51
|
Borcherds W, Bremer A, Borgia MB, Mittag T. How do intrinsically disordered protein regions encode a driving force for liquid-liquid phase separation? Curr Opin Struct Biol 2020; 67:41-50. [PMID: 33069007 DOI: 10.1016/j.sbi.2020.09.004] [Citation(s) in RCA: 147] [Impact Index Per Article: 36.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 09/02/2020] [Accepted: 09/07/2020] [Indexed: 12/24/2022]
Abstract
Liquid-liquid phase separation is the mechanism underlying the formation of biomolecular condensates. Disordered protein regions often drive phase separation, but the molecular interactions mediating this phenomenon are not well understood, sometimes leading to the conflation that all disordered protein regions drive phase separation. Given the critical role of phase separation in many cellular processes, and that dysfunction of phase separation can lead to debilitating diseases, it is important that we understand the interactions and sequence properties underlying phase behavior. A conceptual framework that divides IDRs into interacting and solvating regions has proven particularly useful, and analytical instantiations and coarse-grained models can test our understanding of the driving forces against experimental phase behavior. Validated simulation paradigms enable the exploration of sequence space to help our understanding of how disordered protein regions can encode phase behavior, which IDRs may mediate phase separation in cells, and which IDRs are highly soluble.
Collapse
Affiliation(s)
- Wade Borcherds
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Anne Bremer
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Madeleine B Borgia
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Tanja Mittag
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, USA.
| |
Collapse
|
52
|
Amin AN, Lin YH, Das S, Chan HS. Analytical Theory for Sequence-Specific Binary Fuzzy Complexes of Charged Intrinsically Disordered Proteins. J Phys Chem B 2020; 124:6709-6720. [PMID: 32639157 DOI: 10.1021/acs.jpcb.0c04575] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Intrinsically disordered proteins (IDPs) are important for biological functions. In contrast to folded proteins, molecular recognition among certain IDPs is "fuzzy" in that their binding and/or phase separation are stochastically governed by the interacting IDPs' amino acid sequences, while their assembled conformations remain largely disordered. To help elucidate a basic aspect of this fascinating yet poorly understood phenomenon, the binding of a homo or heterodimeric pair of polyampholytic IDPs is modeled statistical mechanically using cluster expansion. We find that the binding affinities of binary fuzzy complexes in the model correlate strongly with a newly derived simple "joint sequence charge decoration" parameter readily calculable from the pair of IDPs' sequence charge patterns. Predictions by our analytical theory are in essential agreement with coarse-grained explicit-chain simulations. This computationally efficient theoretical framework is expected to be broadly applicable to rationalizing and predicting sequence-specific IDP-IDP polyelectrostatic interactions.
Collapse
Affiliation(s)
- Alan N Amin
- Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Yi-Hsuan Lin
- Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada.,Molecular Medicine, Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada
| | - Suman Das
- Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Hue Sun Chan
- Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| |
Collapse
|
53
|
Chou HY, Aksimentiev A. Single-Protein Collapse Determines Phase Equilibria of a Biological Condensate. J Phys Chem Lett 2020; 11:4923-4929. [PMID: 32426986 DOI: 10.1021/acs.jpclett.0c01222] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Recent advances in microscopy of living cells have established membraneless organelles as critical elements of diverse biological processes. The body of experimental work suggests that formation of such organelles is driven by liquid-liquid phase separation, a physical process that has been studied extensively for both simple liquids and mixtures of polymers. Here, we combine molecular dynamics simulations with polymer theory to show that the thermodynamic behavior of one particular biomolecular condensate-fused in sarcoma (FUS)-can be quantitatively accounted for at the level of the chain collapse theory. First, we show that a particle-based molecular dynamics model can reproduce known phase separation properties of a FUS condensate, including its critical concentration and susceptibility to mutations. Next, we obtain a polymer physics representation of a FUS condensate by examining the behavior of a single FUS protein as a function of temperature. We use the chain collapse theory to determine the thermodynamic properties of the condensate and to characterize changes in the single-chain conformation at the onset of phase separation. Altogether, our findings suggest that the phase behavior of FUS condensates can be explained by the properties of individual FUS proteins and that the change in the FUS conformation is the main force driving for the phase separation.
Collapse
Affiliation(s)
- Han-Yi Chou
- Department of Physics, University of Illinois at Urbana-Champaign, 1110 West Green Street, Urbana, Illinois 61801, United States
| | - Aleksei Aksimentiev
- Department of Physics, University of Illinois at Urbana-Champaign, 1110 West Green Street, Urbana, Illinois 61801, United States
| |
Collapse
|
54
|
Soranno A. Physical basis of the disorder-order transition. Arch Biochem Biophys 2020; 685:108305. [DOI: 10.1016/j.abb.2020.108305] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Revised: 02/10/2020] [Accepted: 02/14/2020] [Indexed: 12/29/2022]
|
55
|
Lin YH, Brady JP, Chan HS, Ghosh K. A unified analytical theory of heteropolymers for sequence-specific phase behaviors of polyelectrolytes and polyampholytes. J Chem Phys 2020; 152:045102. [PMID: 32007034 PMCID: PMC7043852 DOI: 10.1063/1.5139661] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 12/23/2019] [Indexed: 12/20/2022] Open
Abstract
The physical chemistry of liquid-liquid phase separation (LLPS) of polymer solutions bears directly on the assembly of biologically functional dropletlike bodies from proteins and nucleic acids. These biomolecular condensates include certain extracellular materials and intracellular compartments that are characterized as "membraneless organelles." Analytical theories are a valuable, computationally efficient tool for addressing general principles. LLPS of neutral homopolymers is quite well described by theory, but it has been a challenge to develop general theories for the LLPS of heteropolymers involving charge-charge interactions. Here, we present a theory that combines a random-phase-approximation treatment of polymer density fluctuations and an account of intrachain conformational heterogeneity based on renormalized Kuhn lengths to provide predictions of LLPS properties as a function of pH, salt, and charge patterning along the chain sequence. Advancing beyond more limited analytical approaches, our LLPS theory is applicable to a wide variety of charged sequences ranging from highly charged polyelectrolytes to neutral or nearly neutral polyampholytes. This theory should be useful in high-throughput screening of protein and other sequences for their LLPS propensities and can serve as a basis for more comprehensive theories that incorporate nonelectrostatic interactions. Experimental ramifications of our theory are discussed.
Collapse
Affiliation(s)
- Yi-Hsuan Lin
- Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Jacob P Brady
- Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Hue Sun Chan
- Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Kingshuk Ghosh
- Department of Physics and Astronomy, University of Denver, Colorado, Colorado 80208, USA
| |
Collapse
|
56
|
Mohanty S. Aggregation and coacervation with Monte Carlo simulations. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2020; 170:505-520. [DOI: 10.1016/bs.pmbts.2019.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
57
|
Robichaud NAS, Saika-Voivod I, Wallin S. Phase behavior of blocky charge lattice polymers: Crystals, liquids, sheets, filaments, and clusters. Phys Rev E 2019; 100:052404. [PMID: 31869935 DOI: 10.1103/physreve.100.052404] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Indexed: 12/30/2022]
Abstract
Motivated by the idea that intrinsically disordered proteins (IDPs) condense into liquidlike droplets within cells, we carry out Monte Carlo simulations of a polymer lattice model to study the relationship between charge patterning and phase separation. Polymer chains containing neutral, positively charged, and negatively charged monomers are placed on a cubic lattice. Only nearest-neighbor interactions between charges are considered. We determine the phase diagram for a systematically varied set of sequences. We observe homogeneous fluids, liquid condensation, cluster phases, filaments, and crystal states. Of the six sequences we study, three form crystals at low temperatures. The other three sequences, which have lower charge densities, instead collapse into gel-like networks or unconnected finite clusters. Longer neutral patches along the sequence sterically limit the size and shape of low-energy structures, which is analogous to the effect of charge or limited valence in attractive colloids. Only one sequence clearly exhibits liquid behavior; this sequence has a reduced tendency to individually fold and crystallize compared to others of similar charge density and draws parallels to real IDP behavior.
Collapse
Affiliation(s)
- Nicholas A S Robichaud
- Department of Physics and Physical Oceanography, Memorial University of Newfoundland, St. John's, Newfoundland, Canada A1B 3X7
| | - Ivan Saika-Voivod
- Department of Physics and Physical Oceanography, Memorial University of Newfoundland, St. John's, Newfoundland, Canada A1B 3X7
| | - Stefan Wallin
- Department of Physics and Physical Oceanography, Memorial University of Newfoundland, St. John's, Newfoundland, Canada A1B 3X7
| |
Collapse
|
58
|
Schuler B, Borgia A, Borgia MB, Heidarsson PO, Holmstrom ED, Nettels D, Sottini A. Binding without folding - the biomolecular function of disordered polyelectrolyte complexes. Curr Opin Struct Biol 2019; 60:66-76. [PMID: 31874413 DOI: 10.1016/j.sbi.2019.12.006] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 11/29/2019] [Accepted: 12/05/2019] [Indexed: 12/16/2022]
Abstract
Recent evidence shows that oppositely charged intrinsically disordered proteins (IDPs) can form high-affinity complexes that involve neither the formation of secondary or tertiary structure nor site-specific interactions between individual residues. Similar electrostatically dominated interactions have also been identified for positively charged IDPs binding to nucleic acids. These highly disordered polyelectrolyte complexes constitute an extreme case within the spectrum of biomolecular interactions involving disorder. Such interactions are likely to be widespread, since sequence analysis predicts proteins with highly charged disordered regions to be surprisingly numerous. Here, we summarize the insights that have emerged from the highly disordered polyelectrolyte complexes identified so far, and we highlight recent developments and future challenges in (i) establishing models for the underlying highly dynamic structural ensembles, (ii) understanding the novel binding mechanisms associated with them, and (iii) identifying the functional consequences.
Collapse
Affiliation(s)
- Benjamin Schuler
- Department of Biochemistry, University of Zurich, Switzerland; Department of Physics, University of Zurich, Switzerland.
| | - Alessandro Borgia
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Madeleine B Borgia
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Pétur O Heidarsson
- Department of Biochemistry, Science Institute, University of Iceland, Dunhagi 3, 107 Reykjavík, Iceland
| | - Erik D Holmstrom
- Department of Molecular Biosciences, University of Kansas, 1200 Sunnyside, Lawrence, KS 66045, USA; Department of Chemistry, University of Kansas, 1200 Sunnyside, Lawrence, KS 66045, USA
| | - Daniel Nettels
- Department of Biochemistry, University of Zurich, Switzerland
| | - Andrea Sottini
- Department of Biochemistry, University of Zurich, Switzerland
| |
Collapse
|
59
|
Xue S, Gong R, He F, Li Y, Wang Y, Tan T, Luo SZ. Low-complexity domain of U1-70K modulates phase separation and aggregation through distinctive basic-acidic motifs. SCIENCE ADVANCES 2019; 5:eaax5349. [PMID: 31723601 PMCID: PMC6834393 DOI: 10.1126/sciadv.aax5349] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 09/17/2019] [Indexed: 05/20/2023]
Abstract
Liquid-liquid phase separation (LLPS) facilitates the formation of functional membraneless organelles and recent reports have linked this phenomenon to protein aggregation in neurodegenerative diseases. Understanding the mechanism of LLPS and its regulation thus promises to shed light on the pathogenesis of these conditions. The RNA-binding protein U1-70K, which aggregates in brains of Alzheimer's disease patients, is considered a potential target for Alzheimer's therapy. Here, we report that two fragments in the low-complexity (LC) domain of U1-70K can undergo LLPS. We have demonstrated that the repetitive basic-acidic motifs in these fragments induce nucleotide-independent phase separation and initiate aggregation in vitro. We also have confirmed that LLPS and aggregation occur in vivo and that the content of ampholytic motifs in a protein domain determines the transition between droplets and aggregation, providing insights into the mechanism underlying the formation of diverse assembly states.
Collapse
|
60
|
Choi JM, Dar F, Pappu RV. LASSI: A lattice model for simulating phase transitions of multivalent proteins. PLoS Comput Biol 2019; 15:e1007028. [PMID: 31634364 PMCID: PMC6822780 DOI: 10.1371/journal.pcbi.1007028] [Citation(s) in RCA: 206] [Impact Index Per Article: 41.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 10/31/2019] [Accepted: 10/01/2019] [Indexed: 12/21/2022] Open
Abstract
Many biomolecular condensates form via spontaneous phase transitions that are driven by multivalent proteins. These molecules are biological instantiations of associative polymers that conform to a so-called stickers-and-spacers architecture. The stickers are protein-protein or protein-RNA interaction motifs and / or domains that can form reversible, non-covalent crosslinks with one another. Spacers are interspersed between stickers and their preferential interactions with solvent molecules determine the cooperativity of phase transitions. Here, we report the development of an open source computational engine known as LASSI (LAttice simulation engine for Sticker and Spacer Interactions) that enables the calculation of full phase diagrams for multicomponent systems comprising of coarse-grained representations of multivalent proteins. LASSI is designed to enable computationally efficient phenomenological modeling of spontaneous phase transitions of multicomponent mixtures comprising of multivalent proteins and RNA molecules. We demonstrate the application of LASSI using simulations of linear and branched multivalent proteins. We show that dense phases are best described as droplet-spanning networks that are characterized by reversible physical crosslinks among multivalent proteins. We connect recent observations regarding correlations between apparent stoichiometry and dwell times of condensates to being proxies for the internal structural organization, specifically the convolution of internal density and extent of networking, within condensates. Finally, we demonstrate that the concept of saturation concentration thresholds does not apply to multicomponent systems where obligate heterotypic interactions drive phase transitions. This emerges from the ellipsoidal structures of phase diagrams for multicomponent systems and it has direct implications for the regulation of biomolecular condensates in vivo.
Collapse
Affiliation(s)
- Jeong-Mo Choi
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, United States of America
- Center for Science & Engineering of Living Systems (CSELS), Washington University in St. Louis, St. Louis, MO, United States of America
| | - Furqan Dar
- Center for Science & Engineering of Living Systems (CSELS), Washington University in St. Louis, St. Louis, MO, United States of America
- Department of Physics, Washington University in St. Louis, St. Louis, MO, United States of America
| | - Rohit V. Pappu
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, United States of America
- Center for Science & Engineering of Living Systems (CSELS), Washington University in St. Louis, St. Louis, MO, United States of America
- * E-mail:
| |
Collapse
|
61
|
Vernon RM, Forman-Kay JD. First-generation predictors of biological protein phase separation. Curr Opin Struct Biol 2019; 58:88-96. [DOI: 10.1016/j.sbi.2019.05.016] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 05/17/2019] [Accepted: 05/19/2019] [Indexed: 02/06/2023]
|
62
|
Cinar H, Fetahaj Z, Cinar S, Vernon RM, Chan HS, Winter RHA. Temperature, Hydrostatic Pressure, and Osmolyte Effects on Liquid-Liquid Phase Separation in Protein Condensates: Physical Chemistry and Biological Implications. Chemistry 2019; 25:13049-13069. [PMID: 31237369 DOI: 10.1002/chem.201902210] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 06/23/2019] [Indexed: 01/04/2023]
Abstract
Liquid-liquid phase separation (LLPS) of proteins and other biomolecules play a critical role in the organization of extracellular materials and membrane-less compartmentalization of intra-organismal spaces through the formation of condensates. Structural properties of such mesoscopic droplet-like states were studied by spectroscopy, microscopy, and other biophysical techniques. The temperature dependence of biomolecular LLPS has been studied extensively, indicating that phase-separated condensed states of proteins can be stabilized or destabilized by increasing temperature. In contrast, the physical and biological significance of hydrostatic pressure on LLPS is less appreciated. Summarized here are recent investigations of protein LLPS under pressures up to the kbar-regime. Strikingly, for the cases studied thus far, LLPSs of both globular proteins and intrinsically disordered proteins/regions are typically more sensitive to pressure than the folding of proteins, suggesting that organisms inhabiting the deep sea and sub-seafloor sediments, under pressures up to 1 kbar and beyond, have to mitigate this pressure-sensitivity to avoid unwanted destabilization of their functional biomolecular condensates. Interestingly, we found that trimethylamine-N-oxide (TMAO), an osmolyte upregulated in deep-sea fish, can significantly stabilize protein droplets under pressure, pointing to another adaptive advantage for increased TMAO concentrations in deep-sea organisms besides the osmolyte's stabilizing effect against protein unfolding. As life on Earth might have originated in the deep sea, pressure-dependent LLPS is pertinent to questions regarding prebiotic proto-cells. Herein, we offer a conceptual framework for rationalizing the recent experimental findings and present an outline of the basic thermodynamics of temperature-, pressure-, and osmolyte-dependent LLPS as well as a molecular-level statistical mechanics picture in terms of solvent-mediated interactions and void volumes.
Collapse
Affiliation(s)
- Hasan Cinar
- Physical Chemistry I-Biophysical Chemistry, Faculty of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn Strasse 4a, 44227, Dortmund, Germany
| | - Zamira Fetahaj
- Physical Chemistry I-Biophysical Chemistry, Faculty of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn Strasse 4a, 44227, Dortmund, Germany
| | - Süleyman Cinar
- Physical Chemistry I-Biophysical Chemistry, Faculty of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn Strasse 4a, 44227, Dortmund, Germany
| | - Robert M Vernon
- Molecular Medicine, The Hospital for Sick Children, Toronto, Ontario, M5G 0A4, Canada
| | - Hue Sun Chan
- Department of Biochemistry, Faculty of Medicine, University of Toronto, Ontario, M5S 1A8, Canada.,Department of Molecular Genetics, Faculty of Medicine, University of Toronto, Ontario, M5S 1A8, Canada
| | - Roland H A Winter
- Physical Chemistry I-Biophysical Chemistry, Faculty of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn Strasse 4a, 44227, Dortmund, Germany
| |
Collapse
|
63
|
Danielsen SPO, McCarty J, Shea JE, Delaney KT, Fredrickson GH. Small ion effects on self-coacervation phenomena in block polyampholytes. J Chem Phys 2019; 151:034904. [PMID: 31325933 PMCID: PMC6639116 DOI: 10.1063/1.5109045] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Accepted: 06/25/2019] [Indexed: 12/15/2022] Open
Abstract
Self-coacervation is a phenomenon in which a solution of polyampholytes spontaneously phase separates into a dense liquid coacervate phase, rich in the polyampholyte, coexisting with a dilute supernatant phase. Such coacervation results in the formation of membraneless organelles in vivo and has further been applied industrially as synthetic encapsulants and coatings. It has been suggested that coacervation is primarily driven by the entropy gain from releasing counter-ions upon complexation. Using fully fluctuating field-theoretic simulations employing complex Langevin sampling and complementary molecular dynamics simulations, we have determined that the small ions contribute only weakly to the self-coacervation behavior of charge-symmetric block polyampholytes in solution. Salt partitioning between the supernatant and coacervate is also found to be negligible in the weak-binding regime at low electrostatic strengths. Asymmetries in charge distribution along the polyampholytes can cause net-charges that lead to "tadpole" configurations in dilute solution and the suppression of phase separation at low salt content. The field and particle-based simulation results are compared with analytical predictions from the random phase approximation (RPA) and postulated scaling relationships. The qualitative trends are mostly captured by the RPA, but the approximation fails at low concentration.
Collapse
Affiliation(s)
- Scott P O Danielsen
- Department of Chemical Engineering, University of California, Santa Barbara, California 93106, USA
| | - James McCarty
- Materials Research Laboratory, University of California, Santa Barbara, California 93106, USA
| | - Joan-Emma Shea
- Materials Research Laboratory, University of California, Santa Barbara, California 93106, USA
| | - Kris T Delaney
- Materials Research Laboratory, University of California, Santa Barbara, California 93106, USA
| | - Glenn H Fredrickson
- Department of Chemical Engineering, University of California, Santa Barbara, California 93106, USA
| |
Collapse
|
64
|
Especial J, Nunes A, Rey A, Faísca PF. Hydrophobic confinement modulates thermal stability and assists knotting in the folding of tangled proteins. Phys Chem Chem Phys 2019; 21:11764-11775. [PMID: 31114834 DOI: 10.1039/c9cp01701a] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
There is growing support for the idea that the in vivo folding process of knotted proteins is assisted by chaperonins, but the mechanism of chaperonin assisted folding remains elusive. Here, we conduct extensive Monte Carlo simulations of lattice and off-lattice models to explore the effects of confinement and hydrophobic intermolecular interactions with the chaperonin cage in the folding and knotting processes. We find that moderate to high protein-cavity interactions (which are likely to be established in the beginning of the chaperonin working cycle) cause an energetic destabilization of the protein that overcomes the entropic stabilization driven by excluded volume, and leads to a decrease of the melting temperature relative to bulk conditions. Moreover, mild-to-moderate hydrophobic interactions with the cavity (which would be established later in the cycle) lead to a significant enhancement of knotting probability in relation to bulk conditions while simultaneously moderating the effect of steric confinement in the enhancement of thermal stability. Our results thus indicate that the chaperonin may be able to assist knotting without simultaneously thermally stabilizing potential misfolded states to a point that would hamper productive folding thus compromising its functional role.
Collapse
Affiliation(s)
- João Especial
- Departamento de Física, Universidade de Lisboa, Campo Grande, Ed. C8, 1749-016 Lisboa, Portugal.
| | | | | | | |
Collapse
|
65
|
McCarty J, Delaney KT, Danielsen SPO, Fredrickson GH, Shea JE. Complete Phase Diagram for Liquid-Liquid Phase Separation of Intrinsically Disordered Proteins. J Phys Chem Lett 2019; 10:1644-1652. [PMID: 30873835 PMCID: PMC7379843 DOI: 10.1021/acs.jpclett.9b00099] [Citation(s) in RCA: 171] [Impact Index Per Article: 34.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
A number of intrinsically disordered proteins have been shown to self-assemble via liquid-liquid phase separation into protein-rich and dilute phases. The resulting coacervates can have important biological functions, and the ability to form these assemblies is dictated by the protein's primary amino acid sequence as well as by the solution conditions. We present a complete phase diagram for the simple coacervation of a polyampholyte intrinsically disordered protein using a field-theoretic simulation approach. We show that differences in the primary amino acid sequence and in the distribution of charged amino acids along the sequence lead to differences in the phase window for coacervation, with block-charged sequences having a larger coacervation window than sequences with a random patterning of charges. The model also captures how changing solution conditions modifies the phase diagram and can serve to guide experimental studies.
Collapse
Affiliation(s)
- James McCarty
- Department of Chemistry and Biochemistry , University of California , Santa Barbara , California 93106 , United States
- Materials Research Laboratory , University of California , Santa Barbara , California 93106 , United States
| | - Kris T Delaney
- Materials Research Laboratory , University of California , Santa Barbara , California 93106 , United States
| | - Scott P O Danielsen
- Materials Research Laboratory , University of California , Santa Barbara , California 93106 , United States
- Department of Chemical Engineering , University of California , Santa Barbara , California 93106 , United States
| | - Glenn H Fredrickson
- Materials Research Laboratory , University of California , Santa Barbara , California 93106 , United States
- Department of Chemical Engineering , University of California , Santa Barbara , California 93106 , United States
- Materials Department , University of California , Santa Barbara , California 93106 , United States
| | - Joan-Emma Shea
- Department of Chemistry and Biochemistry , University of California , Santa Barbara , California 93106 , United States
- Materials Research Laboratory , University of California , Santa Barbara , California 93106 , United States
- Department of Physics , University of California Santa Barbara , Santa Barbara , California 93106 , United States
| |
Collapse
|
66
|
Lin Y, McCarty J, Rauch JN, Delaney KT, Kosik KS, Fredrickson GH, Shea JE, Han S. Narrow equilibrium window for complex coacervation of tau and RNA under cellular conditions. eLife 2019; 8:e42571. [PMID: 30950394 PMCID: PMC6450672 DOI: 10.7554/elife.42571] [Citation(s) in RCA: 102] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 03/06/2019] [Indexed: 12/28/2022] Open
Abstract
The mechanism that leads to liquid-liquid phase separation (LLPS) of the tau protein, whose pathological aggregation is implicated in neurodegenerative disorders, is not well understood. Establishing a phase diagram that delineates the boundaries of phase co-existence is key to understanding whether LLPS is an equilibrium or intermediate state. We demonstrate that tau and RNA reversibly form complex coacervates. While the equilibrium phase diagram can be fit to an analytical theory, a more advanced model is investigated through field theoretic simulations (FTS) that provided direct insight into the thermodynamic driving forces of tau LLPS. Together, experiment and simulation reveal that tau-RNA LLPS is stable within a narrow equilibrium window near physiological conditions over experimentally tunable parameters including temperature, salt and tau concentrations, and is entropy-driven. Guided by our phase diagram, we show that tau can be driven toward LLPS under live cell coculturing conditions with rationally chosen experimental parameters.
Collapse
Affiliation(s)
- Yanxian Lin
- Biomolecular Science and EngineeringUniversity of California Santa BarbaraSanta BarbaraUnited States
| | - James McCarty
- Department of Chemistry and BiochemistryUniversity of California Santa BarbaraSanta BarbaraUnited States
| | - Jennifer N Rauch
- Department of Molecular, Cellular and Developmental BiologyUniversity of California Santa BarbaraSanta BarbaraUnited States
- Neuroscience Research InstituteUniversity of California Santa BarbaraSanta BarbaraUnited States
| | - Kris T Delaney
- Materials Research LaboratoryUniversity of California Santa BarbaraSanta BarbaraUnited States
| | - Kenneth S Kosik
- Department of Molecular, Cellular and Developmental BiologyUniversity of California Santa BarbaraSanta BarbaraUnited States
- Neuroscience Research InstituteUniversity of California Santa BarbaraSanta BarbaraUnited States
| | - Glenn H Fredrickson
- Materials Research LaboratoryUniversity of California Santa BarbaraSanta BarbaraUnited States
- Department of Chemical EngineeringUniversity of California Santa BarbaraSanta BarbaraUnited States
| | - Joan-Emma Shea
- Department of Chemistry and BiochemistryUniversity of California Santa BarbaraSanta BarbaraUnited States
- Department of PhysicsUniversity of California Santa BarbaraSanta BarbaraUnited States
| | - Songi Han
- Department of Chemistry and BiochemistryUniversity of California Santa BarbaraSanta BarbaraUnited States
- Department of Chemical EngineeringUniversity of California Santa BarbaraSanta BarbaraUnited States
| |
Collapse
|
67
|
Molecular design of self-coacervation phenomena in block polyampholytes. Proc Natl Acad Sci U S A 2019; 116:8224-8232. [PMID: 30948640 DOI: 10.1073/pnas.1900435116] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Coacervation is a common phenomenon in natural polymers and has been applied to synthetic materials systems for coatings, adhesives, and encapsulants. Single-component coacervates are formed when block polyampholytes exhibit self-coacervation, phase separating into a dense liquid coacervate phase rich in the polyampholyte coexisting with a dilute supernatant phase, a process implicated in the liquid-liquid phase separation of intrinsically disordered proteins. Using fully fluctuating field-theoretic simulations using complex Langevin sampling and complementary molecular-dynamics simulations, we develop molecular design principles to connect the sequenced charge pattern of a polyampholyte with its self-coacervation behavior in solution. In particular, the lengthscale of charged blocks and number of connections between oppositely charged blocks are shown to have a dramatic effect on the tendency to phase separate and on the accessible chain conformations. The field and particle-based simulation results are compared with analytical predictions from the random phase approximation (RPA) and postulated scaling relationships. The qualitative trends are mostly captured by the RPA, but the approximation fails catastrophically at low concentration.
Collapse
|
68
|
Dignon GL, Zheng W, Mittal J. Simulation methods for liquid-liquid phase separation of disordered proteins. Curr Opin Chem Eng 2019; 23:92-98. [PMID: 32802734 PMCID: PMC7426017 DOI: 10.1016/j.coche.2019.03.004] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Liquid-liquid phase separation of intrinsically disordered proteins (IDPs) and other biomolecules is a highly complex but robust process used by living systems. Drawing inspiration from biology, phase separating proteins have been successfully utilized for promising applications in fields of materials design and drug delivery. These protein-based materials are advantageous due to the ability to finely tune their stimulus-responsive phase behavior and material properties, and the ability to encode biologically active motifs directly into the sequence. The number of possible protein sequences is virtually endless, which makes sequence-based design a rather daunting task, but also attractive due to the amount of control coming from exploration of this variable space. The use of computational methods in this field of research have come to the aid in several aspects, including interpreting experimental results, identifying important structural features and molecular mechanisms capable of explaining the phase behavior, and ultimately providing predictive frameworks for rational design of protein sequences. Here we provide an overview of computational studies focused on phase separating biomolecules and the tools that are available to researchers interested in this topic.
Collapse
Affiliation(s)
- Gregory L. Dignon
- Department of Chemical and Biomolecular Engineering, Lehigh University, Bethlehem, PA, 18015, United States
| | - Wenwei Zheng
- College of Integrative Sciences and Arts, Arizona State University, Mesa, AZ 85212
| | - Jeetain Mittal
- Department of Chemical and Biomolecular Engineering, Lehigh University, Bethlehem, PA, 18015, United States
| |
Collapse
|
69
|
Falahati H, Haji-Akbari A. Thermodynamically driven assemblies and liquid-liquid phase separations in biology. SOFT MATTER 2019; 15:1135-1154. [PMID: 30672955 DOI: 10.1039/c8sm02285b] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The sustenance of life depends on the high degree of organization that prevails through different levels of living organisms, from subcellular structures such as biomolecular complexes and organelles to tissues and organs. The physical origin of such organization is not fully understood, and even though it is clear that cells and organisms cannot maintain their integrity without consuming energy, there is growing evidence that individual assembly processes can be thermodynamically driven and occur spontaneously due to changes in thermodynamic variables such as intermolecular interactions and concentration. Understanding the phase separation in vivo requires a multidisciplinary approach, integrating the theory and physics of phase separation with experimental and computational techniques. This paper aims at providing a brief overview of the physics of phase separation and its biological implications, with a particular focus on the assembly of membraneless organelles. We discuss the underlying physical principles of phase separation from its thermodynamics to its kinetics. We also overview the wide range of methods utilized for experimental verification and characterization of phase separation of membraneless organelles, as well as the utility of molecular simulations rooted in thermodynamics and statistical physics in understanding the governing principles of thermodynamically driven biological self-assembly processes.
Collapse
Affiliation(s)
- Hanieh Falahati
- Department of Neuroscience, Yale School of Medicine, New Haven, CT 06510, USA.
| | | |
Collapse
|
70
|
|
71
|
Das S, Amin AN, Lin YH, Chan HS. Coarse-grained residue-based models of disordered protein condensates: utility and limitations of simple charge pattern parameters. Phys Chem Chem Phys 2018; 20:28558-28574. [PMID: 30397688 DOI: 10.1039/c8cp05095c] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Biomolecular condensates undergirded by phase separations of proteins and nucleic acids serve crucial biological functions. To gain physical insights into their genetic basis, we study how liquid-liquid phase separation (LLPS) of intrinsically disordered proteins (IDPs) depends on their sequence charge patterns using a continuum Langevin chain model wherein each amino acid residue is represented by a single bead. Charge patterns are characterized by the "blockiness" measure κ and the "sequence charge decoration" (SCD) parameter. Consistent with random phase approximation (RPA) theory and lattice simulations, LLPS propensity as characterized by critical temperature Tcr* increases with increasingly negative SCD for a set of sequences showing a positive correlation between κ and -SCD. Relative to RPA, the simulated sequence-dependent variation in Tcr* is often-though not always-smaller, whereas the simulated critical volume fractions are higher. However, for a set of sequences exhibiting an anti-correlation between κ and -SCD, the simulated Tcr*'s are quite insensitive to either parameter. Additionally, we find that blocky sequences that allow for strong electrostatic repulsion can lead to coexistence curves with upward concavity as stipulated by RPA, but the LLPS propensity of a strictly alternating charge sequence was likely overestimated by RPA and lattice models because interchain stabilization of this sequence requires spatial alignments that are difficult to achieve in real space. These results help delineate the utility and limitations of the charge pattern parameters and of RPA, pointing to further efforts necessary for rationalizing the newly observed subtleties.
Collapse
Affiliation(s)
- Suman Das
- Department of Biochemistry, University of Toronto, Medical Sciences Building - 5th Fl., 1 King's College Circle, Toronto, Ontario M5S 1A8, Canada.
| | | | | | | |
Collapse
|
72
|
Díaz R, Díaz-Godínez G, Anducho-Reyes MA, Mercado-Flores Y, Herrera-Zúñiga LD. In silico Design of Laccase Thermostable Mutants From Lacc 6 of Pleurotus Ostreatus. Front Microbiol 2018; 9:2743. [PMID: 30487785 PMCID: PMC6247816 DOI: 10.3389/fmicb.2018.02743] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 10/26/2018] [Indexed: 11/13/2022] Open
Abstract
Fungal laccase enzymes have a great biotechnological potential for bioremediation processes due to their ability to degrade compounds such as ρ-diphenol, aminophenols, polyphenols, polyamines, and aryldiamines. These enzymes have activity at different pH and temperature values, however, high temperatures can cause partial or total loss of enzymatic activity, so it is appropriate to do research to modify their secondary and/or tertiary structure to make them more resistant to extreme temperature conditions. In silico, a structure of the Lacc 6 enzyme of Pleurotus ostreatus was constructed using a laccase of Trametes versicolor as a template. From this structure, 16 mutants with possible resistance at high temperature due to ionic interactions, salt bridges and disulfide bonds were also obtained in silico. It was determined that 12 mutants called 4-DB, 3-DB, D233C-T310C, F468P, 3-SB, L132T, N79D, N372D, P203C, P203V, T147E, and W85F, presented the lowest thermodynamic energy. Based on the previous criterion and determining the least flexibility in the protein structures, three mutants (4-DB, 3-DB, and P203C) were selected, which may present high stability at high temperatures without affecting their active site. The obtained results allow the understanding of the molecular base that increase the structural stability of the enzyme Lacc 6 of Pleurotus ostreatus, achieving the in silico generation of mutants, which could have activity at high temperatures.
Collapse
Affiliation(s)
- Rubén Díaz
- Laboratory of Biotechnology, Research Center for Biological Sciences, Autonomous University of Tlaxcala, Tlaxcala, Mexico
| | - Gerardo Díaz-Godínez
- Laboratory of Biotechnology, Research Center for Biological Sciences, Autonomous University of Tlaxcala, Tlaxcala, Mexico
| | | | | | - Leonardo David Herrera-Zúñiga
- Division of Environmental Engineering Technology of Higher Studies of East Mexico State, Mexico City, Mexico
- Area of Biophysical Chemistry, Department of Chemistry, Metropolitan Autonomous University-Iztapalapa, Mexico City, Mexico
| |
Collapse
|
73
|
Conformational preferences and phase behavior of intrinsically disordered low complexity sequences: insights from multiscale simulations. Curr Opin Struct Biol 2018; 56:1-10. [PMID: 30439585 DOI: 10.1016/j.sbi.2018.10.003] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 10/17/2018] [Accepted: 10/19/2018] [Indexed: 11/22/2022]
Abstract
While many proteins and protein regions utilize a complex repertoire of amino acids to achieve their biological function, a subset of protein sequences are enriched in a reduced set of amino acids. These so-called low complexity (LC) sequences, specifically intrinsically disordered variants of LC sequences, have been the focus of recent investigations owing to their roles in a range of biological functions, specifically phase separation. Computational studies of LC sequences have provided rich insights into their behavior both as individual proteins in dilute solutions and as the drivers and modulators of higher-order assemblies. Here, we review how simulations performed across distinct resolutions have provided different types of insights into the biological role of LC sequences.
Collapse
|
74
|
Huihui J, Firman T, Ghosh K. Modulating charge patterning and ionic strength as a strategy to induce conformational changes in intrinsically disordered proteins. J Chem Phys 2018; 149:085101. [PMID: 30193467 DOI: 10.1063/1.5037727] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We present an analytical theory to describe conformational changes as a function of salt for polymers with a given sequence of charges. We apply this model to describe Intrinsically Disordered Proteins (IDPs) by explicitly accounting for charged residues and their exact placement in the primary sequence while approximating the effect of non-electrostatic interactions at a mean-field level by effective short-range (two body and three-body) interaction parameters. The effect of ions is introduced by treating electrostatic interactions within Debye-Huckle approximation. Using typical values of the short-range mean-field parameters derived from all-atom Monte Carlo simulations (at zero salt), we predict the conformational changes as a function of salt concentration. We notice that conformational transitions in response to changes in ionic strength strongly depend on sequence specific charge patterning. For example, globule to coil transition can be observed upon increasing salt concentration, in stark contrast to uniformly charged polyelectrolyte theories based on net charge only. In addition, it is possible to observe non-monotonic behavior with salt as well. Drastic differences in salt-induced conformational transitions is also evident between two doubly phosphorylated sequences-derived from the same wild type sequence-that only differ in the site of phosphorylation. Similar effects are also predicted between two sequences derived from the same parent sequence differing by a single site mutation where a negative charge is replaced by a positive charge. These effects are purely a result of charge decoration and can only be understood in terms of metrics based on specific placement of charges, and cannot be explained by models based on charge composition alone. Identifying sequences and hot spots within sequences-for post translational modification or charge mutation-using our high-throughput theory will yield fundamental insights into design and biological regulation mediated by phosphorylation and/or local changes in salt concentration.
Collapse
Affiliation(s)
- Jonathan Huihui
- Department of Physics and Astronomy, University of Denver, 2112 E Wesley Avenue, Denver, Colorado 80208, USA and Molecular and Cellular Biophysics, University of Denver, 2112 E Wesley Avenue, Denver, Colorado 80208, USA
| | - Taylor Firman
- Department of Physics and Astronomy, University of Denver, 2112 E Wesley Avenue, Denver, Colorado 80208, USA and Molecular and Cellular Biophysics, University of Denver, 2112 E Wesley Avenue, Denver, Colorado 80208, USA
| | - Kingshuk Ghosh
- Department of Physics and Astronomy, University of Denver, 2112 E Wesley Avenue, Denver, Colorado 80208, USA and Molecular and Cellular Biophysics, University of Denver, 2112 E Wesley Avenue, Denver, Colorado 80208, USA
| |
Collapse
|
75
|
Lin YH, Forman-Kay JD, Chan HS. Theories for Sequence-Dependent Phase Behaviors of Biomolecular Condensates. Biochemistry 2018; 57:2499-2508. [PMID: 29509422 DOI: 10.1021/acs.biochem.8b00058] [Citation(s) in RCA: 142] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Liquid-liquid phase separation and related condensation processes of intrinsically disordered proteins (IDPs), proteins with intrinsically disordered regions, and nucleic acids underpin various condensed-liquid droplets or gel-like assemblies in the cellular environment. Collectively referred to as condensates, these bodies provide spatial/temporal compartmentalization, often serving as hubs for regulated biomolecular interactions. Examples include certain extracellular materials, transcription complexes, and membraneless organelles such as germ and stress granules and the nucleolus. They are critically important to cellular function; thus misregulation of their assembly is implicated in many diseases. Biomolecular condensates are complex entities. Our understanding of their inner workings is only in its infancy. Nonetheless, insights into basic biophysical principles of their assembly can be gained by applying analytical theories to elucidate how IDP phase behaviors are governed by the properties of the multivalent, solvent-mediated interactions entailed by the proteins' amino acid sequences. Here we briefly review the background of the pertinent polymer theories and outline the approximations that enable a tractable theoretical account of the dependence of IDP phase behaviors on the charge pattern of the IDP sequence. Of relevance to the homeostatic assembly of compositionally and functionally distinct condensates in the cellular context, theory indicates that the propensity for populations of different IDP sequences to mix or demix upon phase separation is affected by the similarity or dissimilarity of the sequence charge patterns. We also explore prospects of extending analytical theories to account for dynamic aspects of biomolecular condensates and to incorporate effects of cation-π, π-π, and temperature-dependent hydrophobic interactions on IDP phase properties.
Collapse
Affiliation(s)
- Yi-Hsuan Lin
- Molecular Medicine , The Hospital for Sick Children , Toronto , Ontario , Canada
| | - Julie D Forman-Kay
- Molecular Medicine , The Hospital for Sick Children , Toronto , Ontario , Canada
| | | |
Collapse
|