51
|
Kang L, Chao A, Zhang M, Yu T, Wang J, Wang Q, Yu H, Jiang N, Zhang D. Modulating the Molecular Geometry and Solution Self-Assembly of Amphiphilic Polypeptoid Block Copolymers by Side Chain Branching Pattern. J Am Chem Soc 2021; 143:5890-5902. [PMID: 33822620 PMCID: PMC8154532 DOI: 10.1021/jacs.1c01088] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Indexed: 12/22/2022]
Abstract
Solution self-assembly of coil-crystalline diblock copolypeptoids has attracted increasing attention due to its capability to form hierarchical nanostructures with tailorable morphologies and functionalities. While the N-substituent (or side chain) structures are known to affect the crystallization of polypeptoids, their roles in dictating the hierarchical solution self-assembly of diblock copolypeptoids are not fully understood. Herein, we designed and synthesized two types of diblock copolypeptoids, i.e., poly(N-methylglycine)-b-poly(N-octylglycine) (PNMG-b-PNOG) and poly(N-methylglycine)-b-poly(N-2-ethyl-1-hexylglycine) (PNMG-b-PNEHG), to investigate the influence of N-substituent structure on the crystalline packing and hierarchical self-assembly of diblock copolypeptoids in methanol. With a linear aliphatic N-substituent, the PNOG blocks pack into a highly ordered crystalline structure with a board-like molecular geometry, resulting in the self-assembly of PNMG-b-PNOG molecules into a hierarchical microflower morphology composed of radially arranged nanoribbon subunits. By contrast, the PNEHG blocks bearing bulky branched aliphatic N-substituents are rod-like and prefer to stack into a columnar hexagonal liquid crystalline mesophase, which drives PNMG-b-PNEHG molecules to self-assemble into symmetrical hexagonal nanosheets in solution. A combination of time-dependent small/wide-angle X-ray scattering and microscopic imaging analysis further revealed the self-assembly mechanisms for the formation of these microflowers and hexagonal nanosheets. These results highlight the significant impact of the N-substituent architecture (i.e., linear versus branched) on the supramolecular self-assembly of diblock copolypeptoids in solution, which can serve as an effective strategy to tune the geometry and hierarchical structure of polypeptoid-based nanomaterials.
Collapse
Affiliation(s)
- Liying Kang
- School
of Materials Science and Engineering, University
of Science and Technology Beijing, Beijing 100083, China
| | - Albert Chao
- Department
of Chemistry and Macromolecular Studies Group, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Meng Zhang
- Department
of Chemistry and Macromolecular Studies Group, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Tianyi Yu
- Department
of Chemistry and Macromolecular Studies Group, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Jun Wang
- School
of Materials Science and Engineering, University
of Science and Technology Beijing, Beijing 100083, China
| | - Qi Wang
- School
of Materials Science and Engineering, University
of Science and Technology Beijing, Beijing 100083, China
| | - Huihui Yu
- School
of Materials Science and Engineering, University
of Science and Technology Beijing, Beijing 100083, China
| | - Naisheng Jiang
- School
of Materials Science and Engineering, University
of Science and Technology Beijing, Beijing 100083, China
- Department
of Chemistry and Macromolecular Studies Group, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Donghui Zhang
- Department
of Chemistry and Macromolecular Studies Group, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| |
Collapse
|
52
|
Kirila T, Smirnova A, Razina A, Tenkovtsev A, Filippov A. Influence of Salt on the Self-Organization in Solutions of Star-Shaped Poly-2-alkyl-2-oxazoline and Poly-2-alkyl-2-oxazine on Heating. Polymers (Basel) 2021; 13:1152. [PMID: 33916516 PMCID: PMC8038499 DOI: 10.3390/polym13071152] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 03/30/2021] [Accepted: 04/01/2021] [Indexed: 11/24/2022] Open
Abstract
The water-salt solutions of star-shaped six-arm poly-2-alkyl-2-oxazines and poly-2-alkyl-2-oxazolines were studied by light scattering and turbidimetry. The core was hexaaza[26]orthoparacyclophane and the arms were poly-2-ethyl-2-oxazine, poly-2-isopropyl-2-oxazine, poly-2-ethyl-2-oxazoline, and poly-2-isopropyl-2-oxazoline. NaCl and N-methylpyridinium p-toluenesulfonate were used as salts. Their concentration varied from 0-0.154 M. On heating, a phase transition was observed in all studied solutions. It was found that the effect of salt on the thermosensitivity of the investigated stars depends on the structure of the salt and polymer and on the salt content in the solution. The phase separation temperature decreased with an increase in the hydrophobicity of the polymers, which is caused by both a growth of the side radical size and an elongation of the monomer unit. For NaCl solutions, the phase separation temperature monotonically decreased with growth of salt concentration. In solutions with methylpyridinium p-toluenesulfonate, the dependence of the phase separation temperature on the salt concentration was non-monotonic with minimum at salt concentration corresponding to one salt molecule per one arm of a polymer star. Poly-2-alkyl-2-oxazine and poly-2-alkyl-2-oxazoline stars with a hexaaza[26]orthoparacyclophane core are more sensitive to the presence of salt in solution than the similar stars with a calix[n]arene branching center.
Collapse
Affiliation(s)
- Tatyana Kirila
- Institute of Macromolecular Compounds of the Russian Academy of Sciences, Bolshoy Pr. 31, 199004 Saint Petersburg, Russia; (A.S.); (A.R.); (A.T.); (A.F.)
| | | | | | | | | |
Collapse
|
53
|
Legrand B, Maillard LT. α,β-Unsaturated γ-Peptide Foldamers. Chempluschem 2021; 86:629-645. [PMID: 33856125 DOI: 10.1002/cplu.202100045] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 03/31/2021] [Indexed: 01/01/2023]
Abstract
Despite their concomitant emergence in the 1990s, γ-peptide foldamers have not developed as fast as β-peptide foldamers and to date, only a few γ-oligomer structures have been reported, and with sparse applications. Among these examples, sequences containing α,β-unsaturated γ-amino acids have recently drawn attention since the Z/E configurations of the double bond provide opposite planar restrictions leading to divergent conformational behaviors, from helix to extended structures. In this Review, we give a comprehensive overview of the developments of γ-peptide foldamers containing α,β-unsaturated γ-amino acids with examples of applications for health and catalysis, as well as materials science.
Collapse
Affiliation(s)
- Baptiste Legrand
- Institut des Biomolécules Max Mousseron, IBMM, University of Montpellier, ENSCM, CNRS, Montpellier, France., 15 Av. Charles Flahault BP 14 491, 34093, Montpellier Cedex 5, France
| | - Ludovic T Maillard
- Institut des Biomolécules Max Mousseron, IBMM, University of Montpellier, ENSCM, CNRS, Montpellier, France., 15 Av. Charles Flahault BP 14 491, 34093, Montpellier Cedex 5, France
| |
Collapse
|
54
|
Omarova M, Zhang Y, Mkam Tsengam IK, He J, Yu T, Zhang D, John V. Hydrophobe Containing Polypeptoids Complex with Lipids and Induce Fusogenesis of Lipid Vesicles. J Phys Chem B 2021; 125:3145-3152. [PMID: 33730500 PMCID: PMC8041297 DOI: 10.1021/acs.jpcb.0c11477] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 03/07/2021] [Indexed: 12/19/2022]
Abstract
The hydrophobic effect of alkyl group insertion into phospholipid bilayers is exploited in modifying and modulating vesicle structure. We show that amphiphilic polypeptoids (peptide mimics) with n-decyl side chains, which we term as hydrophobe-containing polypeptoids (HCPs), can insert the alkyl hydrophobes into the membrane bilayer of phospholipid-based vesicles. Such insertion leads to disruption of the liposomes and the formation of HCP-lipid complexes that are colloidally stable in aqueous solution. Interestingly, when these complexes are added to fresh liposomes, remnant uncomplexed hydrophobes (the n-decyl groups) bridge liposomes and fuse them. The fusion leads to the engulfing of liposomes and the formation of multilayered vesicles. The morphology of the liposome system can be changed from stopping fusion and forming clustered vesicles to the continued formation of multilayered liposomes simply by controlling the amount of the HCP-lipid complex added. The entire procedure occurs in aqueous systems without the addition of any other solvents. There are several implications to these observations including the biological relevance of mimicking fusogenic proteins such as the SNARE proteins and the development of new drug delivery technologies to impact delivery to cell organelles.
Collapse
Affiliation(s)
- Marzhana Omarova
- Department
of Chemical and Biomolecular Engineering, Tulane University, New Orleans, Louisiana 70118, United States
| | - Yueheng Zhang
- Department
of Chemical and Biomolecular Engineering, Tulane University, New Orleans, Louisiana 70118, United States
| | - Igor Kevin Mkam Tsengam
- Department
of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Jibao He
- Coordinated
Instrumentation Facility, Tulane University, New Orleans, Louisiana 70118, United States
| | - Tianyi Yu
- Department
of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Donghui Zhang
- Department
of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Vijay John
- Department
of Chemical and Biomolecular Engineering, Tulane University, New Orleans, Louisiana 70118, United States
| |
Collapse
|
55
|
Zheng B, Xu S, Ni X, Ling J. Understanding Acid-Promoted Polymerization of the N-Substituted Glycine N-Thiocarboxyanhydride in Polar Solvents. Biomacromolecules 2021; 22:1579-1589. [PMID: 33784077 DOI: 10.1021/acs.biomac.1c00016] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Polymerization of N-substituted glycine N-thiocarboxyanhydrides (NNTAs) is a promising pathway to prepare functional polypeptoids benefiting from their tolerance to nucleophilic impurities. However, controlled NNTA polymerization is hard to achieve in amide polar solvents, including N,N-dimethylacetamide (DMAc), N,N-dimethylformamide (DMF), and N-methyl pyrrolidone (NMP), the only aprotic solvents for many biomacromolecules and polypeptoids. In the present work, we successfully achieve controlled NNTA polymerization in amide polar solvents by adding acetic acid as a promoter. The promotion is applied to the polymerization of sarcosine NTA, N-ethyl glycine NTA, and N-butyl glycine NTA. DMAc, DMF, and NMP are suitable solvents to prepare polypeptoids with designable molecular weights and low dispersities (1.06-1.21). The polysarcosines with high molecular weights are prepared up to 35.2 kg/mol. A kinetic investigation quantitatively reveals that the presence of acetic acid not only accelerates the polymerization, but also suppresses H2S-catalyzed decomposition of NNTAs by decreasing the concentration of H2S dissolved in polar solvents. Benzoic acid is also able to promote the polymerization, while trifluoroacetic acid, phosphoric acid, and phenol are not appropriate promoters. The moderate acidity of acids is essential. l-Methionine, l-tryptophan, and l-phenylalanine, which are dissolved in DMF, initiate the controlled polymerization of sarcosine-NTA in the presence of acetic acid and introduce functional end groups to polysarcosines quantitatively. In DMAc, hydrophilic vancomycin is grafted by poly(N-butyl glycine). The amphiphilic product dissolves in dichloromethane and stabilizes water-in-oil emulsion.
Collapse
Affiliation(s)
- Botuo Zheng
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Songyi Xu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Xufeng Ni
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Jun Ling
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
56
|
Bai T, Zheng B, Ling J. Density Functional Theory Studies on the Synthesis of Poly(α-Amino Acid)s Via the Amine-Mediated Ring Opening Polymerizations of N-Carboxyanhydrides and N-Thiocarboxyanhydrides. Front Chem 2021; 9:645949. [PMID: 33855011 PMCID: PMC8039441 DOI: 10.3389/fchem.2021.645949] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 02/17/2021] [Indexed: 11/13/2022] Open
Abstract
To synthesize well-defined poly (α-amino acid)s (PAAs), ring opening polymerizations (ROP) of cyclic monomers of α-amino acid N-carboxyanhydrides (NCAs) and N-thiocarboxyanhydrides (NTAs) are most widely used. In this mini-review, we summarize the mechanism details of the monomer preparation and ROP. The present study used density functional theory calculations to reveal the mechanisms together with experimental phenomena in the past decades. Detailed discussion includes normal amine mechanism and the selectivity of the initiators bearing various nucleophilic groups.
Collapse
Affiliation(s)
| | | | - Jun Ling
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, China
| |
Collapse
|
57
|
Wang Y, Li M, Wang S, Tao Y, Wang X. S
‐Carboxyanhydrides: Ultrafast and Selective Ring‐Opening Polymerizations Towards Well‐defined Functionalized Polythioesters. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202016228] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Yanchao Wang
- Key Laboratory of Polymer Ecomaterials Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun 130022 P. R. China
- University of Science and Technology of China Hefei 230026 P. R. China
| | - Maosheng Li
- Key Laboratory of Polymer Ecomaterials Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun 130022 P. R. China
| | - Shixue Wang
- Key Laboratory of Polymer Ecomaterials Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun 130022 P. R. China
| | - Youhua Tao
- Key Laboratory of Polymer Ecomaterials Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun 130022 P. R. China
- University of Science and Technology of China Hefei 230026 P. R. China
| | - Xianhong Wang
- Key Laboratory of Polymer Ecomaterials Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun 130022 P. R. China
| |
Collapse
|
58
|
Wang Y, Li M, Wang S, Tao Y, Wang X. S-Carboxyanhydrides: Ultrafast and Selective Ring-Opening Polymerizations Towards Well-defined Functionalized Polythioesters. Angew Chem Int Ed Engl 2021; 60:10798-10805. [PMID: 33605001 DOI: 10.1002/anie.202016228] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Indexed: 12/27/2022]
Abstract
Aliphatic polythioesters are popular polymers because of their appealing performance such as metal coordination ability, high refractive indices, and biodegradability. One of the most powerful approaches for generating these polymers is the ring-opening polymerization (ROP) of cyclic monomers. However, the synthesis of precisely controlled polythioesters via ROP of thiolactones still faces formidable challenges, including the minimal functional diversity of available thiolactone monomers, as well as inevitable transthioesterification side reactions. Here we introduce a hyperactive class of S-carboxyanhydride (SCA) monomers derived from amino acids that are significantly more reactive than thiolactones for ultrafast and selective ROP. Inclusion of the initiator PPNOBz ([PPN]=bis(triphenylphosphine)-iminium) with chain transfer agent benzoic acid, the polymerizations that can be operated in open vessels reach complete conversion within minutes (1-2 min) at room temperature, yielding polythioesters with predictable molecular weight, low dispersities, retained stereoregularity and chemical recyclability. Most fascinating are the functionalized SCAs that allow the incorporating of functional groups along the polythioester chain and thus finely tune their physicochemical performance. Computational studies were carried out to explore the origins of the distinctive rapidity and exquisite selectivity of the polymerizations, offering mechanistic insight and explaining why high polymerizability of SCA monomer is able to facilitate exquisitely selective ring-opening for enchainment over competing transthioesterification and backbiting reactions.
Collapse
Affiliation(s)
- Yanchao Wang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China.,University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Maosheng Li
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
| | - Shixue Wang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
| | - Youhua Tao
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China.,University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Xianhong Wang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
| |
Collapse
|
59
|
Pierri G, Corno M, Macedi E, Voccia M, Tedesco C. Solid-State Conformational Flexibility at Work: Energetic Landscape of a Single Crystal-to-Single Crystal Transformation in a Cyclic Hexapeptoid. CRYSTAL GROWTH & DESIGN 2021; 21:897-907. [PMID: 33584152 PMCID: PMC7877721 DOI: 10.1021/acs.cgd.0c01244] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 01/05/2021] [Indexed: 05/10/2023]
Abstract
We describe the energetic landscape beyond the solid-state dynamic behavior of a cyclic hexapeptoid decorated with four propargyl and two methoxyethyl side chains, namely, cyclo-(Nme-Npa2)2, Nme = N-(methoxyethyl)glycine, Npa = N-(propargyl)glycine. By increasing the temperature above 40 °C, the acetonitrile solvate form 1A starts to release acetonitrile molecules and undergoes a reversible single crystal-to-single crystal transformation into crystal form 1B with a remarkable conformational change in the macrocycle: two propargyl side chains move by 113° to form an unprecedented "CH-π zipper". Then, upon acetonitrile adsorption, the "CH-π zipper" opens and the crystal form 1B transforms back to 1A. By conformational energy and lattice energy calculations, we demonstrate that the dramatic side-chain movement is a peculiar feature of the solid-state assembly and is determined by a backbone conformational change that leads to stabilizing CH···OC backbone-to-backbone interactions tightening the framework upon acetonitrile release. Weak interactions as CH···OC and CH-π bonds with the guest molecules are able to reverse the transformation, providing the energy contribution to unzip the framework. We believe that the underlined mechanism could be used as a model system to understand how external stimuli (as temperature, humidity, or volatile compounds) could determine conformational changes in the solid state.
Collapse
Affiliation(s)
- Giovanni Pierri
- Department
of Chemistry and Biology “A. Zambelli”, University of Salerno, Via Giovanni Paolo II, 84084 Fisciano, SA, Italy
| | - Marta Corno
- Department
of Chemistry and NIS (Nanostructured Interfaces and Surfaces) Center, University of Turin, Via P. Giuria 7, 10125 Turin, Italy
| | - Eleonora Macedi
- Department
of Pure and Applied Science, University
of Urbino “Carlo Bo”, Via della Stazione 4, 61029 Urbino, Italy
| | - Maria Voccia
- Department
of Chemistry and Biology “A. Zambelli”, University of Salerno, Via Giovanni Paolo II, 84084 Fisciano, SA, Italy
| | - Consiglia Tedesco
- Department
of Chemistry and Biology “A. Zambelli”, University of Salerno, Via Giovanni Paolo II, 84084 Fisciano, SA, Italy
| |
Collapse
|
60
|
Cai B, Li Z, Chen CL. Programming Amphiphilic Peptoid Oligomers for Hierarchical Assembly and Inorganic Crystallization. Acc Chem Res 2021; 54:81-91. [PMID: 33136361 DOI: 10.1021/acs.accounts.0c00533] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Natural organisms make a wide variety of exquisitely complex, nano-, micro-, and macroscale structured materials in an energy-efficient and highly reproducible manner. During these processes, the information-carrying biomolecules (e.g., proteins, peptides, and carbohydrates) enable (1) hierarchical organization to assemble scaffold materials and execute high-level functions and (2) exquisite control over inorganic materials synthesis, generating biominerals whose properties are optimized for their functions. Inspired by nature, significant efforts have been devoted to developing functional materials that can rival those natural molecules by mimicking in vivo functions using engineered proteins, peptides, DNAs, sequence-defined synthetic molecules (e.g., peptoids), and other biomimetic polymers. Among them, peptoids, a new type of synthetic mimetics of peptides and proteins, have received particular attention because they combine the merits of both synthetic polymers (e.g., high chemical stability and efficient synthesis) and biomolecules (e.g., sequence programmability and biocompatibility). The lack of both chirality and hydrogen bonds in their backbone results in a highly designable peptoid-based system with reduced structural complexity and side chain-chemistry-dominated properties.In this Account, we present our recent efforts in this field by programming amphiphilic peptoid sequences for (1) the controlled self-assembly into different hierarchically structured nanomaterials with favorable properties and (2) manipulating inorganic (nano)crystal nucleation, growth, and assembly into superstructures. First, we designed a series of amphiphilic peptoids with controlled side chain chemistries that self-assembled into 1D highly stiff and dynamic nanotubes, 2D membrane-mimetic nanosheets, hexagonally patterned nanoribbons, and 3D nanoflowers. These crystalline nanostructures exhibited sequence-dependent properties and showed promise for different applications. The corresponding peptoid self-assembly pathways and mechanisms were also investigated by leveraging in situ atomic force microscopy studies and molecular dynamics simulations, which showed precise sequence dependency. Second, inspired by peptide- and protein-controlled formation of hierarchical inorganic nanostructures in nature, we developed peptoid-based biomimetic approaches for controlled synthesis of inorganic materials (e.g., noble metals and calcite), in which we took advantage of the substantial side chain chemistry of peptoids and investigated the relationship between the peptoid sequences and the morphology and growth kinetics of inorganic materials. For example, to overcome the challenges (e.g., complexity of protein- and peptide-folding, poor thermal and chemical stabilities) facing the area of protein- and peptide-controlled synthesis of inorganic materials, we recently reported the design of sequence-defined peptoids for controlled synthesis of highly branched plasmonic gold particles. Moreover, we developed a rule of thumb for designing peptoids that predictively enabled the morphological evolution from spherical to coral-shaped gold nanoparticles (NPs). With this Account, we hope to stimulate the research interest of chemists and materials scientists and promote the predictive synthesis of functional and robust materials through the design of sequence-defined synthetic molecules.
Collapse
Affiliation(s)
- Bin Cai
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Zhiliang Li
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Chun-Long Chen
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| |
Collapse
|
61
|
Stiernet P, Couturaud B, Bertrand V, Eppe G, De Winter J, Debuigne A. Ugi four-component polymerization of amino acid derivatives: a combinatorial tool for the design of polypeptoids. Polym Chem 2021. [DOI: 10.1039/d1py00109d] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The combinatorial Ugi-4C polymerization of amino acid derivatives is attractive for the future development of polypeptoids and resulting applications.
Collapse
Affiliation(s)
- Pierre Stiernet
- Center for Education and Research on Macromolecules (CERM)
- CESAM Research Unit
- Department of Chemistry
- University of Liege (ULiege)
- 4000 Liège
| | - Benoit Couturaud
- Univ Paris Est Creteil
- CNRS
- Institut de Chimie et des Matériaux Paris-Est (ICMPE)
- UMR 7182
- 94320 Thiais
| | - Virginie Bertrand
- MC2Lab – Laboratory of Mass Spectrometry
- MolSys Research Unit
- University of Liege (ULiege)
- B-4000 Liège
- Belgium
| | - Gauthier Eppe
- MC2Lab – Laboratory of Mass Spectrometry
- MolSys Research Unit
- University of Liege (ULiege)
- B-4000 Liège
- Belgium
| | - Julien De Winter
- Organic Synthesis and Mass Spectrometry Laboratory
- University of Mons (UMons)
- 7000 Mons
- Belgium
| | - Antoine Debuigne
- Center for Education and Research on Macromolecules (CERM)
- CESAM Research Unit
- Department of Chemistry
- University of Liege (ULiege)
- 4000 Liège
| |
Collapse
|
62
|
Barrett BN, Sternhagen GL, Zhang D. Controlled ring-opening polymerization of N-(3- tert-butoxy-3-oxopropyl) glycine derived N-carboxyanhydrides towards well-defined peptoid-based polyacids. Polym Chem 2021. [DOI: 10.1039/d0py01395a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Polypeptoids bearing carboxylic acid groups on the N-substituent are useful building blocks for the construction of peptidomimetic supramolecular assemblies with stimuli-responsive properties.
Collapse
Affiliation(s)
- Bailee N. Barrett
- Department of Chemistry and Macromolecular Studies Group
- Louisiana State University
- Baton Rouge
- USA
| | - Garrett L. Sternhagen
- Department of Chemistry and Macromolecular Studies Group
- Louisiana State University
- Baton Rouge
- USA
| | - Donghui Zhang
- Department of Chemistry and Macromolecular Studies Group
- Louisiana State University
- Baton Rouge
- USA
| |
Collapse
|
63
|
Zhang Y, Huang J, Zhang J, Zhu X, Tong G. Synthesis and self-assembly of photo-responsive polypeptoid-based copolymers containing azobenzene side chains. Polym Chem 2021. [DOI: 10.1039/d0py01723j] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Photo-responsive polypeptoid-based copolymers containing azobenzene side chains have been well synthesized and they could self-assemble into tunable nanostructures with reversible light-switched behaviors.
Collapse
Affiliation(s)
- Yuxuan Zhang
- School of Chemistry and Chemical Engineering
- State Key Laboratory of Metal Matrix Composites
- Research Institute of Polymer Materials
- Shanghai Jiao Tong University
- Shanghai 200240
| | - Jie Huang
- School of Chemistry and Chemical Engineering
- State Key Laboratory of Metal Matrix Composites
- Research Institute of Polymer Materials
- Shanghai Jiao Tong University
- Shanghai 200240
| | - Jun Zhang
- School of Chemistry and Chemical Engineering
- State Key Laboratory of Metal Matrix Composites
- Research Institute of Polymer Materials
- Shanghai Jiao Tong University
- Shanghai 200240
| | - Xinyuan Zhu
- School of Chemistry and Chemical Engineering
- State Key Laboratory of Metal Matrix Composites
- Research Institute of Polymer Materials
- Shanghai Jiao Tong University
- Shanghai 200240
| | - Gangsheng Tong
- School of Chemistry and Chemical Engineering
- State Key Laboratory of Metal Matrix Composites
- Research Institute of Polymer Materials
- Shanghai Jiao Tong University
- Shanghai 200240
| |
Collapse
|
64
|
Li Z, Fu X, Huang S, Sun J, Li Z. Oligo(β-peptoid)s with Backbone Chirality from Aspartic Acid Derivatives: Synthesis and Property Investigation. ACS OMEGA 2020; 5:33125-33132. [PMID: 33403274 PMCID: PMC7774267 DOI: 10.1021/acsomega.0c04726] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Accepted: 12/04/2020] [Indexed: 06/12/2023]
Abstract
Poly(β-peptoid)s (N-substituted poly-β-alanines) are an intriguing class of pseudopeptidic materials for biomedical applications, but the polymers prepared by solution polymerization have restricted diversity and functionality due to synthetic difficulty. Synthesis of structurally diverse poly(β-peptoid)s is highly desirable yet challenging. Herein, we report a new approach to synthesize skeletal chiral β-peptoid polymers from readily available aspartic acid derivatives. Two types of N-substituted β3-homoalanine monomers, i.e., N-(methyl propionate)-Asp-OMe ( N MeP-Asp-OMe) and N-(tert-butyl propionate)-Asp-OMe ( N tBuP-Asp-OMe), were synthesized in high yield via an aza-Michael addition reaction between l-aspartic acid-1-methyl ester (l-Asp-OMe) and acrylate species. Both N-substituted β3-homoalanines can be readily converted into polymerizable N-substituted β3-homoalanine N-carboxyanhydrides (β-NNCAs). Subsequent ring-opening polymerization (ROP) of these β-NNCA monomers provides access to oligo(β-peptoid)s and mPEG-poly(β-peptoid) diblocks with backbone chirality. Their conformations were preliminarily studied by circular dichroism (CD) spectra and Fourier transform infrared spectroscopy (FT-IR). The synthetic strategy would significantly facilitate the development of novel poly(β-peptoid)s with well-defined and diverse structures.
Collapse
Affiliation(s)
- Zheng Li
- Key
Laboratory of Biobased Polymer Materials, Shandong Provincial Education
Department, College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Xiaohui Fu
- Key
Laboratory of Biobased Polymer Materials, Shandong Provincial Education
Department, College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Saixi Huang
- Key
Laboratory of Biobased Polymer Materials, Shandong Provincial Education
Department, College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Jing Sun
- Key
Laboratory of Biobased Polymer Materials, Shandong Provincial Education
Department, College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Zhibo Li
- Key
Laboratory of Biobased Polymer Materials, Shandong Provincial Education
Department, College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
- College
of Chemical Engineering, Qingdao University
of Science and Technology, Qingdao 266042, China
| |
Collapse
|
65
|
Liu D, Sun J. Thermoresponsive Polypeptoids. Polymers (Basel) 2020; 12:E2973. [PMID: 33322804 PMCID: PMC7763442 DOI: 10.3390/polym12122973] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 12/10/2020] [Accepted: 12/11/2020] [Indexed: 01/02/2023] Open
Abstract
Stimuli-responsive polymers have been widely studied in many applications such as biomedicine, nanotechnology, and catalysis. Temperature is one of the most commonly used external triggers, which can be highly controlled with excellent reversibility. Thermoresponsive polymers exhibiting a reversible phase transition in a controlled manner to temperature are a promising class of smart polymers that have been widely studied. The phase transition behavior can be tuned by polymer architectures, chain-end, and various functional groups. Particularly, thermoresponsive polypeptoid is a type of promising material that has drawn growing interest because of its excellent biocompatibility, biodegradability, and bioactivity. This paper summarizes the recent advances of thermoresponsive polypeptoids, including the synthetic methods and functional groups as well as their applications.
Collapse
Affiliation(s)
| | - Jing Sun
- Key Laboratory of Biobased Polymer Materials, Shandong Provincial Education Department, School of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China;
| |
Collapse
|
66
|
Tao Y, Tao Y. Ugi Reaction of Amino Acids: From Facile Synthesis of Polypeptoids to Sequence-Defined Macromolecules. Macromol Rapid Commun 2020; 42:e2000515. [PMID: 33225562 DOI: 10.1002/marc.202000515] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Revised: 10/03/2020] [Indexed: 01/14/2023]
Abstract
Polypeptoids have been prepared and researched for more than 20 years. However, the efficient generation of polypeptoids and sequence-defined polypeptoids faces many challenges and difficulties. The Ugi reaction of amino acids has recently been introduced into polypeptoid chemistry as a new and powerful method to furnish polypeptoids. In the following mini review, the recent progress on the application of the Ugi reaction of amino acids in polypeptoid science, including polypeptoid from sustainable furfural, sequence-defined polypeptoids, and more is summarized. Moreover, the future development of the Ugi reaction of amino acids in polypeptoid science is discussed.
Collapse
Affiliation(s)
- Yue Tao
- Chinese Academy of Sciences, 5625 Renmin Street, Changchun, 130022, P. R. China
| | - Youhua Tao
- Chinese Academy of Sciences, 5625 Renmin Street, Changchun, 130022, P. R. China
| |
Collapse
|
67
|
Pierri G, Landi A, Macedi E, Izzo I, De Riccardis F, Dinnebier RE, Tedesco C. Propyne Gas Adsorption in a Cyclic Hexapeptoid: A Combined In Situ XRPD and DFTB Study*. Chemistry 2020; 26:14320-14323. [PMID: 32618043 DOI: 10.1002/chem.202002694] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 06/30/2020] [Indexed: 11/06/2022]
Abstract
Cyclic peptoids are macrocyclic N-substituted oligoglycines, with remarkable structural, chemical and physical properties. The gas adsorption properties of a permanently porous hexameric cyclopeptoid decorated with four propargyl and two methoxyethyl side chains were monitored by in situ X-ray powder diffraction (XRPD). High-resolution XRPD data together with Rietveld and density functional based tight binding (DFTB) method allowed us to locate propyne guest molecules inside the host channels, even though the powder sample contains more than one phase. We were able to characterize the host-guest interactions, providing useful information on the host recognition sites and discuss host adaptiveness and host-guest chemical affinity in comparison with analogous compounds.
Collapse
Affiliation(s)
- Giovanni Pierri
- Department Chemistry and Biology "A. Zambelli", University of Salerno, Via Giovanni Paolo II 132, 84084, Fisciano (SA), Italy
| | - Alessandro Landi
- Department Chemistry and Biology "A. Zambelli", University of Salerno, Via Giovanni Paolo II 132, 84084, Fisciano (SA), Italy
| | - Eleonora Macedi
- Department of Pure and Applied Science, University of Urbino "Carlo Bo", Via della Stazione 4, 61029, Urbino, Italy
| | - Irene Izzo
- Department Chemistry and Biology "A. Zambelli", University of Salerno, Via Giovanni Paolo II 132, 84084, Fisciano (SA), Italy
| | - Francesco De Riccardis
- Department Chemistry and Biology "A. Zambelli", University of Salerno, Via Giovanni Paolo II 132, 84084, Fisciano (SA), Italy
| | - Robert E Dinnebier
- Max-Planck-Institute for Solid State Research, Heisenbergstrasse 1, Stuttgart, 70569, Germany
| | - Consiglia Tedesco
- Department Chemistry and Biology "A. Zambelli", University of Salerno, Via Giovanni Paolo II 132, 84084, Fisciano (SA), Italy
| |
Collapse
|
68
|
Yan Q, Dong X, Xie R, Xu X, Wang X, Zhang K, Xia J, Ling J, Zhou F, Sun J. Preparation of Mn2+@PolyDOPA-b-polysarcosine micelle as MRI contrast agent with high longitudinal relaxivity. JOURNAL OF MACROMOLECULAR SCIENCE PART A-PURE AND APPLIED CHEMISTRY 2020. [DOI: 10.1080/10601325.2020.1840918] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Qingda Yan
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, China
| | - Xue Dong
- Department of Radiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Rongze Xie
- Department of Radiology, Jiulongpo People’s Hospital, Chongqing, China
| | - Xiufang Xu
- Department of Medical Imagine, Hangzhou Medical College, Hangzhou, China
| | - Xiaoyan Wang
- Department of Radiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Ke Zhang
- Department of Radiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jingya Xia
- Department of Radiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jun Ling
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, China
| | - Fei Zhou
- Department of Radiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jihong Sun
- Department of Radiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Department of Radiology, Jiulongpo People’s Hospital, Chongqing, China
- Innovation Center for Minimally Invasive Techniques and Devices, Zhejiang University, Hangzhou, China
| |
Collapse
|
69
|
Fu X, Xing C, Sun J. Tunable LCST/UCST-Type Polypeptoids and Their Structure-Property Relationship. Biomacromolecules 2020; 21:4980-4988. [PMID: 33307699 DOI: 10.1021/acs.biomac.0c01177] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Bioinspired thermoresponsive polymeric materials with tunable phase-transition behaviors are highly desirable for biomedical applications. Here, we reported a facile approach for the synthesis of both lower critical solution temperature (LCST) and upper critical solution temperature (UCST) types of thermoresponsive polypeptoids with tunable phase-transition temperature in the range of 29--55 °C. The introduction of alkyl groups and ethylene glycol (EG) units results in a controlled phase-transition behavior under fairly mild conditions. A very sharp transition (ΔT ≤ 1.5 °C) is observed by simply adjusting pH and the alkyl chain length. In particular, the carboxyl-containing polypeptoids display designable UCST behavior, which can be finely tuned in both water and methanol. All these features make the obtained polymers beneficial for practical applications. More interestingly, we demonstrate that the hydrophilic EG group behaves as an excellent regulator to tune the UCST behavior, while the hydrophobic alkyl residues show remarkable capability to regulate the LCST behavior of the system. We hope that such systematic structure-property studies will enable the design of smart polymer materials to meet the specific needs of future applications.
Collapse
Affiliation(s)
- Xiaohui Fu
- Key Laboratory of Biobased Polymer Materials, College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Chao Xing
- Key Laboratory of Biobased Polymer Materials, College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Jing Sun
- Key Laboratory of Biobased Polymer Materials, College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| |
Collapse
|
70
|
Affiliation(s)
- Zebediah C. Girvin
- Department of Chemistry, University of Wisconsin, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Samuel H. Gellman
- Department of Chemistry, University of Wisconsin, 1101 University Avenue, Madison, Wisconsin 53706, United States
| |
Collapse
|
71
|
Jiang N, Chen J, Yu T, Chao A, Kang L, Wu Y, Niu K, Li R, Fukuto M, Zhang D. Cyclic Topology Enhancing Structural Ordering and Stability of Comb-Shaped Polypeptoid Thin Films against Melt-Induced Dewetting. Macromolecules 2020; 53:7601-7612. [PMID: 32952217 PMCID: PMC7498153 DOI: 10.1021/acs.macromol.0c01205] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 07/21/2020] [Indexed: 12/03/2022]
Abstract
We investigated the effect of cyclic chain topology on the molecular ordering and thermal stability of comb-shaped polypeptoid thin films on silicon (Si) substrates. Cyclic and linear poly(N-decylglycine) (PNDG) bearing long n-decyl side chains were synthesized by ring-opening polymerization of N-decylglycine-derived N-carboxyanhydrides. When the spin-coated thin films were subjected to thermal annealing at temperatures above the melting temperature (T > T m), the cyclic PNDG films exhibited significantly enhanced stability against melt-induced dewetting than the linear counterparts (l-PNDG). When recrystallized at temperatures below the crystallization temperature (T < T c), the homogeneous c-PNDG films exhibit enhanced crystalline ordering relative to the macroscopically dewetted l-PNDG films. Both cyclic and linear PNDG molecules adopt cis-amide conformations in the crystalline film, which transition into trans-amide conformations upon melting. A top-down solvent leaching treatment of both l/c-PNDG films revealed the formation of an irreversibly physisorbed monolayer with similar thickness (ca. 3 nm) on the Si substrate. The physisorbed monolayers are more disordered relative to the respective thicker crystalline films for both cyclic and linear PNDGs. Upon heating above T m, the adsorbed c-PNDG chains adopt trans-amide backbone conformation identical with the free c-PNDG molecules in the molten film. By contrast, the backbone conformations of l-PNDG chains in the adsorbed layers are notably different from those of the free chains in the molten film. We postulate that the conformational disparity between the chains in the physically adsorbed layers versus the free chains in the molten film is an important factor to account for the difference in the thermal stability of PNDG thin films. These findings highlight the use of cyclic chain topology to suppress the melt-induced dewetting in polymer thin films.
Collapse
Affiliation(s)
- Naisheng Jiang
- Department of Chemistry
and Macromolecular Studies Group, Louisiana
State University, Baton
Rouge, Louisiana 70803, United States
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Jianxia Chen
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Tianyi Yu
- Department of Chemistry
and Macromolecular Studies Group, Louisiana
State University, Baton
Rouge, Louisiana 70803, United States
| | - Albert Chao
- Department of Chemistry
and Macromolecular Studies Group, Louisiana
State University, Baton
Rouge, Louisiana 70803, United States
| | - Liying Kang
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Ying Wu
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Kangmin Niu
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Ruipeng Li
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Masafumi Fukuto
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Donghui Zhang
- Department of Chemistry
and Macromolecular Studies Group, Louisiana
State University, Baton
Rouge, Louisiana 70803, United States
| |
Collapse
|
72
|
Wellhöfer I, Beck J, Frydenvang K, Bräse S, Olsen CA. Increasing the Functional Group Diversity in Helical β-Peptoids: Achievement of Solvent- and pH-Dependent Folding. J Org Chem 2020; 85:10466-10478. [PMID: 32806085 DOI: 10.1021/acs.joc.0c00780] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
We report the synthesis of a series of bis-functionalized β-peptoid oligomers of the hexamer length. This was achieved by synthesizing and incorporating protected amino- or azido-functionalized chiral building blocks into precursor oligomers by a trimer segment coupling strategy. The resulting hexamers were readily elaborated to provide target compounds displaying amino groups, carboxy groups, hydroxy groups, or triazolo-pyridines, which should enable metal ion binding. Analysis of the novel hexamers by circular dichroism (CD) spectroscopy and 1H-13C heteronuclear single quantum coherence nuclear magnetic resonance (HSQC NMR) spectroscopy revealed robust helical folding propensity in acetonitrile. CD analysis showed a solvent-dependent degree of helical content in the structural ensembles when adding different ratios of protic solvents including an aqueous buffer. These studies were enabled by a substantial increase in solubility compared to previously analyzed β-peptoid oligomers. This also allowed for the investigation of the effect of pH on the folding propensity of the amino- and carboxy-functionalized oligomers, respectively. Interestingly, we could show a reversible effect of sequentially adding acid and base, resulting in a switching between compositions of folded ensembles with varying helical content. We envision that the present discoveries can form the basis for the development of functional peptidomimetic materials responsive to external stimuli.
Collapse
Affiliation(s)
- Isabelle Wellhöfer
- Center for Biopharmaceuticals & Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, Copenhagen DK-2100, Denmark
| | - Janina Beck
- Institute of Organic Chemistry (IOC), Karlsruhe Institute of Technology (KIT), D-76131 Karlsruhe, Germany
| | - Karla Frydenvang
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, Copenhagen DK-2100, Denmark
| | - Stefan Bräse
- Institute of Biological and Chemical Systems - Functional Molecular Systems (IBCS-FMS), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz Platz 1, Eggenstein-Leopoldshafen D-76344, Germany.,Institute of Organic Chemistry (IOC), Karlsruhe Institute of Technology (KIT), D-76131 Karlsruhe, Germany
| | - Christian A Olsen
- Center for Biopharmaceuticals & Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, Copenhagen DK-2100, Denmark
| |
Collapse
|
73
|
Wang Z, Lin M, Bonduelle C, Li R, Shi Z, Zhu C, Lecommandoux S, Li Z, Sun J. Thermoinduced Crystallization-Driven Self-Assembly of Bioinspired Block Copolymers in Aqueous Solution. Biomacromolecules 2020; 21:3411-3419. [PMID: 32786675 DOI: 10.1021/acs.biomac.0c00844] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Delicate control over architectures via crystallization-driven self-assembly (CDSA) in aqueous solution, particularly combined with external stimuli, is rare and challenging. Here, we report a stepwise CDSA process thermally initiated from amphiphilic poly(N-allylglycine)-b-poly(N-octylglycine) (PNAG-b-PNOG) conjugated with thiol-terminated triethylene glycol monomethyl ethers ((PNAG-g-EG3)-b-PNOG) in aqueous solution. The diblock copolymers show a reversible thermoresponsive behavior with nearly identical cloud points in both heating and cooling runs. In contrast, the morphology transition of the assemblies is irreversible upon a heating-cooling cycle because of the presence of a confined domain arising from crystalline PNOG, which allows for the achievement of different nanostructured assemblies by the same polymer. We demonstrated that the thermoresponsive property of PNAG-g-EG3 initiates assembly kinetically that is subsequently promoted by crystallization of PNOG thermodynamically. The irreversible morphology transition behavior provides a convenient platform for comparing the cellular uptake efficiency of nanostructured assemblies with various morphologies that are otherwise similar.
Collapse
Affiliation(s)
- Zhiwei Wang
- Key Laboratory of Biobased Polymer Materials, College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Min Lin
- Key Laboratory of Biobased Polymer Materials, College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Colin Bonduelle
- Univ. Bordeaux, CNRS, Bordeaux INP, LCPO, UMR 5629, F-33600 Pessac, France
| | - Rongye Li
- Key Laboratory of Biobased Polymer Materials, College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Zhekun Shi
- Key Laboratory of Biobased Polymer Materials, College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Chenhui Zhu
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | | | - Zhibo Li
- Key Laboratory of Biobased Polymer Materials, College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Jing Sun
- Key Laboratory of Biobased Polymer Materials, College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| |
Collapse
|
74
|
Zhao M, Sampath J, Alamdari S, Shen G, Chen CL, Mundy CJ, Pfaendtner J, Ferguson AL. MARTINI-Compatible Coarse-Grained Model for the Mesoscale Simulation of Peptoids. J Phys Chem B 2020; 124:7745-7764. [DOI: 10.1021/acs.jpcb.0c04567] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Mingfei Zhao
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
| | - Janani Sampath
- Physical Science Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Sarah Alamdari
- Department of Chemical Engineering, University of Washington, Seattle, Washington 98195, United States
| | - Gillian Shen
- Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
| | - Chun-Long Chen
- Physical Science Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
- Department of Chemical Engineering, University of Washington, Seattle, Washington 98195, United States
| | - Christopher J. Mundy
- Physical Science Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
- Department of Chemical Engineering, University of Washington, Seattle, Washington 98195, United States
| | - Jim Pfaendtner
- Physical Science Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
- Department of Chemical Engineering, University of Washington, Seattle, Washington 98195, United States
| | - Andrew L. Ferguson
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
| |
Collapse
|
75
|
Xuan S, Zuckermann RN. Engineering the atomic structure of sequence-defined peptoid polymers and their assemblies. POLYMER 2020. [DOI: 10.1016/j.polymer.2020.122691] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
76
|
Bai T, Shen B, Cai D, Luo Y, Zhou P, Xia J, Zheng B, Zhang K, Xie R, Ni X, Xu M, Ling J, Sun J. Understanding ring-closing and racemization to prepare α-amino acid NCA and NTA monomers: a DFT study. Phys Chem Chem Phys 2020; 22:14868-14874. [PMID: 32582885 DOI: 10.1039/d0cp01174f] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Polypeptides and polypeptoids are promising materials in biomedical applications bearing α-amino acid repeating units, which are prepared from ring-opening polymerizations of α-amino acid N-carboxyanhydride (NCA) or N-thiocarboxyanydride (NTA) monomers. Detailed studies on monomer synthetic routes are essential to explore new α-amino acid NCA and NTA monomers as well as the corresponding poly(α-amino acid) materials. In this contribution, density functional theory (DFT) is applied to investigate the mechanism of the Leuchs approach including two possible pathways, precursor structure and racemization in the ring-closing reaction. According to DFT calculations, pathway 2 is preferred with lower ΔG than pathway 1, and the rate-determining step is recognized as an SN2 substitution with releasing equivalent halogenated hydrocarbon, which explains our experimental observations. Racemization results from the reaction between the NTA monomer and a strong protonic acid, which can be suppressed by low temperature and short reaction time. Racemization is inhibited by steric hindrance in those NTAs of α-amino acids containing high bulkiness at the β-carbon, such as leucine-NTA.
Collapse
Affiliation(s)
- Tianwen Bai
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China. and Department of Radiology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou 310016, China.
| | - Bo Shen
- Department of Radiology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou 310016, China.
| | - Da Cai
- Department of Radiology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou 310016, China.
| | - Yifan Luo
- Department of Radiology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310006, China
| | - Peng Zhou
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China.
| | - Jingya Xia
- Department of Radiology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou 310016, China.
| | - Botuo Zheng
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China.
| | - Ke Zhang
- Department of Radiology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou 310016, China.
| | - Rongze Xie
- Department of Radiology, Jiulongpo People's Hospital, Chongqing 400050, China
| | - Xufeng Ni
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China.
| | - Maosheng Xu
- Department of Radiology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310006, China
| | - Jun Ling
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China.
| | - Jihong Sun
- Department of Radiology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou 310016, China. and Department of Radiology, Jiulongpo People's Hospital, Chongqing 400050, China and Innovation Center for Minimally Invasive Techniques and Devices, Zhejiang University, Hangzhou 310016, China
| |
Collapse
|
77
|
Darapaneni CM, Ghosh P, Ghosh T, Maayan G. Unique β‐Turn Peptoid Structures and Their Application as Asymmetric Catalysts. Chemistry 2020; 26:9573-9579. [DOI: 10.1002/chem.202000595] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Indexed: 12/13/2022]
Affiliation(s)
| | - Pritam Ghosh
- Schulich Faculty of ChemistryTechnion-Israel Institute of Technology Haifa 3200008 Israel
| | - Totan Ghosh
- Schulich Faculty of ChemistryTechnion-Israel Institute of Technology Haifa 3200008 Israel
| | - Galia Maayan
- Schulich Faculty of ChemistryTechnion-Israel Institute of Technology Haifa 3200008 Israel
| |
Collapse
|
78
|
Deng Y, Chen H, Tao X, Trépout S, Ling J, Li MH. Synthesis and self-assembly of poly(ethylene glycol)-block-poly(N-3-(methylthio)propyl glycine) and their oxidation-sensitive polymersomes. CHINESE CHEM LETT 2020. [DOI: 10.1016/j.cclet.2019.12.026] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
79
|
Li Y, Tom JC, Biehl P, Ling J, Schacher FH. Block Polypeptoids: Synthesis, Characterization, and Response Toward Irradiation with UV Light and Temperature. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c00654] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Yao Li
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
- Zhejiang Key Laboratory of Alternative Technologies for Fine Chemicals Process, Shaoxing University, Shaoxing 312000, China
| | - Jessica C. Tom
- Institute of Organic Chemistry and Macromolecular Chemistry (IOMC), Friedrich-Schiller-University Jena, Lessingstraße 8, D-07743 Jena, Germany
- Jena Center for Soft Matter (JCSM), Friedrich-Schiller-University Jena, Philosophenweg 7, D-07743 Jena, Germany
| | - Philip Biehl
- Institute of Organic Chemistry and Macromolecular Chemistry (IOMC), Friedrich-Schiller-University Jena, Lessingstraße 8, D-07743 Jena, Germany
- Jena Center for Soft Matter (JCSM), Friedrich-Schiller-University Jena, Philosophenweg 7, D-07743 Jena, Germany
| | - Jun Ling
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Felix H. Schacher
- Institute of Organic Chemistry and Macromolecular Chemistry (IOMC), Friedrich-Schiller-University Jena, Lessingstraße 8, D-07743 Jena, Germany
- Jena Center for Soft Matter (JCSM), Friedrich-Schiller-University Jena, Philosophenweg 7, D-07743 Jena, Germany
| |
Collapse
|
80
|
Skoulas D, Stuettgen V, Gaul R, Cryan SA, Brayden DJ, Heise A. Amphiphilic Star Polypept(o)ides as Nanomeric Vectors in Mucosal Drug Delivery. Biomacromolecules 2020; 21:2455-2462. [PMID: 32343127 DOI: 10.1021/acs.biomac.0c00381] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Mucosal delivery across the gastrointestinal (GI) tract, airways, and buccal epithelia is an attractive mode of therapeutic administration, but the challenge is to overcome the mucus and epithelial barriers. Here, we present degradable star polypept(o)ides capable of permeating both barriers as a promising biomaterial platform for mucosal delivery. Star polypept(o)ides were obtained by the initiation of benzyl-l-glutamate N-carboxyanhydride (NCA) from an 8-arm poly(propyleneimine) (PPI) dendrimer, with subsequent chain extension with sarcosine NCA. The hydrophobic poly(benzyl-l-glutamate) (PBLG) block length was maintained at 20 monomers, while the length of the hydrophilic poly(sarcosine) (PSar) block ranged from 20-640 monomers to produce star polypept(o)ides with increasing hydrophilic: hydrophobic ratios. Transmission electron microscopy (TEM) images revealed elongated particles of ∼120 nm length, while dynamic light scattering (DLS) provided evidence of a decrease in the size of polymer aggregates in water with increasing poly(sarcosine) block length, with the smallest size obtained for the star PBLG20-b-PSar640. Fluorescein isothiocyanate (FITC)-conjugated PBLG20-b-PSar640 permeated artificial mucus and isolated rat mucus, as well as rat intestinal jejunal tissue mounted in Franz diffusion chambers. An apparent permeability coefficient (Papp) of 15.4 ± 3.1 ×10-6 cm/s for FITC-PBLG20-b-PSar640 was calculated from the transepithelial flux obtained with the apical-side addition of 7.5 mg polypept(o)ide to jejunal tissue over 2 h. This Papp could not be accounted for by flux of unconjugated FITC. Resistance to trypsin demonstrated the stability of FITC-labeled polypept(o)ide over 2 h, but enzymatic degradation at the mucus-epithelial interface or during flux could not be ruled out as contributing to the Papp. The absence of any histological damage to the jejunal tissue during the 2 h exposure suggests that the flux was not associated with overt toxicity.
Collapse
Affiliation(s)
- Dimitrios Skoulas
- Department of Chemistry, Royal College of Surgeons in Ireland, 123 St. Stephens Green, Dublin D02, Ireland.,Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CURAM), RCSI, Dublin 02 and University College Dublin,Dublin D04, Ireland
| | - Vivien Stuettgen
- School of Veterinary Medicine and Conway Institute, University College Dublin, Veterinary Science Centre, Belfield, Dublin D04, Ireland.,Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CURAM), RCSI, Dublin 02 and University College Dublin,Dublin D04, Ireland
| | - Rachel Gaul
- School of Pharmacy and Biomolecular Sciences and Tissue Engineering Research Group, Royal College of Surgeons in Ireland, 123 St. Stephen's Green, Dublin D02, Ireland
| | - Sally-Ann Cryan
- School of Pharmacy and Biomolecular Sciences and Tissue Engineering Research Group, Royal College of Surgeons in Ireland, 123 St. Stephen's Green, Dublin D02, Ireland.,Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CURAM), RCSI, Dublin 02 and University College Dublin,Dublin D04, Ireland.,AMBER, The SFI Advanced Materials and Bioengineering Research Centre, RCSI, Dublin D02, Ireland
| | - David J Brayden
- School of Veterinary Medicine and Conway Institute, University College Dublin, Veterinary Science Centre, Belfield, Dublin D04, Ireland.,Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CURAM), RCSI, Dublin 02 and University College Dublin,Dublin D04, Ireland
| | - Andreas Heise
- Department of Chemistry, Royal College of Surgeons in Ireland, 123 St. Stephens Green, Dublin D02, Ireland.,Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CURAM), RCSI, Dublin 02 and University College Dublin,Dublin D04, Ireland.,AMBER, The SFI Advanced Materials and Bioengineering Research Centre, RCSI, Dublin D02, Ireland
| |
Collapse
|
81
|
Schunk HC, Hernandez DS, Austin MJ, Dhada KS, Rosales AM, Suggs LJ. Assessing the range of enzymatic and oxidative tunability for biosensor design. J Mater Chem B 2020; 8:3460-3487. [PMID: 32159202 PMCID: PMC7219111 DOI: 10.1039/c9tb02666e] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Development of multi-functional materials and biosensors that can achieve an in situ response designed by the user is a current need in the biomaterials field, especially in complex biological environments, such as inflammation, where multiple enzymatic and oxidative signals are present. In the past decade, there has been extensive research and development of materials chemistries for detecting and monitoring enzymatic activity, as well as for releasing therapeutic and diagnostic agents in regions undergoing oxidative stress. However, there has been limited development of materials in the context of enzymatic and oxidative triggers together, despite their closely tied and overlapping mechanisms. With research focusing on enzymatically and oxidatively triggered materials separately, these systems may be inadequate in monitoring the complexity of inflammatory environments, thus limiting in vivo translatability and diagnostic accuracy. The intention of this review is to highlight a variety of enzymatically and oxidatively triggered materials chemistries to draw attention to the range of synthetic tunability available for the construction of novel biosensors with a spectrum of programmed responses. We focus our discussion on several types of macromolecular sensors, generally classified by the causative material response driving ultimate signal detection. This includes sensing based on degradative processes, conformational changes, supramolecular assembly/disassembly, and nanomaterial interactions, among others. We see each of these classes providing valuable tools toward coalescing current gaps in the biosensing field regarding specificity, selectivity, sensitivity, and flexibility in application. Additionally, by considering the materials chemistry of enzymatically and oxidatively triggered biomaterials in tandem, we hope to encourage synthesis of new biosensors that capitalize on their synergistic roles and overlapping mechanisms in inflammatory environments for applications in disease diagnosis and monitoring.
Collapse
Affiliation(s)
- Hattie C Schunk
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX 78712, USA.
| | | | | | | | | | | |
Collapse
|
82
|
Castelletto V, Seitsonen J, Tewari KM, Hasan A, Edkins RM, Ruokolainen J, Pandey LM, Hamley IW, Lau KHA. Self-Assembly of Minimal Peptoid Sequences. ACS Macro Lett 2020; 9:494-499. [PMID: 32337093 PMCID: PMC7179723 DOI: 10.1021/acsmacrolett.9b01010] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Accepted: 03/10/2020] [Indexed: 02/07/2023]
Abstract
Peptoids are biofunctional N-substituted glycine peptidomimics. Their self-assembly is of fundamental interest because they demonstrate alternatives to conventional peptide structures based on backbone chirality and beta-sheet hydrogen bonding. The search for self-assembling, water-soluble "minimal" sequences, be they peptide or peptidomimic, is a further challenge. Such sequences are highly desired for their compatibility with biomacromolecules and convenient synthesis for broader application. We report the self-assembly of a set of trimeric, water-soluble α-peptoids that exhibit a relatively low critical aggregation concentration (CAC ∼ 0.3 wt %). Cryo-EM and angle-resolved DLS show different sequence-dependent morphologies, namely uniform ca. 6 nm wide nanofibers, sheets, and clusters of globular assemblies. Absorbance and fluorescence spectroscopies indicate unique phenyl environments for π-interactions in the highly ordered nanofibers. Assembly of our peptoids takes place when the sequences are fully ionized, representing a departure from superficially similar amyloid-type hydrogen-bonded peptide nanostructures and expanding the horizons of assembly for sequence-specific bio- and biomimetic macromolecules.
Collapse
Affiliation(s)
| | - Jani Seitsonen
- Nanomicroscopy Center, Aalto
University, Puumiehenkuja
2, FIN-02150 Espoo, Finland
| | - Kunal M. Tewari
- Department of Pure & Applied Chemistry, University of Strathclyde, 295 Cathedral Street, Glasgow G1 1XL, U.K.
| | - Abshar Hasan
- Department of Pure & Applied Chemistry, University of Strathclyde, 295 Cathedral Street, Glasgow G1 1XL, U.K.
- Department
of Biosciences and Bioengineering, Indian
Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Robert M. Edkins
- Department of Pure & Applied Chemistry, University of Strathclyde, 295 Cathedral Street, Glasgow G1 1XL, U.K.
| | - Janne Ruokolainen
- Nanomicroscopy Center, Aalto
University, Puumiehenkuja
2, FIN-02150 Espoo, Finland
| | - Lalit M. Pandey
- Department
of Biosciences and Bioengineering, Indian
Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Ian W. Hamley
- Department of Chemistry, University of Reading, Reading RG6 6AD, U.K.
| | - King Hang Aaron Lau
- Department of Pure & Applied Chemistry, University of Strathclyde, 295 Cathedral Street, Glasgow G1 1XL, U.K.
| |
Collapse
|
83
|
Selivanova NM, Gubaidullin AT, Galyametdinov YG. Incorporating a Tetrapeptide into Lyotropic Direct Hexagonal Mesophase. J Phys Chem B 2020; 124:2715-2722. [PMID: 32207304 DOI: 10.1021/acs.jpcb.0c00512] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
An approach to incorporate a bioactive hydrophobic substance, C22H32N4O7 tetrapeptide (TP), into the structure of the hexagonal mesophases C12EO10/H2O and C12EO10/La(III)/H2O was proposed. Concentration and temperature ranges of mesophases in the C12EO10/H2O/TP and C12EO10/La(III)/H2O/TP systems were established. The analysis of the X-ray diffraction data revealed a change in the structural characteristics of mesophases in the presence of tetrapeptide. Formation of a denser packing of molecules in the mesophases with TP was detected. Based on the FTIR spectroscopy data, intermolecular changes in the systems were examined. Pulsed-gradient spin-echo NMR self-diffusion experiments were performed to characterize the structure of lyomesophases depending on system composition and temperature. The degree of hydration of water molecules in lyomesophases was analyzed. The data confirmed successful incorporation of tetrapeptide into the structure of lyomesophase and, therefore, the possibility of using hexagonal mesophases for both incapsulation and delivery of biomolecules.
Collapse
Affiliation(s)
- Natalia M Selivanova
- Kazan National Research Technological University, 68 Karl Marx Street, 420015 Kazan, Russia
| | - Aidar T Gubaidullin
- Arbuzov Institute of Organic and Physical Chemistry of the Kazan Scientific Center of the Russian Academy of Sciences, 8 Akademika Arbuzov Street, 420088 Kazan, Russia
| | - Yuriy G Galyametdinov
- Kazan National Research Technological University, 68 Karl Marx Street, 420015 Kazan, Russia
| |
Collapse
|
84
|
A Resin-Bound Peptoid as a Recyclable Heterogeneous Catalyst for Oxidation Reactions. European J Org Chem 2020. [DOI: 10.1002/ejoc.201901739] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
85
|
Reese HR, Shanahan CC, Proulx C, Menegatti S. Peptide science: A "rule model" for new generations of peptidomimetics. Acta Biomater 2020; 102:35-74. [PMID: 31698048 DOI: 10.1016/j.actbio.2019.10.045] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Revised: 10/17/2019] [Accepted: 10/30/2019] [Indexed: 02/07/2023]
Abstract
Peptides have been heavily investigated for their biocompatible and bioactive properties. Though a wide array of functionalities can be introduced by varying the amino acid sequence or by structural constraints, properties such as proteolytic stability, catalytic activity, and phase behavior in solution are difficult or impossible to impart upon naturally occurring α-L-peptides. To this end, sequence-controlled peptidomimetics exhibit new folds, morphologies, and chemical modifications that create new structures and functions. The study of these new classes of polymers, especially α-peptoids, has been highly influenced by the analysis, computational, and design techniques developed for peptides. This review examines techniques to determine primary, secondary, and tertiary structure of peptides, and how they have been adapted to investigate peptoid structure. Computational models developed for peptides have been modified to predict the morphologies of peptoids and have increased in accuracy in recent years. The combination of in vitro and in silico techniques have led to secondary and tertiary structure design principles that mirror those for peptides. We then examine several important developments in peptoid applications inspired by peptides such as pharmaceuticals, catalysis, and protein-binding. A brief survey of alternative backbone structures and research investigating these peptidomimetics shows how the advancement of peptide and peptoid science has influenced the growth of numerous fields of study. As peptide, peptoid, and other peptidomimetic studies continue to advance, we will expect to see higher throughput structural analyses, greater computational accuracy and functionality, and wider application space that can improve human health, solve environmental challenges, and meet industrial needs. STATEMENT OF SIGNIFICANCE: Many historical, chemical, and functional relations draw a thread connecting peptides to their recent cognates, the "peptidomimetics". This review presents a comprehensive survey of this field by highlighting the width and relevance of these familial connections. In the first section, we examine the experimental and computational techniques originally developed for peptides and their morphing into a broader analytical and predictive toolbox. The second section presents an excursus of the structures and properties of prominent peptidomimetics, and how the expansion of the chemical and structural diversity has returned new exciting properties. The third section presents an overview of technological applications and new families of peptidomimetics. As the field grows, new compounds emerge with clear potential in medicine and advanced manufacturing.
Collapse
|
86
|
Rzeigui M, Traikia M, Jouffret L, Kriznik A, Khiari J, Roy O, Taillefumier C. Strengthening Peptoid Helicity through Sequence Site-Specific Positioning of Amide cis-Inducing NtBu Monomers. J Org Chem 2020; 85:2190-2201. [PMID: 31873018 DOI: 10.1021/acs.joc.9b02916] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The synthesis of biomimetic helical secondary structures is sought after for the construction of innovative nanomaterials and applications in medicinal chemistry such as the development of protein-protein interaction modulators. Peptoids, a sequence-defined family of oligomers, enable a peptidomimetic strategy, especially considering the easily accessible monomer diversity and peptoid helical folding propensity. However, cis-trans isomerization of the backbone tertiary amides may impair the peptoid's adoption of stable secondary structures, notably the all-cis polyproline I-like helical conformation. Here, we show that cis-inducing NtBu achiral monomers strategically positioned within chiral sequences may reinforce the degree of peptoid helicity, although with a reduced content of chiral side chains. The design principles presented here will undoubtedly help achieve more conformationally stable helical peptoids with desired functions.
Collapse
Affiliation(s)
- Maha Rzeigui
- Université Clermont Auvergne , CNRS, SIGMA Clermont, ICCF, F-63000 Clermont-Ferrand , France.,Université de Carthage , Faculté Des Sciences de Bizerte, Laboratoire de Chimie Organique et Analytique, ISEFC, 2000 Bardo , Tunisie
| | - Mounir Traikia
- Université Clermont Auvergne , CNRS, SIGMA Clermont, ICCF, F-63000 Clermont-Ferrand , France
| | - Laurent Jouffret
- Université Clermont Auvergne , CNRS, SIGMA Clermont, ICCF, F-63000 Clermont-Ferrand , France
| | - Alexandre Kriznik
- Université de Lorraine , CNRS, IMoPA, F-54000 Nancy , France.,Université de Lorraine , CNRS, Inserm, UMS2008 IBSLor, Biophysics and Structural Biology Core Facility, F-54000 Nancy , France
| | - Jameleddine Khiari
- Université de Carthage , Faculté Des Sciences de Bizerte, Laboratoire de Chimie Organique et Analytique, ISEFC, 2000 Bardo , Tunisie
| | - Olivier Roy
- Université Clermont Auvergne , CNRS, SIGMA Clermont, ICCF, F-63000 Clermont-Ferrand , France
| | - Claude Taillefumier
- Université Clermont Auvergne , CNRS, SIGMA Clermont, ICCF, F-63000 Clermont-Ferrand , France
| |
Collapse
|
87
|
Johann K, Svatunek D, Seidl C, Rizzelli S, Bauer TA, Braun L, Koynov K, Mikula H, Barz M. Tetrazine- and trans-cyclooctene-functionalised polypept(o)ides for fast bioorthogonal tetrazine ligation. Polym Chem 2020. [DOI: 10.1039/d0py00375a] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Tetrazine- and trans-cyclooctene-functionalised polypeptides and polypetoids were prepared by ring-opening polymerisation of N-carboxyanhydrides using the respective functional initiators and shown to react in fast bioorthogonal tetrazine ligations.
Collapse
Affiliation(s)
- Kerstin Johann
- Department of Chemistry
- Johannes Gutenberg University Mainz
- 55128 Mainz
- Germany
| | - Dennis Svatunek
- Institute of Applied Synthetic Chemistry
- Technische Universität Wien
- 1060 Vienna
- Austria
| | - Christine Seidl
- Department of Chemistry
- Johannes Gutenberg University Mainz
- 55128 Mainz
- Germany
| | - Silvia Rizzelli
- Department of Chemistry
- Johannes Gutenberg University Mainz
- 55128 Mainz
- Germany
| | - Tobias A. Bauer
- Department of Chemistry
- Johannes Gutenberg University Mainz
- 55128 Mainz
- Germany
| | - Lydia Braun
- Department of Chemistry
- Johannes Gutenberg University Mainz
- 55128 Mainz
- Germany
| | - Kaloian Koynov
- Max Planck Institute for Polymer Research
- 55128 Mainz
- Germany
| | - Hannes Mikula
- Institute of Applied Synthetic Chemistry
- Technische Universität Wien
- 1060 Vienna
- Austria
| | - Matthias Barz
- Department of Chemistry
- Johannes Gutenberg University Mainz
- 55128 Mainz
- Germany
| |
Collapse
|
88
|
Rasines Mazo A, Allison-Logan S, Karimi F, Chan NJA, Qiu W, Duan W, O’Brien-Simpson NM, Qiao GG. Ring opening polymerization of α-amino acids: advances in synthesis, architecture and applications of polypeptides and their hybrids. Chem Soc Rev 2020; 49:4737-4834. [DOI: 10.1039/c9cs00738e] [Citation(s) in RCA: 93] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
This review provides a comprehensive overview of the latest advances in the synthesis, architectural design and biomedical applications of polypeptides and their hybrids.
Collapse
Affiliation(s)
- Alicia Rasines Mazo
- Polymer Science Group
- Department of Chemical Engineering
- University of Melbourne
- Parkville
- Australia
| | - Stephanie Allison-Logan
- Polymer Science Group
- Department of Chemical Engineering
- University of Melbourne
- Parkville
- Australia
| | - Fatemeh Karimi
- Polymer Science Group
- Department of Chemical Engineering
- University of Melbourne
- Parkville
- Australia
| | - Nicholas Jun-An Chan
- Polymer Science Group
- Department of Chemical Engineering
- University of Melbourne
- Parkville
- Australia
| | - Wenlian Qiu
- Polymer Science Group
- Department of Chemical Engineering
- University of Melbourne
- Parkville
- Australia
| | - Wei Duan
- School of Medicine
- Deakin University
- Geelong
- Australia
| | - Neil M. O’Brien-Simpson
- Centre for Oral Health Research
- Melbourne Dental School and the Bio21 Institute of Molecular Science and Biotechnology
- University of Melbourne
- Parkville
- Australia
| | - Greg G. Qiao
- Polymer Science Group
- Department of Chemical Engineering
- University of Melbourne
- Parkville
- Australia
| |
Collapse
|
89
|
Wei J, Sun J, Yang X, Ji S, Wei Y, Li Z. Self-crosslinking assemblies with tunable nanostructures from photoresponsive polypeptoid-based block copolymers. Polym Chem 2020. [DOI: 10.1039/c9py00385a] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
A series of reversible crosslinking assemblies with tunable morphologies are obtained from a new family of photoresponsive polypeptoid-based diblock copolymers.
Collapse
Affiliation(s)
- Jirui Wei
- Key Laboratory of Biobased Polymer Materials
- Shandong Provincial Education Department
- School of Polymer Science and Engineering
- Qingdao University of Science and Technology
- Qingdao 266042
| | - Jing Sun
- Key Laboratory of Biobased Polymer Materials
- Shandong Provincial Education Department
- School of Polymer Science and Engineering
- Qingdao University of Science and Technology
- Qingdao 266042
| | - Xu Yang
- Key Laboratory of Biobased Polymer Materials
- Shandong Provincial Education Department
- School of Polymer Science and Engineering
- Qingdao University of Science and Technology
- Qingdao 266042
| | - Sifan Ji
- Key Laboratory of Biobased Polymer Materials
- Shandong Provincial Education Department
- School of Polymer Science and Engineering
- Qingdao University of Science and Technology
- Qingdao 266042
| | - Yuhan Wei
- Key Laboratory of Biobased Polymer Materials
- Shandong Provincial Education Department
- School of Polymer Science and Engineering
- Qingdao University of Science and Technology
- Qingdao 266042
| | - Zhibo Li
- Key Laboratory of Biobased Polymer Materials
- Shandong Provincial Education Department
- School of Polymer Science and Engineering
- Qingdao University of Science and Technology
- Qingdao 266042
| |
Collapse
|
90
|
Xuan S, Zuckermann RN. Diblock copolypeptoids: a review of phase separation, crystallization, self-assembly and biological applications. J Mater Chem B 2020; 8:5380-5394. [DOI: 10.1039/d0tb00477d] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Diblock copolypeptoids have the capacity to phase separate, crystallize, and self-assemble into a variety of nanostructures, which have shown great potential in a variety of biological applications.
Collapse
Affiliation(s)
- Sunting Xuan
- Molecular Foundry
- Lawrence Berkeley National Laboratory
- Berkeley
- USA
- Materials Sciences Division
| | - Ronald N. Zuckermann
- Molecular Foundry
- Lawrence Berkeley National Laboratory
- Berkeley
- USA
- Materials Sciences Division
| |
Collapse
|
91
|
Cen J, Zheng B, Yang Y, Wu J, Mao Z, Ling J, Han G. Ag@polyDOPA-b-polysarcosine hybrid nanoparticles with antimicrobial properties from in-situ reduction and NTA polymerization. Eur Polym J 2019. [DOI: 10.1016/j.eurpolymj.2019.109269] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
92
|
Kubyshkin V, Budisa N. Anticipating alien cells with alternative genetic codes: away from the alanine world! Curr Opin Biotechnol 2019; 60:242-249. [DOI: 10.1016/j.copbio.2019.05.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 05/07/2019] [Indexed: 12/24/2022]
|
93
|
Zhang Y, Heidari Z, Su Y, Yu T, Xuan S, Omarova M, Aydin Y, Dash S, Zhang D, John V. Amphiphilic Polypeptoids Rupture Vesicle Bilayers To Form Peptoid-Lipid Fragments Effective in Enhancing Hydrophobic Drug Delivery. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:15335-15343. [PMID: 31686512 DOI: 10.1021/acs.langmuir.9b03322] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Peptoids are highly biocompatible pseudopeptidic polyglycines with designable substituents on the nitrogen atoms. The therapeutic and drug-carrying potential of these materials requires a fundamental understanding of their interactions with lipid bilayers. In this work, we use amphiphilic polypeptoids with up to 100 monomeric units where a significant fraction (26%) of the nitrogen atoms are functionalized with decyl groups (hydrophobes) that insert into the lipid bilayer through the hydrophobic effect. These hydrophobically modified polypeptoids (HMPs) insert their hydrophobes into lipid bilayers creating instabilities that lead to the rupture of vesicles. At low HMP concentrations, such rupture leads to the creation of large fragments which remarkably anchor to intact vesicles through the hydrophobic effect. At high HMP concentrations, all vesicles rupture to smaller HMP-lipid fragments of the order of 10 nm. We show that the technique for such nanoscale polymer-lipid fragments can be exploited to sustain highly hydrophobic drug species in solution. Using the kinase inhibitor, Sorafenib as a model drug, it is shown that HMP-lipid fragments containing the drug can efficiently enter a hepatocellular carcinoma cell line (Huh 7.5), indicating the use of such fragments as drug delivery nanocarriers.
Collapse
Affiliation(s)
- Yueheng Zhang
- Department of Chemical and Biomolecular Engineering , Tulane University , 6823 St. Charles Avenue , New Orleans , Louisiana 70118 , United States
| | - Zahra Heidari
- Department of Chemical and Biomolecular Engineering , Tulane University , 6823 St. Charles Avenue , New Orleans , Louisiana 70118 , United States
| | - Yang Su
- Department of Chemical and Biomolecular Engineering , Tulane University , 6823 St. Charles Avenue , New Orleans , Louisiana 70118 , United States
| | - Tianyi Yu
- Department of Chemistry , Louisiana State University , Baton Rouge , Louisiana 70803 , United States
| | - Sunting Xuan
- Department of Chemistry , Louisiana State University , Baton Rouge , Louisiana 70803 , United States
| | - Marzhana Omarova
- Department of Chemical and Biomolecular Engineering , Tulane University , 6823 St. Charles Avenue , New Orleans , Louisiana 70118 , United States
| | - Yucel Aydin
- Department of Pathology and Laboratory Medicine , Tulane University , 1430 Tulane Avenue , New Orleans , Louisiana 70112 , United States
| | - Srikanta Dash
- Department of Pathology and Laboratory Medicine , Tulane University , 1430 Tulane Avenue , New Orleans , Louisiana 70112 , United States
| | - Donghui Zhang
- Department of Chemistry , Louisiana State University , Baton Rouge , Louisiana 70803 , United States
| | - Vijay John
- Department of Chemical and Biomolecular Engineering , Tulane University , 6823 St. Charles Avenue , New Orleans , Louisiana 70118 , United States
| |
Collapse
|
94
|
Jiang N, Yu T, Darvish OA, Qian S, Mkam Tsengam IK, John V, Zhang D. Crystallization-Driven Self-Assembly of Coil–Comb-Shaped Polypeptoid Block Copolymers: Solution Morphology and Self-Assembly Pathways. Macromolecules 2019. [DOI: 10.1021/acs.macromol.9b01546] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Naisheng Jiang
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Tianyi Yu
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Omead A. Darvish
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Shuo Qian
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, United States
| | - Igor Kevin Mkam Tsengam
- Department of Chemical and Biomolecular Engineering, Tulane University, New Orleans, Louisiana 70118, United States
| | - Vijay John
- Department of Chemical and Biomolecular Engineering, Tulane University, New Orleans, Louisiana 70118, United States
| | - Donghui Zhang
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| |
Collapse
|
95
|
Fu X, Li Z, Lin M, Sun J, Li Z. Biomimetic polypeptoids with para-oligo(ethylene glycol) benzyl side-chains synthesized from α-Amino acids. Eur Polym J 2019. [DOI: 10.1016/j.eurpolymj.2019.07.039] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
96
|
Wang Z, Ju Y, Ali Z, Yin H, Sheng F, Lin J, Wang B, Hou Y. Near-infrared light and tumor microenvironment dual responsive size-switchable nanocapsules for multimodal tumor theranostics. Nat Commun 2019; 10:4418. [PMID: 31562357 PMCID: PMC6765052 DOI: 10.1038/s41467-019-12142-4] [Citation(s) in RCA: 136] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 08/19/2019] [Indexed: 12/22/2022] Open
Abstract
Smart drug delivery systems (SDDSs) for cancer treatment are of considerable interest in the field of theranostics. However, developing SDDSs with early diagnostic capability, enhanced drug delivery and efficient biodegradability still remains a scientific challenge. Herein, we report near-infrared light and tumor microenvironment (TME), dual responsive as well as size-switchable nanocapsules. These nanocapsules are made of a PLGA-polymer matrix coated with Fe/FeO core-shell nanocrystals and co-loaded with chemotherapy drug and photothermal agent. Smartly engineered nanocapsules can not only shrink and decompose into small-sized nanodrugs upon drug release but also can regulate the TME to overproduce reactive oxygen species for enhanced synergistic therapy in tumors. In vivo experiments demonstrate that these nanocapsules can target to tumor sites through fluorescence/magnetic resonance imaging and offer remarkable therapeutic results. Our synthetic strategy provides a platform for next generation smart nanocapsules with enhanced permeability and retention effect, multimodal anticancer theranostics, and biodegradability.
Collapse
Affiliation(s)
- Zhiyi Wang
- Beijing Key Laboratory for Magnetoelectric Materials and Devices, Department of Materials Science and Engineering, College of Engineering, Beijing Innovation Centre for Engineering Science and Advanced Technology, Peking University, 100871, Beijing, China
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, Lanzhou University, Gansu, 730000, Lanzhou, China
| | - Yanmin Ju
- College of Life Science, Peking University, 100871, Beijing, China
| | - Zeeshan Ali
- Beijing Key Laboratory for Magnetoelectric Materials and Devices, Department of Materials Science and Engineering, College of Engineering, Beijing Innovation Centre for Engineering Science and Advanced Technology, Peking University, 100871, Beijing, China
| | - Hui Yin
- Department of Radiology, the Fifth Medical Centre, Chinese PLA General Hospital, 100071, Beijing, China
| | - Fugeng Sheng
- Department of Radiology, the Fifth Medical Centre, Chinese PLA General Hospital, 100071, Beijing, China.
| | - Jian Lin
- Synthetic and Functional Biomolecules Center, Department of Chemical Biology, College of Chemistry and Molecular Engineering, Peking University, 100871, Beijing, China
| | - Baodui Wang
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, Lanzhou University, Gansu, 730000, Lanzhou, China.
| | - Yanglong Hou
- Beijing Key Laboratory for Magnetoelectric Materials and Devices, Department of Materials Science and Engineering, College of Engineering, Beijing Innovation Centre for Engineering Science and Advanced Technology, Peking University, 100871, Beijing, China.
| |
Collapse
|
97
|
Tong Y, Wang Z, Xiao Y, Liu W, Pan J, Zhou Y, Lang M. In Situ Forming and Reversibly Cross-Linkable Hydrogels Based on Copolypept(o)ides and Polysaccharides. ACS APPLIED BIO MATERIALS 2019; 2:4545-4556. [DOI: 10.1021/acsabm.9b00668] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Yanping Tong
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Zhaochuang Wang
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Yan Xiao
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Wei Liu
- The State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Jinghao Pan
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Yan Zhou
- The State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Meidong Lang
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
98
|
|
99
|
Holm R, Schwiertz D, Weber B, Schultze J, Kuhn J, Koynov K, Lächelt U, Barz M. Multifunctional Cationic PeptoStars as siRNA Carrier: Influence of Architecture and Histidine Modification on Knockdown Potential. Macromol Biosci 2019; 20:e1900152. [PMID: 31430057 DOI: 10.1002/mabi.201900152] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 06/14/2019] [Indexed: 12/23/2022]
Abstract
RNA interference provides enormous potential for the treatment of several diseases, including cancer. Nevertheless, successful therapies based on siRNA require overcoming various challenges, such as poor pharmacokinetic characteristics of the small RNA molecule and inefficient cytosolic accumulation. In this respect, the development of functional siRNA carrier systems is a major task in biomedical research. To provide such a desired system, the synthesis of 3-arm and 6-arm PeptoStars is aimed for. The different branched polypept(o)idic architectures share a stealth-like polysarcosine corona for efficient shielding and a multifunctional polylysine core, which can be independently varied in size and functionality for siRNA complexation-, transport and intra cellular release. The special feature of star-like polypept(o)ides is in their uniform small size (<20 nm) and a core-shell structure, which implies a high stability and stealth-like properties and thus, they may combine long circulation times and a deep penetration of cancerous tissue. Initial toxicity and complement studies demonstrate well tolerated cationic PeptoStars with high complexation capability toward siRNA (N/P ratio up to 3:1), which can lead to potent RNAi for optimized systems. Here, the synthetic development of 3-arm and 6-arm polypept(o)idic star polymers, their modification with endosomolytic moieties, and first in vitro insights on RNA interference are reported on.
Collapse
Affiliation(s)
- Regina Holm
- Institute of Organic Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128, Mainz, Germany
| | - David Schwiertz
- Institute of Organic Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128, Mainz, Germany
| | - Benjamin Weber
- Institute of Organic Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128, Mainz, Germany
| | - Jennifer Schultze
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Jasmin Kuhn
- Department of Pharmacy and Center for NanoScience (CeNS), LMU Munich, Butenandtstraße 5-13, 81377, Munich, Germany
| | - Kaloian Koynov
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Ulrich Lächelt
- Department of Pharmacy and Center for NanoScience (CeNS), LMU Munich, Butenandtstraße 5-13, 81377, Munich, Germany
| | - Matthias Barz
- Institute of Organic Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128, Mainz, Germany
| |
Collapse
|
100
|
Zeng G, Qiu L, Wen T. Recent advances in crystallization and self‐assembly of polypeptoid polymers. POLYMER CRYSTALLIZATION 2019. [DOI: 10.1002/pcr2.10065] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Guangjian Zeng
- South China Advanced Institute for Soft Matter Science and TechnologySouth China University of Technology Guangzhou China
| | - Lu Qiu
- South China Advanced Institute for Soft Matter Science and TechnologySouth China University of Technology Guangzhou China
| | - Tao Wen
- South China Advanced Institute for Soft Matter Science and TechnologySouth China University of Technology Guangzhou China
| |
Collapse
|