51
|
Ameduri B. Copolymers of Vinylidene fluoride with Functional comonomers and Applications therefrom: Recent Developments, Challenges and Future Trends. Prog Polym Sci 2022. [DOI: 10.1016/j.progpolymsci.2022.101591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
52
|
Zheng C, Ma M, Huang S, Jiang C, Liu Y, Fu Y, Zhao K, Feng R, Hong J. Stereoretentive trifluoromethylthiolation of (E)‑styrylboronic acid with AgSCF3 or N-trifluoromethylthiosuccinimide. Tetrahedron Lett 2022. [DOI: 10.1016/j.tetlet.2022.153982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
53
|
Miwa Y, Udagawa T, Kutsumizu S. Repulsive segregation of fluoroalkyl side chains turns a cohesive polymer into a mechanically tough, ultrafast self-healable, nonsticky elastomer. Sci Rep 2022; 12:12009. [PMID: 35879386 PMCID: PMC9314360 DOI: 10.1038/s41598-022-16156-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 07/05/2022] [Indexed: 11/09/2022] Open
Abstract
Dynamic crosslinking of flexible polymer chains via attractive and reversible interactions is widely employed to obtain autonomously self-healable elastomers. However, this design leads to a trade-off relationship between the strength and self-healing speed of the material, i.e., strong crosslinks provide a mechanically strong elastomer with slow self-healing property. To address this issue, we report an "inversion" concept, in which attractive poly(ethyl acrylate-random-methyl acrylate) chains are dynamically crosslinked via repulsively segregated fluoroalkyl side chains attached along the main chain. The resulting elastomer self-heals rapidly (> 90% within 15 min) via weak but abundant van der Waals interactions among matrix polymers, while the dynamic crosslinking provides high fracture stress (≈2 MPa) and good toughness (≈17 MJ m-3). The elastomer has a nonsticky surface and selectively self-heals only at the damaged faces due to the surface segregation of the fluoroalkyl chains. Moreover, our elastomer strongly adheres to polytetrafluoroethylene plates (≈60 N cm-2) via hot pressing.
Collapse
Affiliation(s)
- Yohei Miwa
- Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University, Yanagido, Gifu, 501-1193, Japan. .,PRESTO, Japan Science and Technology Agency, Kawaguchi, Japan.
| | - Taro Udagawa
- Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University, Yanagido, Gifu, 501-1193, Japan
| | - Shoichi Kutsumizu
- Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University, Yanagido, Gifu, 501-1193, Japan
| |
Collapse
|
54
|
Hu Z, Liu X, Ren T, Saeed HAM, Wang Q, Cui X, Huai K, Huang S, Xia Y, Fu K, Zhang J, Chen Y. Research progress of low dielectric constant polymer materials. JOURNAL OF POLYMER ENGINEERING 2022. [DOI: 10.1515/polyeng-2021-0338] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
The advent of high frequency communication era presents new challenges for further development of dielectric polymer materials. In the field of communication, efficient signal transmission is critical. The lower the dielectric constant of the dielectric material used, the lower the signal delay and the higher the signal fidelity. The preparation of polymer materials with low dielectric constant or reduce the dielectric constant of polymer materials becomes a key research topic. Summarizing past progress and providing perspective, this paper primarily discusses the intrinsic low dielectric polymers, fluorine doped low dielectric polymers, and microporous low dielectric polymers, while predicting the research trend of low dielectric materials.
Collapse
Affiliation(s)
- Zhendong Hu
- Key Laboratory of Rubber-Plastics, Ministry of Education, Shandong Provincial Key Laboratory of Rubber-Plastics , Qingdao University of Science & Technology , Qingdao City , 266042 , P. R. China
| | - Xueqing Liu
- Key Laboratory of Optoelectronic Chemical Materials and Devices, Ministry of Education and Flexible Display Materials and Technology Co-Innovation Centre of Hubei Province , Jianghan University , Wuhan 430056 , China
| | - Tianli Ren
- Mississippi Polymer Institute, The University of Southern Mississippi , Hattiesburg , MS 39406 , USA
| | - Haroon A. M. Saeed
- The Centre of Fibres, Papers, and Recycling, Faculty of Industries Engineering and Technology , University of Gezira , P.O. Box: 20 , Sudan , Shanghai , China
| | - Quan Wang
- Key Laboratory of Rubber-Plastics, Ministry of Education, Shandong Provincial Key Laboratory of Rubber-Plastics , Qingdao University of Science & Technology , Qingdao City , 266042 , P. R. China
| | - Xin Cui
- Key Laboratory of Rubber-Plastics, Ministry of Education, Shandong Provincial Key Laboratory of Rubber-Plastics , Qingdao University of Science & Technology , Qingdao City , 266042 , P. R. China
| | - Kai Huai
- Key Laboratory of Rubber-Plastics, Ministry of Education, Shandong Provincial Key Laboratory of Rubber-Plastics , Qingdao University of Science & Technology , Qingdao City , 266042 , P. R. China
| | - Shuohan Huang
- Engineering Research Center of Technical Textiles, Ministry of Education, State Key Laboratory for Modification of Chemical Fibers and Polymer Materials , College of Materials Science and Engineering, College of Science, Donghua University , Shanghai , China
| | - Yuming Xia
- Engineering Research Center of Technical Textiles, Ministry of Education, State Key Laboratory for Modification of Chemical Fibers and Polymer Materials , College of Materials Science and Engineering, College of Science, Donghua University , Shanghai , China
| | - Kun(Kelvin) Fu
- Department of Mechanical Engineering , University of Delaware , Newark , DE 19716 , USA
| | - Jianming Zhang
- Key Laboratory of Rubber-Plastics, Ministry of Education, Shandong Provincial Key Laboratory of Rubber-Plastics , Qingdao University of Science & Technology , Qingdao City , 266042 , P. R. China
| | - Yuwei Chen
- Key Laboratory of Rubber-Plastics, Ministry of Education, Shandong Provincial Key Laboratory of Rubber-Plastics , Qingdao University of Science & Technology , Qingdao City , 266042 , P. R. China
| |
Collapse
|
55
|
Xie Y, Iwata J, Matsumoto T, Yamada NL, Nemoto F, Seto H, Nishino T. Hydrophobicity of the Pentafluorosulfanyl Group in Side Chains of Polymethacrylates by Evaluation with Surface Free Energy and Neutron Reflectivity. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:6472-6480. [PMID: 35544954 DOI: 10.1021/acs.langmuir.2c00690] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
A hydrophobic surface or coating is required for surface protection, anti-fouling, adhesion, and other applications. For the achievements of hydrophobic properties, fluorine-based coatings, such as the introduction of trifluoromethyl or difluoromethylene groups, are conventionally employed. Recent developments in synthetic chemistry have indicated other organic fluoroalkyl groups that are suitable for achieving a more hydrophobic surface. In this study, we focused on the hydrophobic properties of the pentafluorosulfanyl (-SF5) group. We synthesized polymethacrylates with -SF5 groups or other functional groups (-CF3, -CH3, and -H) in their side chains and evaluated their hydrophobicity based on contact angles of water and ethylene glycol and the affinities of their films to water through neutron reflectivity measurements to demonstrate the superior hydrophobic properties of the -SF5 group. The water contact angle on the polymethacrylate film with -SF5 groups was larger, which suggested that the surface free energy was lower than that of the other polymethacrylate thin films with pendant side chains of -CF3, -CH3, and -H. In addition, the fitting analyses of the neutron reflectivity profiles of the thin polymer films in contact with air and water revealed the lowest affinity between water and the surface of polymethacrylate films with -SF5 groups among the films of the synthesized polymers. Thus, we demonstrated the potential of pentafluorosulfanyl groups as advanced hydrophobic groups.
Collapse
Affiliation(s)
- Yijun Xie
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, Rokko, Nada, Kobe 657-8501, Japan
| | - Jun Iwata
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, Rokko, Nada, Kobe 657-8501, Japan
| | - Takuya Matsumoto
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, Rokko, Nada, Kobe 657-8501, Japan
| | - Norifumi L Yamada
- Institute of Materials Structure Science, High Energy Accelerator Research Organization, 203-1 Shirakata, Tokai 319-1106, Ibaraki, Japan
| | - Fumiya Nemoto
- Institute of Materials Structure Science, High Energy Accelerator Research Organization, 203-1 Shirakata, Tokai 319-1106, Ibaraki, Japan
- Department of Materials Science and Engineering, National Defense Academy, 1-10-20 Hashirimizu, Yokosuka 239-8686, Kanagawa, Japan
| | - Hideki Seto
- Institute of Materials Structure Science, High Energy Accelerator Research Organization, 203-1 Shirakata, Tokai 319-1106, Ibaraki, Japan
| | - Takashi Nishino
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, Rokko, Nada, Kobe 657-8501, Japan
| |
Collapse
|
56
|
Berladir K, Zhyhylii D, Gaponova O, Krmela J, Krmelová V, Artyukhov A. Modeling of Polymer Composite Materials Chaotically Reinforced with Spherical and Cylindrical Inclusions. Polymers (Basel) 2022; 14:2087. [PMID: 35631969 PMCID: PMC9144413 DOI: 10.3390/polym14102087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 05/14/2022] [Accepted: 05/18/2022] [Indexed: 11/16/2022] Open
Abstract
The technical and economic efficiency of new PCMs depends on the ability to predict their performance. The problem of predicting the properties of PCMs can be solved by computer simulation by the finite element method. In this work, an experimental determination of the physical and mechanical properties of PTFE PCMs depending on the concentration of fibrous and dispersed filler was carried out. A finite element model in ANSYS APDL was built to simulate the strength and load-bearing capacity of the material with the analysis of damage accumulation. Verification of the developed computer model to predict the mechanical properties of composite materials was performed by comparing the results obtained during field and model experiments. It was found that the finite element model predicts the strength of chaotically reinforced spherical inclusions of composite materials. This is due to the smoothness of the filler surfaces and the lack of filler dissection in the model. Instead, the prediction of the strength of a finite element model of chaotically reinforced cylindrical inclusions of composite materials requires additional analysis. The matrix and the fibrous filler obviously have stress concentrators and are both subject to the difficulties of creating a reliable structural model.
Collapse
Affiliation(s)
- Kristina Berladir
- Department of Applied Materials Science and Technology of Constructional Materials, Sumy State University, 2, Rymskogo-Korsakova St., 40007 Sumy, Ukraine;
| | - Dmytro Zhyhylii
- Department of Computational Mechanics Named after Volodymyr Martsynkovskyy, Sumy State University, 2, Rymskogo-Korsakova St., 40007 Sumy, Ukraine;
| | - Oksana Gaponova
- Department of Applied Materials Science and Technology of Constructional Materials, Sumy State University, 2, Rymskogo-Korsakova St., 40007 Sumy, Ukraine;
| | - Jan Krmela
- Faculty of Mechanical Engineering, J. E. Purkyně University in Ustí nad Labem, Pasteurova 1, 400 96 Ustí nad Labem, Czech Republic;
| | - Vladimíra Krmelová
- Faculty of Industrial Technologies in Púchov, Alexander Dubček University of Trenčín, I. Krasku 491/30, 02001 Púchov, Slovakia;
| | - Artem Artyukhov
- Academic and Research Institute of Business, Economics and Management, Sumy State University, 2, Rymskogo-Korsakova St., 40007 Sumy, Ukraine;
| |
Collapse
|
57
|
Itoh Y, Chen S, Hirahara R, Konda T, Aoki T, Ueda T, Shimada I, Cannon JJ, Shao C, Shiomi J, Tabata KV, Noji H, Sato K, Aida T. Ultrafast water permeation through nanochannels with a densely fluorous interior surface. Science 2022; 376:738-743. [PMID: 35549437 DOI: 10.1126/science.abd0966] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Ultrafast water permeation in aquaporins is promoted by their hydrophobic interior surface. Polytetrafluoroethylene has a dense fluorine surface, leading to its strong water repellence. We report a series of fluorous oligoamide nanorings with interior diameters ranging from 0.9 to 1.9 nanometers. These nanorings undergo supramolecular polymerization in phospholipid bilayer membranes to form fluorous nanochannels, the interior walls of which are densely covered with fluorine atoms. The nanochannel with the smallest diameter exhibits a water permeation flux that is two orders of magnitude greater than those of aquaporins and carbon nanotubes. The proposed nanochannel exhibits negligible chloride ion (Cl-) permeability caused by a powerful electrostatic barrier provided by the electrostatically negative fluorous interior surface. Thus, this nanochannel is expected to show nearly perfect salt reflectance for desalination.
Collapse
Affiliation(s)
- Yoshimitsu Itoh
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.,Japan Science and Technology Agency (JST), Precursory Research for Embryonic Science and Technology (PRESTO), 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - Shuo Chen
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Ryota Hirahara
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Takeshi Konda
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Tsubasa Aoki
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Takumi Ueda
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Ichio Shimada
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.,RIKEN Center for Biosystems Dynamics Research, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - James J Cannon
- Department of Mechanical Engineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.,Department of Mechanical Engineering, Faculty of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Cheng Shao
- Department of Mechanical Engineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Junichiro Shiomi
- Department of Mechanical Engineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Kazuhito V Tabata
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Hiroyuki Noji
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Kohei Sato
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Takuzo Aida
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.,RIKEN Center for Emergent Matter Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| |
Collapse
|
58
|
Van Meter KE, Junk CP, Campbell KL, Babuska TF, Krick BA. Ultralow Wear Self-Mated PTFE Composites. Macromolecules 2022. [DOI: 10.1021/acs.macromol.1c02581] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Kylie E. Van Meter
- Department of Mechanical Engineering, Florida Agricultural and Mechanical University, Florida State University College of Engineering, Tallahassee, Florida 32310, United States
- The Aero-propulsion, Mechatronics and Energy Center, Florida State University, Tallahassee, Florida 32310, United States
| | - Christopher P. Junk
- Department of Materials Science and Engineering, Lehigh University, Bethlehem, Pennsylvania 18015, United States
- CJIdeas, LLC, Wilmington, Delaware 19810, United States
| | - Kasey L. Campbell
- Department of Materials Science and Engineering, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| | - Tomas F. Babuska
- Department of Mechanical Engineering, Florida Agricultural and Mechanical University, Florida State University College of Engineering, Tallahassee, Florida 32310, United States
- The Aero-propulsion, Mechatronics and Energy Center, Florida State University, Tallahassee, Florida 32310, United States
- Department of Mechanical Engineering and Mechanics, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| | - Brandon A. Krick
- Department of Mechanical Engineering, Florida Agricultural and Mechanical University, Florida State University College of Engineering, Tallahassee, Florida 32310, United States
- The Aero-propulsion, Mechatronics and Energy Center, Florida State University, Tallahassee, Florida 32310, United States
| |
Collapse
|
59
|
Kianfar P, Bongiovanni R, Ameduri B, Vitale A. Electrospinning of Fluorinated Polymers: Current State of the Art on Processes and Applications. POLYM REV 2022. [DOI: 10.1080/15583724.2022.2067868] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Parnian Kianfar
- Department of Applied Science and Technology, Politecnico di Torino, Torino, Italy
| | - Roberta Bongiovanni
- Department of Applied Science and Technology, Politecnico di Torino, Torino, Italy
| | - Bruno Ameduri
- ICGM, Université de Montpellier, CNRS, ENSCM, Montpellier, France
| | - Alessandra Vitale
- Department of Applied Science and Technology, Politecnico di Torino, Torino, Italy
| |
Collapse
|
60
|
Rajakaruna RADNV, Subeshan B, Asmatulu E. Fabrication of hydrophobic PLA filaments for additive manufacturing. JOURNAL OF MATERIALS SCIENCE 2022; 57:8987-9001. [PMID: 35527806 PMCID: PMC9053124 DOI: 10.1007/s10853-022-07217-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 04/09/2022] [Indexed: 06/14/2023]
Abstract
There is an ever-greater need for self-cleaning and water-repelling properties of hydrophobic materials at this time in history, mainly due to the coronavirus disease 2019 (COVID-19) pandemic. However, the fabrication processes used to create hydrophobic materials are typically time-consuming and costly. Thus, this study aims to create hydrophobic materials based on low-cost manufacturing. In this study, polylactic acid (PLA) was mixed with various concentrations of hexadecyltrimethoxysilane (HDTMS) and polytetrafluoroethylene (PTFE) with the aid of solvents, chloroform, and acetone, through the solvent casting and melt extrusion process, which is capable of producing hydrophobic PLA filaments suitable for additive manufacturing (AM). Water contact angle (WCA) measurements were performed to verify the improved hydrophobicity of PLA/HDTMS/PTFE filaments. According to the results, it was discovered that the best filament WCAs were achieved with 2 g (10 wt%) of PLA, 0.2 ml of HDTMS, and 1 ml of PTFE (2 g PLA + 0.2 ml HDTMS + 1 ml PTFE), producing an average WCA of 131.6° and the highest WCA of 132.7°. These results indicate that adding HDTMS and PTFE to PLA significantly enhances filament hydrophobicity. Additionally, scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), and thermogravimetric analysis (TGA) techniques were utilized to characterize the surface morphology, molecular interactions, and thermal decompositions of the prepared PLA/HDTMS/PTFE filaments. This study revealed that compared to 2 g of pure PLA filament, HDTMS and PTFE altered the microstructure of the filament. Its thermal degradation temperature was impacted, but the melting temperature was not. Therefore, the PLA/HDTMS/PTFE filament is good enough to be printed by the fused filament fabrication (FFF) AM process.
Collapse
Affiliation(s)
| | - Balakrishnan Subeshan
- Department of Mechanical Engineering, Wichita State University, Wichita, KS 67260 USA
| | - Eylem Asmatulu
- Department of Mechanical Engineering, Wichita State University, Wichita, KS 67260 USA
| |
Collapse
|
61
|
Liao P, You L, Zheng WJ, Zou W, Yan J, Yang H, Yang F. Self-cleaning expanded polytetrafluoroethylene-based hybrid membrane for water filtration. RSC Adv 2022; 12:13228-13234. [PMID: 35527732 PMCID: PMC9067432 DOI: 10.1039/d2ra01026g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 04/22/2022] [Indexed: 01/11/2023] Open
Abstract
Membrane surface fouling is a key problem for water filtration. Compositing photocatalytic substances with a base membrane is a widely used strategy, but most of the membrane will be decomposed by photocatalysis. Herein, expanded polytetrafluoroethylene (ePTFE) with extremely stable chemical properties is grafted with polyacrylic acid (PAA) and then modified with titanium dioxide (TiO2) to realize a self-cleaning TiO2-PAA-ePTFE filtration membrane. It can recover its flux under UV irradiation after fouling. With 20 rounds of self-cleaning, the membrane microstructure still remains intact. Moreover, in addition to retaining bovine serum albumin, TiO2 particles on the membrane surface are capable of absorbing small organic pollutants and degrading them. Thus, this membrane is potentially used as an anti-fouling membrane for water filtration.
Collapse
Affiliation(s)
- Peng Liao
- Sichuan University of Science and Engineering Zigong 643000 PR China
| | - Lan You
- Sichuan University of Science and Engineering Zigong 643000 PR China
| | - Wen Jiang Zheng
- Sichuan University of Science and Engineering Zigong 643000 PR China
| | - Wei Zou
- Sichuan University of Science and Engineering Zigong 643000 PR China
| | - Jie Yan
- Sichuan University of Science and Engineering Zigong 643000 PR China
| | - Hu Yang
- Sichuan University of Science and Engineering Zigong 643000 PR China
| | - Fan Yang
- Organic Fluorine Material Key Laboratory of Sichuan Province, Zhonghao Chenguang Chemical Research Institute Zigong 643201 PR China
| |
Collapse
|
62
|
Mizuta Y, Sugimoto R, Okada H, Zhao C, Kobiro K, Nishiwaki N. Graft polymerization of methyl methacrylate on the surface of poly(ethylene‐co‐tetrafluoroethylene) using benzoyl peroxide as initiator. J Appl Polym Sci 2022. [DOI: 10.1002/app.52415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Yusuke Mizuta
- School of Environmental Science and Engineering Kochi University of Technology Kochi Japan
| | - Ryuichi Sugimoto
- School of Environmental Science and Engineering Kochi University of Technology Kochi Japan
| | - Hiromu Okada
- School of Environmental Science and Engineering Kochi University of Technology Kochi Japan
| | - Chao Zhao
- School of Environmental Science and Engineering Kochi University of Technology Kochi Japan
| | - Kazuya Kobiro
- School of Environmental Science and Engineering Kochi University of Technology Kochi Japan
| | - Nagatoshi Nishiwaki
- School of Environmental Science and Engineering Kochi University of Technology Kochi Japan
| |
Collapse
|
63
|
Huang YL, Ping LJ, Wu J, Li YY, Zhou XP. Increasing the Stability of Metal-Organic Frameworks by Coating with Poly(tetrafluoroethylene). Inorg Chem 2022; 61:5092-5098. [PMID: 35289170 DOI: 10.1021/acs.inorgchem.2c00073] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
When compared to industrially stable zeolites, the instability of metal-organic frameworks (MOFs) has been denounced by researchers. Boosting the stability of existing MOFs is highly important for practical applications. In this report, we develop a new strategy to prepare MOFs/poly(tetrafluoroethylene) (PTFE) composites, which can highly improve the chemical, pressure, and photostabilities of zeolitic imidazolate framework (ZIF)-8. Composite materials were prepared by a physical blending of ZIF-8 and PTFE emulsion with different ratios and annealing at 370 °C. Transmission electron microscopy (TEM) studies reveal that the nanoparticles of ZIF-8 are coated by PTFE to form the composite materials. Upon mixing with 20 or 50 wt % PTFE, the ZIF-8/PTFE materials show a superhydrophobic property with water contact angles of around 156°. Pristine ZIF-8 is not stable in water with stirring under acidic, basic, and irradiation conditions, while the ZIF-8/PTFE materials are stable under the same conditions. The ZIF-8/PTFE materials can also maintain their crystalline structure after being compressed with a 10 MPa pressure, while pristine ZIF-8 changes to an amorphous solid after the same pressure treatment. Using water as a solvent, ZIF-8/PTFE can be used as a highly efficient and recyclable catalyst for Knoevenagel reaction at room temperature. The successful preparation of stable ZIF-8/PTFE composite materials provides a useful method to enhance the chemical, pressure, and photostabilities of MOFs.
Collapse
Affiliation(s)
- Yan-Li Huang
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou 510632, Guangdong, P. R. China
| | - Lin-Jie Ping
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou 510632, Guangdong, P. R. China
| | - Jie Wu
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou 510632, Guangdong, P. R. China
| | - Yan Yan Li
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Engineering Technology Research Center of Drug Carrier of Guangdong, Department of Biomedical Engineering, Jinan University, Guangzhou 510632, P. R. China
| | - Xiao-Ping Zhou
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou 510632, Guangdong, P. R. China
| |
Collapse
|
64
|
Arafune H, Watarai Y, Kamijo T, Honma S, Sato T. Mechanical and Lubrication Properties of Double Network Ion Gels Obtained by a One-Step Process. MATERIALS 2022; 15:ma15062113. [PMID: 35329565 PMCID: PMC8950215 DOI: 10.3390/ma15062113] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 03/09/2022] [Accepted: 03/10/2022] [Indexed: 12/19/2022]
Abstract
Human joints support us to reduce the impact on our body and move them smoothly. As they are composed of gel-like structures, gel materials with soft and resilient properties are expected, as lubricants, to provide high efficiency and a long lifetime for mechanical parts. While double network gels including ionic liquids as swelling agents possess high mechanical strength and stable low friction under high temperature or vacuum, their fabrication process is complex and time-consuming. In this study, we applied one-pot synthesis to a double network ion gel (DNIG) to obtain a thin gel film by a simple coating method and examined its thermal, mechanical and tribological properties. The DNIG was obtained by one-pot synthesis (DNIG-1) combining polycondensation of tetraethoxysilane and radical polymerization of methyl methacrylate to form silica and poly(methyl methacrylate) as a 1st and 2nd network, respectively. Such obtained DNIG-1 was characterized and compared with DNIG obtained by a conventional two-step process (DNIG-2). Thermogravimetric analysis and the compressive stress–strain test showed high thermal stability and mechanical strength of DNIG-1. As friction at the glass/DNIG-1 interface showed high friction compared with that at glass/DNIG-2, various counterface materials were applied to examine their effect on the friction of DNIG-1. As SUS304/DNIG-1 showed much lower friction compared with glass/DNIG-1, the difference in the friction was presumably due to the different adsorption forces and compatibility between the materials.
Collapse
Affiliation(s)
| | | | | | | | - Takaya Sato
- Correspondence: (H.A.); (T.S.); Tel.: +81-235-25-9054 (H.A.)
| |
Collapse
|
65
|
|
66
|
Yin C, Du X, Ding Z, Zeng Q, Li X, He C, Xiong B, Li J, Zhou Y. Gas permeation and microstructure of reduced graphene oxide/polyethyleneimine multilayer films created via recast and layer-by-layer deposition processes. RSC Adv 2022; 12:6561-6572. [PMID: 35424615 PMCID: PMC8982006 DOI: 10.1039/d1ra09205g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 02/21/2022] [Indexed: 11/21/2022] Open
Abstract
Nowadays, graphene/polymer composite films with multilayer structure have attracted significant attention for gas barrier application. In this study, a series of reduced graphene oxide/polyethyleneimine (RGO/PEI) composite films were created via recast and layer-by-layer deposition processes. By using the recast process, the myriad PEI molecules in the precursor solution (the PEI : GO feeding ratio is 0.02 : 0.1, 0.05 : 0.1, 0.1 : 0.1, 0.3 : 0.1 and 0.5 : 0.1) ensure more effective reduction and surface modification of the graphene oxide (GO) sheets, while the undesirable free PEI molecules are eventually removed via a filtration process. Then, the RGO/PEI composite films were synthesized on PET substrate using a layer-by-layer assembly. The resulting films show a homogeneous and compact brick-wall structure with excellent gas barrier properties. Barriers against water vapor, nitrogen/oxygen, and carbon dioxide require different content of PEI in the composite film for optimal performance; the ideal values are 19.7, 23.8, and 24.1 wt%, respectively. These values are much lower compared with previously reported studies. Further, the permeability, free volumes, component ratio, morphology, and density of the RGO/PEI composite films have been carefully investigated and discussed. The results revealed that the mechanism behind the excellent gas barrier property of the RGO/PEI composite films is a synergistic effect created by the combination of the brick-wall structure, the small free volume holes, the suitable PEI content (ranging from 19.7 wt% to 24.1 wt%), the high density, and the hydrophobicity.
Collapse
Affiliation(s)
- Chongshan Yin
- Hunan Provincial Key Laboratory of Flexible Electronic Materials Genome Engineering, School of Physics and Electronic Science, Changsha University of Science and Technology Changsha 410114 China
| | - Xuan Du
- Hunan Provincial Key Laboratory of Flexible Electronic Materials Genome Engineering, School of Physics and Electronic Science, Changsha University of Science and Technology Changsha 410114 China
| | - Zhi Ding
- Hunan Provincial Key Laboratory of Flexible Electronic Materials Genome Engineering, School of Physics and Electronic Science, Changsha University of Science and Technology Changsha 410114 China
| | - Qing Zeng
- Hunan Provincial Key Laboratory of Flexible Electronic Materials Genome Engineering, School of Physics and Electronic Science, Changsha University of Science and Technology Changsha 410114 China
| | - Xi Li
- Hunan Provincial Key Laboratory of Flexible Electronic Materials Genome Engineering, School of Physics and Electronic Science, Changsha University of Science and Technology Changsha 410114 China
| | - Chunqing He
- Key Laboratory of Nuclear Solid State Physics Hubei Province, School of Physics and Technology, Wuhan University Wuhan 430072 China
| | - Bangyun Xiong
- School of Materials Science and Energy Engineering, Foshan University Foshan 528000 China
| | - Jingjing Li
- School of Materials Science and Energy Engineering, Foshan University Foshan 528000 China
| | - Yawei Zhou
- State Key Laboratory of Intense Pulsed Radiation Simulation and Effect, Northwest Institute of Nuclear Technology Xi'an 710024 China
| |
Collapse
|
67
|
Zeng Y, Zhou Y, Quan Q, Chen M. Facile Access to gem-Trifluoromethyl/Boron-Functionalized Polymers via Free-Radical Copolymerization and Cotelomerization. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c00023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Yang Zeng
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, China
| | - Yang Zhou
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, China
| | - Qinzhi Quan
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, China
| | - Mao Chen
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, China
| |
Collapse
|
68
|
Xi W, Guo L, Liu D, Zhou R, Wang Z, Wang W, Liu Z, Wang X, Ostrikov KK, Rong M. Upcycle hazard against other hazard: Toxic fluorides from plasma fluoropolymer etching turn novel microbial disinfectants. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127658. [PMID: 34802825 DOI: 10.1016/j.jhazmat.2021.127658] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 10/12/2021] [Accepted: 10/28/2021] [Indexed: 06/13/2023]
Abstract
The release of toxic fluoride byproducts is a seemingly unavoidable artifact of surface engineering, causing severe environmental and human health problems. Here we propose and implement a new "upcycle hazard against other hazard" concept in the case study of cold atmospheric plasma surface modification of fluoropolymers such as polytetrafluorethylene (PTFE). Capitalizing on the excellent controllability, precision and energy efficiency of the plasma surface processing, complemented with the recently discovered ability of plasmas to activate water to produce a potent electrochemical disinfectant, referred to as the plasma-activated water (PAW), we demonstrate a radically new solution to capture the hazardous gaseous fluorides into the PAW and use the as-fluorinated PAW (F-PAW) as a very effective antimicrobial disinfectant. A customized surface discharge reactor is developed to evaluate the effects of fluorides released from the plasma etching of PTFE on the chemistries in gas-phase plasmas and F-PAW, as well as the antibacterial effect of F-PAW. The results show that gaseous fluorides, including COF2, CF3COF, and SiF4 are produced in gas-phase plasmas, and the dissolution of thus-generated fluorides into PAW has a strong effect on inactivating catalase and destroying the oxidation resistance of bacterial cells. As a result, the antibacterial effect of PAW-fluorides against the methicillin-resistant Staphylococcus aureus (MRSA) is enhanced by > 5 log reductions, suggesting that otherwise hazardous fluorides from the plasma processing of PTFE can be used to enhance the microbial disinfection efficiency of PAW. The demonstrated approach opens new avenues for sustainable hazard valorization exemplified by converting toxic fluoride-etching products into potent antimicrobial and potentially anti-viral disinfectants.
Collapse
Affiliation(s)
- Wang Xi
- State Key Laboratory of Electrical Insulation and Power Equipment, Center for Plasma Biomedicine, Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Li Guo
- State Key Laboratory of Electrical Insulation and Power Equipment, Center for Plasma Biomedicine, Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Dingxin Liu
- State Key Laboratory of Electrical Insulation and Power Equipment, Center for Plasma Biomedicine, Xi'an Jiaotong University, Xi'an 710049, PR China.
| | - Renwu Zhou
- State Key Laboratory of Electrical Insulation and Power Equipment, Center for Plasma Biomedicine, Xi'an Jiaotong University, Xi'an 710049, PR China; School of Chemical and Biomolecular Engineering, University of Sydney, Sydney, NSW 2006, Australia
| | - Zifeng Wang
- State Key Laboratory of Electrical Insulation and Power Equipment, Center for Plasma Biomedicine, Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Wei Wang
- State Key Laboratory of Electrical Insulation and Power Equipment, Center for Plasma Biomedicine, Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Zhijie Liu
- State Key Laboratory of Electrical Insulation and Power Equipment, Center for Plasma Biomedicine, Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Xiaohua Wang
- State Key Laboratory of Electrical Insulation and Power Equipment, Center for Plasma Biomedicine, Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Kostya Ken Ostrikov
- School of Chemistry and Physics, Centre for Materials Science, Centre for Clean Energy Technologies and Practices, and Centre for a Waste-free World, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia
| | - Mingzhe Rong
- State Key Laboratory of Electrical Insulation and Power Equipment, Center for Plasma Biomedicine, Xi'an Jiaotong University, Xi'an 710049, PR China
| |
Collapse
|
69
|
Li N, Dong C, Wu Y. Reinforcement of Frictional Vibration Noise Reduction Properties of a Polymer Material by PTFE Particles. MATERIALS 2022; 15:ma15041365. [PMID: 35207903 PMCID: PMC8879754 DOI: 10.3390/ma15041365] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Revised: 02/07/2022] [Accepted: 02/10/2022] [Indexed: 02/05/2023]
Abstract
The insufficient lubrication of the contact interface between moving parts can easily induce severe friction vibration and noise under extreme working conditions, which will threaten the service life and reliability of polymer moving components, including water-lubricated stern tube polymer bearings. Thermoplastic polyurethane (TPU) modified by polytetrafluoroethylene (PTFE) particles was developed. The effects of PTFE on the wear and vibration behaviors of modified TPU sliding against the ZCuSn10Zn2 ring-plates were investigated. The coefficients of friction (COFs), wear mass losses, wear morphologies, frictional vibration, and noise were analyzed synthetically. The results showed that a suitable mass content of PTFE reduced the COFs and wear mass losses of the TPU composites by more than 50% and 40%, respectively, while presenting an excellent friction reduction. The lower COFs of modified TPU showed a small fluctuation amplitude and eliminated vibration waveforms at high vibrational frequencies, which was useful for reducing frictional vibration and noise. The knowledge gained in this study is useful for a better understanding of the wear behaviors of polymer composites, as well as for the design a new polymer material with good self-lubricating and frictional vibration and noise reduction properties.
Collapse
Affiliation(s)
- Naner Li
- Department of Engineering Mathematics, University of Bristol, Bristol BS8 1TR, UK;
| | - Conglin Dong
- Reliability Engineering Institute, National Engineering Research Center for Water Transportation Safety, Wuhan University of Technology, Wuhan 430063, China;
- Correspondence: ; Tel.: +86-27-8655-4969
| | - Yuhang Wu
- Reliability Engineering Institute, National Engineering Research Center for Water Transportation Safety, Wuhan University of Technology, Wuhan 430063, China;
| |
Collapse
|
70
|
Guo X, Yao Y, Zhu P, Zhou M, Zhou T. Preparation of porous
PTFE
/C composite foam and its application in gravity‐driven oil–water separation. POLYM INT 2022. [DOI: 10.1002/pi.6356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Xiaoming Guo
- Textile Institute, Sichuan University Chengdu China
| | - Yongyi Yao
- Textile Institute, Sichuan University Chengdu China
| | - Puxin Zhu
- Textile Institute, Sichuan University Chengdu China
| | - Mi Zhou
- Textile Institute, Sichuan University Chengdu China
| | - Tao Zhou
- Textile Institute, Sichuan University Chengdu China
| |
Collapse
|
71
|
Zhang G, Chen Y, Sui X, Kang M, Feng Y, Yin H. Nonionic surfactant stabilized polytetrafluoroethylene dispersion: Effect of molecular structure and topology. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2021.116988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
72
|
The Role of Fluorinated Polymers in the Water Management of Proton Exchange Membrane Fuel Cells: A Review. ENERGIES 2021. [DOI: 10.3390/en14248387] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
As the hydrogen market is projected to grow in the next decades, the development of more efficient and better-performing polymer electrolyte membrane fuel cells (PEMFCs) is certainly needed. Water management is one of the main issues faced by these devices and is strictly related to the employment of fluorinated materials in the gas diffusion medium (GDM). Fluorine-based polymers are added as hydrophobic agents for gas diffusion layers (GDL) or in the ink composition of microporous layers (MPL), with the goal of reducing the risk of membrane dehydration and cell flooding. In this review, the state of the art of fluorinated polymers for fuel cells is presented. The most common ones are polytetrafluoroethylene (PTFE) and fluorinated ethylene propylene (FEP), however, other compounds such as PFA, PVDF, PFPE, and CF4 have been studied and reported. The effects of these materials on device performances are analyzed and described. Particular attention is dedicated to the influence of polymer content on the variation of the fuel cell component properties, namely conductivity, durability, hydrophobicity, and porosity, and on the PEMFC behavior at different current densities and under multiple operating conditions.
Collapse
|
73
|
Dobelle L, Kim S, LeVan AX, Leandri H, Hoffmann MR, Cid CA. Onsite Graywater Treatment in a Two-Stage Electro-Peroxone Reactor with a Partial Recycle of Treated Effluent. ACS ES&T ENGINEERING 2021; 1:1659-1667. [PMID: 34918011 PMCID: PMC8669644 DOI: 10.1021/acsestengg.1c00240] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Indexed: 06/14/2023]
Abstract
The efficacy of an uncoupled electro-peroxone (E-peroxone) prototype reactor system for the treatment of synthetic graywater is determined. The two-stage E-peroxone process integrates ozonation with the in situ production of hydrogen peroxide (H2O2) in a first stage reactor before ozone (O3) is converted via the peroxone reaction to a hydroxyl radical (•OH). The two-stage prototype reactor system allows for the generation of H2O2 via cathodic oxygen reduction in the first-stage reactor before mixing with O3 in the second-stage reactor. This approach prevents the degradation of polytetrafluoroethylene (PTFE) coated carbon cathodes by •OH that takes place in a single well-mixed reactor that combines electrochemical peroxide generation with O3. The dosage of H2O2 into the second-stage reactor is optimized to enhance graywater treatment. Under these conditions, the uncoupled E-peroxone system is capable of treating synthetic graywater with an initial chemical oxygen demand (COD0) of 358 mg O2/L, a total organic carbon (TOC0) of 96.9 mg/L, a biochemical oxygen demand (BOD0) of 162 mg O2/L, and a turbidity of 11.2 NTU. The two-stage electro-peroxone system can reduce the initial COD0 by 89%, the TOC0 by 91%, BOD0 by 86%, and the turbidity by 95% after 90 min of treatment. At this performance level, the reactor effluent is acceptable for discharge and for use in nonpotable applications such as toilet-water flushing. A portion of the effluent is recycled back into the first-stage reactor to minimize water consumption. Recycling can be repeated consecutively for four or more cycles, although the time required to achieve the desired H2O2 concentration increased slightly from one cycle to another. The two-stage E-peroxone system is shown to be potentially useful for onsite or decentralized graywater treatment suitable for arid water-sensitive areas.
Collapse
Affiliation(s)
- Léopold Dobelle
- Department
of Environmental Science and Engineering, California Institute of Technology, 1200 E California Blvd, Pasadena, California 91125, United States
| | - Seungkyeum Kim
- Department
of Chemical Engineering, California Institute
of Technology, 1200 E
California Blvd, Pasadena, California 91125, United States
| | - Axl X. LeVan
- Department
of Chemistry, California Institute of Technology, 1200 E California Blvd, Pasadena, California 91125, United States
| | - Hugo Leandri
- Department
of Environmental Science and Engineering, California Institute of Technology, 1200 E California Blvd, Pasadena, California 91125, United States
| | - Michael R. Hoffmann
- Department
of Environmental Science and Engineering, California Institute of Technology, 1200 E California Blvd, Pasadena, California 91125, United States
| | - Clément A. Cid
- Department
of Environmental Science and Engineering, California Institute of Technology, 1200 E California Blvd, Pasadena, California 91125, United States
| |
Collapse
|
74
|
Narrowing feedstock exemptions under the Montreal Protocol has multiple environmental benefits. Proc Natl Acad Sci U S A 2021; 118:2022668118. [PMID: 34845018 PMCID: PMC8665836 DOI: 10.1073/pnas.2022668118] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The Montreal Protocol on Substances that Deplete the Ozone Layer (Montreal Protocol) can be further strengthened to control ozone-depleting substances and hydrofluorocarbons used as feedstocks to provide additional protection of the stratospheric ozone layer and the climate system while also mitigating plastics pollution. The feedstock exemptions were premised on the assumption that feedstocks presented an insignificant threat to the environment; experience has shown that this is incorrect. Through its adjustment procedures, the Montreal Protocol can narrow the scope of feedstock exemptions to reduce inadvertent and unauthorized emissions while continuing to exempt production of feedstocks for time-limited, essential uses. This upstream approach can be an effective and efficient complement to other efforts to reduce plastic pollution. Existing mechanisms in the Montreal Protocol such as the Assessment Panels and national implementation strategies can guide the choice of environmentally superior substitutes for feedstock-derived plastics. This paper provides a framework for policy makers, industries, and civil society to consider how stronger actions under the Montreal Protocol can complement other chemical and environmental treaties.
Collapse
|
75
|
Tashiro K, Okura M. Crystal structures and phase transition of tetrafluoroethylene-vinyl alcohol alternating copolymer. POLYMER 2021. [DOI: 10.1016/j.polymer.2021.124354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
76
|
Tetrafluoroethylene telomers with reactive end groups: radiation-initiated synthesis, properties, and prospects for applications. Russ Chem Bull 2021. [DOI: 10.1007/s11172-021-3265-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
77
|
Wang HN, Dong JY, Shi J, Zhang CP. Trifluoromethylselenolation reactions using the versatile [Me4N][SeCF3] reagent. Tetrahedron 2021. [DOI: 10.1016/j.tet.2021.132476] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
78
|
Eid N, Gimello O, Bonnet A, Devisme S, Améduri B. Chain-End Functionality: The Key Factor toward Fluoropolymer Thermal Stability. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c00453] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Nadim Eid
- Institut Charles Gerhardt, ICGM, University of Montpellier, CNRS, ENSCM, Montpellier 34095, France
| | - Olinda Gimello
- Institut Charles Gerhardt, ICGM, University of Montpellier, CNRS, ENSCM, Montpellier 34095, France
| | - Anthony Bonnet
- Centre de Recherche Rhône-Alpes (CRRA), Rue Henri Moissan—CS 42063, Pierre-Bénite 69491, France
| | - Samuel Devisme
- ARKEMA – CERDATO, 13 route de Launay, 27470, Serquigny France
| | - Bruno Améduri
- Institut Charles Gerhardt, ICGM, University of Montpellier, CNRS, ENSCM, Montpellier 34095, France
| |
Collapse
|
79
|
Quan Q, Ma M, Wang Z, Gu Y, Chen M. Visible-Light-Enabled Organocatalyzed Controlled Alternating Terpolymerization of Perfluorinated Vinyl Ethers. Angew Chem Int Ed Engl 2021; 60:20443-20451. [PMID: 34121303 DOI: 10.1002/anie.202107066] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 06/08/2021] [Indexed: 11/08/2022]
Abstract
Polymerizations of perfluorinated vinyl ethers (PFVEs) provide an important category of fluoropolymers that have received considerable interests in applications. In this work, we report the development of an organocatalyzed controlled radical alternating terpolymerization of PFVEs and vinyl ethers (VEs) under visible-light irradiation. This method not only enables the synthesis of a broad scope of fluorinated terpolymers of low dispersities and high chain-end fidelity, facilitating tuning the chemical compositions by rationally choosing the type and/or ratio of comonomers, but also allows temporal control of chain-growth, as well as the preparation of a variety of novel fluorinated block copolymers. To showcase the versatility of this method, fluorinated alternating terpolymers have been synthesized and customized to simultaneously display a variety of desirable properties for solid polymer electrolyte design, creating new opportunities in high-performance energy storage devices.
Collapse
Affiliation(s)
- Qinzhi Quan
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200433, China
| | - Mingyu Ma
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200433, China
| | - Zongtao Wang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200433, China
| | - Yu Gu
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200433, China
| | - Mao Chen
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200433, China
| |
Collapse
|
80
|
Quan Q, Ma M, Wang Z, Gu Y, Chen M. Visible‐Light‐Enabled Organocatalyzed Controlled Alternating Terpolymerization of Perfluorinated Vinyl Ethers. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202107066] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Qinzhi Quan
- State Key Laboratory of Molecular Engineering of Polymers Department of Macromolecular Science Fudan University Shanghai 200433 China
| | - Mingyu Ma
- State Key Laboratory of Molecular Engineering of Polymers Department of Macromolecular Science Fudan University Shanghai 200433 China
| | - Zongtao Wang
- State Key Laboratory of Molecular Engineering of Polymers Department of Macromolecular Science Fudan University Shanghai 200433 China
| | - Yu Gu
- State Key Laboratory of Molecular Engineering of Polymers Department of Macromolecular Science Fudan University Shanghai 200433 China
| | - Mao Chen
- State Key Laboratory of Molecular Engineering of Polymers Department of Macromolecular Science Fudan University Shanghai 200433 China
| |
Collapse
|
81
|
Meng L, Song B, Lu Y, Lv K, Gao W, Wang Y, Jiang G. The occurrence of per- and polyfluoroalkyl substances (PFASs) in fluoropolymer raw materials and products made in China. J Environ Sci (China) 2021; 107:77-86. [PMID: 34412789 DOI: 10.1016/j.jes.2021.01.027] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 01/21/2021] [Accepted: 01/24/2021] [Indexed: 06/13/2023]
Abstract
Perfluorooctanoic acid (PFOA), its salts, and related compounds were listed as new persistent organic pollutants by the Stockholm Convention in 2019. In this study, the occurrence of residues of PFOA and other per- and polyfluoroalkyl substances (PFASs) in raw materials and fluoropolymer products from the Chinese fluoropolymer industries are reported for the first time. The PFOA concentrations in raw materials and fluoropolymer products were in the range of 6.7 to 1.1 × 106 ng/g, and <MDL (method detection limit) to 5.3 × 103 ng/g, respectively. Generally, the levels of PFOA in raw materials were higher than in products, implying that PFOA in the emulsion/dispersion resin could be partly removed during the polymerization or post-processing steps. By tracking a company's polytetrafluoroethylene (PTFE) production line, it was found that over a 5 year period, the residual levels of PFOA in emulsion samples declined from 1.1 × 106 to 28.4 ng/g, indicating that the contamination of PFOA in fluoropolymer products from production source gradually decreased after its use had been discontinued. High concentrations of HFPO-TrA (2.7 × 105 to 8.2 × 105 ng/g) were detected in some emulsion samples indicating this alternative has been widely applied in fluoropolymer manufacturing in China.
Collapse
Affiliation(s)
- Lingyi Meng
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Boyu Song
- Foreign Environmental Cooperation Center, Ministry of Ecology and Environment of the China, Beijing 100035, China
| | - Yao Lu
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kun Lv
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Environment Research Institute, Shandong University, Qingdao 266237, China
| | - Wei Gao
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yawei Wang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China; School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310000, China.
| | - Guibin Jiang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
82
|
Abutbul RE, Manis-Levy H, Piness-Sommer M, Templeman T, Maman N, Visoly-Fisher I, Sarusi G, Golan Y. On the “Chemical Inertness” of Teflon in Chemical Synthesis. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.1c01452] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Ran E. Abutbul
- Department of Materials Engineering, Ben-Gurion University of the Negev, Be’er-Sheva 8410501, Israel
- Ilse Katz institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Be’er-Sheva 8410501, Israel
| | - Hadar Manis-Levy
- Ilse Katz institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Be’er-Sheva 8410501, Israel
- Photonics and Electro-optics Engineering Unit, School of Electrical and Computer Engineering, Ben-Gurion University of the Negev, Be’er-Sheva 8410501, Israel
| | - Meirav Piness-Sommer
- Department of Materials Engineering, Ben-Gurion University of the Negev, Be’er-Sheva 8410501, Israel
- Ilse Katz institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Be’er-Sheva 8410501, Israel
| | - Tzvi Templeman
- Department of Materials Engineering, Ben-Gurion University of the Negev, Be’er-Sheva 8410501, Israel
- Ilse Katz institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Be’er-Sheva 8410501, Israel
| | - Nitzan Maman
- Ilse Katz institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Be’er-Sheva 8410501, Israel
- Department of Solar Energy and Environmental Physics, Swiss Institute for Dryland Environmental and Energy Research, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben-Gurion 8499000, Israel
| | - Iris Visoly-Fisher
- Department of Solar Energy and Environmental Physics, Swiss Institute for Dryland Environmental and Energy Research, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben-Gurion 8499000, Israel
| | - Gabby Sarusi
- Ilse Katz institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Be’er-Sheva 8410501, Israel
- Photonics and Electro-optics Engineering Unit, School of Electrical and Computer Engineering, Ben-Gurion University of the Negev, Be’er-Sheva 8410501, Israel
| | - Yuval Golan
- Department of Materials Engineering, Ben-Gurion University of the Negev, Be’er-Sheva 8410501, Israel
- Ilse Katz institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Be’er-Sheva 8410501, Israel
| |
Collapse
|
83
|
Falireas PG, Ameduri B. Cobalt-Mediated Radical Copolymerization of Vinylidene Fluoride and 2,3,3,3-Trifluoroprop-1-ene. Polymers (Basel) 2021; 13:2676. [PMID: 34451216 PMCID: PMC8402042 DOI: 10.3390/polym13162676] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 08/05/2021] [Accepted: 08/06/2021] [Indexed: 01/18/2023] Open
Abstract
New copolymers based on vinylidene fluoride (VDF) and 2,3,3,3-tetrafluoroprop-1-ene (1234yf) were synthesized by organometallic-mediated radical copolymerization (OMRcP) using the combination of bis(tert-butylcyclohexyl) peroxydicarbonate initiator and bis(acetylacetonato)cobalt(II), (Co(acac)2) as a controlling agent. Kinetics studies of the copolymerization of the fluoroalkenes copolymers were monitored by GPC and 19F NMR with molar masses up to 12,200 g/mol and dispersities (Đ) ranging from 1.33 to 1.47. Such an OMRcP behaves as a controlled copolymerization, evidenced by the molar mass of the resulting copolymer-monomer conversion linear relationship. The reactivity ratios, ri, of both comonomers were determined by using the Fineman-Ross and Kelen-Tüdos fitting model leading to rVDF = 0.384 ± 0.013 and r1234yf = 2.147 ± 0.129 at 60 °C, showing that a lower reactivity of VDF integrated in the copolymer to a greater extent leads to the production of gradient or pseudo-diblock copolymers. In addition, the Q (0.03) and e (0.06 and 0.94) parameters were assessed, as well as the dyad statistic distributions and mean square sequence lengths of PVDF and P1234yf.
Collapse
Affiliation(s)
| | - Bruno Ameduri
- ICGM, Univ. Montpellier, CNRS, ENSCM, 34095 Montpellier, France;
| |
Collapse
|
84
|
Baby M, Periya VK, Soundiraraju B, Balachandran N, Cheriyan S, Sankaranarayanan SK, Maniyeri SC. Bio-mimicking hybrid polymer architectures as adhesion promoters for low and high surface energy substrates. J IND ENG CHEM 2021. [DOI: 10.1016/j.jiec.2021.05.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
85
|
Clark JL, Taylor A, Geddis A, Neyyappadath RM, Piscelli BA, Yu C, Cordes DB, Slawin AMZ, Cormanich RA, Guldin S, O'Hagan D. Supramolecular packing of alkyl substituted Janus face all- cis 2,3,4,5,6-pentafluorocyclohexyl motifs. Chem Sci 2021; 12:9712-9719. [PMID: 34349942 PMCID: PMC8293821 DOI: 10.1039/d1sc02130c] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 06/04/2021] [Indexed: 02/04/2023] Open
Abstract
This study uses X-ray crystallography, theory and Langmuir isotherm analysis to explore the conformations and molecular packing of alkyl all-cis 2,3,4,5,6-pentafluorocyclohexyl motifs, which are prepared by direct aryl hydrogenations from alkyl- or vinyl-pentafluoroaryl benzenes. Favoured conformations retain the more polar triaxial C-F bond arrangement of the all-cis 2,3,4,5,6-pentafluorocyclohexyl ring systems with the alkyl substituent adopting an equatorial orientation, and accommodating strong supramolecular interactions between rings. Langmuir isotherm analysis on a water subphase of a long chain fatty acid and alcohol carrying terminal all-cis 2,3,4,5,6-pentafluorocyclohexyl rings do not show any indication of monolayer assembly relative to their cyclohexane analogues, instead the molecules appear to aggregate and form higher molecular assemblies prior to compression. The study indicates the power and potential of this ring system as a motif for ordering supramolecular assembly.
Collapse
Affiliation(s)
- Joshua L Clark
- School of Chemistry, University of St Andrews North Haugh, St Andrews, Fife KY16 9ST UK
| | - Alaric Taylor
- Department of Chemical Engineering, University College London Torrington Place London WC1E 7JE UK
| | - Ailsa Geddis
- School of Chemistry, University of St Andrews North Haugh, St Andrews, Fife KY16 9ST UK
| | | | - Bruno A Piscelli
- Chemistry Institute, University of Campinas Monteiro Lobato Street, Campinas Sao Paulo 13083-862 Brazil
| | - Cihang Yu
- School of Chemistry, University of St Andrews North Haugh, St Andrews, Fife KY16 9ST UK
| | - David B Cordes
- School of Chemistry, University of St Andrews North Haugh, St Andrews, Fife KY16 9ST UK
| | - Alexandra M Z Slawin
- School of Chemistry, University of St Andrews North Haugh, St Andrews, Fife KY16 9ST UK
| | - Rodrigo A Cormanich
- Chemistry Institute, University of Campinas Monteiro Lobato Street, Campinas Sao Paulo 13083-862 Brazil
| | - Stefan Guldin
- Department of Chemical Engineering, University College London Torrington Place London WC1E 7JE UK
| | - David O'Hagan
- School of Chemistry, University of St Andrews North Haugh, St Andrews, Fife KY16 9ST UK
| |
Collapse
|
86
|
Weng R, Jiang J, Qu J, Li X, Zhang Q, Liu X. Effect of grinding aids and process parameters on dry fine grinding of polytetrafluoroethylene. POWDER TECHNOL 2021. [DOI: 10.1016/j.powtec.2021.03.040] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
87
|
Rumrill SM, Agarwal V, Lau KKS. Conformal Growth of Ultrathin Hydrophilic Coatings on Hydrophobic Surfaces Using Initiated Chemical Vapor Deposition. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:7751-7759. [PMID: 34125556 DOI: 10.1021/acs.langmuir.1c00918] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Hydrophilic poly(2-hydroxyethyl methacrylate) (PHEMA) was deposited onto hydrophobic polytetrafluoroethylene (PTFE) surfaces using initiated chemical vapor deposition. By tuning the reactor conditions, the reaction kinetics were varied to achieve a wide range of deposition rates that spanned over 2 orders of magnitude (∼0.1-10 nm/min). Depositions rates at >1 nm/min were successful in overcoming the interfacial energy and wettability barriers between the hydrophobic and hydrophilic polymers and were found to achieve both conformal and ultrathin coatings. PHEMA coatings as thin as ∼10 nm over PTFE were able to transform a hydrophobic surface with a water contact angle of ∼110° to a hydrophilic one with an angle of ∼20°.
Collapse
Affiliation(s)
- Shayna M Rumrill
- Department of Chemical and Biological Engineering, Drexel University, 3141 Chestnut Street, Philadelphia, Pennsylvania 19104, United States
| | - Vivek Agarwal
- W. L. Gore & Associates, Inc., 555 Paper Mill Road, Newark, Delaware 19711, United States
| | - Kenneth K S Lau
- Department of Chemical and Biological Engineering, Drexel University, 3141 Chestnut Street, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
88
|
Kolesnik I, Tverdokhlebova T, Danilenko N, Plotnikov E, Kulbakin D, Zheravin A, Bouznik V, Bolbasov E. Characterization and Determination of the Biocompatibility of Porous Polytetrafluoroethylene Membranes Fabricated via Electrospinning. J Fluor Chem 2021. [DOI: 10.1016/j.jfluchem.2021.109798] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
89
|
Venugopal K, Panchatcharam P, Chandrasekhar A, Shanmugasundaram V. Comprehensive Review on Triboelectric Nanogenerator Based Wrist Pulse Measurement: Sensor Fabrication and Diagnosis of Arterial Pressure. ACS Sens 2021; 6:1681-1694. [PMID: 33969980 DOI: 10.1021/acssensors.0c02324] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
As the world is marching into the era of the Internet of things (IoTs) and artificial intelligence (AI), the most vital requirement for reliable hardware development is an ultrafast response time and no performance degradation. As a reliable indicator of human physiological health, blood pressure measurement is vital in humans' daily lives, which creates a huge demand in monitoring and diagnosing blood pressure problems. The triboelectric nanogenerator (TENG) is one of the best energy devices and healthcare applications in the new era since triboelectrification is a universal and ubiquitous effect with an abundant choice of materials. TENG is reliable in physiological monitoring applications and has many benefits, including being inexpensive, easy to manufacture, and lightweight, having self-powered properties, and being available in a wide range of materials. In this review, triboelectric nanogenerator based wrist pulse measurement was summarized for blood pressure monitoring and diagnosis applications. As per the Ayurveda, imbalance in three essential components of the wrist pulse implies the human health status and reveals symptoms for diseases. The design of different TENG-based blood pressure sensors, sensing mechanisms, performance, merits, and demerits of each method are discussed.
Collapse
Affiliation(s)
- Karthikeyan Venugopal
- Teachning cum Research Associate (TRA), Department of Instrumentation, School of Electrical Engineering, Vellore Institute of Technology, Vellore, Tamil Nadu 632 014, India
| | - Parthasarathy Panchatcharam
- Department of Instrumentation, School of Electrical Engineering, Vellore Institute of Technology, Vellore, Tamil Nadu 632 014, India
| | - Arunkumar Chandrasekhar
- Nanosensors and Nanoenergy Lab, Department of Sensors and Biomedical Technology, School of Electronics Engineering, Vellore Institute of Technology, Vellore, Tamil Nadu 632014, India
| | - Vivekanandan Shanmugasundaram
- Department of Instrumentation, School of Electrical Engineering, Vellore Institute of Technology, Vellore, Tamil Nadu 632 014, India
| |
Collapse
|
90
|
Theodoridis A, Papamokos G, Wiesenfeldt MP, Wollenburg M, Müllen K, Glorius F, Floudas G. Polarity Matters: Dielectric Relaxation in All- cis-Multifluorinated Cycloalkanes. J Phys Chem B 2021; 125:3700-3709. [PMID: 33818098 DOI: 10.1021/acs.jpcb.1c00100] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The polarity of all-cis-multifluorinated cyclohexanes can be fine-tuned by the number and relative orientation of fluoro substituents, giving rise to a series of compounds with strong dipole moments. Simulations provided the energetics, the dipole moments, and the respective molecular polarizabilities, while dielectric spectroscopy gave information on the dielectric permittivities and the molecular dynamics. In special cases, dipole moments in excess of 6 D and dielectric permittivities of over 300 were obtained by simulation and experiment. Melting temperatures within a given family of multifluorinated cyclohexanes were found to scale with the molecular volume. The less-symmetric all-cis-octafluorotetrahydronaphthalene did not readily crystallize, permitting an investigation of the molecular dynamics in an energetically unfavorable yet rigid and facially polarized isomer. The resulting dynamics above the glass temperature conform to the structural α-relaxation and to the celebrated Johari-Goldstein β-relaxation.
Collapse
Affiliation(s)
| | - George Papamokos
- Department of Physics, University of Ioannina, 451 10 Ioannina, Greece
| | - Mario P Wiesenfeldt
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, 48149 Münster, Germany
| | - Marco Wollenburg
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, 48149 Münster, Germany
| | - Klaus Müllen
- Max-Planck-Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Frank Glorius
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, 48149 Münster, Germany
| | - George Floudas
- Department of Physics, University of Ioannina, 451 10 Ioannina, Greece.,University Research Center of Ioannina (URCI), Institute of Materials Science and Computing, 451 10 Ioannina, Greece
| |
Collapse
|
91
|
Sholokhova AY, Malkin AI, Buryak AK. Mass Spectrometric Study of Teflon Degradation Products after Mechanochemical Activation via Surface-Activated Laser Desorption/Ionization. RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY A 2021. [DOI: 10.1134/s0036024421040245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
92
|
O'Brien KT, Nadraws JW, Smith AB. A Difluoromethylene Linchpin/Synthon: Application in Conjunction with Anion Relay Chemistry (ARC) Permits Ready Access to Diverse Difluoromethylene Scaffolds. Org Lett 2021; 23:1521-1524. [PMID: 33175554 DOI: 10.1021/acs.orglett.0c03508] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Organodifluorine synthons, in conjuction with three-component diastereoselective anion relay chemistry (ARC), permit ready access to diverse difluoromethylene scaffolds. Initiated via [1,2]-addition of an organolithium reagent to a β-difluoromethylene silyl aldehyde, an alkoxide intermediate is formed, which is capable of undergoing a [1,4]-Brook rearrangement to generate a stabilized α-difluoromethylene carbanion, which, upon electrophile capture, affords a three-component adduct. This three component synthetic tactic represents a novel one-pot divergent strategy for the construction of diverse organodifluorine containing compounds.
Collapse
Affiliation(s)
- Kevin T O'Brien
- Department of Chemistry, University of Pennsylvania, 231 South 34th St., Philadelphia, Pennsylvania 19104, United States
| | - Jonathan W Nadraws
- Department of Chemistry, University of Pennsylvania, 231 South 34th St., Philadelphia, Pennsylvania 19104, United States
| | - Amos B Smith
- Department of Chemistry, University of Pennsylvania, 231 South 34th St., Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
93
|
Kredel J, Schmitt D, Schäfer JL, Biesalski M, Gallei M. Cross-Linking Strategies for Fluorine-Containing Polymer Coatings for Durable Resistant Water- and Oil-Repellency. Polymers (Basel) 2021; 13:polym13050723. [PMID: 33673433 PMCID: PMC7956606 DOI: 10.3390/polym13050723] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 02/23/2021] [Accepted: 02/23/2021] [Indexed: 11/16/2022] Open
Abstract
Functional coatings for application on surfaces are of growing interest. Especially in the textile industry, durable water and oil repellent finishes are of special demand for implementation in the outdoor sector, but also as safety-protection clothes against oil or chemicals. Such oil and chemical repellent textiles can be achieved by coating surfaces with fluoropolymers. As many concerns exist regarding (per)fluorinated polymers due to their high persistence and accumulation capacity in the environment, a durable and resistant coating is essential also during the washing processes of textiles. Within the present study, different strategies are examined for a durable resistant cross-linking of a novel fluoropolymer on the surface of fibers. The monomer 2-((1,1,2-trifluoro-2-(perfluoropropoxy)ethyl)thio)ethyl acrylate, whose fluorinated side-chain is degradable by treatment with ozone, was used for this purpose. The polymers were synthesized via free radical polymerization in emulsion, and different amounts of cross-linking reagents were copolymerized. The final polymer dispersions were applied to cellulose fibers and the cross-linking was induced thermally or by irradiation with UV-light. In order to investigate the cross-linking efficiency, tensile elongation studies were carried out. In addition, multiple washing processes of the fibers were performed and the polymer loss during washing, as well as the effects on oil and water repellency were investigated. The cross-linking strategy paves the way to a durable fluoropolymer-based functional coating and the polymers are expected to provide a promising and sustainable alternative to functional coatings.
Collapse
Affiliation(s)
- Julia Kredel
- Polymer Chemistry, Universität des Saarlandes, Campus Saarbrücken, 66123 Saarbrücken, Germany; (J.K.); (D.S.)
- Ernst-Berl Institute of Technical and Macromolecular Chemistry, Technische Universität Darmstadt, Alarich-Weiss-Straße 4, 64287 Darmstadt, Germany; (J.-L.S.); (M.B.)
| | - Deborah Schmitt
- Polymer Chemistry, Universität des Saarlandes, Campus Saarbrücken, 66123 Saarbrücken, Germany; (J.K.); (D.S.)
| | - Jan-Lukas Schäfer
- Ernst-Berl Institute of Technical and Macromolecular Chemistry, Technische Universität Darmstadt, Alarich-Weiss-Straße 4, 64287 Darmstadt, Germany; (J.-L.S.); (M.B.)
| | - Markus Biesalski
- Ernst-Berl Institute of Technical and Macromolecular Chemistry, Technische Universität Darmstadt, Alarich-Weiss-Straße 4, 64287 Darmstadt, Germany; (J.-L.S.); (M.B.)
| | - Markus Gallei
- Polymer Chemistry, Universität des Saarlandes, Campus Saarbrücken, 66123 Saarbrücken, Germany; (J.K.); (D.S.)
- Correspondence:
| |
Collapse
|
94
|
Zuo W, Zhang L, Zhang Z, Tang S, Sun Y, Huang H, Yu Y. Degradation of organic pollutants by intimately coupling photocatalytic materials with microbes: a review. Crit Rev Biotechnol 2021; 41:273-299. [PMID: 33525937 DOI: 10.1080/07388551.2020.1869689] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
With the rapid development of industry and agriculture, large amounts of organic pollutants have been released into the environment. Consequently, the degradation of refractory organic pollutants has become one of the toughest challenges in remediation. To solve this problem, intimate coupling of photocatalysis and biodegradation (ICPB) technology, which allows the simultaneous action of photocatalysis and biodegradation and thus integrates the advantages of photocatalytic reactions and biological treatments, was developed recently. ICPB consists mainly of porous carriers, photocatalysts, biofilms, and an illuminated reactor. Under illumination, photocatalysts on the surface of the carriers convert refractory pollutants into biodegradable products through photocatalytic reactions, after which these products are completely degraded by the biofilms cultivated in the carriers. Additionally, the biofilms are protected by the carriers from the harmful light and free radicals generated by the photocatalyst. Compared with traditional technologies, ICPB remarkably improves the degradation efficiency and reduces the cost of bioremediation. In this review, we introduce the origin and mechanisms of ICPB, discuss the development of reactors, carriers, photocatalysts, and biofilms used in ICPB, and summarize the applications of ICPB to treat organic pollutants. Finally, gaps in this research as well as future perspectives are discussed.
Collapse
Affiliation(s)
- Wenlu Zuo
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, PR China.,School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, PR China
| | - Lei Zhang
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, PR China
| | - Zhidong Zhang
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, PR China.,Institute of Microbiology, Xinjiang Academy of Agricultural Sciences, Xinjiang Uigur Autonomous Region, Urumqi, PR China
| | - Susu Tang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, PR China
| | - Yongjun Sun
- College of Urban Construction, Nanjing Tech University, Nanjing, PR China
| | - He Huang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, PR China
| | - Yadong Yu
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, PR China.,School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, PR China
| |
Collapse
|
95
|
Tetrafluoroethylene telomers obtained by radiation-chemical synthesis with various telogens. J Fluor Chem 2021. [DOI: 10.1016/j.jfluchem.2020.109699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
96
|
Bouad V, Guerre M, Totée C, Silly G, Gimello O, Améduri B, Tahon JF, Poli R, Barrau S, Ladmiral V. RAFT polymerisation of trifluoroethylene: the importance of understanding reverse additions. Polym Chem 2021. [DOI: 10.1039/d0py01754j] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
This article is the first report of the RAFT polymerisation of trifluoroethylene (TrFE).
Collapse
Affiliation(s)
| | - Marc Guerre
- IMRCP
- Université de Toulouse
- CNRS UMR 5623
- Université Paul Sabatier
- 31062 Toulouse Cedex 9
| | | | | | | | | | - Jean-François Tahon
- Université de Lille
- Sciences et Technologies
- CNRS
- Unité Matériaux Et Transformations (UMET)
- F-59000 Lille
| | - Rinaldo Poli
- CNRS
- LCC (Laboratoire de Chimie de Coordination)
- UPS
- INPT
- Université de Toulouse
| | - Sophie Barrau
- Université de Lille
- Sciences et Technologies
- CNRS
- Unité Matériaux Et Transformations (UMET)
- F-59000 Lille
| | | |
Collapse
|
97
|
Li M, Sun J, Fang Q. A fluoropolymer with a low dielectric constant at a high frequency derived from bio-based anethole. Polym Chem 2021. [DOI: 10.1039/d1py00573a] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The copolymerization between a fluoro-containing monomer derived from bio-based anethole and a benzocyclobutene (BCB)-containing monomer gave a polymer with good dielectric properties and low water uptake.
Collapse
Affiliation(s)
- Minghui Li
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules
- Center for Excellence in Molecular Synthesis
- Shanghai Institute of Organic Chemistry
- University of Chinese Academy of Sciences
- Chinese Academy of Sciences
| | - Jing Sun
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules
- Center for Excellence in Molecular Synthesis
- Shanghai Institute of Organic Chemistry
- University of Chinese Academy of Sciences
- Chinese Academy of Sciences
| | - Qiang Fang
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules
- Center for Excellence in Molecular Synthesis
- Shanghai Institute of Organic Chemistry
- University of Chinese Academy of Sciences
- Chinese Academy of Sciences
| |
Collapse
|
98
|
Eid N, Améduri B, Gimello O, Bonnet A, Devisme S. Vinylidene fluoride polymerization by metal-free selective activation of hydrogen peroxide: microstructure determination and mechanistic study. Polym Chem 2021. [DOI: 10.1039/d0py01625j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Hydrogen peroxide-initiated radical polymerization of vinylidene fluoride (VDF) at 130 °C in dimethyl carbonate is presented.
Collapse
Affiliation(s)
- Nadim Eid
- Institut Charles Gerhardt
- ICGM
- Univ. Montpellier
- CNRS
- ENSCM
| | - Bruno Améduri
- Institut Charles Gerhardt
- ICGM
- Univ. Montpellier
- CNRS
- ENSCM
| | | | - Anthony Bonnet
- Centre de Recherche Rhône-Alpes (CRRA)
- 69491 Pierre-Bénite Cedex
- France
| | - Samuel Devisme
- Centre de Recherche Rhône-Alpes (CRRA)
- 69491 Pierre-Bénite Cedex
- France
| |
Collapse
|
99
|
Abstract
Synthesis of semifluorinated polymers containing fluorous groups on the backbone or as side chains is an increasingly popular field of research.
Collapse
Affiliation(s)
- Joseph A. Jaye
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, USA
| | - Ellen M. Sletten
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, USA
| |
Collapse
|
100
|
Bouad V, Guerre M, Zeliouche S, Améduri B, Totée C, Silly G, Poli R, Ladmiral V. NMR investigations of polytrifluoroethylene (PTrFE) synthesized by RAFT. Polym Chem 2021. [DOI: 10.1039/d0py01753a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Identification of the 1H, 19F, and 13C NMR signals of the end-groups of polytrifluoroethylene synthesized by RAFT polymerisation.
Collapse
Affiliation(s)
| | - Marc Guerre
- Laboratoire des IMRCP
- Université de Toulouse
- CNRS UMR 5623
- Université Paul Sabatier
- 31062 Toulouse Cedex 9
| | | | | | | | | | - Rinaldo Poli
- CNRS
- LCC (Laboratoire de Chimie de Coordination)
- UPS
- INPT
- Université de Toulouse
| | | |
Collapse
|