51
|
High-mobility Group Box 1 Protein in Pediatric Trauma Patients With Acute Traumatic Coagulopathy or Disseminated Intravascular Coagulation. J Pediatr Hematol Oncol 2020; 42:e712-e717. [PMID: 32218095 DOI: 10.1097/mph.0000000000001788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVES Trauma can induce the release of high-mobility group box 1 (HMGB1), which plays an important role in the activation of coagulation. In this study, we aimed to evaluate the role of HMGB1 in the early diagnosis of acute traumatic coagulopathy (ATC), disseminated intravascular coagulation, and clinical course. MATERIALS AND METHODS One hundred pediatric trauma patients and 50 healthy controls were enrolled. Demographic data, physical examination results, trauma scores, International Society on Thrombosis and Hemostasis score, laboratory values, transfusion requirements, and needs for mechanical ventilation were recorded. Blood samples for HMGB1 were assessed by an enzyme-linked immunosorbent assay. RESULTS Thirty-five patients had ATC and 3 patients had overt disseminated intravascular coagulation. In trauma patients, HMGB1 levels were statistically higher than those in the control group (P<0.001). There was a positive correlation between HMGB1 levels and D-dimer levels (r=0.589, P<0.001). ATC patients had higher plasma HMGB1 levels than those without ATC (P=0.008). High HMGB1 levels were associated with the duration of mechanical ventilation, need for intensive care unit observation, length of hospital stay, and mortality. CONCLUSION This study showed the early increase of HMGB1 in pediatric trauma cases and demonstrated the significant association of high HMGB1 levels with the development of ATC, disseminated intravascular coagulation, trauma severity, clinical outcome, and mortality.
Collapse
|
52
|
Chen L, Li J, Ye Z, Sun B, Wang L, Chen Y, Han J, Yu M, Wang Y, Zhou Q, Seidler U, Tian D, Xiao F. Anti-High Mobility Group Box 1 Neutralizing-Antibody Ameliorates Dextran Sodium Sulfate Colitis in Mice. Front Immunol 2020; 11:585094. [PMID: 33193406 PMCID: PMC7661783 DOI: 10.3389/fimmu.2020.585094] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Accepted: 10/12/2020] [Indexed: 12/16/2022] Open
Abstract
High mobility group box 1 (HMGB1) is a ubiquitous nuclear protein in mammals. When released into the extracellular space, it acts as a damage-associated molecular pattern. This study investigates whether increased HMGB1 levels are found in the intestinal mucosa of ulcerative colitis (UC) patients, and whether an anti-HMGB1 neutralizing-antibody (HnAb) can inhibit the intestinal inflammation elicited by dextran sulfate sodium (DSS) in mice. Because toll-like receptor 4 (TLR4) is implicated in HMGB1-mediated immune cell activation, DSS colitis was also elicited in TLR4-deficient mice in the presence and absence of HnAb. The expression of HMGB1 in UC patients was examined. HnAb was administered via intraperitoneal injection to TLR4 deficient mice and their wild-type littermates, both being induced to colitis with DSS. Finally, the protective effect of HnAb and TLR4 deficiency were evaluated. In UC patients, HMGB1 was up-regulated in the inflamed colon. When administered during DSS application, HnAb alleviated the severity of colitis with a lower disease activity index, limited histological damages, and reduced production of proinflammatory cytokines. This antibody also limited colonic barrier loss, decreased colonic lamina propria macrophages and partially reversed the DSS treatment-associated dysbiosis. The protective effect of this antibody was enhanced in TLR4-deficient mice in some aspects, indicating that both additional HMGB1-mediated as well as TLR4-mediated inflammatory signaling pathways were involved in the induction of colitis by DSS. HnAb ameliorated colitis via macrophages inhibition and colonic barrier protection. It may therefore be a novel treatment option in colitis.
Collapse
Affiliation(s)
- Liping Chen
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Junhua Li
- Department of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhenghao Ye
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Binghua Sun
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lu Wang
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory of Organ Transplantation, Ministry of Education, Wuhan, China.,Key Laboratory of Organ Transplantation, National Health Commission, Wuhan, China.,Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
| | - Yu Chen
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jian Han
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Meiping Yu
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ying Wang
- Department of Pathology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qi Zhou
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ursula Seidler
- Department of Gastroenterology, Hannover Medical School, Hannover, Germany
| | - De'an Tian
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fang Xiao
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
53
|
Nakamura T, Okui T, Hasegawa K, Ryumon S, Ibaragi S, Ono K, Kunisada Y, Obata K, Masui M, Shimo T, Sasaki A. High mobility group box 1 induces bone pain associated with bone invasion in a mouse model of advanced head and neck cancer. Oncol Rep 2020; 44:2547-2558. [PMID: 33125145 PMCID: PMC7640359 DOI: 10.3892/or.2020.7788] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 09/11/2020] [Indexed: 12/13/2022] Open
Abstract
Advanced head and neck cancer (HNC) can invade facial bone and cause bone pain, thus posing a significant challenge to the quality of life of patients presenting with advanced HNC. The present study was designed to investigate HNC bone pain (HNC-BP) in an intratibial mouse xenograft model that utilized an HNC cell line (SAS cells). These mice develop HNC-BP that is associated with an expression of phosphorylated ERK1/2 (pERK1/2), which is a molecular indicator of neuron excitation in dorsal root ganglia (DRG) sensory neurons. Our experiments demonstrated that the inhibition of high mobility group box 1 (HMGB1) by short hairpin (shRNA) transduction, HMGB1 neutralizing antibody, and HMGB1 receptor antagonist suppressed the HNC-BP and the pERK1/2 expression in DRG. It was also observed that HNC-derived HMGB1 increased the expression of the acid-sensing nociceptor, transient receptor potential vanilloid 1 (TRPV1), which is a major cause of osteoclastic HNC-BP in DRG. Collectively, our results demonstrated that HMGB1 originating in HNC evokes HNC-BP via direct HMGB1 signaling and hypersensitization for the acid environment in sensory neurons.
Collapse
Affiliation(s)
- Tomoya Nakamura
- Department of Oral and Maxillofacial Surgery and Biopathology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Science, Okayama 700‑8525, Japan
| | - Tatsuo Okui
- Department of Oral and Maxillofacial Surgery and Biopathology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Science, Okayama 700‑8525, Japan
| | - Kazuaki Hasegawa
- Department of Oral and Maxillofacial Surgery and Biopathology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Science, Okayama 700‑8525, Japan
| | - Shoji Ryumon
- Department of Oral and Maxillofacial Surgery and Biopathology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Science, Okayama 700‑8525, Japan
| | - Soichiro Ibaragi
- Department of Oral and Maxillofacial Surgery and Biopathology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Science, Okayama 700‑8525, Japan
| | - Kisho Ono
- Department of Oral and Maxillofacial Surgery and Biopathology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Science, Okayama 700‑8525, Japan
| | - Yuki Kunisada
- Department of Oral and Maxillofacial Surgery and Biopathology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Science, Okayama 700‑8525, Japan
| | - Kyoichi Obata
- Department of Oral and Maxillofacial Surgery and Biopathology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Science, Okayama 700‑8525, Japan
| | - Masanori Masui
- Department of Oral and Maxillofacial Surgery and Biopathology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Science, Okayama 700‑8525, Japan
| | - Tsuyoshi Shimo
- Division of Reconstructive Surgery for Oral and Maxillofacial Region, Department of Human Biology and Pathophysiology, School of Dentistry, Health Sciences University of Hokkaido, Hokkaido 061‑0293, Japan
| | - Akira Sasaki
- Department of Oral and Maxillofacial Surgery and Biopathology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Science, Okayama 700‑8525, Japan
| |
Collapse
|
54
|
Tommy T, Islam AA, Hatta M, Bukhari A. Immunomodulatory properties of high mobility group box 1 and its potential role in brain injury: Review article. Ann Med Surg (Lond) 2020; 59:106-109. [PMID: 32994992 PMCID: PMC7511818 DOI: 10.1016/j.amsu.2020.09.025] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 09/10/2020] [Accepted: 09/12/2020] [Indexed: 11/29/2022] Open
Abstract
Background Human mobility group box 1 (HMGB1) is a novel biomolecular agent which has a major part in inflammation process. HMGB1 has been known to be a strong pro-inflammatory factor as damage associated molecular pattern (DAMP) which its interaction with its receptor, the receptor of advanced glycation end products (RAGE), will cause positive amplification of inflammation signalling pathway. Brain injury is one of the major contributors for disability and death which neuroinflammation has a major role in its pathogenesis and influencing its outcome. In neuroinflammation, it has been described that HMGB1 may have a pivotal role in the process. Objective The objective of this article is to review the role HMGB1 in brain injury and its immunomodulatory properties. Methods A comprehensive search of literature was conducted in PubMed (NIH), Scopus, EMBASE, and Google Scholar database using keyword combinations of the medical subject headings (MeSH) of “HMGB1” and “Brain Injury” and relevant reference lists were also manually searched. All relevant articles of any study design published from year 1990 till June 2020, were included and narratively discussed in this review. Results Twenty-four articles were shortlisted and reviewed in this article. Through these articles, we synthesis information on the function and metabolism of HMGB1, immunomodulatory effect of HMGB1, clinical findings and other potential treatment involving HMGB1, and role of HMGB1 protein in brain injury. Conclusion HMGB1 has a strong pro-inflammation property which predominantly acts through RAGE pathways.Review registration number reviewregistry966 in www.researchregistry.com. HMGB1 has a strong pro-inflammation property which predominantly acts through RAGE pathways. This pro-inflammatory process needs to be balanced with anti-inflammatory agents for homeostasis. Further studies are needed to support anti HMGB1 therapy in inflammation process.
Collapse
Affiliation(s)
- Thomas Tommy
- Department of Neurosurgery, Faculty of Medicine, Universitas Pelita Harapan, Tangerang, Indonesia
| | - Andi A Islam
- Department of Neurosurgery, Faculty of Medicine, Universitas Hasanuddin, Makassar, Indonesia
| | - Mochammad Hatta
- Molecular Biology and Immunology Laboratory, Faculty of Medicine, Universitas Hasanuddin, Makassar, Indonesia
| | - Agussalim Bukhari
- Department of Nutritional Science, Faculty of Medicine, Universitas Hasanuddin, Makassar, Indonesia
| |
Collapse
|
55
|
Abstract
Receptor for advanced glycation end products (RAGE) is an immunoglobulin-like receptor present on cell surface. RAGE binds to an array of structurally diverse ligands, acts as a pattern recognition receptor (PRR) and is expressed on cells of different origin performing different functions. RAGE ligation leads to the initiation of a cascade of signaling events and is implicated in diseases, such as inflammation, cancer, diabetes, vascular dysfunctions, retinopathy, and neurodegenerative diseases. Because of the significant involvement of RAGE in the progression of numerous diseases, RAGE signaling has been targeted through use of inhibitors and anti-RAGE antibodies as a treatment strategy and therapy. Here in this review, we have summarized the physical and physiological aspects of RAGE biology in mammalian system and the importance of targeting this molecule in the treatment of various RAGE mediated pathologies. Highlights Receptor for advanced glycation end products (RAGE) is a member of immunoglobulin superfamily of receptors and involved in many pathophysiological conditions. RAGE ligation with its ligands leads to initiation of distinct signaling cascades and activation of numerous transcription factors. Targeting RAGE signaling through inhibitors and anti-RAGE antibodies can be promising treatment strategy.
Collapse
Affiliation(s)
- Nitish Jangde
- Laboratory of Vascular Immunology, Institute of Life Sciences, Bhubaneswar, India.,Manipal Academy of Higher Education, Manipal, India
| | - Rashmi Ray
- Laboratory of Vascular Immunology, Institute of Life Sciences, Bhubaneswar, India
| | - Vivek Rai
- Laboratory of Vascular Immunology, Institute of Life Sciences, Bhubaneswar, India
| |
Collapse
|
56
|
|
57
|
Kianian F, Kadkhodaee M, Sadeghipour HR, Karimian SM, Seifi B. An overview of high-mobility group box 1, a potent pro-inflammatory cytokine in asthma. J Basic Clin Physiol Pharmacol 2020; 31:jbcpp-2019-0363. [PMID: 32651983 DOI: 10.1515/jbcpp-2019-0363] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 04/15/2020] [Indexed: 02/07/2023]
Abstract
High-mobility group box 1 (HMGB1), also called amphoterin, HMG1 and p30, is a highly conserved protein between different species that has various functions in nucleus such as stabilization of nucleosome formation, facilitation of deoxyribonucleic acid (DNA) bending and increasing the DNA transcription, replication and repair. It has also been indicated that HMGB1 acts as a potent pro-inflammatory cytokine with increasing concentrations in acute and chronic inflammatory diseases. Asthma is a common chronic respiratory disease associated with high morbidity and mortality rates. One central characteristic in its pathogenesis is airway inflammation. Considering the inflammatory role of HMGB1 and importance of inflammation in asthma pathogenesis, a better understanding of this protein is vital. This review describes the structure, cell surface receptors, signaling pathways and intracellular and extracellular functions of HMGB1, but also focuses on its inflammatory role in asthma. Moreover, this manuscript reviews experimental and clinical studies that investigated the pathologic role of HMGB1.
Collapse
Affiliation(s)
- Farzaneh Kianian
- Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehri Kadkhodaee
- Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamid Reza Sadeghipour
- Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed Morteza Karimian
- Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Behjat Seifi
- Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
58
|
Abstract
This opinion article discusses the increasing attention paid to the role of activating damage-associated molecular patterns (DAMPs) in initiation of inflammatory diseases and suppressing/inhibiting DAMPs (SAMPs) in resolution of inflammatory diseases and, consequently, to the future roles of these novel biomarkers as therapeutic targets and therapeutics. Since controlled production of DAMPs and SAMPs is needed to achieve full homeostatic restoration and repair from tissue injury, only their pathological, not their homeostatic, concentrations should be therapeutically tackled. Therefore, distinct caveats are proposed regarding choosing DAMPs and SAMPs for therapeutic purposes. For example, we discuss the need to a priori identify and define a context-dependent “homeostatic DAMP:SAMP ratio” in each case and a “homeostatic window” of DAMP and SAMP concentrations to guarantee a safe treatment modality to patients. Finally, a few clinical examples of how DAMPs and SAMPs might be used as therapeutic targets or therapeutics in the future are discussed, including inhibition of DAMPs in hyperinflammatory processes (e.g., systemic inflammatory response syndrome, as currently observed in Covid-19), administration of SAMPs in chronic inflammatory diseases, inhibition of SAMPs in hyperresolving processes (e.g., compensatory anti-inflammatory response syndrome), and administration/induction of DAMPs in vaccination procedures and anti-cancer therapy.
Collapse
|
59
|
Hassan HM, Al-Wahaibi LH, Elmorsy MA, Mahran YF. Suppression of Cisplatin-Induced Hepatic Injury in Rats Through Alarmin High-Mobility Group Box-1 Pathway by Ganoderma lucidum: Theoretical and Experimental Study. Drug Des Devel Ther 2020; 14:2335-2353. [PMID: 32606602 PMCID: PMC7296982 DOI: 10.2147/dddt.s249093] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 05/05/2020] [Indexed: 12/11/2022] Open
Abstract
PURPOSE Drug-induced liver injury (DILI) is the most common cause of acute liver failure. The aim of this study was to investigate the molecular mechanisms by which Ganoderma lucidum mushroom (GLM) may ameliorate cisplatin (CP)-induced hepatotoxicity theoretically and experimentally. MATERIALS AND METHODS Thirty-six male Sprague-Dawley (SD) rats were divided into six groups, two of them are normal and Ganoderma lucidum control groups. Liver injury was induced by a single dose of CP (12 mg/kg i.p) in four groups, one of them is CP control group. Besides cisplatin injection in day 1, rats in groups (4-6) were subjected to GLM (500 mg/kg/day) either every other day or daily oral dose or via i.p injection for 10 consecutive days. RESULTS In this study, GLM supplementation caused significant reduction of elevated high-mobility group box-1 (HMGB-1) with a concurrent decline in TNF-α and upregulation of IL-10 compared to the CP group (P<0.05). The histopathological and fibrosis evaluation significantly confirmed the improvement upon simultaneous treatment with GLM. Moreover, immunohistochemical examination also confirmed the recovery following GLM treatment indicated by downregulation of NF-κB, p53 and caspase-3 along with upsurge of B-cell lymphoma 2 (Bcl-2) expression (P<0.05). GLM treatment significantly decreased serum levels of hepatic injury markers; ALT, AST, T. bilirubin as well as oxidative stress markers; MDA and H2O2 with a concomitant increase in hepatic GSH and SOD. Also, the performed docking simulation of ganoderic acid exhibited good fitting and binding with HMGB-1 through hydrogen bond formation with conservative amino acids which gives a strong evidence for its hepatoprotective effect and may interpret the effect of Ganoderma lucidum. CONCLUSION GLM attenuated hepatic injury through downregulation of HMGB-1/NF-kB and caspase-3 resulted in modulation of the induced oxidative stress and the subsequent cross-talk between the inflammatory and apoptotic cascade indicating its promising role in DILI.
Collapse
Affiliation(s)
- Hanan M Hassan
- Department of Pharmacology and Biochemistry, Faculty of Pharmacy, Delta University for Science & Technology, Gamasa City, Dakhliya, Egypt
| | - Lamya H Al-Wahaibi
- Department of Chemistry, College of Sciences, Princess Nourah bint Abdulrahman University, Riyadh, KSA, 11671, Saudi Arabia
| | - Mohammed A Elmorsy
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura35516, Egypt
| | - Yasmen F Mahran
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Princess Nourah bint Abdulrahman University, Riyadh, KSA, Saudi Arabia
| |
Collapse
|
60
|
Kwak MS, Kim HS, Lee B, Kim YH, Son M, Shin JS. Immunological Significance of HMGB1 Post-Translational Modification and Redox Biology. Front Immunol 2020; 11:1189. [PMID: 32587593 PMCID: PMC7297982 DOI: 10.3389/fimmu.2020.01189] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 05/13/2020] [Indexed: 12/19/2022] Open
Abstract
Most extracellular proteins are secreted via the classical endoplasmic reticulum (ER)/Golgi-dependent secretion pathway; however, some proteins, including a few danger-associated molecular patterns (DAMPs), are secreted via non-classical ER/Golgi-independent secretion pathways. The evolutionarily conserved high mobility group box1 (HMGB1) is a ubiquitous nuclear protein that can be released by almost all cell types. HMGB1 lacks signal peptide and utilizes diverse non-canonical secretion mechanisms for its extracellular export. Although the post-translational modifications of HMGB1 were demonstrated, the oxidation of HMGB1 and secretion mechanisms are not highlighted yet. We currently investigated that peroxiredoxins I and II (PrxI/II) induce the intramolecular disulfide bond formation of HMGB1 in the nucleus. Disulfide HMGB1 is preferentially transported out of the nucleus by binding to the nuclear exportin chromosome-region maintenance 1 (CRM1). We determined the kinetics of HMGB1 oxidation in bone marrow-derived macrophage as early as a few minutes after lipopolysaccharide treatment, peaking at 4 h while disulfide HMGB1 accumulation was observed within the cells, starting to secrete in the late time point. We have shown that HMGB1 oxidation status, which is known to determine the biological activity in extracellular HMGB1, is crucial for the secretion of HMGB1 from the nucleus. This review summarizes selected aspects of HMGB1 redox biology relevant to the induction and propagation of inflammatory diseases. We implicate the immunological significance and the need for novel HMGB1 inhibitors through mechanism-based studies.
Collapse
Affiliation(s)
- Man Sup Kwak
- Department of Microbiology, Yonsei University College of Medicine, Seoul, South Korea.,Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul, South Korea
| | - Hee Sue Kim
- Department of Microbiology, Yonsei University College of Medicine, Seoul, South Korea
| | - Bin Lee
- Department of Microbiology, Yonsei University College of Medicine, Seoul, South Korea
| | - Young Hun Kim
- Department of Microbiology, Yonsei University College of Medicine, Seoul, South Korea.,Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul, South Korea
| | - Myoungsun Son
- Center for Autoimmune Musculoskeletal and Hematopoietic Diseases, Institute of Molecular Medicine, The Feinstein Institutes for Medical Research, Manhasset, NY, United States
| | - Jeon-Soo Shin
- Department of Microbiology, Yonsei University College of Medicine, Seoul, South Korea.,Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul, South Korea.,Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, South Korea.,Center for Nanomedicine, Institute for Basic Science (IBS), Yonsei University, Seoul, South Korea
| |
Collapse
|
61
|
Habimana R, Choi I, Cho HJ, Kim D, Lee K, Jeong I. Sepsis-induced cardiac dysfunction: a review of pathophysiology. Acute Crit Care 2020; 35:57-66. [PMID: 32506871 PMCID: PMC7280799 DOI: 10.4266/acc.2020.00248] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Accepted: 05/27/2020] [Indexed: 12/28/2022] Open
Abstract
It is well known that cardiac dysfunction in sepsis is associated with significantly increased mortality. The pathophysiology of sepsis-induced cardiac dysfunction can be summarized as involving impaired myocardial circulation, direct myocardial depression, and mitochondrial dysfunction. Impaired blood flow to the myocardium is associated with microvascular dysfunction, impaired endothelium, and ventriculo-arterial uncoupling. The mechanisms behind direct myocardial depression consist of downregulation of β-adrenoceptors and several myocardial suppressants (such as cytokine and nitric oxide). Recent research has highlighted that mitochondrial dysfunction, which results in energy depletion, is a major factor in sepsis-induced cardiac dysfunction. Therefore, the authors summarize the pathophysiological process of cardiac dysfunction in sepsis based on the results of recent studies.
Collapse
Affiliation(s)
| | - Insu Choi
- Department of Pediatrics, Chonnam National University Children's Hospital, Gwangju, Korea
| | - Hwa Jin Cho
- Department of Pediatrics, Chonnam National University Children's Hospital and Medical School, Gwangju, Korea
| | - Dowan Kim
- Department of Thoracic and Cardiovascular Surgery, Chonnam National University Hospital and Medical School, Gwangju, Korea
| | - Kyoseon Lee
- Department of Thoracic and Cardiovascular Surgery, Chonnam National University Hospital and Medical School, Gwangju, Korea
| | - Inseok Jeong
- Department of Thoracic and Cardiovascular Surgery, Chonnam National University Hospital and Medical School, Gwangju, Korea
| |
Collapse
|
62
|
Anggayasti WL, Ogino K, Yamamoto E, Helmerhorst E, Yasuoka K, Mancera RL. The acidic tail of HMGB1 regulates its secondary structure and conformational flexibility: A circular dichroism and molecular dynamics simulation study. Comput Struct Biotechnol J 2020; 18:1160-1172. [PMID: 32514327 PMCID: PMC7261955 DOI: 10.1016/j.csbj.2020.05.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 05/06/2020] [Accepted: 05/09/2020] [Indexed: 12/02/2022] Open
Abstract
High mobility group box 1 (HMGB1) is a damage-associated molecular pattern (DAMP) molecule that triggers the progression of several pro-inflammatory diseases such as diabetes, Alzheimer's disease and cancer, by inducing signals upon interaction with the receptors such as the receptor for advanced glycation end-products (RAGE) and toll-like receptors (TLRs). The acidic C-terminal tail of HMGB1 is an intrinsically disordered region of the protein which is known to determine the interaction of HMGB1 to DNA and histones. This study characterizes its structural properties using a combination of circular dichroism (CD) and molecular dynamics (MD) simulations. The full-length and tail-less forms of HMGB1 were compared to rationalise the role of the acidic tail in maintaining the stability of the entire structure of HMGB1 in atomistic detail. Consistent with experimental data, the acidic tail was predicted to adopt an extended conformation that allows it to make a range of hydrogen-bonding and electrostatic interactions with the box-like domains that stabilize the overall structure of HMGB1. Absence of the acidic tail was predicted to increase structural fluctuations of all amino acids, leading to changes in secondary structure from α-helical to more hydrophilic turns along with increased exposure of multiple amino acids to the surrounding solvent. These structural changes reveal the intrinsic conformational dynamics of HMGB1 that are likely to affect the accessibility of its receptors.
Collapse
Affiliation(s)
- Wresti L. Anggayasti
- Department of Chemical Engineering, Faculty of Engineering, Brawijaya University, Jl. MT Haryono 167, Malang 65145, East Java, Indonesia
| | - Kenta Ogino
- Department of Mechanical Engineering, Keio University, Yokohama, Kanagawa 223-8522, Japan
| | - Eiji Yamamoto
- Department of System Design Engineering, Keio University, Yokohama, Kanagawa 223-8522, Japan
| | - Erik Helmerhorst
- School of Pharmacy and Biomedical Sciences, Curtin Health Innovation Research Institute and Curtin Institute for Computation, Curtin University, GPO Box U1987, Perth, WA 6845, Australia
| | - Kenji Yasuoka
- Department of Mechanical Engineering, Keio University, Yokohama, Kanagawa 223-8522, Japan
| | - Ricardo L. Mancera
- School of Pharmacy and Biomedical Sciences, Curtin Health Innovation Research Institute and Curtin Institute for Computation, Curtin University, GPO Box U1987, Perth, WA 6845, Australia
| |
Collapse
|
63
|
Paudel YN, Angelopoulou E, Piperi C, Othman I, Shaikh MF. Implication of HMGB1 signaling pathways in Amyotrophic lateral sclerosis (ALS): From molecular mechanisms to pre-clinical results. Pharmacol Res 2020; 156:104792. [PMID: 32278047 DOI: 10.1016/j.phrs.2020.104792] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 02/14/2020] [Accepted: 04/01/2020] [Indexed: 02/06/2023]
Abstract
Amyotrophic lateral sclerosis (ALS) is a devastating and rapidly progressing neurodegenerative disorder with no effective disease-modifying treatment up to date. The underlying molecular mechanisms of ALS are not yet completely understood. However, the critical role of the innate immune system and neuroinflammation in ALS pathogenesis has gained increased attention. High mobility group box 1 (HMGB1) is a typical damage-associated molecular pattern (DAMP) molecule, acting as a pro-inflammatory cytokine mainly through activation of its principal receptors, the receptor for advanced glycation end products (RAGE) and toll-like receptor 4 (TLR4) which are crucial components of the innate immune system. HMGB1 is an endogenous ligand for both RAGE and TLR4 that mediate its biological effects. Herein, on the ground of pre-clinical findings we unravel the underlying mechanisms behind the plausible contribution of HMGB1 and its receptors (RAGE and TLR4) in the ALS pathogenesis. Furthermore, we provide an account of the therapeutic outcomes associated with inhibition/blocking of HMGB1 receptor signalling in preventing motor neuron's death and delaying disease progression in ALS experimental models. There is strong evidence that HMGB1, RAGE and TLR4 signaling axes might present potential targets against ALS, opening a novel headway in ALS research that could plausibly bridge the current treatment gap.
Collapse
Affiliation(s)
- Yam Nath Paudel
- Neuropharmacology Research Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Selangor, Malaysia.
| | - Efthalia Angelopoulou
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Christina Piperi
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, Athens, Greece.
| | - Iekhsan Othman
- Neuropharmacology Research Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Selangor, Malaysia
| | - Mohd Farooq Shaikh
- Neuropharmacology Research Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Selangor, Malaysia.
| |
Collapse
|
64
|
Li Y, Xie J, Li X, Fang J. Poly (ADP-ribosylation) of HMGB1 facilitates its acetylation and promotes HMGB1 translocation-associated chemotherapy-induced autophagy in leukaemia cells. Oncol Lett 2019; 19:368-378. [PMID: 31897149 PMCID: PMC6924101 DOI: 10.3892/ol.2019.11116] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 07/26/2019] [Indexed: 12/15/2022] Open
Abstract
Acute lymphoblastic leukaemia (ALL) is one of the most common and curable types of cancer in paediatric patients. However, chemotherapeutic resistance is a difficult but common obstacle when treating leukaemia in the clinical setting. Studies have demonstrated that drug resistance is partly attributable to autophagy induced by multiple chemotherapeutic agents. As an evolutionarily conserved non-histone chromatin-binding protein, high mobility group box protein 1 (HMGB1) is considered to be an important factor in autophagy, and regulates autophagy at multiple levels via different subcellular localisations. In the present study, it was revealed that chemotherapeutic drugs induced autophagy in leukaemia cells and that translocation of HMGB1 from the nucleus to the cytoplasm is an important molecular event in this process. It was further demonstrated that poly (ADP-ribosylation) of HMGB1 facilitates its acetylation, thereby inducing HMGB1 translocation and ultimately promoting chemotherapy-induced autophagy in leukaemic cells. Targeted HMGB1 translocation may overcome chemotherapy-induced autophagy in leukaemia.
Collapse
Affiliation(s)
- Yunyao Li
- Guangdong Provincial Key Laboratory of Malignant Tumour Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510120, P.R. China.,Department of Paediatrics, Sun Yat-Sen Memorial Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510120, P.R. China
| | - Jianwei Xie
- Guangdong Provincial Key Laboratory of Malignant Tumour Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510120, P.R. China.,Department of Paediatrics, Sun Yat-Sen Memorial Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510120, P.R. China
| | - Xinyu Li
- Department of Paediatrics, Sun Yat-Sen Memorial Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510120, P.R. China
| | - Jianpei Fang
- Department of Paediatrics, Sun Yat-Sen Memorial Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510120, P.R. China
| |
Collapse
|
65
|
Khambu B, Yan S, Huda N, Yin XM. Role of High-Mobility Group Box-1 in Liver Pathogenesis. Int J Mol Sci 2019; 20:ijms20215314. [PMID: 31731454 PMCID: PMC6862281 DOI: 10.3390/ijms20215314] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 10/16/2019] [Accepted: 10/23/2019] [Indexed: 12/21/2022] Open
Abstract
High-mobility group box 1 (HMGB1) is a highly abundant DNA-binding protein that can relocate to the cytosol or undergo extracellular release during cellular stress or death. HMGB1 has a functional versatility depending on its cellular location. While intracellular HMGB1 is important for DNA structure maintenance, gene expression, and autophagy induction, extracellular HMGB1 acts as a damage-associated molecular pattern (DAMP) molecule to alert the host of damage by triggering immune responses. The biological function of HMGB1 is mediated by multiple receptors, including the receptor for advanced glycation end products (RAGE) and Toll-like receptors (TLRs), which are expressed in different hepatic cells. Activation of HMGB1 and downstream signaling pathways are contributing factors in the pathogenesis of non-alcoholic fatty liver disease (NAFLD), alcoholic liver disease (ALD), and drug-induced liver injury (DILI), each of which involves sterile inflammation, liver fibrosis, ductular reaction, and hepatic tumorigenesis. In this review, we will discuss the critical role of HMGB1 in these pathogenic contexts and propose HMGB1 as a bona fide and targetable DAMP in the setting of common liver diseases.
Collapse
Affiliation(s)
- Bilon Khambu
- Correspondence: ; Tel.: +1-317-274-1789; Fax: +1-317-491-6639
| | | | | | | |
Collapse
|
66
|
Zhang L, Qi X, Zhang G, Zhang Y, Tian J. Saxagliptin protects against hypoxia-induced damage in H9c2 cells. Chem Biol Interact 2019; 315:108864. [PMID: 31629700 DOI: 10.1016/j.cbi.2019.108864] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 10/02/2019] [Accepted: 10/14/2019] [Indexed: 12/19/2022]
Abstract
Type II diabetes is recognized as a major risk factor for death due to cardiovascular complications such as coronary heart disease (CHD), but the complex interplay between these two diseases remains poorly understood. Suppression of oxidative stress, apoptosis, and inflammation of endothelial cells is a valuable treatment strategy to prevent or halt the progression of CHD. In the present study, we used real-time polymerase chain reaction (PCR), Western blot analysis, and enzyme linked immunosorbent assay (ELISA) to investigate the effects of saxagliptin on hypoxia-inducible factors. Our findings demonstrate that saxagliptin can significantly improve cell viability in H9c2 cells as well as reduce hypoxia-induced oxidative damage and loss of mitochondrial membrane potential. Saxagliptin reduced hypoxia-induced NADPH oxidase 4 (NOX 4). We also show that saxagliptin can reduce the expression of matrix metallopeptidase-2 (MMP-2) and matrix metallopeptidase-9 (MMP-9), two important degradative enzymes. Saxagliptin also suppressed hypoxia-induced expression of high mobility group box-1 protein (HMGB1), a key inflammatory cytokine. Finally, we show that saxagliptin can exert atheroprotective effects by reducing the expression of myeloid differential protein-88 (MyD88) and increasing the expression of nuclear factor erythroid-2-related factor 2 (Nrf2) and heme oxygenase-1 (HO-1). Thus, saxagliptin shows promise as a treatment against diabetes-associated CHD.
Collapse
Affiliation(s)
- Lili Zhang
- Department of Cardiology, The People's Hospital of Longhua, Shenzhen, 518109, China.
| | - Xiaogui Qi
- Department of Cardiology, The People's Hospital of Longhua, Shenzhen, 518109, China
| | - Guowei Zhang
- Department of Cardiac Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China.
| | - Yingying Zhang
- Department of Cardiology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
| | - Jiali Tian
- Department of Cardiology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
| |
Collapse
|
67
|
De Leo F, Quilici G, Tirone M, De Marchis F, Mannella V, Zucchelli C, Preti A, Gori A, Casalgrandi M, Mezzapelle R, Bianchi ME, Musco G. Diflunisal targets the HMGB1/CXCL12 heterocomplex and blocks immune cell recruitment. EMBO Rep 2019; 20:e47788. [PMID: 31418171 PMCID: PMC6776901 DOI: 10.15252/embr.201947788] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 07/10/2019] [Accepted: 07/23/2019] [Indexed: 12/22/2022] Open
Abstract
Extracellular HMGB1 triggers inflammation following infection or injury and supports tumorigenesis in inflammation-related malignancies. HMGB1 has several redox states: reduced HMGB1 recruits inflammatory cells to injured tissues forming a heterocomplex with CXCL12 and signaling via its receptor CXCR4; disulfide-containing HMGB1 binds to TLR4 and promotes inflammatory responses. Here we show that diflunisal, an aspirin-like nonsteroidal anti-inflammatory drug (NSAID) that has been in clinical use for decades, specifically inhibits in vitro and in vivo the chemotactic activity of HMGB1 at nanomolar concentrations, at least in part by binding directly to both HMGB1 and CXCL12 and disrupting their heterocomplex. Importantly, diflunisal does not inhibit TLR4-dependent responses. Our findings clarify the mode of action of diflunisal and open the way to the rational design of functionally specific anti-inflammatory drugs.
Collapse
Affiliation(s)
- Federica De Leo
- Biomolecular NMR LaboratoryDivision of Genetics and Cell BiologyIRCCS Ospedale San RaffaeleMilanItaly
- Università Vita‐Salute San RaffaeleMilanItaly
- Chromatin Dynamics UnitDivision of Genetics and Cell BiologyIRCCS Ospedale San RaffaeleMilanItaly
| | - Giacomo Quilici
- Biomolecular NMR LaboratoryDivision of Genetics and Cell BiologyIRCCS Ospedale San RaffaeleMilanItaly
| | | | - Francesco De Marchis
- Chromatin Dynamics UnitDivision of Genetics and Cell BiologyIRCCS Ospedale San RaffaeleMilanItaly
| | - Valeria Mannella
- Biomolecular NMR LaboratoryDivision of Genetics and Cell BiologyIRCCS Ospedale San RaffaeleMilanItaly
- Center for Translational Genomics and Bioinformatics (CTGB)IRCCS Policlinico San DonatoSan Donato MilaneseItaly
| | - Chiara Zucchelli
- Biomolecular NMR LaboratoryDivision of Genetics and Cell BiologyIRCCS Ospedale San RaffaeleMilanItaly
| | | | - Alessandro Gori
- Istituto di Chimica del Riconoscimento MolecolareCNRMilanItaly
| | | | - Rosanna Mezzapelle
- Chromatin Dynamics UnitDivision of Genetics and Cell BiologyIRCCS Ospedale San RaffaeleMilanItaly
| | - Marco E Bianchi
- Università Vita‐Salute San RaffaeleMilanItaly
- Chromatin Dynamics UnitDivision of Genetics and Cell BiologyIRCCS Ospedale San RaffaeleMilanItaly
| | - Giovanna Musco
- Biomolecular NMR LaboratoryDivision of Genetics and Cell BiologyIRCCS Ospedale San RaffaeleMilanItaly
| |
Collapse
|
68
|
Paudel YN, Angelopoulou E, Piperi C, Balasubramaniam VR, Othman I, Shaikh MF. Enlightening the role of high mobility group box 1 (HMGB1) in inflammation: Updates on receptor signalling. Eur J Pharmacol 2019; 858:172487. [DOI: 10.1016/j.ejphar.2019.172487] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 06/19/2019] [Accepted: 06/19/2019] [Indexed: 12/17/2022]
|
69
|
Kim SJ, Ryu MJ, Han J, Jang Y, Lee MJ, Ju X, Ryu I, Lee YL, Oh E, Chung W, Heo JY, Kweon GR. Non-cell autonomous modulation of tyrosine hydroxylase by HMGB1 released from astrocytes in an acute MPTP-induced Parkinsonian mouse model. J Transl Med 2019; 99:1389-1399. [PMID: 31043679 DOI: 10.1038/s41374-019-0254-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 02/20/2019] [Accepted: 03/02/2019] [Indexed: 12/20/2022] Open
Abstract
High-mobility group box 1 (HMGB1) is actively secreted from inflammatory cells and acts via a non-cell-autonomous mechanism to play an important role in mediating cell proliferation and migration. The HMGB1-RAGE (receptor for advanced glycation end products) axis upregulates tyrosine hydroxylase (TH) expression in response to extracellular insults in dopaminergic neurons in vitro, but little is known about HMGB1 in modulation of dopaminergic neurons in vivo. Here, using immunohistochemistry, we show that HMGB1 and RAGE expression are higher in the nigral area of MPTP (methyl-4-phenyl-1,2,3,6-tetrahydropyridine)-treated mice, a toxin-induced Parkinsonian mouse model, compared with saline-treated controls. HMGB1 was predominantly localized to astrocytes and may affect neighboring dopaminergic neurons in the MPTP mouse model, owing to co-localization of RAGE in these TH-positive cells. In addition, MPTP induced a decrease in TH expression, an effect that was potentiated by inhibition of c-Jun N-terminal kinase (JNK) or RAGE. Moreover, stereotaxic injection of recombinant HMGB1 attenuated the MPTP-induced reduction of TH in a Parkinsonian mouse model. Collectively, our results suggest that an increase of HMGB1, released from astrocytes, upregulates TH expression in an acute MPTP-induced Parkinsonian mouse model, thereby maintaining dopaminergic neuronal functions.
Collapse
Affiliation(s)
- Soo Jeong Kim
- Department of Biochemistry, College of medicine, Chungnam National University, Jung-gu Munhwa-ro 266, Daejeon, 35015, Republic of Korea.,Department of Medical science, College of medicine, Chungnam National University, Jung-gu Munhwa-ro 266, Daejeon, 35015, Republic of Korea.,Infection Control Convergence Research Center, College of medicine, Chungnam National University, Jung-gu Munhwa-ro 266, Daejeon, 35015, Republic of Korea
| | - Min Jeong Ryu
- Department of Biochemistry, College of medicine, Chungnam National University, Jung-gu Munhwa-ro 266, Daejeon, 35015, Republic of Korea.,Research Institute for Medical Science, College of medicine, Chungnam National University, Jung-gu Munhwa-ro 266, Daejeon, 35015, Republic of Korea
| | - Jeongsu Han
- Department of Biochemistry, College of medicine, Chungnam National University, Jung-gu Munhwa-ro 266, Daejeon, 35015, Republic of Korea.,Infection Control Convergence Research Center, College of medicine, Chungnam National University, Jung-gu Munhwa-ro 266, Daejeon, 35015, Republic of Korea
| | - Yunseon Jang
- Department of Biochemistry, College of medicine, Chungnam National University, Jung-gu Munhwa-ro 266, Daejeon, 35015, Republic of Korea.,Department of Medical science, College of medicine, Chungnam National University, Jung-gu Munhwa-ro 266, Daejeon, 35015, Republic of Korea.,Infection Control Convergence Research Center, College of medicine, Chungnam National University, Jung-gu Munhwa-ro 266, Daejeon, 35015, Republic of Korea
| | - Min Joung Lee
- Department of Biochemistry, College of medicine, Chungnam National University, Jung-gu Munhwa-ro 266, Daejeon, 35015, Republic of Korea.,Department of Medical science, College of medicine, Chungnam National University, Jung-gu Munhwa-ro 266, Daejeon, 35015, Republic of Korea.,Infection Control Convergence Research Center, College of medicine, Chungnam National University, Jung-gu Munhwa-ro 266, Daejeon, 35015, Republic of Korea
| | - Xianshu Ju
- Department of Biochemistry, College of medicine, Chungnam National University, Jung-gu Munhwa-ro 266, Daejeon, 35015, Republic of Korea.,Department of Medical science, College of medicine, Chungnam National University, Jung-gu Munhwa-ro 266, Daejeon, 35015, Republic of Korea.,Infection Control Convergence Research Center, College of medicine, Chungnam National University, Jung-gu Munhwa-ro 266, Daejeon, 35015, Republic of Korea
| | - Ilhwan Ryu
- Department of Biochemistry, College of medicine, Chungnam National University, Jung-gu Munhwa-ro 266, Daejeon, 35015, Republic of Korea.,Department of Medical science, College of medicine, Chungnam National University, Jung-gu Munhwa-ro 266, Daejeon, 35015, Republic of Korea.,Infection Control Convergence Research Center, College of medicine, Chungnam National University, Jung-gu Munhwa-ro 266, Daejeon, 35015, Republic of Korea
| | - Yu Lim Lee
- Department of Biochemistry, College of medicine, Chungnam National University, Jung-gu Munhwa-ro 266, Daejeon, 35015, Republic of Korea.,Department of Medical science, College of medicine, Chungnam National University, Jung-gu Munhwa-ro 266, Daejeon, 35015, Republic of Korea.,Infection Control Convergence Research Center, College of medicine, Chungnam National University, Jung-gu Munhwa-ro 266, Daejeon, 35015, Republic of Korea
| | - Eungseok Oh
- Department of Neurology, Chungnam National University Hospital, Jung-gu Munhwa-ro 282, Daejeon, 35015, Republic of Korea
| | - Woosuk Chung
- Department of Anesthesiology and Pain Medicine, Chungnam National University Hospital, Jung-gu Munhwa-ro 282, Daejeon, 35015, Republic of Korea.,Brain research Institute, College of medicine, Chungnam National University, Jung-gu Munhwa-ro 266, Daejeon, 35015, Republic of Korea
| | - Jun Young Heo
- Department of Biochemistry, College of medicine, Chungnam National University, Jung-gu Munhwa-ro 266, Daejeon, 35015, Republic of Korea. .,Department of Medical science, College of medicine, Chungnam National University, Jung-gu Munhwa-ro 266, Daejeon, 35015, Republic of Korea. .,Infection Control Convergence Research Center, College of medicine, Chungnam National University, Jung-gu Munhwa-ro 266, Daejeon, 35015, Republic of Korea. .,Brain research Institute, College of medicine, Chungnam National University, Jung-gu Munhwa-ro 266, Daejeon, 35015, Republic of Korea.
| | - Gi Ryang Kweon
- Department of Biochemistry, College of medicine, Chungnam National University, Jung-gu Munhwa-ro 266, Daejeon, 35015, Republic of Korea. .,Department of Medical science, College of medicine, Chungnam National University, Jung-gu Munhwa-ro 266, Daejeon, 35015, Republic of Korea. .,Research Institute for Medical Science, College of medicine, Chungnam National University, Jung-gu Munhwa-ro 266, Daejeon, 35015, Republic of Korea.
| |
Collapse
|
70
|
Jiraviriyakul A, Songjang W, Kaewthet P, Tanawatkitichai P, Bayan P, Pongcharoen S. Honokiol-enhanced cytotoxic T lymphocyte activity against cholangiocarcinoma cells mediated by dendritic cells pulsed with damage-associated molecular patterns. World J Gastroenterol 2019; 25:3941-3955. [PMID: 31413529 PMCID: PMC6689815 DOI: 10.3748/wjg.v25.i29.3941] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 06/21/2019] [Accepted: 07/05/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Cholangiocarcinoma or biliary tract cancer has a high mortality rate resulting from late presentation and ineffective treatment strategy. Since immunotherapy by dendritic cells (DC) may be beneficial for cholangiocarcinoma treatment but their efficacy against cholangiocarcinoma was low. We suggest how such anti-tumor activity can be increased using cell lysates derived from an honokiol-treated cholangiocarcinoma cell line (KKU-213L5).
AIM To increase antitumour activity of DCs pulsed with cell lysates derived from honokiol-treated cholangiocarcinoma cell line (KKU-213L5).
METHODS The effect of honokiol, a phenolic compound isolated from Magnolia officinalis, on choangiocarcinoma cells was investigated in terms of the cytotoxicity and the expression of damage-associated molecular patterns (DAMPs). DCs were loaded with tumour cell lysates derived from honokiol-treated cholangiocarcinoma cells their efficacy including induction of T lymphocyte proliferation, proinflammatory cytokine production and cytotoxicity effect on target cholangiocarcinoma cells were evaluated.
RESULTS Honokiol can effectively activate cholangiocarcinoma apoptosis and increase the release of damage-associated molecular patterns. DCs loaded with cell lysates derived from honokiol-treated tumour cells enhanced priming and stimulated T lymphocyte proliferation and type I cytokine production. T lymphocytes stimulated with DCs pulsed with cell lysates of honokiol-treated tumour cells significantly increased specific killing of human cholangiocarcinoma cells compared to those associated with DCs pulsed with cell lysates of untreated cholangiocarcinoma cells.
CONCLUSION The present findings suggested that honokiol was able to enhance the immunogenicity of cholangiocarcinoma cells associated with increased effectiveness of DC-based vaccine formulation. Treatment of tumour cells with honokiol offers a promising approach as an ex vivo DC-based anticancer vaccine.
Collapse
Affiliation(s)
- Arunya Jiraviriyakul
- Biomedical Science Graduate School, Faculty of Allied Health Sciences, Naresuan University, Phitsanulok 65000, Thailand
- Department of Medical technology, Faculty of Allied Health Sciences, Naresuan University, Phitsanulok 65000, Thailand
| | - Worawat Songjang
- Biomedical Science Graduate School, Faculty of Allied Health Sciences, Naresuan University, Phitsanulok 65000, Thailand
- Department of Medical technology, Faculty of Allied Health Sciences, Naresuan University, Phitsanulok 65000, Thailand
| | - Pongsathorn Kaewthet
- Department of Medical technology, Faculty of Allied Health Sciences, Naresuan University, Phitsanulok 65000, Thailand
| | - Phachsita Tanawatkitichai
- Department of Medical technology, Faculty of Allied Health Sciences, Naresuan University, Phitsanulok 65000, Thailand
| | - Punyapat Bayan
- Department of Medical technology, Faculty of Allied Health Sciences, Naresuan University, Phitsanulok 65000, Thailand
| | - Sutatip Pongcharoen
- Biomedical Science Graduate School, Faculty of Allied Health Sciences, Naresuan University, Phitsanulok 65000, Thailand
- Division of Immunology, Department of Medicine, Faculty of Medicine, Naresuan University, Phitsanulok 65000, Thailand
- Research Centre of Academic Excellence in Petroleum, Petrochemical, and Advanced Materials, Faculty of Science, Naresuan University, Phitsanulok 65000, Thailand
- Centre of Excellence in Medical Biotechnology, Faculty of Medical Science, Naresuan University, Phitsanulok 65000, Thailand
| |
Collapse
|
71
|
Fassi EMA, Sgrignani J, D'Agostino G, Cecchinato V, Garofalo M, Grazioso G, Uguccioni M, Cavalli A. Oxidation State Dependent Conformational Changes of HMGB1 Regulate the Formation of the CXCL12/HMGB1 Heterocomplex. Comput Struct Biotechnol J 2019; 17:886-894. [PMID: 31333815 PMCID: PMC6617219 DOI: 10.1016/j.csbj.2019.06.020] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 05/28/2019] [Accepted: 06/18/2019] [Indexed: 12/15/2022] Open
Abstract
High-mobility Group Box 1 (HMGB1) is an abundant protein present in all mammalian cells and involved in several processes. During inflammation or tissue damage, HMGB1 is released in the extracellular space and, depending on its redox state, can form a heterocomplex with CXCL12. The heterocomplex acts exclusively via the chemokine receptor CXCR4 enhancing leukocyte recruitment. Here, we used multi-microsecond molecular dynamics (MD) simulations to elucidate the effect of the disulfide bond on the structure and dynamics of HMGB1. The results of the MD simulations show that the presence or lack of the disulfide bond between Cys23 and Cys45 modulates the conformational space explored by HMGB1, making the reduced protein more suitable to form a complex with CXCL12.
Collapse
Key Words
- CXCL12
- CXCL12, C-X-C motif chemokine 12
- CXCR4, C-X-C chemokine receptor type 4
- Conformational ensemble
- HMGB1
- HMGB1, High-mobility Group Box 1
- MD, Molecular dynamics
- Molecular dynamics
- Protein-protein docking
- RMSD, Root mean square deviation
- RoG, Radius of gyration
- SASA, Solvent accessible surface area
- TLR2 or TLR4, Toll-like Receptor 2 or 4
- ds-HMGB1, Disulfide High-mobility Group Box 1
- fr-HMGB1, Full reduced High-mobility Group Box 1
Collapse
Affiliation(s)
- Enrico M A Fassi
- Institute for Research in Biomedicine, Università della Svizzera Italiana, CH-6500 Bellinzona, Switzerland
| | - Jacopo Sgrignani
- Institute for Research in Biomedicine, Università della Svizzera Italiana, CH-6500 Bellinzona, Switzerland
| | - Gianluca D'Agostino
- Institute for Research in Biomedicine, Università della Svizzera Italiana, CH-6500 Bellinzona, Switzerland
| | - Valentina Cecchinato
- Institute for Research in Biomedicine, Università della Svizzera Italiana, CH-6500 Bellinzona, Switzerland
| | - Maura Garofalo
- Institute for Research in Biomedicine, Università della Svizzera Italiana, CH-6500 Bellinzona, Switzerland.,University of Lausanne (UNIL), CH-1015, Lausanne, Switzerland
| | - Giovanni Grazioso
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, Milan, Italy
| | - Mariagrazia Uguccioni
- Institute for Research in Biomedicine, Università della Svizzera Italiana, CH-6500 Bellinzona, Switzerland.,Humanitas University, Department of Biomedical Sciences, 20090, Pieve Emanuele, Milan, Italy
| | - Andrea Cavalli
- Institute for Research in Biomedicine, Università della Svizzera Italiana, CH-6500 Bellinzona, Switzerland.,Swiss Institute of Bioinformatics, Lausanne, Switzerland
| |
Collapse
|
72
|
Manda G, Hinescu ME, Neagoe IV, Ferreira LF, Boscencu R, Vasos P, Basaga SH, Cuadrado A. Emerging Therapeutic Targets in Oncologic Photodynamic Therapy. Curr Pharm Des 2019; 24:5268-5295. [DOI: 10.2174/1381612825666190122163832] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 01/18/2019] [Indexed: 12/20/2022]
Abstract
Background:Reactive oxygen species sustain tumorigenesis and cancer progression through deregulated redox signalling which also sensitizes cancer cells to therapy. Photodynamic therapy (PDT) is a promising anti-cancer therapy based on a provoked singlet oxygen burst, exhibiting a better toxicological profile than chemo- and radiotherapy. Important gaps in the knowledge on underlining molecular mechanisms impede on its translation towards clinical applications.Aims and Methods:The main objective of this review is to critically analyse the knowledge lately gained on therapeutic targets related to redox and inflammatory networks underlining PDT and its outcome in terms of cell death and resistance to therapy. Emerging therapeutic targets and pharmaceutical tools will be documented based on the identified molecular background of PDT.Results:Cellular responses and molecular networks in cancer cells exposed to the PDT-triggered singlet oxygen burst and the associated stresses are analysed using a systems medicine approach, addressing both cell death and repair mechanisms. In the context of immunogenic cell death, therapeutic tools for boosting anti-tumor immunity will be outlined. Finally, the transcription factor NRF2, which is a major coordinator of cytoprotective responses, is presented as a promising pharmacologic target for developing co-therapies designed to increase PDT efficacy.Conclusion:There is an urgent need to perform in-depth molecular investigations in the field of PDT and to correlate them with clinical data through a systems medicine approach for highlighting the complex biological signature of PDT. This will definitely guide translation of PDT to clinic and the development of new therapeutic strategies aimed at improving PDT.
Collapse
Affiliation(s)
| | | | | | - Luis F.V. Ferreira
- CQFM-Centro de Fisica Molecular and IN-Institute for Nanosciences and Nanotechnologies and IBB-Institute for Bioengineering and Biosciences, Instituto Superior Tecnico, Universidade de Lisboa, Lisbon, Portugal
| | | | - Paul Vasos
- Research Centre of the University of Bucharest, Bucharest, Romania
| | - Selma H. Basaga
- Molecular Biology Genetics & Program, Faculty of Engineering & Natural Sciences, Sabanci University, Istanbul, Turkey
| | | |
Collapse
|
73
|
Pan X, Song X, Wang C, Cheng T, Luan D, Xu K, Tang B. H 2Se Induces Reductive Stress in HepG2 Cells and Activates Cell Autophagy by Regulating the Redox of HMGB1 Protein under Hypoxia. Am J Cancer Res 2019; 9:1794-1808. [PMID: 31037139 PMCID: PMC6485193 DOI: 10.7150/thno.31841] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 01/17/2019] [Indexed: 12/13/2022] Open
Abstract
Rationale: Selenium has been shown to have chemotherapeutic effects against cancer. However, the anti-cancer mechanism of selenium is not fully understood, and the role of hydrogen selenide (H2Se), which is a common metabolite of dietary selenium compounds, has not been elucidated due to the lack of detection methods. In this study, we revealed a new anti-cancer mechanism of selenite with the help of a H2Se fluorescent probe. Methods: HepG2 cells were cultured under a simulated tumor hypoxic microenvironment. The H2Se and H2O2 levels were detected by fluorescent probes in living cells and in mice. Autophagic and apoptotic proteins were detected by Western blotting. The redox of HMGB1 protein were analyzed by non-reducing sodium dodecyl sulfate polyacrylamide gel electrophoresis. Results: After pharmacological doses of Na2SeO3 treatment of HepG2 cells under hypoxic conditions, high levels of H2Se were produced before cell death. The H2Se accumulation resulted in reductive stress instead of oxidative stress, which was induced by Na2SeO3 treatment under normoxic conditions. Furthermore, H2Se targeted the HMGB1 protein and induced cell autophagy. H2Se could interrupt the disulfide bond in HMGB1 and promote its secretion. The reduced HMGB1 outside the cells stimulated cell autophagy by inhibiting the Akt/mTOR axis. Here, autophagy played a dual role, i.e., mild autophagy inhibited apoptosis, while excessive autophagy led to autophagy-associated cell death. Conclusions: These results show that H2Se plays a key role during HepG2 cell death induced by selenite. Our findings reveal a new anti-cancer mechanism of selenite and provide a new research area for selenium studies.
Collapse
|
74
|
Bhat SM, Massey N, Karriker LA, Singh B, Charavaryamath C. Ethyl pyruvate reduces organic dust-induced airway inflammation by targeting HMGB1-RAGE signaling. Respir Res 2019; 20:27. [PMID: 30728013 PMCID: PMC6364446 DOI: 10.1186/s12931-019-0992-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 01/27/2019] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Animal production workers are persistently exposed to organic dust and can suffer from a variety of respiratory disease symptoms and annual decline in lung function. The role of high mobility group box-1 (HMGB1) in inflammatory airway diseases is emerging. Hence, we tested a hypothesis that organic dust exposure of airway epithelial cells induces nucleocytoplasmic translocation of HMGB1 and blocking this translocation dampens organic dust-induced lung inflammation. METHODS Rats were exposed to either ambient air or swine barn (8 h/day for either 1, 5, or 20 days) and lung tissues were processed for immunohistochemistry. Swine barn dust was collected and organic dust extract (ODE) was prepared and sterilized. Human airway epithelial cell line (BEAS-2B) was exposed to either media or organic dust extract followed by treatment with media or ethyl pyruvate (EP) or anti-HMGB1 antibody. Immunoblotting, ELISA and other assays were performed at 0 (control), 6, 24 and 48 h. Data (as mean ± SEM) was analyzed using one or two-way ANOVA followed by Bonferroni's post hoc comparison test. A p value of less than 0.05 was considered significant. RESULTS Compared to controls, barn exposed rats showed an increase in the expression of HMGB1 in the lungs. Compared to controls, ODE exposed BEAS-2B cells showed nucleocytoplasmic translocation of HMGB1, co-localization of HMGB1 and RAGE, reactive species and pro-inflammatory cytokine production. EP treatment reduced the ODE induced nucleocytoplasmic translocation of HMGB1, HMGB1 expression in the cytoplasmic fraction, GM-CSF and IL-1β production and augmented the production of TGF-β1 and IL-10. Anti-HMGB1 treatment reduced ODE-induced NF-κB p65 expression, IL-6, ROS and RNS but augmented TGF-β1 and IL-10 levels. CONCLUSIONS HMGB1-RAGE signaling is an attractive target to abrogate OD-induced lung inflammation.
Collapse
Affiliation(s)
- Sanjana Mahadev Bhat
- Department of Biomedical Sciences, 2008 Vet Med Building, Iowa State University, Ames, IA USA
| | - Nyzil Massey
- Department of Biomedical Sciences, 2008 Vet Med Building, Iowa State University, Ames, IA USA
| | - Locke A. Karriker
- Department of Veterinary Diagnostic and Production Animal Medicine, 2203 Lloyd Veterinary Medical Center, Iowa State university, Ames, IA USA
| | - Baljit Singh
- Faculty of Veterinary Medicine, 2500 University Dr. NW, University of Calgary, Calgary, T2N 1N4 Canada
| | | |
Collapse
|
75
|
Sun S, He M, VanPatten S, Al-Abed Y. Mechanistic insights into high mobility group box-1 (HMGb1)-induced Toll-like receptor 4 (TLR4) dimer formation. J Biomol Struct Dyn 2018; 37:3721-3730. [PMID: 30238832 DOI: 10.1080/07391102.2018.1526712] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Supplemental data for this article can be accessed here.High mobility group box-1 (HMGb1), an endogenous danger-associated molecular pattern protein (DAMP) whose extracellular release has been associated with sterile injury and various inflammatory diseases and conditions, has been shown to be a valuable clinical drug target. Elucidation of the specific interactions with the HMGb1 receptor, Toll-like receptor 4 (TLR4) and adaptor protein myeloid differentiation factor-2 (MD-2), will lead to more precisely targeted therapeutics. We sought to examine detailed interactions and dynamics of the HMGb1 A-box and B-box fragments, as well as the intact protein using in silico protein-protein docking (ZDOCK, ZRANK) and molecular dynamics (Schrödinger Desmond, New York, NY). Mutagenesis and SPR-binding studies allowed us to draw further conclusions regarding the details of the HMGb1-TLR4-MD2 interaction and shed light on the reasons for the opposing biological activities of HMGb1 A-box and B-box fragments. From our findings, we hypothesize that disulfide A-box fragment binds as an anchor toward the TLR4-MD-2 but does not facilitate the TLR4 dimer formation, thereby competing with the HMGb1-binding site and preventing HMGb1-induced signaling and downstream inflammation, whereas the pro-inflammatory B-box fragment retains the MD-2 active conformation and binds to both TLR4 proteins in the complex to aid TLR4 dimer formation, which activates the intracellular signaling for downstream inflammatory pathways and cytokine release. Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Shan Sun
- a Center for Molecular Innovation , The Feinstein Institute for Medical Research , Manhasset , NY 11030 , USA
| | - Mingzhu He
- a Center for Molecular Innovation , The Feinstein Institute for Medical Research , Manhasset , NY 11030 , USA
| | - Sonya VanPatten
- a Center for Molecular Innovation , The Feinstein Institute for Medical Research , Manhasset , NY 11030 , USA
| | - Yousef Al-Abed
- a Center for Molecular Innovation , The Feinstein Institute for Medical Research , Manhasset , NY 11030 , USA
| |
Collapse
|
76
|
He M, Bianchi ME, Coleman TR, Tracey KJ, Al-Abed Y. Exploring the biological functional mechanism of the HMGB1/TLR4/MD-2 complex by surface plasmon resonance. Mol Med 2018; 24:21. [PMID: 30134799 PMCID: PMC6085627 DOI: 10.1186/s10020-018-0023-8] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 05/01/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND High Mobility Group Box 1 (HMGB1) was first identified as a nonhistone chromatin-binding protein that functions as a pro-inflammatory cytokine and a Damage-Associated Molecular Pattern molecule when released from necrotic cells or activated leukocytes. HMGB1 consists of two structurally similar HMG boxes that comprise the pro-inflammatory (B-box) and the anti-inflammatory (A-box) domains. Paradoxically, the A-box also contains the epitope for the well-characterized anti-HMGB1 monoclonal antibody "2G7", which also potently inhibits HMGB1-mediated inflammation in a wide variety of in vivo models. The molecular mechanisms through which the A-box domain inhibits the inflammatory activity of HMGB1 and 2G7 exerts anti-inflammatory activity after binding the A-box domain have been a mystery. Recently, we demonstrated that: 1) the TLR4/MD-2 receptor is required for HMGB1-mediated cytokine production and 2) the HMGB1-TLR4/MD-2 interaction is controlled by the redox state of HMGB1 isoforms. METHODS We investigated the interactions of HMGB1 isoforms (redox state) or HMGB1 fragments (A- and B-box) with TLR4/MD-2 complex using Surface Plasmon Resonance (SPR) studies. RESULTS Our results demonstrate that: 1) intact HMGB1 binds to TLR4 via the A-box domain with high affinity but an appreciable dissociation rate; 2) intact HMGB1 binds to MD-2 via the B-box domain with low affinity but a very slow dissociation rate; and 3) HMGB1 A-box domain alone binds to TLR4 more stably than the intact protein and thereby antagonizes HMGB1 by blocking HMGB1 from interacting with the TLR4/MD-2 complex. CONCLUSIONS These findings not only suggest a model whereby HMGB1 interacts with TLR4/MD-2 in a two-stage process but also explain how the A-box domain and 2G7 inhibit HMGB1.
Collapse
Affiliation(s)
- Mingzhu He
- Center for Molecular Innovation, The Feinstein Institute for Medical Research, 350 Community Drive, Manhasset, New York, 11030, USA.
| | - Marco E Bianchi
- Chromatin Dynamics Unit, Division of Genetics and Cell Biology, San Raffaele University and San Raffaele Scientific Institute IRCCS, Via Olgettina 58, 20132, Milan, Italy
| | - Tom R Coleman
- Center for Molecular Innovation, The Feinstein Institute for Medical Research, 350 Community Drive, Manhasset, New York, 11030, USA
| | - Kevin J Tracey
- Center for Biomedical Science, and Center for Bioelectronic Medicine, The Feinstein Institute for Medical Research, 350 Community Drive, Manhasset, New York, 11030, USA
| | - Yousef Al-Abed
- Center for Molecular Innovation, The Feinstein Institute for Medical Research, 350 Community Drive, Manhasset, New York, 11030, USA.
| |
Collapse
|
77
|
HMGB1-containing nucleosome mediates chemotherapy-induced metastasis of human lung cancer. Biochem Biophys Res Commun 2018; 500:758-764. [PMID: 29679570 DOI: 10.1016/j.bbrc.2018.04.150] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Accepted: 04/17/2018] [Indexed: 12/11/2022]
Abstract
While chemotherapy is an important and widely used therapeutic for cancer, it may facilitate cancer metastasis. Herein, we report that human lung cancer cells exert higher invasion and metastasis after chemotherapy. In a human lung cancer xenograft model, chemotherapy promotes the cancer invasion and metastasis in HMGB1-dependent manner. Further studies identify HMGB1-containing nucleosome from chemotherapy-induced apoptotic cancer cells as an effective factor. Such nucleosome functions through TLR4 and TLR9 to drive cancer invasion and metastasis. In lung cancer patients, circulating HMGB1-containing nucleosome is higher in those under chemotherapy, predicting poorly cancer cell differentiation state, enhanced cancer invasion and advanced TNM stages. These findings provide a novel mechanism by which the tumor metastasis is propagated in lung cancer patients, especially in those under chemotherapy, and a clue for developing therapeutic strategies against chemotherapy-induced metastasis.
Collapse
|