51
|
Valorisation of Corncob Residue towards the Sustainable Production of Glucuronic Acid. Catalysts 2022. [DOI: 10.3390/catal12121603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The production of glucuronic acid (GA) directly from actual biomass via chemocatalysis is of great significance to the effective valorisation of biomass for a sustainable future. Herein, we have developed a one-step strategy for the conversion of cellulose in corncob residue into GA with the cooperation of Au/CeO2 and maleic acid, achieving a 60.3% yield. Experimental and density functional theory (DFT) results show that maleic acid is effective in the fractionation of cellulose from corncob residue and the depolymerisation of cellulose fragments to glucose, on account of the good capacity for proton migration. Au/CeO2 is responsible for the selective oxidation of glucose to GA, in which the formation of glucaric acid is restrained, due to the weak capacity of Au/CeO2 on the proton transfer without the occurrence of the ring-opening reaction of glucose. Therefore, the relay catalysis of Au/CeO2 and maleic acid enables the production of GA via the complex cascade reactions. This work may provide insight regarding the conversion of actual biomass to targeted products.
Collapse
|
52
|
Chemo-enzymatic synthesis of sugar acid by pyranose 2-oxidase. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2022.112753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
53
|
Ionic liquids enhance the electrocatalysis of lignin model compounds towards generating valuable aromatic molecules. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
54
|
Zhou M, Wang T, Cheng GJ. Mechanistic insights into reductive deamination with hydrosilanes catalyzed by B(C6F5)3: A DFT study. Front Chem 2022; 10:1025135. [DOI: 10.3389/fchem.2022.1025135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 09/20/2022] [Indexed: 11/18/2022] Open
Abstract
Selective defunctionalization of synthetic intermediates is a valuable approach in organic synthesis. Here, we present a theoretical study on the recently developed B(C6F5)3/hydrosilane-mediated reductive deamination reaction of primary amines. Our computational results provide important insights into the reaction mechanism, including the active intermediate, the competing reactions of the active intermediate, the role of excess hydrosilane, and the origin of chemoselectivity. Moreover, the study on the substituent effect of hydrosilane indicated a potential way to improve the efficiency of the reductive deamination reaction.
Collapse
|
55
|
Wen X, Wang J, He L, Wei B, Xie Y. Synthesis of glucopyranoside benzimidazolium-based ionic liquids for Pd-catalyzed aqueous Suzuki reaction. J Carbohydr Chem 2022. [DOI: 10.1080/07328303.2022.2141770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- Xiaoming Wen
- Jiangxi College of Applied Technology, Ganzhou, P. R. China
| | - Jian Wang
- Jiangxi College of Applied Technology, Ganzhou, P. R. China
| | - Luan He
- Jiangxi College of Applied Technology, Ganzhou, P. R. China
| | - Bisheng Wei
- Jiangxi College of Applied Technology, Ganzhou, P. R. China
| | - Ying Xie
- Jiangxi College of Applied Technology, Ganzhou, P. R. China
| |
Collapse
|
56
|
Liu Y, Luo Q, Qiang Q, Wang H, Ding Y, Wang C, Xiao J, Li C, Zhang T. Successive Cleavage and Reconstruction of Lignin β-O-4 Models and Polymer to Access Quinoxalines. CHEMSUSCHEM 2022; 15:e202201401. [PMID: 36055966 DOI: 10.1002/cssc.202201401] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/31/2022] [Indexed: 06/15/2023]
Abstract
The construction of N-heterocyclic compounds from lignin remains a great challenge due to the complex lignin structure and the involvement of multiple steps, including the cleavage of lignin C-O linkages and the formation of heterocyclic aromatic rings. Herein, the first example of KOH mediated sustainable synthesis of quinoxaline derivatives from lignin β-O-4 model compounds in a one-pot fashion under transition-metal-free conditions has been achieved. Mechanistic studies suggested that this transformation includes highly coupled cascade steps of cleavage of C-O bonds, dehydrative condensation, sp3 C-H bond oxidative activation, and intramolecular dehydrative coupling reaction. With this protocol, a wide range of functionalized quinoxalines, including an important drug compound AG1295, were synthesized from lignin β-O-4 model compounds and β-O-4 polymer, showcasing the application potential of lignin in pharmaceutical synthesis.
Collapse
Affiliation(s)
- Yuxuan Liu
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 116023, Dalian, P. R. China
| | - Qi Luo
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 116023, Dalian, P. R. China
| | - Qian Qiang
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 116023, Dalian, P. R. China
- University of Chinese Academy of Sciences, 100049, Beijing, P. R. China
| | - Hua Wang
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 116023, Dalian, P. R. China
| | - Yangming Ding
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 116023, Dalian, P. R. China
| | - Chao Wang
- School of Chemistry and Chemical Engineering, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Shaanxi Normal University, 710119, Xi'an, P. R. China
| | - Jianliang Xiao
- Department of Chemistry, University of Liverpool, L69 7ZD, Liverpool, United Kingdom
| | - Changzhi Li
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 116023, Dalian, P. R. China
- University of Chinese Academy of Sciences, 100049, Beijing, P. R. China
| | - Tao Zhang
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 116023, Dalian, P. R. China
- University of Chinese Academy of Sciences, 100049, Beijing, P. R. China
| |
Collapse
|
57
|
Dicationic ionic liquids based on bis(4-oligoethyleneoxyphenyl) viologen bistriflimide salts exhibiting high ionic conductivities. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
58
|
Synthesis of value-added furan compounds from biomass derived glucose via cascade catalysis using functionalized V2O5 catalysts. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.110226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
59
|
Ma H, Tingelstad P, Chen D. Lactic acid production by catalytic conversion of glucose: An experimental and techno-economic evaluation. Catal Today 2022. [DOI: 10.1016/j.cattod.2022.10.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
60
|
Yu H, Xue Z, Wang Y, Yan C, Chen L, Mu T. Enabling Efficient Dissolution and Fractionation of Lignin by Renewable and Adjustable Dimethyl Isosorbide-Based Solvent Systems. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
61
|
Role of Anions in 5‐Hydroxymethylfurfural Solvation in Ionic Liquids from Molecular Dynamics Simulations. ADVANCED THEORY AND SIMULATIONS 2022. [DOI: 10.1002/adts.202200522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
62
|
Wang H, Wang Q, Wu Y, Peng J, Gu XK, Ding M. Dual-Oriented Selectivity Switching for Highly Efficient Biomass Upgrading via Selective C–O Bond Activation. ACS Catal 2022. [DOI: 10.1021/acscatal.2c03736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Hongtao Wang
- Department of Energy Chemical Engineering, School of Power and Mechanical Engineering, Wuhan University, Wuhan 430072, P. R. China
| | - Qi Wang
- Department of Energy Chemical Engineering, School of Power and Mechanical Engineering, Wuhan University, Wuhan 430072, P. R. China
| | - Yushan Wu
- Department of Energy Chemical Engineering, School of Power and Mechanical Engineering, Wuhan University, Wuhan 430072, P. R. China
| | - Jiebang Peng
- Department of Energy Chemical Engineering, School of Power and Mechanical Engineering, Wuhan University, Wuhan 430072, P. R. China
| | - Xiang-Kui Gu
- Department of Energy Chemical Engineering, School of Power and Mechanical Engineering, Wuhan University, Wuhan 430072, P. R. China
| | - Mingyue Ding
- Department of Energy Chemical Engineering, School of Power and Mechanical Engineering, Wuhan University, Wuhan 430072, P. R. China
- Shenzhen Research Institute of Wuhan University, Shenzhen 518108, P. R. China
| |
Collapse
|
63
|
Liu X, Yu D, Luo H, Li C, Li H. Efficient Reaction Systems for Lignocellulosic Biomass Conversion to Furan Derivatives: A Minireview. Polymers (Basel) 2022; 14:3671. [PMID: 36080746 PMCID: PMC9460113 DOI: 10.3390/polym14173671] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 08/31/2022] [Accepted: 09/01/2022] [Indexed: 11/24/2022] Open
Abstract
Lignocellulosic biomass as abundant, renewable, and sustainable carbon feedstock is an alternative to relieve the dependence on fossil fuels and satisfy the demands of chemicals and materials. Conversions of lignocellulosic biomass to high-value-added chemicals have drawn much attention recently due to the high availability of sustainable ways. This minireview surveys the recent trends in lignocellulosic biomass conversion into furan derivatives based on the following systems: (1) ionic liquids, (2) deep eutectic solvents, and (3) biphasic systems. Moreover, the current challenges and future perspectives in the development of efficient routes for lignocellulosic biomass conversion are provided.
Collapse
Affiliation(s)
- Xiaofang Liu
- Guizhou Provincial Key Laboratory for Rare Animal and Economic Insects of the Mountainous Region, College of Biology and Environmental Engineering, Guiyang University, Guiyang 550005, China
| | - Dayong Yu
- Guizhou Provincial Key Laboratory for Rare Animal and Economic Insects of the Mountainous Region, College of Biology and Environmental Engineering, Guiyang University, Guiyang 550005, China
| | - Hangyu Luo
- Guizhou Provincial Key Laboratory for Rare Animal and Economic Insects of the Mountainous Region, College of Biology and Environmental Engineering, Guiyang University, Guiyang 550005, China
| | - Can Li
- Guizhou Provincial Key Laboratory for Rare Animal and Economic Insects of the Mountainous Region, College of Biology and Environmental Engineering, Guiyang University, Guiyang 550005, China
| | - Hu Li
- State Key Laboratory Breeding Base of Green Pesticide & Agricultural Bioengineering, Key Laboratory of Green Pesticide & Agricultural Bioengineering, Ministry of Education, State-Local Joint Laboratory for Comprehensive Utilization of Biomass, Center for Research & Development of Fine Chemicals, Guizhou University, Guiyang 550025, China
| |
Collapse
|
64
|
Wei D, Lv S, Zuo J, Zhang S, Liang S. Recent advances research and application of lignin-based fluorescent probes. REACT FUNCT POLYM 2022. [DOI: 10.1016/j.reactfunctpolym.2022.105354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
65
|
Biological activity, solvation properties and microstructuring of protic imidazolium ionic liquids. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
66
|
Wang N, Wang B, Si H, Hu S, Chen L, Liao Y, Wang L, Zhang Y, Jiang J. Comparative investigation of the structural characteristics of tobacco stalk lignin during the DES and alkaline deconstruction toward sustainable materials. Front Bioeng Biotechnol 2022; 10:994760. [PMID: 36091435 PMCID: PMC9452755 DOI: 10.3389/fbioe.2022.994760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 07/28/2022] [Indexed: 11/13/2022] Open
Abstract
Lignin polymer as a natural aromatic macromolecule presents significant prospects in producing functional and sustainable materials, and achieving a comprehensive characterization will facilitate their target valorization. In the present study, deep eutectic solvent (DES) and alkaline delignification were adopted to deconstruct tobacco stalk before and after hydrothermal pretreatment, obtaining diverse lignin fractions with fascinating characteristics. DES lignin exhibited a higher yield and homogenous molecular structure than MWL. A severe cleavage of the inter-unit linkages in lignin was also observed. This result mostly originated from the efficient delignification of the DES deconstruction system adopted. Moreover, all the recovered lignin fractions exhibited good micro-nanoparticle size that can enhance the valorization of lignin in nanomaterial production, in which the hydrothermal-assisted DES deconstruction promoted the formation of the smaller lignin nanoparticle size. Next, all the recovered lignin presented an excellent UV absorption and structure-related absorption performance or thermal properties. Overall, this work provides an important foundation for further exploiting DES/alkaline delignification lignin that can be applied as an ideal feedstock for producing sustainable functional or micro/nanomaterials.
Collapse
Affiliation(s)
- Na Wang
- China Tobacco Hubei Industrial Co., Ltd., Wuhan, China
| | - Bo Wang
- China Tobacco Hubei Industrial Co., Ltd., Wuhan, China
| | - Hui Si
- China Tobacco Hubei Industrial Co., Ltd., Wuhan, China
| | - Suxia Hu
- China Tobacco Hubei Industrial Co., Ltd., Wuhan, China
| | - Lin Chen
- China Tobacco Hubei Industrial Co., Ltd., Wuhan, China
| | - Yu Liao
- China Tobacco Hubei Industrial Co., Ltd., Wuhan, China
| | - Lei Wang
- Hubei Provincial Key Laboratory of Green Materials for Light Industry, Hubei University of Technology, Wuhan, China
- *Correspondence: Lei Wang, ; Yifan Zhang, ; Jungang Jiang,
| | - Yifan Zhang
- Hubei Provincial Key Laboratory of Green Materials for Light Industry, Hubei University of Technology, Wuhan, China
- *Correspondence: Lei Wang, ; Yifan Zhang, ; Jungang Jiang,
| | - Jungang Jiang
- Hubei Provincial Key Laboratory of Green Materials for Light Industry, Hubei University of Technology, Wuhan, China
- *Correspondence: Lei Wang, ; Yifan Zhang, ; Jungang Jiang,
| |
Collapse
|
67
|
Wang N, Li Z, Hou Q, Han F, Yan Y, Zhang J, Miao C. Metal-Free, Adjustable, and Recyclable Catalytic Systems for the Construction of C-C Bonds by Activating Propargylic Alcohols. J Org Chem 2022; 87:11669-11680. [PMID: 35998335 DOI: 10.1021/acs.joc.2c01305] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Pyrano[3,2-c]coumarin derivatives and C3-substituted 4-hydroxycoumarins as important skeletal structures of active natural products and pharmaceutically relevant molecules have received increasing attention. However, developing an adjustable system for selectively synthesizing them is still a challenging task. Herein, sulfonic acid-functionalized ionic liquid was successfully used as the catalyst for the alkylation of 4-hydroxycoumarin derivatives with secondary aromatic propargylic alcohols using dimethyl carbonate as the green solvent, giving up to 98% yield. On the other hand, protonated imidazole-based ionic liquid-catalyzed cyclization was also selectively achieved with a nearly quantitative yield. Developed metal-free catalytic systems exhibited well adjustable and recyclable properties, avoiding the contamination of metal and halogen, reducing the neutralization after the reaction, and benefiting the separation between the catalyst and the product. New strategies were applied for performing the gram-scale reaction smoothly. The adjustable systems might occur through two different mechanisms involving propargylic or allenic carbocation and hydrogen bonding effects between the catalysts and the substrates.
Collapse
Affiliation(s)
- Ning Wang
- Key Laboratory of Agricultural Film Application of Ministry of Agriculture and Rural Affairs, College of Chemistry and Material Science, Shandong Agricultural University, Daizong Road No. 61, Tai'an 271018, China
| | - Zengmin Li
- Key Laboratory of Agricultural Film Application of Ministry of Agriculture and Rural Affairs, College of Chemistry and Material Science, Shandong Agricultural University, Daizong Road No. 61, Tai'an 271018, China
| | - Qin Hou
- Key Laboratory of Agricultural Film Application of Ministry of Agriculture and Rural Affairs, College of Chemistry and Material Science, Shandong Agricultural University, Daizong Road No. 61, Tai'an 271018, China
| | - Feng Han
- Key Laboratory of Agricultural Film Application of Ministry of Agriculture and Rural Affairs, College of Chemistry and Material Science, Shandong Agricultural University, Daizong Road No. 61, Tai'an 271018, China
| | - Yucai Yan
- State Key Laboratory of Fluorinated Functional Membrane Materials, Shandong Dongyue Polymer Materials Co, Ltd., Zibo, Shandong 256401, China.,Shandong Dongyue Polymer Materials Co, Ltd., Zibo, Shandong 256401, China
| | - Jian Zhang
- State Key Laboratory of Fluorinated Functional Membrane Materials, Shandong Dongyue Polymer Materials Co, Ltd., Zibo, Shandong 256401, China.,Shandong Dongyue Polymer Materials Co, Ltd., Zibo, Shandong 256401, China
| | - Chengxia Miao
- Key Laboratory of Agricultural Film Application of Ministry of Agriculture and Rural Affairs, College of Chemistry and Material Science, Shandong Agricultural University, Daizong Road No. 61, Tai'an 271018, China
| |
Collapse
|
68
|
Zhu A, Wang J, Wang M, Fan D, Li L. An Efficient Catalytic System Based on CuI and Ionic Liquid for the Synthesis of Propargylamines Through One-Pot A3 Coupling Reactions. Catal Letters 2022. [DOI: 10.1007/s10562-022-04109-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
69
|
Tao S, Hu L, Zhang X, Mai Y, Xian X, Zheng X, Lin X. Insights into the Play of Novel Brønsted Acid-Based Deep Eutectic Solvents for the Conversion of Glucose into 5-Hydroxymethylfurfural without Additional Catalysts. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c01193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Shunhui Tao
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, No. 100 Waihuan Xi Road, Panyu
District, Guangzhou 510006, People’s Republic of China
| | - Lei Hu
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, No. 100 Waihuan Xi Road, Panyu
District, Guangzhou 510006, People’s Republic of China
| | - Xiaodong Zhang
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, No. 100 Waihuan Xi Road, Panyu
District, Guangzhou 510006, People’s Republic of China
| | - Yinglin Mai
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, No. 100 Waihuan Xi Road, Panyu
District, Guangzhou 510006, People’s Republic of China
| | - Xiaoling Xian
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, No. 100 Waihuan Xi Road, Panyu
District, Guangzhou 510006, People’s Republic of China
| | - Xiaojie Zheng
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, No. 100 Waihuan Xi Road, Panyu
District, Guangzhou 510006, People’s Republic of China
| | - Xiaoqing Lin
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, No. 100 Waihuan Xi Road, Panyu
District, Guangzhou 510006, People’s Republic of China
- Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, Guangdong University of Technology, Guangzhou 510006, People’s Republic of China
- Guangzhou Key Laboratory of Clean Transportation Energy Chemistry, Guangdong University of Technology, Guangzhou 510006, China
| |
Collapse
|
70
|
Zhang C, Lv X, Zhang X, Huo S, Song H, Guan Y, Gao X. Progress in Selective Conversion of 5‐Hydroxymethylfurfural to DHMF and DMF. ChemistrySelect 2022. [DOI: 10.1002/slct.202201255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Chi Zhang
- School of Petrochemical Engineering Liaoning Petrochemical University Liaoning Fushun 113001 China
| | - Xuechuan Lv
- School of Petrochemical Engineering Liaoning Petrochemical University Liaoning Fushun 113001 China
| | - Xiaofan Zhang
- School of Petrochemical Engineering Liaoning Petrochemical University Liaoning Fushun 113001 China
- Olefin Factory of Fushun Petrochemical Company Petrochina, Fushun 113001, Liaoning China
| | - Sihan Huo
- School of Petrochemical Engineering Liaoning Petrochemical University Liaoning Fushun 113001 China
| | - Hanlin Song
- School of Petrochemical Engineering Liaoning Petrochemical University Liaoning Fushun 113001 China
| | - Yining Guan
- School of Petrochemical Engineering Liaoning Petrochemical University Liaoning Fushun 113001 China
| | - Xiaohan Gao
- School of Petrochemical Engineering Liaoning Petrochemical University Liaoning Fushun 113001 China
| |
Collapse
|
71
|
Wu Y, Wang H, Peng J, Ding M. Advances in catalytic valorization of cellulose into value-added chemicals and fuels over heterogeneous catalysts. Catal Today 2022. [DOI: 10.1016/j.cattod.2022.08.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
72
|
Ventura M, Puyol D, Melero J. The synergy of catalysis and biotechnology as a tool to modulate the composition of biopolymers (polyhydroxyalkanoates) with lignocellulosic wastes. Catal Today 2022. [DOI: 10.1016/j.cattod.2021.09.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
73
|
Zhao W, Cui Y, Zhou S, Ye J, Sun J, Liu X. Rapid adsorption of dyes from aqueous solutions by modified lignin derived superparamagnetic composites. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.132954] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
74
|
Lin X, Jiang K, Liu X, Han D, Zhang Q. Review on development of ionic liquids in lignocellulosic biomass refining. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119326] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
75
|
Liu Y, Zhang L, Feng S, Chen X. Promoting Effect of Ni on the Catalytic Production of Alanine from Lactic Acid over RuNi/AC Catalyst. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c01168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Ying Liu
- China-UK Low Carbon College, Shanghai Jiao Tong University, 3 Yinlian Road, 201306 Shanghai, China
| | - Lei Zhang
- China-UK Low Carbon College, Shanghai Jiao Tong University, 3 Yinlian Road, 201306 Shanghai, China
| | - Shixiang Feng
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, China
| | - Xi Chen
- China-UK Low Carbon College, Shanghai Jiao Tong University, 3 Yinlian Road, 201306 Shanghai, China
| |
Collapse
|
76
|
Gan Z, Wang Y, Lu Y, Qin J, Nie Y, He H. Insight into the camel‐to‐bell transition of differential capacitance in ionic liquids‐based supercapacitor. ChemElectroChem 2022. [DOI: 10.1002/celc.202200274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Zhongdong Gan
- Institute of Process Engineering Chinese Academy of Sciences Ionic liquid department CHINA
| | - Yanlei Wang
- Institute of Process Engineering Chinese Academy of Sciences Ionic LIquid and Clean Process Beiertiao #1,Zhongguancun, Haidian District 100190 Beijing CHINA
| | - Yumiao Lu
- Institute of Process Engineering Chinese Academy of Sciences Ionic liquid department CHINA
| | - Jingyu Qin
- Institute of Process Engineering Chinese Academy of Sciences Ionic liquid department CHINA
| | - Yi Nie
- Institute of Process Engineering Chinese Academy of Sciences Ionic liquid department CHINA
| | - Hongyan He
- Institute of Process Engineering Chinese Academy of Sciences Ionic liquid department CHINA
| |
Collapse
|
77
|
Ezzatzadeh E, Hossaini Z, Majedi S, Hussain FHS. Green Synthesis of New Pyrimidine Fused Quinolines Derivatives and Reduction of Organic Pollutants Using Fe 3O 4/KF/Clinoptilolite Supported on MWCNTs. Polycycl Aromat Compd 2022. [DOI: 10.1080/10406638.2022.2094975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Elham Ezzatzadeh
- Department of Chemistry, Ardabil Branch, Islamic Azad University, Ardabil, Iran
| | | | - Soma Majedi
- Department of Medical Analysis, Tishk International University, Erbil, Kurdistan Region, Iraq
| | - Faiq H. S. Hussain
- Department of Medical Analysis, Tishk International University, Erbil, Kurdistan Region, Iraq
| |
Collapse
|
78
|
Xiang S, Dong L, Wang ZQ, Han X, Daemen LL, Li J, Cheng Y, Guo Y, Liu X, Hu Y, Ramirez-Cuesta AJ, Yang S, Gong XQ, Wang Y. A unique Co@CoO catalyst for hydrogenolysis of biomass-derived 5-hydroxymethylfurfural to 2,5-dimethylfuran. Nat Commun 2022; 13:3657. [PMID: 35760807 PMCID: PMC9237033 DOI: 10.1038/s41467-022-31362-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 06/13/2022] [Indexed: 11/19/2022] Open
Abstract
The development of precious-metal-free catalysts to promote the sustainable production of fuels and chemicals from biomass remains an important and challenging target. Here, we report the efficient hydrogenolysis of biomass-derived 5-hydroxymethylfurfural to 2,5-dimethylfuran over a unique core-shell structured catalyst, Co@CoO that affords the highest productivity among all catalysts, including noble-metal-based catalysts, reported to date. Surprisingly, we find that the catalytically active sites reside on the shell of CoO with oxygen vacancies rather than the metallic Co. The combination of various spectroscopic experiments and computational modelling reveals that the CoO shell incorporating oxygen vacancies not only drives the heterolytic cleavage, but also the homolytic cleavage of H2 to yield more active Hδ- species, resulting in the exceptional catalytic activity. Co@CoO also exhibits excellent activity toward the direct hydrodeoxygenation of lignin model compounds. This study unlocks, for the first time, the potential of simple metal-oxide-based catalysts for the hydrodeoxygenation of renewable biomass to chemical feedstocks.
Collapse
Affiliation(s)
- Shuang Xiang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Lin Dong
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Zhi-Qiang Wang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Xue Han
- Department of Chemistry, University of Manchester, Manchester, M13 9PL, UK
| | - Luke L Daemen
- Neutron Scattering Division, Neutron Sciences Directorate, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Jiong Li
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, China
| | - Yongqiang Cheng
- Neutron Scattering Division, Neutron Sciences Directorate, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Yong Guo
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Xiaohui Liu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Yongfeng Hu
- Sinopec Shanghai Research Institute of Petrochemical Technology, Shanghai, 201208, China
| | - Anibal J Ramirez-Cuesta
- Neutron Scattering Division, Neutron Sciences Directorate, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Sihai Yang
- Department of Chemistry, University of Manchester, Manchester, M13 9PL, UK.
| | - Xue-Qing Gong
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, China.
| | - Yanqin Wang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, China.
| |
Collapse
|
79
|
Progress in Catalytic Conversion of Renewable Chitin Biomass to Furan-Derived Platform Compounds. Catalysts 2022. [DOI: 10.3390/catal12060653] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Chitin is one of the most abundant biopolymers on Earth but under-utilized. The effective conversion of chitin biomass to useful chemicals is a promising strategy to make full use of chitin. Among chitin-derived compounds, some furan derivatives, typically 5-hydroxymethylfurfural and 3-acetamido-5-acetylfuran, have shown great potential as platform compounds in future industries. In this review, different catalytic systems for the synthesis of nitrogen-free 5-hydroxymethylfurfural and nitrogen-containing 3-acetamido-5-acetylfuran from chitin or its derivatives are summarized comparatively. Some efficient technologies for enhancing chitin biomass conversion have been introduced. Last but not least, future challenges are discussed to enable the production of valuable compounds from chitin biomass via greener processes.
Collapse
|
80
|
Shan H, Li L, Bai W, Liu L. Evolution Process of Humins Derived from Glucose. ChemistrySelect 2022. [DOI: 10.1002/slct.202201237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Haozhe Shan
- Dalian University of Technology Dalian 116024 China
| | - Lei Li
- Dalian University of Technology Dalian 116024 China
| | - Wei Bai
- Dalian University of Technology Dalian 116024 China
| | - Li Liu
- Inner Mongolia University Hohhot 010020 China
| |
Collapse
|
81
|
Electroreductive CO coupling of benzaldehyde over SACs Au-NiMn 2O 4 spinel synergetic composites. J Colloid Interface Sci 2022; 625:305-316. [PMID: 35717846 DOI: 10.1016/j.jcis.2022.06.021] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 05/29/2022] [Accepted: 06/04/2022] [Indexed: 11/22/2022]
Abstract
Electroreductive CO coupling provides a prospective strategy for biomass derivative upgrading via reducing the number of oxygen-containing functional groups and increasing their molecular weight. However, exploring superior electrocatalysts with effective reactivity and high selectivity for target products are still a challenge. In this work, single atom Au surface derived NiMn2O4 (SACs Au-NiMn2O4) spinel synergetic composites were fabricated by a versatile adsorption-deposition method and applied in electroreductive self-coupling of benzaldehyde to dibenzyl ether. The SACs Au-NiMn2O4 spinel synergetic composites enhanced electroreductive coupling of benzaldehyde, significantly improved the yield and selectivity of dibenzyl ether. Systematic characterizations and density functional theory calculation revealed that atomically dispersed Au occupied surface Ni2+ vacancies, which played a dominated role in CO coupling of benzaldehyde. Detailed calculation results showed that benzaldehyde preferred to adsorb on Ni octa-hedral sites of NiMn2O4 spinel synergetic structure, single atom Au surficial derivation over NiMn2O4 further reduced the adsorption energy (Eads) of benzaldehyde on SACs Au-NiMn2O4, thus the CO coupling of benzaldehyde to dibenzyl ether was promoted. Moreover, single atom Au surficial derivation lowered the energy barrier of rate-determining step, facilitated the formation of dibenzyl ether species. Our work also paves an avenue for rational design single atom materials using spinel as support.
Collapse
|
82
|
Hassan R, Asghar MA, Iqbal M, Qaisar A, Habib U, Ahmad B. A comparative evaluation of antibacterial activities of imidazolium-, pyridinium-, and phosphonium-based ionic liquids containing octyl side chains. Heliyon 2022; 8:e09533. [PMID: 35663730 PMCID: PMC9160493 DOI: 10.1016/j.heliyon.2022.e09533] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 03/14/2022] [Accepted: 05/19/2022] [Indexed: 11/27/2022] Open
Abstract
Antibacterial activity is an essential property of ionic liquids. In this work, a comprehensive study has been performed on the antibacterial activity of ionic liquids to be utilized for further research and applications. Eighteen ionic liquids viz. Octyl Imidazolium, octyl Pyridinium, quaternary phosphonium-based cations containing bromide, sodium methane sulphonates, bis(trifluoromethane sulfonyl) imide, dichloroacetate, tetrafluoroborate, hydrogen sulfate were prepared and characterized with the help of different spectroscopic techniques. All these samples of ionic liquids were tested for their antibacterial activity against the most commonly occurring bacteria in the environment, i.e., Enterobacter aerogenes (E. aerogenes), Proteus vulgaris (P. vulgaris), Klebsiella pneumoniae (K. pneumoniae), Pseudomonas aeruginosa (P. aeruginosa), Escherichia coli (E. coli), and Streptococcus pyogenes (S. pyogenes). Most of the ionic liquids show good antibacterial properties, and imidazolium-based ionic liquids were even more antibacterial as compared to positive control. It was observed that a unique combination of cation and anion is essential to achieve desired antibacterial properties. The mechanism of antibacterial activity was further investigated using density functional theory calculations. A good correlation was found between experimental and theoretical studies.
Collapse
Affiliation(s)
- Rabia Hassan
- Department of Chemistry, School of Natural Sciences (SNS), National University of Sciences & Technology (NUST), H-12, Islamabad, 44000, Pakistan
| | - Muhammad Asad Asghar
- Department of Chemistry, School of Natural Sciences (SNS), National University of Sciences & Technology (NUST), H-12, Islamabad, 44000, Pakistan
| | - Mudassir Iqbal
- Department of Chemistry, School of Natural Sciences (SNS), National University of Sciences & Technology (NUST), H-12, Islamabad, 44000, Pakistan
| | - Arshemah Qaisar
- Research Center for Modeling and Simulation (RCMS), National University of Sciences & Technology (NUST), H-12, Islamabad, 44000, Pakistan
| | - Uzma Habib
- Research Center for Modeling and Simulation (RCMS), National University of Sciences & Technology (NUST), H-12, Islamabad, 44000, Pakistan
| | - Bashir Ahmad
- Department of Biological Sciences, International Islamic University, Islamabad, Pakistan
| |
Collapse
|
83
|
Morales G, Melero JA, Paniagua M, López-Aguado C, Vidal N. Beta zeolite as an efficient catalyst for the synthesis of diphenolic acid (DPA) from renewable levulinic acid. Catal Today 2022. [DOI: 10.1016/j.cattod.2022.06.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
84
|
Hua M, Song J, Huang X, Fan H, Wu T, Meng Q, Zhang Z, Han B. Highly efficient C(CO)-C(alkyl) bond cleavage in ketones to access esters over ultrathin N-doped carbon nanosheets. Chem Sci 2022; 13:5196-5204. [PMID: 35655547 PMCID: PMC9093174 DOI: 10.1039/d2sc00579d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 04/11/2022] [Indexed: 12/26/2022] Open
Abstract
Selective oxidative cleavage of the C(CO)–C bond in ketones to access esters is a highly attractive strategy for upgrading ketones. However, it remains a great challenge to realize this important transformation over heterogeneous metal-free catalysts. Herein, we designed a series of porous and ultrathin N-doped carbon nanosheets (denoted as CN-X, where X represents the pyrolysis temperature) as heterogeneous metal-free catalysts. It was observed that the fabricated CN-800 could efficiently catalyze the oxidative cleavage of the C(CO)–C bond in various ketones to generate the corresponding methyl esters at 130 °C without using any additional base. Detailed investigations revealed that the higher content and electron density of the graphitic-N species contributed to the excellent performance of CN-800. Besides, the high surface area, affording active sites that are more easily accessed, could also enhance the catalytic activity. Notably, the catalysts have great potential for practical applications because of some obvious advantages, such as low cost, neutral reaction conditions, heterogeneous nature, high efficiency, and broad ketone scope. To the best of our knowledge, this is the first work on efficient synthesis of methyl esters via oxidative esterification of ketones over heterogeneous metal-free catalysts. Ultrathin and metal-free N-doped carbon nanosheets showed high activity and selectivity for oxidative esterification of ketones via C(CO)–C bond cleavage to access methyl esters.![]()
Collapse
Affiliation(s)
- Manli Hua
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 China .,School of Chemistry Engineering, University of Chinese Academy of Sciences Beijing 100049 China
| | - Jinliang Song
- School of Chemical Engineering and Light Industry, Guangdong University of Technology Guangzhou 510006 China
| | - Xin Huang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 China .,School of Chemistry Engineering, University of Chinese Academy of Sciences Beijing 100049 China
| | - Honglei Fan
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 China
| | - Tianbin Wu
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 China
| | - Qinglei Meng
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 China
| | - Zhanrong Zhang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 China
| | - Buxing Han
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 China .,School of Chemistry Engineering, University of Chinese Academy of Sciences Beijing 100049 China
| |
Collapse
|
85
|
Li H, Yan P, Xu BQ, Conrad Zhang Z. Oxygen Affinity of Transition Metal Cations: A Coherent Descriptor Elucidating Catalytic Oxygenate Transformations. J Catal 2022. [DOI: 10.1016/j.jcat.2022.05.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
86
|
Lan F, Zhang H, Zhao C, Shu Y, Guan Q, Li W. Copper Clusters Encapsulated in Carbonaceous Mesoporous Silica Nanospheres for the Valorization of Biomass-Derived Molecules. ACS Catal 2022. [DOI: 10.1021/acscatal.2c01270] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Fujun Lan
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Nankai University, Tianjin 300071, China
| | - Huiling Zhang
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Nankai University, Tianjin 300071, China
| | - Chaoyue Zhao
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Nankai University, Tianjin 300071, China
| | - Yu Shu
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Nankai University, Tianjin 300071, China
| | - Qingxin Guan
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Nankai University, Tianjin 300071, China
| | - Wei Li
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Nankai University, Tianjin 300071, China
| |
Collapse
|
87
|
Hajiali F, Jin T, Yang G, Santos M, Lam E, Moores A. Mechanochemical Transformations of Biomass into Functional Materials. CHEMSUSCHEM 2022; 15:e202102535. [PMID: 35137539 DOI: 10.1002/cssc.202102535] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/31/2022] [Indexed: 06/14/2023]
Abstract
Biomass is one of the promising alternatives to petroleum-derived materials and plays a major role in our fight against climate change by providing renewable sources of chemicals and materials. Owing to its chemical and structural complexity, the transformation of biomass into value-added products requires a profound understanding of its composition at different scales and innovative methods such as combining physical and chemical processes. In this context, the use of mechanochemistry in biomass valorization is currently growing owing to its potentials as an efficient, sustainable, and environmentally friendly approach. This review highlights the latest advances in the transformation of biomass (i. e., chitin, cellulose, hemicellulose, lignin, and starch) to functional materials using mechanochemical-assisted methods. We focused here on the methodology of biomass processing, influencing factors, and resulting properties with an emphasis on achieving functional materials rather than breaking down the biopolymer chains into smaller molecules. Opportunities and limitations associated this methodology were discussed accordingly for future directions.
Collapse
Affiliation(s)
- Faezeh Hajiali
- Centre in Green Chemistry and Catalysis, Department of Chemistry, McGill University, 801 Sherbrooke St. West, Montreal, Quebec, H3A 0B8, Canada
| | - Tony Jin
- Centre in Green Chemistry and Catalysis, Department of Chemistry, McGill University, 801 Sherbrooke St. West, Montreal, Quebec, H3A 0B8, Canada
| | - Galen Yang
- Centre in Green Chemistry and Catalysis, Department of Chemistry, McGill University, 801 Sherbrooke St. West, Montreal, Quebec, H3A 0B8, Canada
| | - Madison Santos
- Department of Bioengineering, McGill University, 3480 University St., Montreal, Quebec, H3A 0E9, Canada
| | - Edmond Lam
- Centre in Green Chemistry and Catalysis, Department of Chemistry, McGill University, 801 Sherbrooke St. West, Montreal, Quebec, H3A 0B8, Canada
- Aquatic and Crop Resource Development Research Centre, National Research Council of Canada, 6100 Royalmount Avenue, Montreal, Quebec, H4P 2R2, Canada
| | - Audrey Moores
- Centre in Green Chemistry and Catalysis, Department of Chemistry, McGill University, 801 Sherbrooke St. West, Montreal, Quebec, H3A 0B8, Canada
- Department of Materials Engineering, McGill University, 3610 University Street, Montreal, Quebec, H3A 0 C5, Canada
| |
Collapse
|
88
|
Ji N, Cheng S, Jia Z, Li H, Ri P, Wang S, Diao X. Fabricating Bifunctional Co‐Al2O3@USY Catalyst via In‐Situ Growth Method for Mild Hydrodeoxygenation of Lignin to Naphthenes. ChemCatChem 2022. [DOI: 10.1002/cctc.202200274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Na Ji
- Tianjin University School of Environmental Science and Engineering CHINA
| | - Shuai Cheng
- Tianjin University School of Environmental Science and Engineering Tianjin CHINA
| | - Zhichao Jia
- Tianjin University School of Environmental Science and Engineering CHINA
| | - Hanyang Li
- Tianjin University School of Environmental Science and Engineering CHINA
| | - Poknam Ri
- Tianjin University School of Environmental Science and Engineering CHINA
| | - Shurong Wang
- Zhejiang University State Key Laboratory of Clean Energy Utilization CHINA
| | - Xinyong Diao
- Tianjin University School of Environmental Science and Engineering Yaguang road 200250 Tianjin CHINA
| |
Collapse
|
89
|
Wang Z, Xie C, Li X, Nie J, Yang H, Zhang Z. Amberlyst-15 supported zirconium sulfonate as an efficient catalyst for Meerwein-Ponndorf-Verley reductions. Chem Commun (Camb) 2022; 58:4067-4070. [PMID: 35262544 DOI: 10.1039/d2cc00157h] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The Meerwein-Ponndorf-Verley (MPV) reaction is an important chemoselective route for carbonyl group hydrogenation, and thus designing new and effective catalysts for this transformation remains important and challenging. In this work, a new sulfonate coordinated Zr(IV) catalyst was prepared by the coordination of Zr(IV) onto the sulfonate groups of Amberlyst-15, which can effectively catalyze the MPV reaction and quantitatively convert carbonyl compounds to the corresponding alcohols with high reactivity and stability. Detailed mechanistic investigations reveal that the catalytic performance of Zr-AIER can be attributed to the synergetic effect between Zr4+ and the sulfonate group, and the porous structure with high surface area.
Collapse
Affiliation(s)
- Zixin Wang
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, South-Central Minzu University, Wuhan, China.
| | - Chao Xie
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, South-Central Minzu University, Wuhan, China.
| | - Xun Li
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, South-Central Minzu University, Wuhan, China.
| | - Jiabao Nie
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, South-Central Minzu University, Wuhan, China.
| | - Hanmin Yang
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, South-Central Minzu University, Wuhan, China.
| | - Zehui Zhang
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, South-Central Minzu University, Wuhan, China.
| |
Collapse
|
90
|
Divya PS, Nair S, Kunnikuruvan S. Identification of Crucial Intermediates in the Formation of Humins from Cellulose-Derived Platform Chemicals Under Brønsted Acid Catalyzed Reaction Conditions. Chemphyschem 2022; 23:e202200057. [PMID: 35285118 DOI: 10.1002/cphc.202200057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 03/04/2022] [Indexed: 11/11/2022]
Abstract
Humins are one of the undesirable products formed during the dehydration of sugars as well as the conversion of 5-hydroxymethylfurfural (HMF) to value-added products. Thus, reducing the formation of humins is an important strategy for improving the yield of the aforementioned reactions. Even after a plethora of studies, the mechanism of formation and the structure of humins are still elusive. In this regard, we have employed density functional theory-based mechanistic studies and microkinetic analysis to identify crucial intermediates formed from glucose, fructose, and HMF that can initiate the polymerization reactions resulting in humins under Brønsted acid-catalyzed reaction conditions. This study brings light into crucial elementary reaction steps that can be targeted for controlling humins formation. Moreover, this work provides a rationale for the experimentally observed aliphatic chains and HMF condensation products in the humins structure. Different possible polymerization routes that could contribute to the structure of humins are also suggested based on the results. Importantly, the findings of this work indicate that increasing the rate of isomerization of glucose to fructose and reducing the rate of reaction between HMF molecules could be an efficient strategy for reducing humins formation.
Collapse
Affiliation(s)
- P S Divya
- IISER-TVM: Indian Institute of Science Education Research Thiruvananthapuram, School of Chemistry, IISER Thiruvananthapuram, 695551, Thiruvananthapuram, INDIA
| | - Swetha Nair
- IISER-TVM: Indian Institute of Science Education Research Thiruvananthapuram, School of Chemistry, IISER Thiruvananthapuram, 695551, Thiruvananthapuram, INDIA
| | - Sooraj Kunnikuruvan
- IISER Thiruvananthapuram: Indian Institute of Science Education Research Thiruvananthapuram, School of Chemistry, Maruthamala PO, Vithura, 695551, Thiruvananthapuram, INDIA
| |
Collapse
|
91
|
Fang T, Meng X, Zhou G, Jiang K, Liu X. CO2 separation of membranes consisting of Mxene/ILs with X: A perspective from molecular dynamics simulation. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2021.118099] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
92
|
Shen Q, Xue Y, Zhang Y, Li T, Yang T, Li S. Effect of microstructure-scale features on lignin fluorescence for preparation of high fluorescence efficiency lignin-based nanomaterials. Int J Biol Macromol 2022; 202:520-528. [DOI: 10.1016/j.ijbiomac.2022.01.095] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 01/05/2022] [Accepted: 01/13/2022] [Indexed: 01/14/2023]
|
93
|
Wu H, Zou Y, Xu H, Wu L, Mai Y. Efficient Electrocatalytic Upgradation of Furan-Based Biomass: Key Roles of a Two-Dimensional Mesoporous Poly(m-phenylenediamine)-Graphene Heterostructure and a Ternary Electrolyte. Macromolecules 2022. [DOI: 10.1021/acs.macromol.1c02447] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Haoran Wu
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China
| | - Yashi Zou
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China
| | - Haishan Xu
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China
| | - Liang Wu
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China
| | - Yiyong Mai
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China
| |
Collapse
|
94
|
He M, Sun Y, Han B. Green Carbon Science: Efficient Carbon Resource Processing, Utilization, and Recycling towards Carbon Neutrality. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202112835] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Mingyuan He
- Shanghai Key Laboratory of Green Chemistry & Chemical Processes Department of Chemistry East China Normal University Shanghai 200062 China
- Research Institute of Petrochem Processing, SINOPEC Beijing 100083 China
| | - Yuhan Sun
- Low Carbon Energy Conversion Center Shanghai Advanced Research Institute Chinese Academy of Sciences Shanghai 201203 China
- Shanghai Low Carbon Technology Innovation Platform Shanghai 210620 China
| | - Buxing Han
- Shanghai Key Laboratory of Green Chemistry & Chemical Processes Department of Chemistry East China Normal University Shanghai 200062 China
- Beijing National Laboratory for Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
| |
Collapse
|
95
|
Theoretical Mechanism on the Cellulose Regeneration from a Cellulose/EmimOAc Mixture in Anti-Solvents. MATERIALS 2022; 15:ma15031158. [PMID: 35161102 PMCID: PMC8837949 DOI: 10.3390/ma15031158] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 01/18/2022] [Accepted: 01/24/2022] [Indexed: 02/04/2023]
Abstract
The experiments on cellulose dissolution/regeneration have made some achievements to some extent, but the mechanism of cellulose regeneration in ionic liquids (ILs) and anti-solvent mixtures remains elusive. In this work, the cellulose regeneration mechanism in different anti-solvents, and at different temperatures and concentrations, has been studied with molecular dynamics (MD) simulations. The IL considered is 1-ethyl-3-methylimidazolium acetate (EmimOAc). In addition, to investigate the microcosmic effects of ILs and anti-solvents, EmimOAc-nH2O (n = 0–6) clusters have been optimized by Density Functional Theory (DFT) calculations. It can be found that water is beneficial to the regeneration of cellulose due to its strong polarity. The interactions between ILs and cellulose will become strong with the increase in temperature. The H-bonds of cellulose chains would increase with the rising concentrations of anti-solvents. The interaction energies between cellulose and the anions of ILs are stronger than that of cations. Furthermore, the anti-solvents possess a strong affinity for ILs, cation–anion pairs are dissociated to form H-bonds with anti-solvents, and the H-bonds between cellulose and ILs are destroyed to promote cellulose regeneration.
Collapse
|
96
|
Dhameliya TM, Nagar PR, Bhakhar KA, Jivani HR, Shah BJ, Patel KM, Patel VS, Soni AH, Joshi LP, Gajjar ND. Recent advancements in applications of ionic liquids in synthetic construction of heterocyclic scaffolds: A spotlight. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2021.118329] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
97
|
Xu C, Wu H, Zhang Z, Zheng B, Zhai J, Zhang K, Wu W, Mei X, He M, Han B. Highly Effective and Chemoselective Hydrodeoxygenation of Aromatic Alcohols. Chem Sci 2022; 13:1629-1635. [PMID: 35282624 PMCID: PMC8827088 DOI: 10.1039/d1sc06430d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 01/19/2022] [Indexed: 11/21/2022] Open
Abstract
Effective hydrodeoxygenation (HDO) of aromatic alcohols is very attractive in both conventional organic synthesis and upgrading of biomass-derived molecules, but the selectivity of this reaction is usually low because of...
Collapse
Affiliation(s)
- Caiyun Xu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University Shanghai 200062 China
| | - Haihong Wu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University Shanghai 200062 China
| | - Zhanrong Zhang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 China
| | - Bingxiao Zheng
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University Shanghai 200062 China
| | - Jianxin Zhai
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University Shanghai 200062 China
| | - Kaili Zhang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University Shanghai 200062 China
| | - Wei Wu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University Shanghai 200062 China
| | - Xuelei Mei
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University Shanghai 200062 China
| | - Mingyuan He
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University Shanghai 200062 China
| | - Buxing Han
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University Shanghai 200062 China
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 China
| |
Collapse
|
98
|
Yang Y, Qi H, Xu Z, Zhang ZC. Evolution of catalytically active species in paired PdCl2-CuCl2/[BMim]Cl for hydrolysis of β-1,4-glycosidic bonds. Catal Sci Technol 2022. [DOI: 10.1039/d1cy02225c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this work, we identified the prevailing catalytically active species evolved from paired PdCl2-CuCl2 in 1-butyl-3-methylimidazolium chloride ([BMim]Cl) that displayed dramatic synergism between the two metal chlorides in catalyzing the...
Collapse
|
99
|
Porwal MK, Reddi Y, Saxon DJ, Cramer CJ, Ellison CJ, Reineke TM. Stereoregular Functionalized Polysaccharides via Cationic Ring-Opening Polymerization of Biomass-derived Levoglucosan. Chem Sci 2022; 13:4512-4522. [PMID: 35656133 PMCID: PMC9019921 DOI: 10.1039/d2sc00146b] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Accepted: 03/08/2022] [Indexed: 11/24/2022] Open
Abstract
We report the facile synthesis and characterization of 1,6-α linked functional stereoregular polysaccharides from biomass-derived levoglucosan via cationic ring-opening polymerization (cROP). Levoglucosan is a bicyclic acetal with rich hydroxyl functionality, which can be synthetically modified to install a variety of pendant groups for tailored properties. We have employed biocompatible and recyclable metal triflate catalysts – scandium and bismuth triflate – for green cROP of levoglucosan derivatives, even at very low catalyst loadings of 0.5 mol%. Combined experimental and computational studies provided key kinetic, thermodynamic, and mechanistic insights into the cROP of these derivatives with metal triflates. Computational studies reveal that ring-opening of levoglucosan derivatives is preferred at the 1,6 anhydro linkage and cROP proceeds in a regio- and stereo-specific manner to form 1,6-α glycosidic linkages. DFT calculations also show that biocompatible metal triflates efficiently coordinate with levoglucosan derivatives as compared to the highly toxic PF5 used previously. Post-polymerization modification of levoglucosan-based polysaccharides is readily performed via UV-initiated thiol–ene click reactions. The reported levoglucosan based polymers exhibit good thermal stability (Td > 250 °C) and a wide glass transition temperature (Tg) window (<−150 °C to 32 °C) that is accessible with thioglycerol and lauryl mercaptan pendant groups. This work demonstrates the utility of levoglucosan as a renewably-derived scaffold, enabling facile access to tailored polysaccharides that could be important in many applications ranging from sustainable materials to biologically active polymers. We demonstrate the facile synthesis and characterization of stereoregular polysaccharides from the biomass-derived platform molecule levoglucosan via metal-triflate mediated cationic-ring opening polymerization.![]()
Collapse
Affiliation(s)
- Mayuri K Porwal
- Department of Chemical Engineering and Materials Science, University of Minnesota Minneapolis Minnesota 55455 USA
| | - Yernaidu Reddi
- Department of Chemistry, University of Minnesota Minneapolis Minnesota 55455 USA
| | - Derek J Saxon
- Department of Chemistry, University of Minnesota Minneapolis Minnesota 55455 USA
| | - Christopher J Cramer
- Department of Chemistry, University of Minnesota Minneapolis Minnesota 55455 USA
- Underwriters Laboratories Inc. 333 Pfingsten Rd. Northbrook Illinois 60620 USA
| | - Christopher J Ellison
- Department of Chemical Engineering and Materials Science, University of Minnesota Minneapolis Minnesota 55455 USA
| | - Theresa M Reineke
- Department of Chemistry, University of Minnesota Minneapolis Minnesota 55455 USA
| |
Collapse
|
100
|
Wu Z, Zhang J, Su Z, Lu S, Huang J, Liang Y, Tan T, Xiao F. Selective Conversion of Acetone to Mesitylene over Tantalum Phosphate Catalysts. Chem Commun (Camb) 2022; 58:2862-2865. [DOI: 10.1039/d2cc00016d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report the synthesis of tantalum phosphate catalyst with abundant strong acid sites, which is very active for the catalytic conversion of acetone into mesitylene. Characterizations, kinetic studies, and theoretical...
Collapse
|