of Green Printing, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences (ICCAS), Beijing Engineering Research Center of Nanomaterials for Green Printing Technology, Beijing National Laboratory for Molecular Sciences (BNLMS)Beijing100190, China
| | - Huadong Wang
- Key Laboratory of Green Printing, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences (ICCAS), Beijing Engineering Research Center of Nanomaterials for Green Printing Technology, Beijing National Laboratory for Molecular Sciences (BNLMS)Beijing100190, China
- University of Chinese Academy of Sciences, Beijing100049, China
| | - Zeying Zhang
- Key Laboratory of Green Printing, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences (ICCAS), Beijing Engineering Research Center of Nanomaterials for Green Printing Technology, Beijing National Laboratory for Molecular Sciences (BNLMS)Beijing100190, China
- University of Chinese Academy of Sciences, Beijing100049, China
| | - Bingda Chen
- Key Laboratory of Green Printing, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences (ICCAS), Beijing Engineering Research Center of Nanomaterials for Green Printing Technology, Beijing National Laboratory for Molecular Sciences (BNLMS)Beijing100190, China
- University of Chinese Academy of Sciences, Beijing100049, China
| | - Jan Carmeliet
- Department of Mechanical and Process Engineering, Swiss Federal Institute of Technology in Zürich (ETH Zürich), Zürich8092, Switzerland
| | - Meng Su
- Key Laboratory of Green Printing, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences (ICCAS), Beijing Engineering Research Center of Nanomaterials for Green Printing Technology, Beijing National Laboratory for Molecular Sciences (BNLMS)Beijing100190, China
- University of Chinese Academy of Sciences, Beijing100049, China
| | - Yanlin Song
- Key Laboratory of Green Printing, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences (ICCAS), Beijing Engineering Research Center of Nanomaterials for Green Printing Technology, Beijing National Laboratory for Molecular Sciences (BNLMS)Beijing100190, China
- University of Chinese Academy of Sciences, Beijing100049, China
| |
Collapse
|
63
|
Chen S, Pan Q, Wu T, Xie H, Xue T, Su M, Song Y. Printing nanoparticle-based isotropic/anisotropic networks for directional electrical circuits. NANOSCALE 2022; 14:14956-14961. [PMID: 36178246 DOI: 10.1039/d2nr03892g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
With the demand for integrated nanodevices, anisotropic conductive films are one type of interconnection structure for electronic components, which have been widely used for improving the integration of the system in printed circuit boards. This work presents a template-assisted printing strategy for the fabrication of nanoparticle-based networks with multi electrical properties. By manipulating the microfluid behavior under the guidance of the grid-shaped template, the continuity of liquid bridges can be precisely controlled in two directions. The isotropous circuits with crossbar paths, discrete paths as well as unidirectional paths are obtained, which achieve the switching of on/off states in the circuits. This work demonstrates a new type of directional circuits by the template-assisted printing method, which provides an effective fabrication strategy for electrical components and integrated systems.
Collapse
Affiliation(s)
- Sisi Chen
- Key Laboratory of Green Printing, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences (ICCAS), Beijing Engineering Research Center of Nanomaterials for Green Printing Technology, Beijing National Laboratory for Molecular Sciences (BNLMS), Beijing 100190, P. R. China.
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Qi Pan
- Key Laboratory of Green Printing, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences (ICCAS), Beijing Engineering Research Center of Nanomaterials for Green Printing Technology, Beijing National Laboratory for Molecular Sciences (BNLMS), Beijing 100190, P. R. China.
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Tingqing Wu
- Key Laboratory of Green Printing, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences (ICCAS), Beijing Engineering Research Center of Nanomaterials for Green Printing Technology, Beijing National Laboratory for Molecular Sciences (BNLMS), Beijing 100190, P. R. China.
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Hongfei Xie
- Key Laboratory of Green Printing, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences (ICCAS), Beijing Engineering Research Center of Nanomaterials for Green Printing Technology, Beijing National Laboratory for Molecular Sciences (BNLMS), Beijing 100190, P. R. China.
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Tangyue Xue
- Key Laboratory of Green Printing, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences (ICCAS), Beijing Engineering Research Center of Nanomaterials for Green Printing Technology, Beijing National Laboratory for Molecular Sciences (BNLMS), Beijing 100190, P. R. China.
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Meng Su
- Key Laboratory of Green Printing, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences (ICCAS), Beijing Engineering Research Center of Nanomaterials for Green Printing Technology, Beijing National Laboratory for Molecular Sciences (BNLMS), Beijing 100190, P. R. China.
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Yanlin Song
- Key Laboratory of Green Printing, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences (ICCAS), Beijing Engineering Research Center of Nanomaterials for Green Printing Technology, Beijing National Laboratory for Molecular Sciences (BNLMS), Beijing 100190, P. R. China.
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
64
|
Abstract
![]()
With the rapid development of optoelectronic fields,
electrochromic
(EC) materials and devices have received remarkable attention and
have shown attractive potential for use in emerging wearable and portable
electronics, electronic papers/billboards, see-through displays, and
other new-generation displays, due to the advantages of low power
consumption, easy viewing, flexibility, stretchability, etc. Despite
continuous progress in related fields, determining how to make electrochromics
truly meet the requirements of mature displays (e.g., ideal overall
performance) has been a long-term problem. Therefore, the commercialization
of relevant high-quality products is still in its infancy. In this
review, we will focus on the progress in emerging EC materials and
devices for potential displays, including two mainstream EC display
prototypes (segmented displays and pixel displays) and their commercial
applications. Among these topics, the related materials/devices, EC
performance, construction approaches, and processing techniques are
comprehensively disscussed and reviewed. We also outline the current
barriers with possible solutions and discuss the future of this field.
Collapse
Affiliation(s)
- Chang Gu
- State Key Lab of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, People's Republic of China
| | - Ai-Bo Jia
- State Key Lab of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, People's Republic of China
| | - Yu-Mo Zhang
- State Key Lab of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, People's Republic of China
| | - Sean Xiao-An Zhang
- State Key Lab of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, People's Republic of China
| |
Collapse
|
65
|
Chi J, Wu Y, Qin F, Su M, Cheng N, Zhang J, Li C, Lian Z, Yang X, Cheng L, Xie H, Wang H, Zhang Z, Carmeliet J, Song Y. All-printed point-of-care immunosensing biochip for one drop blood diagnostics. LAB ON A CHIP 2022; 22:3008-3014. [PMID: 35781479 DOI: 10.1039/d2lc00385f] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Designing and preparing a fast and easy-to-use immunosensing biochip are of great significance for clinical diagnosis and biomedical research. In particular, sensitive, specific, and early detection of biomarkers in trace samples promotes the application of point-of-care testing (POCT). Here, we demonstrate an all-printed immunosensing biochip with the characteristics of hydrodynamic enrichment and photonic crystal-enhanced fluorescence. Direct quantitative detection of cardiac biomarkers via one drop of blood is achieved in 10 min. After simulating the hydrodynamic behavior of one droplet serum on the printed assay, creatine kinase-MB (CK-MB) has been recognized and located on the photonic crystal arrays. Benefiting from the fluorescence enhancement effect, quantitative detection of CK-MB has been demonstrated from 0.01 ng ml-1 to 100 ng ml-1, which is superior to the conventional enzyme-linked immunosorbent assay (ELISA). This strategy provides a general and easy-to-use approach for fast quantitative detection of biomarkers, which would be improved further for portable clinical diagnostics and home medical monitoring.
Collapse
Affiliation(s)
- Jimei Chi
- Key Laboratory of Green Printing, CAS Research/Education Center for Excellence in Molecular Sciences, Beijing Engineering Research Center of Nanomaterials for Green Printing Technology, Beijing National Laboratory for Molecular Sciences (BNLMS), Institute of Chemistry, Chinese Academy of Sciences (ICCAS), Beijing 100190, P. R. China.
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Yuanbin Wu
- Department of Cardiovascular Surgery, PLA General Hospital, Beijing 100853, P. R. China.
| | - Feifei Qin
- Department of Mechanical and Process Engineering, Swiss Federal Institute of Technology in Zürich (ETH Zürich), Zürich 8093, Switzerland
| | - Meng Su
- Key Laboratory of Green Printing, CAS Research/Education Center for Excellence in Molecular Sciences, Beijing Engineering Research Center of Nanomaterials for Green Printing Technology, Beijing National Laboratory for Molecular Sciences (BNLMS), Institute of Chemistry, Chinese Academy of Sciences (ICCAS), Beijing 100190, P. R. China.
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Nan Cheng
- Department of Cardiovascular Surgery, PLA General Hospital, Beijing 100853, P. R. China.
| | - Jiabing Zhang
- Graduate School of Medical School of Chinese PLA Hospital, Beijing, 100853, P. R. China
| | - Chunbao Li
- Department of Orthopaedic Medicine, Fourth Medical Center, PLA General Hospital, Beijing 100853, China
| | - Zewei Lian
- Key Laboratory of Green Printing, CAS Research/Education Center for Excellence in Molecular Sciences, Beijing Engineering Research Center of Nanomaterials for Green Printing Technology, Beijing National Laboratory for Molecular Sciences (BNLMS), Institute of Chemistry, Chinese Academy of Sciences (ICCAS), Beijing 100190, P. R. China.
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Xu Yang
- Key Laboratory of Green Printing, CAS Research/Education Center for Excellence in Molecular Sciences, Beijing Engineering Research Center of Nanomaterials for Green Printing Technology, Beijing National Laboratory for Molecular Sciences (BNLMS), Institute of Chemistry, Chinese Academy of Sciences (ICCAS), Beijing 100190, P. R. China.
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Lijun Cheng
- Key Laboratory of Green Printing, CAS Research/Education Center for Excellence in Molecular Sciences, Beijing Engineering Research Center of Nanomaterials for Green Printing Technology, Beijing National Laboratory for Molecular Sciences (BNLMS), Institute of Chemistry, Chinese Academy of Sciences (ICCAS), Beijing 100190, P. R. China.
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Hongfei Xie
- Key Laboratory of Green Printing, CAS Research/Education Center for Excellence in Molecular Sciences, Beijing Engineering Research Center of Nanomaterials for Green Printing Technology, Beijing National Laboratory for Molecular Sciences (BNLMS), Institute of Chemistry, Chinese Academy of Sciences (ICCAS), Beijing 100190, P. R. China.
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Huadong Wang
- Key Laboratory of Green Printing, CAS Research/Education Center for Excellence in Molecular Sciences, Beijing Engineering Research Center of Nanomaterials for Green Printing Technology, Beijing National Laboratory for Molecular Sciences (BNLMS), Institute of Chemistry, Chinese Academy of Sciences (ICCAS), Beijing 100190, P. R. China.
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Zeying Zhang
- Key Laboratory of Green Printing, CAS Research/Education Center for Excellence in Molecular Sciences, Beijing Engineering Research Center of Nanomaterials for Green Printing Technology, Beijing National Laboratory for Molecular Sciences (BNLMS), Institute of Chemistry, Chinese Academy of Sciences (ICCAS), Beijing 100190, P. R. China.
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Jan Carmeliet
- Department of Mechanical and Process Engineering, Swiss Federal Institute of Technology in Zürich (ETH Zürich), Zürich 8093, Switzerland
| | - Yanlin Song
- Key Laboratory of Green Printing, CAS Research/Education Center for Excellence in Molecular Sciences, Beijing Engineering Research Center of Nanomaterials for Green Printing Technology, Beijing National Laboratory for Molecular Sciences (BNLMS), Institute of Chemistry, Chinese Academy of Sciences (ICCAS), Beijing 100190, P. R. China.
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
66
|
Mukkatt I, Mohanachandran AP, Nirmala A, Patra D, Sukumaran PA, Pillai RS, Rakhi RB, Shankar S, Ajayaghosh A. Tunable Capacitive Behavior in Metallopolymer-based Electrochromic Thin Film Supercapacitors. ACS APPLIED MATERIALS & INTERFACES 2022; 14:31900-31910. [PMID: 35791964 DOI: 10.1021/acsami.2c05744] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Volumetric capacitance is a more critical performance parameter for rechargeable power supply in lightweight and microelectronic devices as compared to gravimetric capacitance in larger devices. To this end, we report three electrochromic metallopolymer-based electrode materials containing Fe2+ as the coordinating metal ion with high volumetric capacitance and energy densities in a symmetric two-electrode supercapacitor setup. These metallopolymers exhibited volumetric capacitance up to 866.2 F cm-3 at a constant current density of 0.25 A g-1. The volumetric capacitance (poly-Fe-L2: 544.6 F cm-3 > poly-Fe-L1: 313.8 F cm-3 > poly-Fe-L3: 230.8 F cm-3 at 1 A g-1) and energy densities (poly-Fe-L2: 75.5 mWh cm-3 > poly-Fe-L1: 43.6 mWh cm-3 > poly-Fe-L3: 31.2 mWh cm-3) followed the order of the electrical conductivity of the metallopolymers and are among the best values reported for metal-organic systems. The variation in the ligand structure was key toward achieving different electrical conductivities in these metallopolymers with excellent operational stability under continuous cycling. High volumetric capacitances and energy densities combined with tunable electro-optical properties and electrochromic behavior of these metallopolymers are expected to contribute to high performance and compact microenergy storage systems. We envision that the integration of smart functionalities with thin film supercapacitors would warrant the surge of miniaturized on-chip microsupercapacitors integrated in-plane with other microelectronic devices for wearable applications.
Collapse
Affiliation(s)
- Indulekha Mukkatt
- Photosciences and Photonics Section, Chemical Sciences and Technology Division, CSIR - National Institute for Interdisciplinary Sciences and Technology (CSIR - NIIST), Thiruvananthapuram 695019, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Anjana Padmaja Mohanachandran
- Material Sciences and Technology Division, CSIR - National Institute for Interdisciplinary Sciences and Technology (CSIR - NIIST), Thiruvananthapuram 695019, India
- Department of Physics, University of Kerala, Thiruvananthapuram, Kerala 695581, India
| | - Anjali Nirmala
- Photosciences and Photonics Section, Chemical Sciences and Technology Division, CSIR - National Institute for Interdisciplinary Sciences and Technology (CSIR - NIIST), Thiruvananthapuram 695019, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Dipak Patra
- Photosciences and Photonics Section, Chemical Sciences and Technology Division, CSIR - National Institute for Interdisciplinary Sciences and Technology (CSIR - NIIST), Thiruvananthapuram 695019, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Priyanka A Sukumaran
- Photosciences and Photonics Section, Chemical Sciences and Technology Division, CSIR - National Institute for Interdisciplinary Sciences and Technology (CSIR - NIIST), Thiruvananthapuram 695019, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Renjith S Pillai
- Department of Chemistry, Christ University, Bangalore 560029, Karnataka, India
| | - R B Rakhi
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
- Material Sciences and Technology Division, CSIR - National Institute for Interdisciplinary Sciences and Technology (CSIR - NIIST), Thiruvananthapuram 695019, India
| | - Sreejith Shankar
- Photosciences and Photonics Section, Chemical Sciences and Technology Division, CSIR - National Institute for Interdisciplinary Sciences and Technology (CSIR - NIIST), Thiruvananthapuram 695019, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Ayyappanpillai Ajayaghosh
- Photosciences and Photonics Section, Chemical Sciences and Technology Division, CSIR - National Institute for Interdisciplinary Sciences and Technology (CSIR - NIIST), Thiruvananthapuram 695019, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
67
|
Chi J, Wu D, Su M, Song Y. All-printed nanophotonic biochip for point-of-care testing of biomarkers. Sci Bull (Beijing) 2022; 67:1191-1193. [PMID: 35498635 PMCID: PMC9033290 DOI: 10.1016/j.scib.2022.04.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Jimei Chi
- Key Laboratory of Green Printing, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- Beijing Engineering Research Center of Nanomaterials for Green Printing Technology, Beijing National Laboratory for Molecular Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dongdong Wu
- Department of Neurosurgery, First Medical Center, General Hospital of the People's Liberation Army of China, Beijing 100853, China
| | - Meng Su
- Key Laboratory of Green Printing, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- Beijing Engineering Research Center of Nanomaterials for Green Printing Technology, Beijing National Laboratory for Molecular Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yanlin Song
- Key Laboratory of Green Printing, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- Beijing Engineering Research Center of Nanomaterials for Green Printing Technology, Beijing National Laboratory for Molecular Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
68
|
Qin M, Li J, Song Y. Toward High Sensitivity: Perspective on Colorimetric Photonic Crystal Sensors. Anal Chem 2022; 94:9497-9507. [PMID: 35759455 DOI: 10.1021/acs.analchem.2c01804] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The sensitivity of colorimetric photonic crystal (PC) sensors have been significantly improved with the advancement of deformable structural color materials, structures design, sensing signal analysis methods, and fabrication strategies. In this perspective, the strategies toward high-sensitivity colorimetric PC sensors are discussed, from the perspectives of molecular design, single sensor construction, and multisensor assembly, which include incorporation of flexible polymer chains, construction of strong sensor-analyte interactions, incorporation of more soft materials, construction of stimuli-angle/orientation relationship, design of colorimetric sensors in series, and assembly of colorimetric PC sensors in parallel. Based on these strategies, progress of high-sensitivity colorimetric PC sensors in recent years is summarized, in terms of mechano-sensors and chemo-/biosensors. Specifically, PC based optical-electrical dual-signal sensing devices are included. Finally, the future development and challenges of high-sensitivity colorimetric PC sensors are presented, in regards to deformable properties, optical properties, analysis methods, and fabrication strategies.
Collapse
Affiliation(s)
- Meng Qin
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Jianshu Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Yanlin Song
- Key Laboratory of Green Printing, Institute of Chemistry, Chinese Academy of Sciences, Beijing Engineering Research Center of Nanomaterials for Green Printing Technology, Beijing National Laboratory for Molecular Sciences, Beijing 100190, China
| |
Collapse
|
69
|
Ye X, Ge L, Jiang T, Guo H, Chen B, Liu C, Hayashi K. Fully Inkjet-Printed Chemiresistive Sensor Array Based on Molecularly Imprinted Sol-Gel Active Materials. ACS Sens 2022; 7:1819-1828. [PMID: 35731925 DOI: 10.1021/acssensors.2c00093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The fabrication of chemiresistive sensors by inkjet printing is recognized as a breakthrough in gas-sensing applications. One challenge of this technology, however, is how to enhance the cross-selectivity of the sensor array. Herein, we present a ketjen black (KB) ink and molecularly imprinted sol-gel (MISG) inks to support the fabrication of a fully inkjet-printed chemiresistive sensor array, enabling the highly accurate recognition of volatile organic acids (VOAs) on the molecular level. The MISG/KB sensor array was prepared on a glossy photographic paper with a three-layer structure: a circuit layer by a commercial silver ink, a conductive layer by a KB ink, and an active selective layer by MISG inks imprinted by different templates. Hexanoic acid (HA), heptanoic acid, and octanoic acid were used as templates to prepare the MISGs and as targets to evaluate the detection and discrimination performance of the sensor array. Three resultant MISG/KB sensors exhibited high sensitivity and selectivity to VOA vapors. The limit of detection and imprinting factor were 0.018 ppm and 7.82, respectively, for HA-MISG/KB sensors to the corresponding target. With linear discriminant analysis of the gas responses, the MISG/KB sensor array can realize high discrimination to VOAs in single and binary mixtures. Furthermore, the proposed sensor array showed strong sensor robustness with excellent consistency, durability, bending, and humidity resistance. This work developed a fully inkjet-printed chemiresistive sensor array, enabling the realization of high cross-selectivity detection, achieving low-cost, scalable, and highly reproducible sensor fabrication, moving it closer to reliable, commercial, and wearable multi-analyte human body odor analysis potential.
Collapse
Affiliation(s)
- Xiao Ye
- Graduate School of Systems Life Sciences, Kyushu University, Fukuoka 819-0395, Japan
| | - Lingpu Ge
- Graduate School of Information Science and Electrical Engineering, Kyushu University, Fukuoka 819-0395, Japan
| | - Tianshu Jiang
- Graduate School of Information Science and Electrical Engineering, Kyushu University, Fukuoka 819-0395, Japan
| | - Hao Guo
- Graduate School of Information Science and Electrical Engineering, Kyushu University, Fukuoka 819-0395, Japan
| | - Bin Chen
- College of Electronic and Information Engineering, Southwest University, Chongqing 400715, PR China
| | - Chuanjun Liu
- Graduate School of Information Science and Electrical Engineering, Kyushu University, Fukuoka 819-0395, Japan.,Research Laboratory, U.S.E. Co., Ltd., Tokyo 150-0013, Japan
| | - Kenshi Hayashi
- Graduate School of Systems Life Sciences, Kyushu University, Fukuoka 819-0395, Japan.,Graduate School of Information Science and Electrical Engineering, Kyushu University, Fukuoka 819-0395, Japan
| |
Collapse
|
70
|
Zhang NN, Shen X, Liu K, Nie Z, Kumacheva E. Polymer-Tethered Nanoparticles: From Surface Engineering to Directional Self-Assembly. Acc Chem Res 2022; 55:1503-1513. [PMID: 35576169 DOI: 10.1021/acs.accounts.2c00066] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
ConspectusCurrent interest in nanoparticle ensembles is motivated by their collective synergetic properties that are distinct from or better than those of individual nanoparticles and their bulk counterparts. These new advanced optical, electronic, magnetic, and catalytic properties can find applications in advanced nanomaterials and functional devices, if control is achieved over nanoparticle organization. Self-assembly offers a cost-efficient approach to produce ensembles of nanoparticles with well-defined and predictable structures. Nanoparticles functionalized with polymer molecules are promising building blocks for self-assembled nanostructures, due to the comparable dimensions of macromolecules and nanoparticles, the ability to synthesize polymers with various compositions, degrees of polymerization, and structures, and the ability of polymers to self-assemble in their own right. Moreover, polymer ligands can endow additional functionalities to nanoparticle assemblies, thus broadening the range of their applications.In this Account, we describe recent progress of our research groups in the development of new strategies for the self-assembly of nanoparticles tethered to macromolecules. At the beginning of our journey, we developed a new approach to patchy nanoparticles and their self-assembly. In a thermodynamically driven strategy, we used poor solvency conditions to induce homopolymer surface segregation in pinned micelles (patches). Patchy nanoparticles underwent self-assembly in a well-defined and controlled manner. Following this work, we overcame the limitation of low yield of the generation of patchy nanoparticles, by using block copolymer ligands. For block copolymer-capped nanoparticles, patch formation and self-assembly were "staged" by using distinct stimuli for each process. We expanded this work to the generation of patchy nanoparticles via dynamic exchange of block copolymer molecules between the nanoparticle surface and micelles in the solution. The scope of our work was further extended to a series of strategies that utilized the change in the configuration of block copolymer ligands during nanoparticle interactions. To this end, we explored the amphiphilicity of block copolymer-tethered nanoparticles and complementary interactions between reactive block copolymer ligands. Both approaches enabled exquisite control over directional and self-limiting self-assembly of complex hierarchical nanostructures. Next, we focused on the self-assembly of chiral nanostructures. To enable this goal, we attached chiral molecules to the surface of nanoparticles and organized these hybrid building blocks in ensembles with excellent chiroptical properties. In summary, our work enables surface engineering of polymer-capped nanoparticles and their controllable and predictable self-assembly. Future research in the field of nanoparticle self-assembly will include the development of effective characterization techniques, the synthesis of new functional polymers, and the development of environmentally responsive self-assembly of polymer-capped nanoparticles for the fabrication of nanomaterials with tailored functionalities.
Collapse
Affiliation(s)
- Ning-Ning Zhang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Institute of Immunology, The First Hospital, Jilin University, Changchun 130061, P. R. China
| | - Xiaoxue Shen
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, P.R. China
| | - Kun Liu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China
- Joint Laboratory of Opto-Functional Theranostics in Medicine and Chemistry, The First Hospital of Jilin University, Changchun 130061 P. R. China
| | - Zhihong Nie
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, P.R. China
| | - Eugenia Kumacheva
- Department of Chemistry, University of Toronto, Toronto, M5S3H6 ON, Canada
- Institute of Biomedical Engineering, University of Toronto, Toronto, M5S 3G9 ON, Canada
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, M5S 3E5 ON, Canada
| |
Collapse
|
71
|
Zhang L, Rokshana P, Yu Y, Zhao Y, Ye F. Near-Infrared Responsive Droplet for Digital PCR. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2107858. [PMID: 35212452 DOI: 10.1002/smll.202107858] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 02/05/2022] [Indexed: 06/14/2023]
Abstract
Digital PCR (dPCR) surpasses the performance of earlier PCR formats because of highly precise, absolute quantification and other unique merits. A simple thermocycling approach and durable microcarrier are of great value for dPCR advancement and application. Herein, a near-infrared (NIR) controlled thermocycling approach by embedding magnetic graphene oxide (GO) composite into the agarose microcarriers is developed. The core-shell composite is constructed by sequentially encapsulating GO and silica outside the magnetic nanocores. Benefiting from these additives, the resultant composite agarose gains appealing features as light-driven temperature changing, switchable gel-sol phase transforming, biocompatibility, and magnetic traction. By further emulsifying into droplets via the microfluidics method, the influence of typical parameters including material loading amount, laser intensity, and droplet diameter at various ranges is investigated for assembling microcarriers with different responsiveness. Then a paradigm of the NIR program can be easily tailored for PCR thermocycling. Finally, the feasibility of the approach is verified by detecting statistically diluted Klebsiella pneumoniae DNA samples, from 0.1 to 2 copies per drop. It is anticipated that this method has promising prospects for dPCR-based and other temperature-controlled applications.
Collapse
Affiliation(s)
- Lexiang Zhang
- Joint Centre of Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
- Department of Clinical Laboratory, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health) & Wenzhou Institute-University of Chinese Academy of Sciences, Wenzhou, Zhejiang, 325001, China
| | - Parvin Rokshana
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health) & Wenzhou Institute-University of Chinese Academy of Sciences, Wenzhou, Zhejiang, 325001, China
| | - Yunru Yu
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health) & Wenzhou Institute-University of Chinese Academy of Sciences, Wenzhou, Zhejiang, 325001, China
| | - Yuanjin Zhao
- Department of Clinical Laboratory, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health) & Wenzhou Institute-University of Chinese Academy of Sciences, Wenzhou, Zhejiang, 325001, China
| | - Fangfu Ye
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health) & Wenzhou Institute-University of Chinese Academy of Sciences, Wenzhou, Zhejiang, 325001, China
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
| |
Collapse
|
72
|
Material Design for Enhancing Properties of 3D Printed Polymer Composites for Target Applications. TECHNOLOGIES 2022. [DOI: 10.3390/technologies10020045] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Polymer composites are becoming an important class of materials for a diversified range of industrial applications due to their unique characteristics and natural and synthetic reinforcements. Traditional methods of polymer composite fabrication require machining, manual labor, and increased costs. Therefore, 3D printing technologies have come to the forefront of scientific, industrial, and public attention for customized manufacturing of composite parts having a high degree of control over design, processing parameters, and time. However, poor interfacial adhesion between 3D printed layers can lead to material failure, and therefore, researchers are trying to improve material functionality and extend material lifetime with the addition of reinforcements and self-healing capability. This review provides insights on different materials used for 3D printing of polymer composites to enhance mechanical properties and improve service life of polymer materials. Moreover, 3D printing of flexible energy-storage devices (FESD), including batteries, supercapacitors, and soft robotics using soft materials (polymers), is discussed as well as the application of 3D printing as a platform for bioengineering and earth science applications by using a variety of polymer materials, all of which have great potential for improving future conditions for humanity and planet Earth.
Collapse
|
73
|
Yang X, Zhang Z, Su M, Song Y. Research Progress on Nano Photonics Technology-based SARS-CoV-2 Detection※. ACTA CHIMICA SINICA 2022. [DOI: 10.6023/a21100469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|