51
|
Design, Synthesis and Antifungal/Nematicidal Activity of Novel 1,2,4-Oxadiazole Derivatives Containing Amide Fragments. Int J Mol Sci 2022; 23:ijms23031596. [PMID: 35163522 PMCID: PMC8836147 DOI: 10.3390/ijms23031596] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 01/25/2022] [Accepted: 01/26/2022] [Indexed: 12/19/2022] Open
Abstract
Plant diseases that are caused by fungi and nematodes have become increasingly serious in recent years. However, there are few pesticide chemicals that can be used for the joint control of fungi and nematodes on the market. To solve this problem, a series of novel 1,2,4-oxadiazole derivatives containing amide fragments were designed and synthesized. Additionally, the bioassays revealed that the compound F15 demonstrated excellent antifungal activity against Sclerotinia sclerotiorum (S. sclerotiorum) in vitro, and the EC50 value of that was 2.9 μg/mL, which is comparable with commonly used fungicides thifluzamide and fluopyram. Meanwhile, F15 demonstrated excellent curative and protective activity against S. sclerotiorum-infected cole in vivo. The scanning electron microscopy results showed that the hyphae of S. sclerotiorum treated with F15 became abnormally collapsed and shriveled, thereby inhibiting the growth of the hyphae. Furthermore, F15 exhibited favorable inhibition against the succinate dehydrogenase (SDH) of the S. sclerotiorum (IC50 = 12.5 μg/mL), and the combination mode and binding ability between compound F15 and SDH were confirmed by molecular docking. In addition, compound F11 showed excellent nematicidal activity against Meloidogyne incognita at 200 μg/mL, the corrected mortality rate was 93.2%, which is higher than that of tioxazafen.
Collapse
|
52
|
Tang X, Zhou Q, Zhan W, Hu D, Zhou R, Sun N, Chen S, Wu W, Xue W. Synthesis of novel antibacterial and antifungal quinoxaline derivatives. RSC Adv 2022; 12:2399-2407. [PMID: 35425241 PMCID: PMC8979181 DOI: 10.1039/d1ra07559d] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 12/27/2021] [Indexed: 12/14/2022] Open
Abstract
A series of quinoxaline derivatives were designed, synthesized and evaluated as antimicrobial agents against plant pathogenic bacteria and fungi. Some of these compounds exhibited significant antibacterial and antifungal activities in vitro. Compound 5k displayed good antibacterial activity against Acidovorax citrulli (Ac). Compounds 5j and 5t exhibited the most potent anti-RS (Rhizoctonia solani) activity, with the corresponding EC50 values of 8.54 and 12.01 μg mL-1, respectively, which are superior to that of the commercial azoxystrobin (26.17 μg mL-1). Further, the scanning electron microscopy results proved that compound 5j had certain effects on the cell morphology of RS. Moreover, an in vivo bioassay also demonstrated that the anti-RS activity of compound 5j could effectively control rice sheath blight. These results indicate that quinoxaline derivatives could be promising agricultural bactericides and fungicides.
Collapse
Affiliation(s)
- Xuemei Tang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Research and Development Center for Fine Chemicals, Guizhou University Guiyang 550025 P. R. China +86-851-88292090 +86-851-88292090
| | - Qing Zhou
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Research and Development Center for Fine Chemicals, Guizhou University Guiyang 550025 P. R. China +86-851-88292090 +86-851-88292090
| | - Wenliang Zhan
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Research and Development Center for Fine Chemicals, Guizhou University Guiyang 550025 P. R. China +86-851-88292090 +86-851-88292090
| | - Die Hu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Research and Development Center for Fine Chemicals, Guizhou University Guiyang 550025 P. R. China +86-851-88292090 +86-851-88292090
| | - Ran Zhou
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Research and Development Center for Fine Chemicals, Guizhou University Guiyang 550025 P. R. China +86-851-88292090 +86-851-88292090
| | - Nan Sun
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Research and Development Center for Fine Chemicals, Guizhou University Guiyang 550025 P. R. China +86-851-88292090 +86-851-88292090
| | - Shuai Chen
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Research and Development Center for Fine Chemicals, Guizhou University Guiyang 550025 P. R. China +86-851-88292090 +86-851-88292090
| | - Wenneng Wu
- Food and Pharmaceutical Engineering Institute, Guiyang University Guiyang 550003 P. R. China
| | - Wei Xue
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Research and Development Center for Fine Chemicals, Guizhou University Guiyang 550025 P. R. China +86-851-88292090 +86-851-88292090
| |
Collapse
|
53
|
Du S, Yuan Q, Hu X, Fu W, Xu Q, Wei Z, Xu J, Shao X, Qian X. Synthesis and Biological Activity of Novel Antifungal Leads: 3,5-Dichlorobenzyl Ester Derivatives. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:15521-15529. [PMID: 34928597 DOI: 10.1021/acs.jafc.1c04022] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Succinate dehydrogenase (SDH) is one of the most important molecular targets for the development of new fungicides. Carboxamide fungicides are a class of SDH inhibitors widely used to inhibit highly destructive plant pathogens. Although cases of resistance have been found in fungal pathogens due to the unrestricted use in recent years, there is still demand for new compounds with improved fungicidal activity. Therefore, a series of ester compounds were designed to investigate potential novel antifungal molecules. First, the antifungal activity of different benzyl alcohol compounds (A1-A21) was tested, and a highly active fragment (3,5-dichlorobenzyl alcohol) was found. Subsequently, various compounds were synthesized by esterification between different acids and 3,5-dichlorobenzyl alcohol, among which compound 5 exhibited remarkable antifungal activity against Botrytis cinerea and Rhizoctonia solani with EC50 values of 6.60 and 1.61 mg/L, respectively, which were comparable to those of commercial fungicide boscalid (EC50 = 1.24 and 1.01 mg/L). In vivo testing further demonstrated that compound 5 was effective in suppressing B. cinerea (200 mg/L, 50.9%). Moreover, SDH inhibition assays, fluorescence quenching analysis, and determination of mitochondrial membrane potential revealed that compound 5 has similar effects to boscalid. Furthermore, the fungicidal activity of target compounds can be maintained by modifying the amide bond to an ester bond. These results will provide basis for the development of novel fungicides.
Collapse
Affiliation(s)
- Shaoqing Du
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Qinglong Yuan
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Xueping Hu
- Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Wen Fu
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Qi Xu
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Ziyi Wei
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Jiazheng Xu
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Xusheng Shao
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Xuhong Qian
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China
| |
Collapse
|
54
|
Yang Z, Sun Y, Liu Q, Li A, Wang W, Gu W. Design, Synthesis, and Antifungal Activity of Novel Thiophene/Furan-1,3,4-Oxadiazole Carboxamides as Potent Succinate Dehydrogenase Inhibitors. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:13373-13385. [PMID: 34735146 DOI: 10.1021/acs.jafc.1c03857] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Succinate dehydrogenase (SDH) is known as an ideal target for the investigations of fungicides. To develop novel SDH inhibitors, 30 novel thiophene/furan-1,3,4-oxadiazole carboxamide derivatives were designed and synthesized. In the in vitro antifungal assay, a majority of the target compounds demonstrated fair to potent antifungal activity against seven tested phytopathogenic fungi. Compounds 4b, 4g, 4h, 4i, and 5j showed remarkable antifungal activity against Sclerotinia sclerotiorum, affording EC50 values ranging from 0.1∼1.1 mg/L. In particular, compound 4i displayed the most potent activity against S. sclerotiorum (EC50 = 0.140 ± 0.034 mg/L), which was superior to that of boscalid (EC50 = 0.645 ± 0.023 mg/L). A further morphological investigation revealed the abnormal mycelia and damaged cell structures of compound 4i-treated S. sclerotiorum by scanning electron microscopy. Furthermore, the in vivo antifungal assay against S. sclerotiorum revealed that compounds 4g and 4i were effective for suppressing rape Sclerotinia rot at a dosage of 200 mg/L. In the SDH inhibition assay, compounds 4g and 4i also presented significant inhibitory activity with IC50 values of 1.01 ± 0.21 and 4.53 ± 0.19 μM, respectively, which were superior or equivalent to that of boscalid (3.51 ± 2.02 μM). Molecular docking and molecular dynamics simulation of compound 4g with SDH revealed that compound 4g could form strong interactions with the key residues of the SDH. These results indicated that this class of derivatives could be a promising scaffold for the discovery and development of novel SDH inhibitors.
Collapse
Affiliation(s)
- Zihui Yang
- Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-forest Biomass, Jiangsu Key Lab of Biomass-based Green Fuels and Chemicals, Co-Innovation Center for Efficient Processing and Utilization of Forest Products, College of Chemical Engineering, Nanjing Forestry University, Nanjing210037, P. R. China
| | - Yue Sun
- Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-forest Biomass, Jiangsu Key Lab of Biomass-based Green Fuels and Chemicals, Co-Innovation Center for Efficient Processing and Utilization of Forest Products, College of Chemical Engineering, Nanjing Forestry University, Nanjing210037, P. R. China
| | - Qingsong Liu
- Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-forest Biomass, Jiangsu Key Lab of Biomass-based Green Fuels and Chemicals, Co-Innovation Center for Efficient Processing and Utilization of Forest Products, College of Chemical Engineering, Nanjing Forestry University, Nanjing210037, P. R. China
| | - Aliang Li
- Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-forest Biomass, Jiangsu Key Lab of Biomass-based Green Fuels and Chemicals, Co-Innovation Center for Efficient Processing and Utilization of Forest Products, College of Chemical Engineering, Nanjing Forestry University, Nanjing210037, P. R. China
| | - Wenyan Wang
- Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-forest Biomass, Jiangsu Key Lab of Biomass-based Green Fuels and Chemicals, Co-Innovation Center for Efficient Processing and Utilization of Forest Products, College of Chemical Engineering, Nanjing Forestry University, Nanjing210037, P. R. China
| | - Wen Gu
- Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-forest Biomass, Jiangsu Key Lab of Biomass-based Green Fuels and Chemicals, Co-Innovation Center for Efficient Processing and Utilization of Forest Products, College of Chemical Engineering, Nanjing Forestry University, Nanjing210037, P. R. China
| |
Collapse
|
55
|
Li S, Li X, Zhang H, Wang Z, Xu H. The research progress in and perspective of potential fungicides: Succinate dehydrogenase inhibitors. Bioorg Med Chem 2021; 50:116476. [PMID: 34757244 DOI: 10.1016/j.bmc.2021.116476] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 09/24/2021] [Accepted: 10/11/2021] [Indexed: 12/21/2022]
Abstract
Succinate dehydrogenase inhibitors (SDHIs) have become one of the fastest growing classes of new fungicides since entering the market, and have attracted increasing attention as a result of their unique structure, high activity and broad fungicidal spectrum. The mechanism of SDHIs is to inhibit the activity of succinate dehydrogenase, thereby affecting mitochondrial respiration and ultimately killing pathogenic fungi. At present, they have become popular varieties researched and developed by major pesticide companies in the world. In the review, we focused on the mechanism, the history, the representative varieties, structure-activity relationship and resistance of SDHIs. Finally, the potential directions for the development of SDHIs were discussed. It is hoped that this review can strengthen the individuals' understanding of SDHIs and provide some inspiration for the development of new fungicides.
Collapse
Affiliation(s)
- Shuqi Li
- Engineering Research Center of Pesticide of Heilongjiang Province, College of Advanced Agriculture and Ecological Environment, Heilongjiang University, 150080 Harbin, China
| | - Xiangshuai Li
- Engineering Research Center of Pesticide of Heilongjiang Province, College of Advanced Agriculture and Ecological Environment, Heilongjiang University, 150080 Harbin, China
| | - Hongmei Zhang
- Engineering Research Center of Pesticide of Heilongjiang Province, College of Advanced Agriculture and Ecological Environment, Heilongjiang University, 150080 Harbin, China
| | - Zishi Wang
- Engineering Research Center of Pesticide of Heilongjiang Province, College of Advanced Agriculture and Ecological Environment, Heilongjiang University, 150080 Harbin, China.
| | - Hongliang Xu
- Engineering Research Center of Pesticide of Heilongjiang Province, College of Advanced Agriculture and Ecological Environment, Heilongjiang University, 150080 Harbin, China.
| |
Collapse
|
56
|
Wang X, Wang M, Han L, Jin F, Jiao J, Chen M, Yang C, Xue W. Novel Pyrazole-4-acetohydrazide Derivatives Potentially Targeting Fungal Succinate Dehydrogenase: Design, Synthesis, Three-Dimensional Quantitative Structure-Activity Relationship, and Molecular Docking. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:9557-9570. [PMID: 34382800 DOI: 10.1021/acs.jafc.1c03399] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Succinate dehydrogenase inhibitors (SDHIs) have emerged in fungicide markets as one of the fastest-growing categories that are widely applied in agricultural production for crop protection. Currently, the structural modification focusing on the flexible amide link of SDHI molecules is being gradually identified as one of the innovative strategies for developing novel highly efficient and broad-spectrum fungicides. Based on the above structural features, a series of pyrazole-4-acetohydrazide derivatives potentially targeting fungal SDH were constructed and evaluated for their antifungal effects against Rhizoctonia solani, Fusarium graminearum, and Botrytis cinerea. Strikingly, the in vitro EC50 values of constructed pyrazole-4-acetohydrazides 6w against R. solani, 6c against F. graminearum, and 6f against B. cinerea were, respectively, determined as 0.27, 1.94, and 1.93 μg/mL, which were obviously superior to that of boscalid against R. solani (0.94 μg/mL), fluopyram against F. graminearum (9.37 μg/mL), and B. cinerea (1.94 μg/mL). Concurrently, the effects of the substituent steric, electrostatic, hydrophobic, and hydrogen-bond fields on structure-activity relationships were elaborated by the reliable comparative molecular field analysis and comparative molecular similarity index analysis models. Subsequently, the practical value of pyrazole-4-acetohydrazide derivative 6w as a potential SDHI was ascertained by the relative surveys on the in vivo anti-R. solani preventative efficacy, inhibitory effects against fungal SDH, and molecular docking studies. The present results provide an indispensable complement for the structural optimization of antifungal leads potentially targeting SDH.
Collapse
Affiliation(s)
- Xiaobin Wang
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
- College of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
- Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China
| | - Mengqi Wang
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Ling Han
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Fei Jin
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Jian Jiao
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Min Chen
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Chunlong Yang
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Wei Xue
- Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China
| |
Collapse
|
57
|
Xia D, Cheng X, Liu X, Zhang C, Wang Y, Liu Q, Zeng Q, Huang N, Cheng Y, Lv X. Discovery of Novel Pyrazole Carboxylate Derivatives Containing Thiazole as Potential Fungicides. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:8358-8365. [PMID: 34278792 DOI: 10.1021/acs.jafc.1c01189] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Inspired by commercially established fluxapyroxad as the lead compound of novel efficient antifungal ingredients, novel pyrazole carboxylate derivatives containing a flexible thiazole backbone were successfully designed, synthesized, and detected for their in vitro and in vivo biological activities against eight agricultural fungi. The antifungal bioassay results showed that compound 24 revealed excellent bioactivities against Botrytis cinerea and Sclerotinia sclerotiorum, with median effective concentrations (EC50) of 0.40 and 3.54 mg/L, respectively. Compound 15 revealed remarkable antifungal activity against Valsa mali, with an EC50 value of 0.32 mg/L. For in vivo fungicide control against B. cinerea and V. mali, compounds 3 and 24 at 25 mg/L, respectively, displayed prominent efficacy on cherry tomatoes and apple branches. Molecular docking results demonstrated that compound 15 could form an interaction with several crucial residues of succinate dehydrogenase (SDH), and the in vitro enzyme assay indicated that the target compound 15 displayed an inhibitory effect toward SDH, with an IC50 value of 82.26 μM. The experimental results indicated that phenyl pyrazole carboxylate derivatives displayed a weak antifungal property and low activity compared to the other title substituent pyrazole carboxylate derivatives. Compounds 3, 15, and 24 are promising antifungal candidates worthy of further fungicide development due to their prominent effectiveness.
Collapse
Affiliation(s)
- Dongguo Xia
- School of Science, Anhui Agricultural University, Hefei 230036, China
| | - Xiang Cheng
- School of Science, Anhui Agricultural University, Hefei 230036, China
| | - Xiaohang Liu
- School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| | - Chengqi Zhang
- School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| | - Yunxiao Wang
- School of Science, Anhui Agricultural University, Hefei 230036, China
| | - Qiaoyun Liu
- School of Science, Anhui Agricultural University, Hefei 230036, China
| | - Qi Zeng
- School of Science, Anhui Agricultural University, Hefei 230036, China
| | - Niqian Huang
- School of Science, Anhui Agricultural University, Hefei 230036, China
| | - Yao Cheng
- School of Science, Anhui Agricultural University, Hefei 230036, China
| | - Xianhai Lv
- School of Science, Anhui Agricultural University, Hefei 230036, China
| |
Collapse
|
58
|
Wang X, Chai J, Kong X, Jin F, Chen M, Yang C, Xue W. Expedient discovery for novel antifungal leads: 1,3,4-Oxadiazole derivatives bearing a quinazolin-4(3H)-one fragment. Bioorg Med Chem 2021; 45:116330. [PMID: 34333395 DOI: 10.1016/j.bmc.2021.116330] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/19/2021] [Accepted: 07/20/2021] [Indexed: 02/07/2023]
Abstract
Developing novel fungicide candidates are intensively promoted by the rapid emergences of resistant fungi that outbreak on agricultural production. Aiming to discovery novel antifungal leads, a series of 1,3,4-oxadiazole derivatives bearing a quinazolin-4(3H)-one fragment were constructed for evaluating their inhibition effects against phytopathogenic fungi in vitro and in vivo. Systematically structural optimizations generated the bioactive molecule I32 that was identified as a promising inhibitor against Rhizoctonia solani with the in vivo preventative effect of 58.63% at 200 μg/mL. The observations that were captured by scanning electron microscopy and transmission electron microscopy demonstrated that the bioactive molecule I32 could induce the sprawling growth of hyphae, the local shrinkage and rupture on hyphal surfaces, the extreme swelling of vacuoles, the striking distortions on cell walls, and the reduction of mitochondria numbers. The above results provided an indispensable complement for the discovery of antifungal lead bearing a quinazolin-4(3H)-one and 1,3,4-oxadiazole fragment.
Collapse
Affiliation(s)
- Xiaobin Wang
- Jiangsu Key Laboratory of Pesticide Science, Key Laboratory of Monitoring and Management of Crop Diseases and Pest Insects, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, China; College of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China; Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China
| | - Jianqi Chai
- Jiangsu Key Laboratory of Pesticide Science, Key Laboratory of Monitoring and Management of Crop Diseases and Pest Insects, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiangyi Kong
- Jiangsu Key Laboratory of Pesticide Science, Key Laboratory of Monitoring and Management of Crop Diseases and Pest Insects, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Fei Jin
- Jiangsu Key Laboratory of Pesticide Science, Key Laboratory of Monitoring and Management of Crop Diseases and Pest Insects, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Min Chen
- Jiangsu Key Laboratory of Pesticide Science, Key Laboratory of Monitoring and Management of Crop Diseases and Pest Insects, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Chunlong Yang
- Jiangsu Key Laboratory of Pesticide Science, Key Laboratory of Monitoring and Management of Crop Diseases and Pest Insects, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, China.
| | - Wei Xue
- Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China
| |
Collapse
|
59
|
Sun SX, Yan JH, Zuo JT, Wang XB, Chen M, Lu AM, Yang CL, Li GH. Design, synthesis, antifungal evaluation, and molecular docking of novel 1,2,4-triazole derivatives containing oxime ether and cyclopropyl moieties as potential sterol demethylase inhibitors. NEW J CHEM 2021. [DOI: 10.1039/d1nj03578a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
A series of novel triazole derivatives containing oxime ether and cyclopropyl moieties were designed and synthesized. Some compounds exhibited remarkable antifungal activities. The molecular docking of compound 5k with FgCYP51 was investigated.
Collapse
Affiliation(s)
- Sheng-Xin Sun
- Jiangsu Key Laboratory of Pesticide Science, Nanjing Agricultural University, Nanjing, 210095, P. R. China
| | - Jing-Hua Yan
- Jiangsu Key Laboratory of Pesticide Science, Nanjing Agricultural University, Nanjing, 210095, P. R. China
| | - Jiang-Tao Zuo
- Jiangsu Key Laboratory of Pesticide Science, Nanjing Agricultural University, Nanjing, 210095, P. R. China
| | - Xiao-Bin Wang
- Jiangsu Key Laboratory of Pesticide Science, Nanjing Agricultural University, Nanjing, 210095, P. R. China
| | - Min Chen
- Jiangsu Key Laboratory of Pesticide Science, Nanjing Agricultural University, Nanjing, 210095, P. R. China
- Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing, 210095, P. R. China
| | - Ai-Min Lu
- Jiangsu Key Laboratory of Pesticide Science, Nanjing Agricultural University, Nanjing, 210095, P. R. China
| | - Chun-Long Yang
- Jiangsu Key Laboratory of Pesticide Science, Nanjing Agricultural University, Nanjing, 210095, P. R. China
- Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing, 210095, P. R. China
| | - Guo-Hua Li
- Jiangsu Key Laboratory of Pesticide Science, Nanjing Agricultural University, Nanjing, 210095, P. R. China
| |
Collapse
|