51
|
Magnussen OM, Groß A. Toward an Atomic-Scale Understanding of Electrochemical Interface Structure and Dynamics. J Am Chem Soc 2019; 141:4777-4790. [DOI: 10.1021/jacs.8b13188] [Citation(s) in RCA: 145] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Olaf M. Magnussen
- Institute of Experimental and Applied Physics, Kiel University, Olshausenstr. 40, 24098 Kiel, Germany
| | - Axel Groß
- Institute of Theoretical Chemistry, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
- Helmholtz-Institute Ulm, Helmholtzstr. 11, 89081 Ulm, Germany
| |
Collapse
|
52
|
Ultrafast Vibrational Dynamics of CO Ligands on RuTPP/Cu(110) under Photodesorption Conditions. SURFACES 2019. [DOI: 10.3390/surfaces2010010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
We have studied CO coordinated to ruthenium tetraphenylporphyrin (RuTPP)/Cu(110) and directly adsorbed to Cu(110), using femtosecond pump-sum frequency probe spectroscopy, to alter the degree of electron-vibration coupling between the metal substrate and CO. We observe the facile femtosecond laser-induced desorption of CO from RuTPP/Cu(110), but not from Cu(110). A change in the vibrational transients, in the first few picoseconds, from a red- to blue-shift of the C–O stretching vibration under photodesorption conditions, was also observed. This drastic change can be explained, if the cause of the C–O frequency redshift of Cu(110) is not the usually-assumed anharmonic coupling to low frequency vibrational modes, but a charge transfer from hot electrons to the CO 2π* state. This antibonding state shifts to higher energies on RuTPP, removing the C–O redshift and, instead, reveals a blueshift, predicted to arise from electron-mediated coupling between the coherently excited internal stretch and low frequency modes in the system.
Collapse
|
53
|
Petti MK, Ostrander JS, Saraswat V, Birdsall ER, Rich KL, Lomont JP, Arnold MS, Zanni MT. Enhancing the signal strength of surface sensitive 2D IR spectroscopy. J Chem Phys 2019; 150:024707. [PMID: 30646693 DOI: 10.1063/1.5065511] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Spectroscopic techniques that are capable of measuring surfaces and interfaces must overcome two technical challenges: one, the low coverage of molecules at the surface, and two, discerning between signals from the bulk and surface. We present surface enhanced attenuated reflection 2D infrared (SEAR 2D IR) spectroscopy, a method that combines localized surface plasmons with a reflection pump-probe geometry to achieve monolayer sensitivity. The method is demonstrated at 6 µm with the amide I band of a model peptide, a cysteine terminated α-helical peptide tethered to a gold surface. Using SEAR 2D IR spectroscopy, the signal from this sample is enhanced 20 000-times over a monolayer on a dielectric surface. Like attenuated total reflection IR spectroscopy, SEAR 2D IR spectroscopy can be applied to strongly absorbing solvents. We demonstrated this capability by solvating a peptide monolayer with H2O, which cannot normally be used when measuring the amide I band. SEAR 2D IR spectroscopy will be advantageous for studying chemical reactions at electrochemical surfaces, interfacial charge transfer in photovoltaics, and structural changes of transmembrane proteins in lipid membranes.
Collapse
Affiliation(s)
- Megan K Petti
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Joshua S Ostrander
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Vivek Saraswat
- Department of Materials Science and Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Erin R Birdsall
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Kacie L Rich
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Justin P Lomont
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Michael S Arnold
- Department of Materials Science and Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Martin T Zanni
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| |
Collapse
|
54
|
|
55
|
Belianinov A, Ievlev AV, Lorenz M, Borodinov N, Doughty B, Kalinin SV, Fernández FM, Ovchinnikova OS. Correlated Materials Characterization via Multimodal Chemical and Functional Imaging. ACS NANO 2018; 12:11798-11818. [PMID: 30422627 PMCID: PMC9850281 DOI: 10.1021/acsnano.8b07292] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Multimodal chemical imaging simultaneously offers high-resolution chemical and physical information with nanoscale and, in select cases, atomic resolution. By coupling modalities that collect physical and chemical information, we can address scientific problems in biological systems, battery and fuel cell research, catalysis, pharmaceuticals, photovoltaics, medicine, and many others. The combined systems enable the local correlation of material properties with chemical makeup, making fundamental questions of how chemistry and structure drive functionality approachable. In this Review, we present recent progress and offer a perspective for chemical imaging used to characterize a variety of samples by a number of platforms. Specifically, we present cases of infrared and Raman spectroscopies combined with scanning probe microscopy; optical microscopy and mass spectrometry; nonlinear optical microscopy; and, finally, ion, electron, and probe microscopies with mass spectrometry. We also discuss the challenges associated with the use of data originated by the combinatorial hardware, analysis, and machine learning as well as processing tools necessary for the interpretation of multidimensional data acquired from multimodal studies.
Collapse
Affiliation(s)
- Alex Belianinov
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
- Institute for Functional Imaging of Materials, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Anton V. Ievlev
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
- Institute for Functional Imaging of Materials, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Matthias Lorenz
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
- Institute for Functional Imaging of Materials, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Nikolay Borodinov
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
- Institute for Functional Imaging of Materials, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Benjamin Doughty
- Chemical Science Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Sergei V. Kalinin
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
- Institute for Functional Imaging of Materials, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Facundo M. Fernández
- School of Chemistry and Biochemistry, Georgia Institute of Technology and Petit Institute for Biochemistry and Bioscience, Atlanta, Georgia 30332, United States
| | - Olga S. Ovchinnikova
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
- Institute for Functional Imaging of Materials, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
- Corresponding Author:
| |
Collapse
|
56
|
Fox ZW, Blair TJ, Weakly RB, Courtney TL, Khalil M. Implementation of continuous fast scanning detection in femtosecond Fourier-transform two-dimensional vibrational-electronic spectroscopy to decrease data acquisition time. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2018; 89:113104. [PMID: 30501350 DOI: 10.1063/1.5048523] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2018] [Accepted: 10/17/2018] [Indexed: 06/09/2023]
Abstract
Femtosecond Fourier transform two-dimensional vibrational-electronic (2D VE) spectroscopy is a recently developed third-order nonlinear spectroscopic technique to measure coupled electronic and vibrational motions in the condensed phase. The viability of femtosecond multidimensional spectroscopy as an analytical tool requires improvements in data collection and processing to enhance the signal-to-noise ratio and increase the amount of data collected in these experiments. Here a continuous fast scanning technique for the efficient collection of 2D VE spectroscopy is described. The resulting 2D VE spectroscopic method gains sensitivity by reducing the effect of laser drift, as well as decreasing the data collection time by a factor of 10 for acquiring spectra with a high signal-to-noise ratio within 3 dB of the more time intensive step scanning methods. This work opens the door to more comprehensive studies where 2D VE spectra can be collected as a function of external parameters such as temperature, pH, and polarization of the input electric fields.
Collapse
Affiliation(s)
- Zachary W Fox
- Department of Chemistry, University of Washington, Box 351700, Seattle, Washington 98195, USA
| | - Tyler J Blair
- Department of Chemistry, University of Washington, Box 351700, Seattle, Washington 98195, USA
| | - Robert B Weakly
- Department of Chemistry, University of Washington, Box 351700, Seattle, Washington 98195, USA
| | - Trevor L Courtney
- Department of Chemistry, University of Washington, Box 351700, Seattle, Washington 98195, USA
| | - Munira Khalil
- Department of Chemistry, University of Washington, Box 351700, Seattle, Washington 98195, USA
| |
Collapse
|
57
|
Feng M, Zhao J, Yu P, Wang J. Linear and Nonlinear Infrared Spectroscopies Reveal Detailed Solute-Solvent Dynamic Interactions of a Nitrosyl Ruthenium Complex in Solution. J Phys Chem B 2018; 122:9225-9235. [PMID: 30200757 DOI: 10.1021/acs.jpcb.8b07247] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
In this work, the solvation of a nitrosyl ruthenium complex, [(CH3)4N][RuCl3(qn)(NO)] (with qn = deprotonated 8-hydroxyquinoline), which is a potential NO-releasing molecule in the bio-environment, was studied in two bio-friendly solvents, namely deuterated dimethyl sulfoxide (dDMSO) and water (D2O). A blue-shifted NO stretching frequency was observed in water with respect to that in dDMSO, which was believed to be due to ligand-solvent hydrogen-bonding interactions, one N═O···D and particularly three Ru-Cl···D, that show competing effects on the NO bond length. The dynamic differences of the NO stretch in these two solvents were further revealed by transient pump-probe IR and two-dimensional IR results: faster vibrational relaxation and faster spectral diffusion (SD) were observed in D2O, confirming stronger solvent-solute interaction and also faster solvent structural dynamics in D2O than in DMSO. Further, a significant non-decaying residual in the SD dynamics was observed in D2O but not in DMSO, suggesting the formation of a stable solvation shell in water due to strong multi-site ligand-solvent hydrogen-bonding interactions, which is in agreement with the observed blue-shifted NO stretching frequency. This work demonstrates that small solvent molecules such as water can form a relatively rigid solvation shell for certain transition metal complexes due to cooperative ligand-solvent interactions and show slower dynamics.
Collapse
Affiliation(s)
- Minjun Feng
- Beijing National Laboratory for Molecular Sciences, Molecular Reaction Dynamics Laboratory, Institute of Chemistry, CAS Research/Education Center for Excellence in Molecular Sciences , Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190 , P.R. China.,University of Chinese Academy of Sciences , Beijing 100049 , P.R. China
| | - Juan Zhao
- Beijing National Laboratory for Molecular Sciences, Molecular Reaction Dynamics Laboratory, Institute of Chemistry, CAS Research/Education Center for Excellence in Molecular Sciences , Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190 , P.R. China.,University of Chinese Academy of Sciences , Beijing 100049 , P.R. China
| | - Pengyun Yu
- Beijing National Laboratory for Molecular Sciences, Molecular Reaction Dynamics Laboratory, Institute of Chemistry, CAS Research/Education Center for Excellence in Molecular Sciences , Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190 , P.R. China.,University of Chinese Academy of Sciences , Beijing 100049 , P.R. China
| | - Jianping Wang
- Beijing National Laboratory for Molecular Sciences, Molecular Reaction Dynamics Laboratory, Institute of Chemistry, CAS Research/Education Center for Excellence in Molecular Sciences , Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190 , P.R. China.,University of Chinese Academy of Sciences , Beijing 100049 , P.R. China
| |
Collapse
|
58
|
Heiner Z, Petrov V, Steinmeyer G, Vrakking MJJ, Mero M. 100-kHz, dual-beam OPA delivering high-quality, 5-cycle angular-dispersion-compensated mid-infrared idler pulses at 3.1 µm. OPTICS EXPRESS 2018; 26:25793-25804. [PMID: 30469675 DOI: 10.1364/oe.26.025793] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 09/06/2018] [Indexed: 06/09/2023]
Abstract
We demonstrate a dual-beam infrared optical parametric source featuring a noncollinear KTA booster amplifier and straightforward angular dispersion compensation of the idler beam. Through careful beam and pulse characterization, and high-harmonic generation in a crystalline solid, we show that the corrected idler beam is diffraction-limited, astigmatism-free, and compressible to its transform-limited, 5-cycle pulse duration. Pumped by only 40-µJ pulses at 1.03 µm, the parametric source delivers 7.8-µJ, 38-fs, 1.53-µm and 2.3-µJ, 53-fs, CEP-stable, 3.1-µm pulses at a repetition rate of 100 kHz. The scheme provides a promising route to scale the pulse energy and average power beyond PPLN- or KTA-based collinear OPA architectures.
Collapse
|
59
|
Kiefer LM, Kubarych KJ. Two-dimensional infrared spectroscopy of coordination complexes: From solvent dynamics to photocatalysis. Coord Chem Rev 2018. [DOI: 10.1016/j.ccr.2018.05.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
60
|
Cohn B, Engelman B, Goldner A, Chuntonov L. Two-Dimensional Infrared Spectroscopy with Local Plasmonic Fields of a Trimer Gap-Antenna Array. J Phys Chem Lett 2018; 9:4596-4601. [PMID: 30044640 DOI: 10.1021/acs.jpclett.8b01937] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Half-wavelength plasmonic antennas tuned to resonance with molecular vibrational excitations have been demonstrated to enhance 2DIR signals by multiple orders of magnitude. We design doubly degenerate in-plane plasmonic normal modes of the symmetric trimer gap-antenna, which have orthogonal dipole moments excited by light of the appropriate polarization, to localize the enhanced field into the antenna's gap. Vibrational excitations serve as sensitive probes of the plasmonic fields. 2DIR spectroscopy of thin molecular films indicates that molecules emitting enhanced signals experience an electric field with a direction independent of the excitation laser pulse polarization. Our results illustrate the trade-off between the large signal amplification in molecules close to the antenna surface by resonant plasmons, where the direction of the enhanced fields follows metal surface boundary conditions, and the associated limitations for the polarization-selective spectroscopy. The ultrafast quantum dynamics reported by the enhanced signals is not affected by its interaction with plasmonic excitation.
Collapse
|
61
|
Jeon J, Hsieh CS, Nagata Y, Bonn M, Cho M. Hydrogen bonding and vibrational energy relaxation of interfacial water: A full DFT molecular dynamics simulation. J Chem Phys 2018; 147:044707. [PMID: 28764370 DOI: 10.1063/1.4995437] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
The air-water interface has been a subject of extensive theoretical and experimental studies due to its ubiquity in nature and its importance as a model system for aqueous hydrophobic interfaces. We report on the structure and vibrational energy transfer dynamics of this interfacial water system studied with equilibrium and non-equilibrium molecular dynamics simulations employing a density functional theory -based description of the system and the kinetic energy spectral density analysis. The interfacial water molecules are found to make fewer and weaker hydrogen (H)-bonds on average compared to those in the bulk. We also find that (i) the H-bonded OH groups conjugate to the free OH exhibit rather low vibrational frequencies (3000-3500 cm-1); (ii) the presence of a significant fraction (>10%) of free and randomly oriented water molecules at the interface ("labile water"), neither of whose OH groups are strong H-bond donors; (iii) the inertial rotation of free OH groups, especially from the labile water, contribute to the population decay of excited free OH groups with comparable rate and magnitude as intramolecular energy transfer between the OH groups. These results suggest that the labile water, which might not be easily detectable by the conventional vibrational sum frequency generation method, plays an important role in the surface water dynamics.
Collapse
Affiliation(s)
- Jonggu Jeon
- Center for Molecular Spectroscopy and Dynamics, Institute for Basic Science (IBS), Seoul 02841, South Korea
| | - Cho-Shuen Hsieh
- Center for Molecular Spectroscopy and Dynamics, Institute for Basic Science (IBS), Seoul 02841, South Korea
| | - Yuki Nagata
- Department for Molecular Spectroscopy, Max Planck Institute for Polymer Research, Ackermannweg 10, D-55128 Mainz, Germany
| | - Mischa Bonn
- Department for Molecular Spectroscopy, Max Planck Institute for Polymer Research, Ackermannweg 10, D-55128 Mainz, Germany
| | - Minhaeng Cho
- Center for Molecular Spectroscopy and Dynamics, Institute for Basic Science (IBS), Seoul 02841, South Korea
| |
Collapse
|
62
|
Ramanjaneyulu BT, Vishwakarma NK, Vidyacharan S, Adiyala PR, Kim DP. Towards Versatile Continuous-Flow Chemistry and Process Technology Via New Conceptual Microreactor Systems. B KOREAN CHEM SOC 2018. [DOI: 10.1002/bkcs.11467] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Bandaru T. Ramanjaneyulu
- Department of Chemical Engineering; Pohang University of Science and Technology (POSTECH); Pohang 37673 Korea
| | - Niraj K. Vishwakarma
- Department of Chemical Engineering; Pohang University of Science and Technology (POSTECH); Pohang 37673 Korea
| | - Shinde Vidyacharan
- Department of Chemical Engineering; Pohang University of Science and Technology (POSTECH); Pohang 37673 Korea
| | - Praveen Reddy Adiyala
- Department of Chemical Engineering; Pohang University of Science and Technology (POSTECH); Pohang 37673 Korea
| | - Dong-Pyo Kim
- Department of Chemical Engineering; Pohang University of Science and Technology (POSTECH); Pohang 37673 Korea
| |
Collapse
|
63
|
Gandman A, Mackin RT, Cohn B, Rubtsov IV, Chuntonov L. Radiative Enhancement of Linear and Third-Order Vibrational Excitations by an Array of Infrared Plasmonic Antennas. ACS NANO 2018; 12:4521-4528. [PMID: 29727565 DOI: 10.1021/acsnano.8b00845] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Infrared gold antennas localize enhanced near fields close to the metal surface, when excited at the frequency of their plasmon resonance, and amplify vibrational signals from the nearby molecules. We study the dependence of the signal enhancement on the thickness of a polymer film containing vibrational chromophores, deposited on the antenna array, using linear (FTIR) and third-order femtosecond vibrational spectroscopy (transient absorption and 2DIR). Our results show that for a film thickness beyond only a few nanometers the near-field interaction is not sufficient to account for the magnitude of the observed signal, which nevertheless has a clear Fano line shape, suggesting a radiative origin of the molecule-plasmon interaction. The mutual radiative damping of plasmonic and molecular transitions leads to the spectroscopic signal of a molecular vibrational excitation to be enhanced by up to a factor of 50 in the case of linear spectroscopy and over 2000 in the case of third-order spectroscopy. A qualitative explanation for the observed effect is given by the extended coupled oscillators model, which takes into account both near-field and radiative interactions between the plasmonic and molecular transitions.
Collapse
Affiliation(s)
- Andrey Gandman
- Solid State Institute , Technion-Israel Institute of Technology , Haifa 32000 , Israel
| | - Robert T Mackin
- Department of Chemistry , Tulane University , New Orleans , Louisiana 70118 , United States
| | - Bar Cohn
- Schulich Faculty of Chemistry , Technion-Israel Institute of Technology , Haifa 32000 , Israel
| | - Igor V Rubtsov
- Department of Chemistry , Tulane University , New Orleans , Louisiana 70118 , United States
| | - Lev Chuntonov
- Solid State Institute , Technion-Israel Institute of Technology , Haifa 32000 , Israel
- Schulich Faculty of Chemistry , Technion-Israel Institute of Technology , Haifa 32000 , Israel
- Russel Berrie Nanotechnology Institute , Technion-Israel Institute of Technology , Haifa 32000 , Israel
| |
Collapse
|
64
|
Finkelstein-Shapiro D, Pullerits T, Hansen T. Two-dimensional Fano lineshapes: Excited-state absorption contributions. J Chem Phys 2018; 148:184201. [PMID: 29764148 DOI: 10.1063/1.5019376] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Fano interferences in nanostructures are influenced by dissipation effects as well as many-body interactions. Two-dimensional coherent spectroscopies have just begun to be applied to these systems where the spectroscopic signatures of a discrete-continuum structure are not known. In this article, we calculate the excited-state absorption contribution for different models of higher lying excited states. We find that the characteristic asymmetry of one-dimensional spectroscopies is recovered from the many-body contributions and that the higher lying excited manifolds have distorted lineshapes that are not anticipated from discrete-level Hamiltonians. We show that the Stimulated Emission cannot have contributions from a flat continuum of states. This work completes the Ground-State Bleach and Stimulated Emission signals that were calculated previously [D. Finkelstein-Shapiro et al., Phys. Rev. B 94, 205137 (2016)]. The model reproduces the observations reported for molecules on surfaces probed by 2DIR.
Collapse
Affiliation(s)
| | - Tõnu Pullerits
- Division of Chemical Physics, Lund University, P.O. Box 124, 221 00 Lund, Sweden
| | - Thorsten Hansen
- Department of Chemistry, University of Copenhagen, DK 2100 Copenhagen, Denmark
| |
Collapse
|
65
|
Cohn B, Prasad AK, Chuntonov L. Communication: Probing the interaction of infrared antenna arrays and molecular films with ultrafast quantum dynamics. J Chem Phys 2018; 148:131101. [DOI: 10.1063/1.5025600] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Affiliation(s)
- Bar Cohn
- Schulich Faculty of Chemistry, Solid State Institute, Technion–Israel Institute of Technology, Haifa 32000, Israel
| | - Amit K. Prasad
- Schulich Faculty of Chemistry, Solid State Institute, Technion–Israel Institute of Technology, Haifa 32000, Israel
| | - Lev Chuntonov
- Schulich Faculty of Chemistry, Solid State Institute, Technion–Israel Institute of Technology, Haifa 32000, Israel
| |
Collapse
|
66
|
Moberg DR, Straight SC, Paesani F. Temperature Dependence of the Air/Water Interface Revealed by Polarization Sensitive Sum-Frequency Generation Spectroscopy. J Phys Chem B 2018; 122:4356-4365. [DOI: 10.1021/acs.jpcb.8b01726] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Daniel R. Moberg
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093, United States
| | - Shelby C. Straight
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093, United States
| | - Francesco Paesani
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093, United States
| |
Collapse
|
67
|
Sanders SE, Vanselous H, Petersen PB. Water at surfaces with tunable surface chemistries. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2018; 30:113001. [PMID: 29393860 DOI: 10.1088/1361-648x/aaacb5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Aqueous interfaces are ubiquitous in natural environments, spanning atmospheric, geological, oceanographic, and biological systems, as well as in technical applications, such as fuel cells and membrane filtration. Where liquid water terminates at a surface, an interfacial region is formed, which exhibits distinct properties from the bulk aqueous phase. The unique properties of water are governed by the hydrogen-bonded network. The chemical and physical properties of the surface dictate the boundary conditions of the bulk hydrogen-bonded network and thus the interfacial properties of the water and any molecules in that region. Understanding the properties of interfacial water requires systematically characterizing the structure and dynamics of interfacial water as a function of the surface chemistry. In this review, we focus on the use of experimental surface-specific spectroscopic methods to understand the properties of interfacial water as a function of surface chemistry. Investigations of the air-water interface, as well as efforts in tuning the properties of the air-water interface by adding solutes or surfactants, are briefly discussed. Buried aqueous interfaces can be accessed with careful selection of spectroscopic technique and sample configuration, further expanding the range of chemical environments that can be probed, including solid inorganic materials, polymers, and water immiscible liquids. Solid substrates can be finely tuned by functionalization with self-assembled monolayers, polymers, or biomolecules. These variables provide a platform for systematically tuning the chemical nature of the interface and examining the resulting water structure. Finally, time-resolved methods to probe the dynamics of interfacial water are briefly summarized before discussing the current status and future directions in studying the structure and dynamics of interfacial water.
Collapse
Affiliation(s)
- Stephanie E Sanders
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, United States of America
| | | | | |
Collapse
|
68
|
Cyran JD, Backus EHG, Nagata Y, Bonn M. Structure from Dynamics: Vibrational Dynamics of Interfacial Water as a Probe of Aqueous Heterogeneity. J Phys Chem B 2018; 122:3667-3679. [PMID: 29490138 PMCID: PMC5900549 DOI: 10.1021/acs.jpcb.7b10574] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
![]()
The structural heterogeneity of water
at various interfaces can be revealed by time-resolved sum-frequency
generation spectroscopy. The vibrational dynamics of the O–H
stretch vibration of interfacial water can reflect structural variations.
Specifically, the vibrational lifetime is typically found to increase
with increasing frequency of the O–H stretch vibration, which
can report on the hydrogen-bonding heterogeneity of water. We compare
and contrast vibrational dynamics of water in contact with various
surfaces, including vapor, biomolecules, and solid interfaces. The
results reveal that variations in the vibrational lifetime with vibrational
frequency are very typical, and can frequently be accounted for by
the bulk-like heterogeneous response of interfacial water. Specific
interfaces exist, however, for which the behavior is less straightforward.
These insights into the heterogeneity of interfacial water thus obtained
contribute to a better understanding of complex phenomena taking place
at aqueous interfaces, such as photocatalytic reactions and protein
folding.
Collapse
Affiliation(s)
- Jenée D Cyran
- Max Planck Institute for Polymer Research , Ackermannweg 10 , 55128 Mainz , Germany
| | - Ellen H G Backus
- Max Planck Institute for Polymer Research , Ackermannweg 10 , 55128 Mainz , Germany
| | - Yuki Nagata
- Max Planck Institute for Polymer Research , Ackermannweg 10 , 55128 Mainz , Germany
| | - Mischa Bonn
- Max Planck Institute for Polymer Research , Ackermannweg 10 , 55128 Mainz , Germany
| |
Collapse
|
69
|
Paleček D, Tek G, Lan J, Iannuzzi M, Hamm P. Characterization of the Platinum-Hydrogen Bond by Surface-Sensitive Time-Resolved Infrared Spectroscopy. J Phys Chem Lett 2018; 9:1254-1259. [PMID: 29474082 DOI: 10.1021/acs.jpclett.8b00310] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The vibrational dynamics of Pt-H on a nanostructured platinum surface has been examined by ultrafast infrared spectroscopy. Three bands are observed at 1800, 2000, and 2090 cm-1, which are assigned to Pt-CO in a bridged and linear configuration and Pt-H, respectively. Lifetime analysis revealed a time constant of (0.8 ± 0.1) ps for the Pt-H mode, considerably shorter than that of Pt-CO because of its stronger coupling to the metal substrate. Two-dimensional attenuated total reflection infrared spectroscopy provided additional evidence for the assignment based on the anharmonic shift, which is large in the case of Pt-H (90 cm-1), in agreement with the density functional theory calculations. The absorption cross section of Pt-H is smaller than that of the very strong Pt-CO vibration by only a modest factor of ∼1.5-3. Because Pt-H is transiently involved in catalytic water splitting on Pt, the present spectroscopic characterization paves the way for in-operando kinetic studies of such reactions.
Collapse
Affiliation(s)
- David Paleček
- Department of Chemistry , University of Zurich , Zurich , Switzerland
| | - Gökçen Tek
- Department of Chemistry , University of Zurich , Zurich , Switzerland
| | - Jinggang Lan
- Department of Chemistry , University of Zurich , Zurich , Switzerland
| | - Marcella Iannuzzi
- Department of Chemistry , University of Zurich , Zurich , Switzerland
| | - Peter Hamm
- Department of Chemistry , University of Zurich , Zurich , Switzerland
| |
Collapse
|
70
|
Ho JJ, Ghosh A, Zhang TO, Zanni MT. Heterogeneous Amyloid β-Sheet Polymorphs Identified on Hydrogen Bond Promoting Surfaces Using 2D SFG Spectroscopy. J Phys Chem A 2018; 122:1270-1282. [DOI: 10.1021/acs.jpca.7b11934] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Jia-Jung Ho
- University of Wisconsin—Madison, Madison, Wisconsin 53706, United States
| | - Ayanjeet Ghosh
- University of Wisconsin—Madison, Madison, Wisconsin 53706, United States
| | - Tianqi O. Zhang
- University of Wisconsin—Madison, Madison, Wisconsin 53706, United States
| | - Martin T. Zanni
- University of Wisconsin—Madison, Madison, Wisconsin 53706, United States
| |
Collapse
|
71
|
Ge A, Rudshteyn B, Zhu J, Maurer RJ, Batista VS, Lian T. Electron-Hole-Pair-Induced Vibrational Energy Relaxation of Rhenium Catalysts on Gold Surfaces. J Phys Chem Lett 2018; 9:406-412. [PMID: 29227669 DOI: 10.1021/acs.jpclett.7b02885] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
A combination of time-resolved vibrational spectroscopy and density functional theory techniques have been applied to study the vibrational energy relaxation dynamics of the Re(4,4'-dicyano-2,2'-bipyridine)(CO)3Cl (Re(CO)3Cl) catalyst for CO2 to CO conversion bound to gold surfaces. The kinetics of vibrational relaxation exhibits a biexponential decay including an ultrafast initial relaxation and complete recovery of the ground vibrational state. Ab initio molecular dynamics simulations and time-dependent perturbation theory reveal the former to be due to vibrational population exchange between CO stretching modes and the latter to be a combination of intramolecular vibrational relaxation (IVR) and electron-hole pair (EHP)-induced energy transfer into the gold substrate. EHP-induced energy transfer from the Re(CO)3Cl adsorbate into the gold surface occurs on the same time scale as IVR of Re(CO)3Cl in aprotic solvents. Therefore, it is expected to be particularly relevant to understanding the reduced catalytic activity of the homogeneous catalyst when anchored to a metal surface.
Collapse
Affiliation(s)
- Aimin Ge
- Department of Chemistry, Emory University , Atlanta, Georgia 30322, United States
| | - Benjamin Rudshteyn
- Department of Chemistry, Yale University , New Haven, Connecticut 06520, United States
- Yale Energy Sciences Institute, Yale University , West Haven, Connecticut 06516, United States
| | - Jingyi Zhu
- Department of Chemistry, Emory University , Atlanta, Georgia 30322, United States
| | - Reinhard J Maurer
- Department of Chemistry, Yale University , New Haven, Connecticut 06520, United States
- Department of Chemistry, University of Warwick , Gibbet Hill Road, Coventry CV4 7AL, United Kingdom
| | - Victor S Batista
- Department of Chemistry, Yale University , New Haven, Connecticut 06520, United States
- Yale Energy Sciences Institute, Yale University , West Haven, Connecticut 06516, United States
| | - Tianquan Lian
- Department of Chemistry, Emory University , Atlanta, Georgia 30322, United States
| |
Collapse
|
72
|
Kraack JP, Sévery L, Tilley SD, Hamm P. Plasmonic Substrates Do Not Promote Vibrational Energy Transfer at Solid-Liquid Interfaces. J Phys Chem Lett 2018; 9:49-56. [PMID: 29235870 DOI: 10.1021/acs.jpclett.7b02855] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Intermolecular vibrational energy transfer in monolayers of isotopically mixed rhenium carbonyl complexes at solid-liquid interfaces is investigated with the help of ultrafast 2D Attenuated Total Reflectance Infrared (2D ATR IR) spectroscopy in dependence of plasmonic surface enhancement effects. Dielectric and plasmonic materials are used to demonstrate that plasmonic effects have no impact on the vibrational energy transfer rate in a regime of moderate IR surface enhancement (enhancement factors up to ca. 30). This result can be explained with the common image-dipole picture. The vibrational energy transfer rate thus can be used as a direct observable to determine intermolecular distances on surfaces, regardless of their plasmonic properties.
Collapse
Affiliation(s)
- Jan Philip Kraack
- Department of Chemistry, University of Zurich , Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Laurent Sévery
- Department of Chemistry, University of Zurich , Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - S David Tilley
- Department of Chemistry, University of Zurich , Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Peter Hamm
- Department of Chemistry, University of Zurich , Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| |
Collapse
|
73
|
Zang J, Feng M, Zhao J, Wang J. Micellar and bicontinuous microemulsion structures show different solute–solvent interactions: a case study using ultrafast nonlinear infrared spectroscopy. Phys Chem Chem Phys 2018; 20:19938-19949. [DOI: 10.1039/c8cp01024b] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Using aqueous and organic probes to simultaneously explore the structural dynamics of reverse micellar and bicontinuous microemulsion structures.
Collapse
Affiliation(s)
- Jinger Zang
- Beijing National Laboratory for Molecular Sciences
- Molecular Reaction Dynamics Laboratory
- CAS Research/Education Center for Excellence in Molecular Sciences
- Institute of Chemistry
- Chinese Academy of Sciences
| | - Minjun Feng
- Beijing National Laboratory for Molecular Sciences
- Molecular Reaction Dynamics Laboratory
- CAS Research/Education Center for Excellence in Molecular Sciences
- Institute of Chemistry
- Chinese Academy of Sciences
| | - Juan Zhao
- Beijing National Laboratory for Molecular Sciences
- Molecular Reaction Dynamics Laboratory
- CAS Research/Education Center for Excellence in Molecular Sciences
- Institute of Chemistry
- Chinese Academy of Sciences
| | - Jianping Wang
- Beijing National Laboratory for Molecular Sciences
- Molecular Reaction Dynamics Laboratory
- CAS Research/Education Center for Excellence in Molecular Sciences
- Institute of Chemistry
- Chinese Academy of Sciences
| |
Collapse
|
74
|
Infrared Spectroscopy as Molecular Probe of the Macroscopic Metal-Liquid Interface. APPLIED SCIENCES-BASEL 2017. [DOI: 10.3390/app7121229] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
75
|
Yan C, Thomaz JE, Wang YL, Nishida J, Yuan R, Breen JP, Fayer MD. Ultrafast to Ultraslow Dynamics of a Langmuir Monolayer at the Air/Water Interface Observed with Reflection Enhanced 2D IR Spectroscopy. J Am Chem Soc 2017; 139:16518-16527. [DOI: 10.1021/jacs.7b06602] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Chang Yan
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Joseph E. Thomaz
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Yong-Lei Wang
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Jun Nishida
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Rongfeng Yuan
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - John P. Breen
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Michael D. Fayer
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
76
|
Kraack JP. Ultrafast structural molecular dynamics investigated with 2D infrared spectroscopy methods. Top Curr Chem (Cham) 2017; 375:86. [PMID: 29071445 DOI: 10.1007/s41061-017-0172-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 10/02/2017] [Indexed: 12/23/2022]
Abstract
Ultrafast, multi-dimensional infrared (IR) spectroscopy has been advanced in recent years to a versatile analytical tool with a broad range of applications to elucidate molecular structure on ultrafast timescales, and it can be used for samples in a many different environments. Following a short and general introduction on the benefits of 2D IR spectroscopy, the first part of this chapter contains a brief discussion on basic descriptions and conceptual considerations of 2D IR spectroscopy. Outstanding classical applications of 2D IR are used afterwards to highlight the strengths and basic applicability of the method. This includes the identification of vibrational coupling in molecules, characterization of spectral diffusion dynamics, chemical exchange of chemical bond formation and breaking, as well as dynamics of intra- and intermolecular energy transfer for molecules in bulk solution and thin films. In the second part, several important, recently developed variants and new applications of 2D IR spectroscopy are introduced. These methods focus on (i) applications to molecules under two- and three-dimensional confinement, (ii) the combination of 2D IR with electrochemistry, (iii) ultrafast 2D IR in conjunction with diffraction-limited microscopy, (iv) several variants of non-equilibrium 2D IR spectroscopy such as transient 2D IR and 3D IR, and (v) extensions of the pump and probe spectral regions for multi-dimensional vibrational spectroscopy towards mixed vibrational-electronic spectroscopies. In light of these examples, the important open scientific and conceptual questions with regard to intra- and intermolecular dynamics are highlighted. Such questions can be tackled with the existing arsenal of experimental variants of 2D IR spectroscopy to promote the understanding of fundamentally new aspects in chemistry, biology and materials science. The final part of the chapter introduces several concepts of currently performed technical developments, which aim at exploiting 2D IR spectroscopy as an analytical tool. Such developments embrace the combination of 2D IR spectroscopy and plasmonic spectroscopy for ultrasensitive analytics, merging 2D IR spectroscopy with ultra-high-resolution microscopy (nanoscopy), future variants of transient 2D IR methods, or 2D IR in conjunction with microfluidics. It is expected that these techniques will allow for groundbreaking research in many new areas of natural sciences.
Collapse
Affiliation(s)
- Jan Philip Kraack
- Department of Chemistry, University of Zürich, Winterthurerstrasse 190, 8057, Zurich, Switzerland.
| |
Collapse
|
77
|
Alarcos N, Cohen B, Ziółek M, Douhal A. Photochemistry and Photophysics in Silica-Based Materials: Ultrafast and Single Molecule Spectroscopy Observation. Chem Rev 2017; 117:13639-13720. [PMID: 29068670 DOI: 10.1021/acs.chemrev.7b00422] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Silica-based materials (SBMs) are widely used in catalysis, photonics, and drug delivery. Their pores and cavities act as hosts of diverse guests ranging from classical dyes to drugs and quantum dots, allowing changes in the photochemical behavior of the confined guests. The heterogeneity of the guest populations as well as the confinement provided by these hosts affect the behavior of the formed hybrid materials. As a consequence, the observed reaction dynamics becomes significantly different and complex. Studying their photobehavior requires advanced laser-based spectroscopy and microscopy techniques as well as computational methods. Thanks to the development of ultrafast (spectroscopy and imaging) tools, we are witnessing an increasing interest of the scientific community to explore the intimate photobehavior of these composites. Here, we review the recent theoretical and ultrafast experimental studies of their photodynamics and discuss the results in comparison to those in homogeneous media. The discussion of the confined dynamics includes solvation and intra- and intermolecular proton-, electron-, and energy transfer events of the guest within the SBMs. Several examples of applications in photocatalysis, (photo)sensors, photonics, photovoltaics, and drug delivery demonstrate the vast potential of the SBMs in modern science and technology.
Collapse
Affiliation(s)
- Noemí Alarcos
- Departamento de Química Física, Facultad de Ciencias Ambientales y Bioquímica, and INAMOL, Universidad de Castilla-La Mancha , Avenida Carlos III, S.N., 45071 Toledo, Spain
| | - Boiko Cohen
- Departamento de Química Física, Facultad de Ciencias Ambientales y Bioquímica, and INAMOL, Universidad de Castilla-La Mancha , Avenida Carlos III, S.N., 45071 Toledo, Spain
| | - Marcin Ziółek
- Quantum Electronics Laboratory, Faculty of Physics, Adam Mickiewicz University , Umultowska 85, 61-614 Poznań, Poland
| | - Abderrazzak Douhal
- Departamento de Química Física, Facultad de Ciencias Ambientales y Bioquímica, and INAMOL, Universidad de Castilla-La Mancha , Avenida Carlos III, S.N., 45071 Toledo, Spain
| |
Collapse
|
78
|
He X, Yu P, Zhao J, Wang J. Efficient Vibrational Energy Transfer through Covalent Bond in Indigo Carmine Revealed by Nonlinear IR Spectroscopy. J Phys Chem B 2017; 121:9411-9421. [DOI: 10.1021/acs.jpcb.7b06766] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Xuemei He
- Beijing
National Laboratory for Molecular Sciences, Molecular Reaction Dynamics
Laboratory, CAS Research/Education Center for Excellence in Molecular
Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Pengyun Yu
- Beijing
National Laboratory for Molecular Sciences, Molecular Reaction Dynamics
Laboratory, CAS Research/Education Center for Excellence in Molecular
Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Juan Zhao
- Beijing
National Laboratory for Molecular Sciences, Molecular Reaction Dynamics
Laboratory, CAS Research/Education Center for Excellence in Molecular
Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Jianping Wang
- Beijing
National Laboratory for Molecular Sciences, Molecular Reaction Dynamics
Laboratory, CAS Research/Education Center for Excellence in Molecular
Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
79
|
Gandman A, Mackin R, Cohn B, Rubtsov IV, Chuntonov L. Two-Dimensional Fano Lineshapes in Ultrafast Vibrational Spectroscopy of Thin Molecular Layers on Plasmonic Arrays. J Phys Chem Lett 2017; 8:3341-3346. [PMID: 28677974 DOI: 10.1021/acs.jpclett.7b01490] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Two-dimensional femtosecond infrared (2DIR) spectroscopy routinely provides insights into molecular structure and ultrafast dynamics in 1-100 μm thick bulk samples. Confinement of molecules to surfaces, gaps, crevices, and other topographic features, frequently encountered on the nanometer length scale, significantly alters their structure and dynamics, affecting physical and chemical properties. Amplification of 2DIR signals by the plasmon-enhanced fields around metal nanostructures can permit structural and dynamics measurements of the confined molecules. Fano resonances, induced by the interaction between laser pulses, plasmon, and vibrational modes significantly distort 2D lineshapes. For different detuning from plasmon resonance, the interference between multiple signal components leads to different line shape asymmetry, which we demonstrate on a set of linear absorption, transient absorption, and 2DIR spectra. An intuitive model used to describe experimental data points to the interference's origin. Our results will facilitate the application of surface-enhanced 2DIR spectroscopy for studies of molecular structure and dynamics in a nanoconfined environment.
Collapse
Affiliation(s)
- Andrey Gandman
- Solid State Institute, Technion - Israel Institute of Technology , Haifa 32000, Israel
| | - Robert Mackin
- Department of Chemistry, Tulane University , New Orleans, Louisiana 70118, United States
| | - Bar Cohn
- Schulich Faculty of Chemistry, Technion - Israel Institute of Technology , Haifa 32000, Israel
| | - Igor V Rubtsov
- Department of Chemistry, Tulane University , New Orleans, Louisiana 70118, United States
| | - Lev Chuntonov
- Solid State Institute, Technion - Israel Institute of Technology , Haifa 32000, Israel
- Schulich Faculty of Chemistry, Technion - Israel Institute of Technology , Haifa 32000, Israel
- Russel Berrie Nanotechnology Institute, Technion - Israel Institute of Technology , Haifa 32000, Israel
| |
Collapse
|
80
|
Kraack JP, Kaech A, Hamm P. Molecule-specific interactions of diatomic adsorbates at metal-liquid interfaces. STRUCTURAL DYNAMICS (MELVILLE, N.Y.) 2017; 4:044009. [PMID: 28396878 PMCID: PMC5367089 DOI: 10.1063/1.4978894] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 03/06/2017] [Indexed: 05/15/2023]
Abstract
Ultrafast vibrational dynamics of small molecules on platinum (Pt) layers in water are investigated using 2D attenuated total reflectance IR spectroscopy. Isotope combinations of carbon monoxide and cyanide are used to elucidate inter-adsorbate and substrate-adsorbate interactions. Despite observed cross-peaks in the CO spectra, we conclude that the molecules are not vibrationally coupled. Rather, strong substrate-adsorbate interactions evoke rapid (∼2 ps) vibrational relaxation from the adsorbate into the Pt layer, leading to thermal cross-peaks. In the case of CN, vibrational relaxation is significantly slower (∼10 ps) and dominated by adsorbate-solvent interactions, while the coupling to the substrate is negligible.
Collapse
Affiliation(s)
- Jan Philip Kraack
- Department of Chemistry, University of Zurich , Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
| | - Andres Kaech
- Center for Microscopy and Image Analysis, University of Zurich , Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
| | - Peter Hamm
- Department of Chemistry, University of Zurich , Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
| |
Collapse
|
81
|
Kraack JP, Frei A, Alberto R, Hamm P. Ultrafast Vibrational Energy Transfer in Catalytic Monolayers at Solid-Liquid Interfaces. J Phys Chem Lett 2017; 8:2489-2495. [PMID: 28521090 DOI: 10.1021/acs.jpclett.7b01034] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
We investigate the ultrafast vibrational dynamics of monolayers from adsorbed rhenium-carbonyl CO2-reduction catalysts on a semiconductor surface (indium-tin-oxide (ITO)) with ultrafast two-dimensional attenuated total reflection infrared (2D ATR IR) spectroscopy. The complexes are partially equipped with isotope-labeled (13C) carbonyl ligands to generate two spectroscopically distinguishable forms of the molecules. Ultrafast vibrational energy transfer between the molecules is observed via the temporal evolution of cross-peaks between their symmetric carbonyl stretching vibrations. These contributions appear with time constant of 70 and 90 ps for downhill and uphill energy transfer, respectively. The energy transfer is thus markedly slower than any of the other intramolecular dynamics. From the transfer rate, an intermolecular distance of ∼4-5 Å can be estimated, close to the van der Waals distance of the molecular head groups. The present paper presents an important cornerstone for a better understanding of intermolecular coupling mechanisms of molecules on surfaces and explains the absence of similar features in earlier studies.
Collapse
Affiliation(s)
- Jan Philip Kraack
- Department of Chemistry, University of Zurich , Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Angelo Frei
- Department of Chemistry, University of Zurich , Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Roger Alberto
- Department of Chemistry, University of Zurich , Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Peter Hamm
- Department of Chemistry, University of Zurich , Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| |
Collapse
|
82
|
Vanselous H, Stingel AM, Petersen PB. Interferometric 2D Sum Frequency Generation Spectroscopy Reveals Structural Heterogeneity of Catalytic Monolayers on Transparent Materials. J Phys Chem Lett 2017; 8:825-830. [PMID: 28151677 DOI: 10.1021/acs.jpclett.6b03025] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Molecular monolayers exhibit structural and dynamical properties that are different from their bulk counterparts due to their interaction with the substrate. Extracting these distinct properties is crucial for a better understanding of processes such as heterogeneous catalysis and interfacial charge transfer. Ultrafast nonlinear spectroscopic techniques such as 2D infrared (2D IR) spectroscopy are powerful tools for understanding molecular dynamics in complex bulk systems. Here, we build on technical advancements in 2D IR and heterodyne-detected sum frequency generation (SFG) spectroscopy to study a CO2 reduction catalyst on nanostructured TiO2 with interferometric 2D SFG spectroscopy. Our method combines phase-stable heterodyne detection employing an external local oscillator with a broad-band pump pulse pair to provide the first high spectral and temporal resolution 2D SFG spectra of a transparent material. We determine the overall molecular orientation of the catalyst and find that there is a static structural heterogeneity reflective of different local environments at the surface.
Collapse
Affiliation(s)
- Heather Vanselous
- Department of Chemistry and Chemical Biology, Cornell University , Ithaca, New York 14853, United States
| | - Ashley M Stingel
- Department of Chemistry and Chemical Biology, Cornell University , Ithaca, New York 14853, United States
| | - Poul B Petersen
- Department of Chemistry and Chemical Biology, Cornell University , Ithaca, New York 14853, United States
| |
Collapse
|