51
|
Florent M, Giannakoudakis DA, Bandosz TJ. Mustard Gas Surrogate Interactions with Modified Porous Carbon Fabrics: Effect of Oxidative Treatment. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:11475-11483. [PMID: 28903558 DOI: 10.1021/acs.langmuir.7b02047] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Removal of chemical warfare agent (CWA) surrogates by highly porous carbon textiles was investigated. The carbon cloth was modified by oxidation in a mixture of concentrated sulfuric and nitric acid. This process did not affect textile structural integrity. The surface properties of the modified textiles were investigated, and their capabilities to remove 2-chloroethyl ethyl sulfide (CEES) and diethylsulfide (EES), two mustard gas surrogates, were evaluated. The oxidized carbon textiles have a highly active surface that has the ability to form radical species. This enhances the degradation of the surrogates, and so the detoxification efficiency. The reaction products detected suggest differences in degradation mechanisms which depend on the type of fabric surface features. Thus, the oxidized surfaces eliminate CEES mainly through dehydrohalogenation, while the nonoxidized surfaces act via hydrolysis. Only the oxidized carbon has a surface active enough to react with the less reactive surrogate EES, by cleavage of the C-S bond. The surface functional groups promote not only the radical formation but also contribute to a strong adsorption of the CWA surrogates, which enhance the decomposition of these toxic species.
Collapse
Affiliation(s)
- Marc Florent
- Department of Chemistry, The City College of New York , New York, New York 10031 United States
| | | | - Teresa J Bandosz
- Department of Chemistry, The City College of New York , New York, New York 10031 United States
| |
Collapse
|
52
|
Mundlapati VR, Gautam S, Sahoo DK, Ghosh A, Biswal HS. Thioamide, a Hydrogen Bond Acceptor in Proteins and Nucleic Acids. J Phys Chem Lett 2017; 8:4573-4579. [PMID: 28876948 DOI: 10.1021/acs.jpclett.7b01810] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Thioamides are used as potential surrogates of amides to study the structure and dynamics of proteins and nucleic acids. However, incorporation of thioamides in biomolecules leads to changes in their structures and conformations mostly attributed to the strength of the amide-N-H···S═C hydrogen bond. In most cases, it is considered weak owing to the small electronegativity of sulfur, and in some cases, it is as strong as conventional H-bonds. Herein, adopting PDB structure analysis, NMR spectroscopy, and quantum chemistry calculations, we have shown that thioamides in a geometrical and structural constraint-free environment are capable of forming strong H-bonds like their amide counterparts. These studies also enabled us to determine the amide-N-H···S═C H-bond enthalpy (ΔH) very precisely. The estimated ΔH for the amide-N-H···S═C H-bond is ∼-30 kJ/mol, which suggests that the amide-N-H···S═C H-bond is a strong H-bond and merits its inclusion in computational force fields for biomolecular structure simulations to explore the role of amide-N-H···S═C H-bonds in nucleobase pairing and protein folding.
Collapse
Affiliation(s)
- V Rao Mundlapati
- School of Chemical Sciences, National Institute of Science Education and Research (NISER) , PO-Bhimpur-Padanpur, Via-Jatni, District-Khurda, PIN-752050 Bhubaneswar, India
- Homi Bhabha National Institute , Training School Complex, Anushakti Nagar, Mumbai 400094, India
| | - Sanjeev Gautam
- School of Chemical Sciences, National Institute of Science Education and Research (NISER) , PO-Bhimpur-Padanpur, Via-Jatni, District-Khurda, PIN-752050 Bhubaneswar, India
- Homi Bhabha National Institute , Training School Complex, Anushakti Nagar, Mumbai 400094, India
| | - Dipak Kumar Sahoo
- School of Chemical Sciences, National Institute of Science Education and Research (NISER) , PO-Bhimpur-Padanpur, Via-Jatni, District-Khurda, PIN-752050 Bhubaneswar, India
- Homi Bhabha National Institute , Training School Complex, Anushakti Nagar, Mumbai 400094, India
| | - Arindam Ghosh
- School of Chemical Sciences, National Institute of Science Education and Research (NISER) , PO-Bhimpur-Padanpur, Via-Jatni, District-Khurda, PIN-752050 Bhubaneswar, India
- Homi Bhabha National Institute , Training School Complex, Anushakti Nagar, Mumbai 400094, India
| | - Himansu S Biswal
- School of Chemical Sciences, National Institute of Science Education and Research (NISER) , PO-Bhimpur-Padanpur, Via-Jatni, District-Khurda, PIN-752050 Bhubaneswar, India
- Homi Bhabha National Institute , Training School Complex, Anushakti Nagar, Mumbai 400094, India
| |
Collapse
|
53
|
Pavan MS, Sarkar S, Row TNG. Exploring the rare S—H...S hydrogen bond using charge density analysis in isomers of mercaptobenzoic acid. ACTA CRYSTALLOGRAPHICA SECTION B-STRUCTURAL SCIENCE CRYSTAL ENGINEERING AND MATERIALS 2017; 73:626-633. [DOI: 10.1107/s2052520617008344] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 06/06/2017] [Indexed: 11/10/2022]
Abstract
Experimental and theoretical charge density analyses on isomers of mercaptobenzoic acid have been carried out to quantify the hydrogen bonding of the hitherto less explored thiols, to assess the strength of the interactions using the topological features of the electron density. The electron density study offers interesting insights into the nature of the S—H...S interaction. The interaction energy is comparable with that of a weak hydrogen bond. The strength and directionality of the S—H...S hydrogen bond is demonstrated to be mainly due to the conformation locking potential of the intramolecular S...O chalcogen bond in 2-mercaptobenzoic acid and is stronger than in 3-mercaptobenzoic acid, which lacks the intramolecular S...O bond. Thepara-substituted mercaptobenzoic acid depicts a type I S...S interaction.
Collapse
|
54
|
Silva WGDP, Braga CB, Rittner R. Conformational study of L-methionine and L-cysteine derivatives through quantum chemical calculations and 3JHH coupling constant analyses. Beilstein J Org Chem 2017; 13:925-937. [PMID: 28684974 PMCID: PMC5480334 DOI: 10.3762/bjoc.13.94] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 04/27/2017] [Indexed: 12/29/2022] Open
Abstract
The understanding of the conformational behavior of amino acids and their derivatives is a challenging task. Here, the conformational analysis of esterified and N-acetylated derivatives of L-methionine and L-cysteine using a combination of 1H NMR and electronic structure calculations is reported. The geometries and energies of the most stable conformers in isolated phase and taking into account the implicit solvent effects, according to the integral equation formalism polarizable continuum model (IEF-PCM), were obtained at the ωB97X-D/aug-cc-pVTZ level. The conformational preferences of the compounds in solution were also determined from experimental and theoretical 3JHH coupling constants analysis in different aprotic solvents. The results showed that the conformational stability of the esterified derivatives is not very sensitive to solvent effects, whereas the conformational equilibrium of the N-acetylated derivatives changes in the presence of solvent. According to the natural bond orbital (NBO), quantum theory of atoms in molecules (QTAIM) and noncovalent interactions (NCI) methodologies, the conformational preferences for the compounds are not dictated by intramolecular hydrogen bonding, but by a joint contribution of hyperconjugative and steric effects.
Collapse
Affiliation(s)
- Weslley G D P Silva
- Chemistry Institute, University of Campinas, P.O. Box 6154, 13083−970, Campinas, SP, Brazil
| | - Carolyne B Braga
- Chemistry Institute, University of Campinas, P.O. Box 6154, 13083−970, Campinas, SP, Brazil
| | - Roberto Rittner
- Chemistry Institute, University of Campinas, P.O. Box 6154, 13083−970, Campinas, SP, Brazil
| |
Collapse
|
55
|
Comparison of metal-binding strength between methionine and cysteine residues: Implications for the design of metal-binding motifs in proteins. Biophys Chem 2017; 224:32-39. [DOI: 10.1016/j.bpc.2017.02.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2016] [Revised: 02/01/2017] [Accepted: 02/15/2017] [Indexed: 11/18/2022]
|
56
|
Mundlapati VR, Sahoo DK, Ghosh S, Purame UK, Pandey S, Acharya R, Pal N, Tiwari P, Biswal HS. Spectroscopic Evidences for Strong Hydrogen Bonds with Selenomethionine in Proteins. J Phys Chem Lett 2017; 8:794-800. [PMID: 28145117 DOI: 10.1021/acs.jpclett.6b02931] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Careful protein structure analysis unravels many unknown and unappreciated noncovalent interactions that control protein structure; one such unrecognized interaction in protein is selenium centered hydrogen bonds (SeCHBs). We report, for the first time, SeCHBs involving the amide proton and selenium of selenomethionine (Mse), i.e., amide-N-H···Se H-bonds discerned in proteins. Using mass selective and conformer specific high resolution vibrational spectroscopy, gold standard quantum chemical calculations at CCSD(T), and in-depth protein structure analysis, we establish that amide-N-H···Se and amide-N-H···Te H-bonds are as strong as conventional amide-NH···O and amide-NH···O═C H-bonds despite smaller electronegativity of selenium and tellurium than oxygen. It is in fact, electronegativity, atomic charge, and polarizability of the H-bond acceptor atoms are at play in deciding the strength of H-bonds. The amide-N-H···Se and amide-N-H···Te H-bonds presented here are not only new additions to the ever expanding world of noncovalent interactions, but also are of central importance to design new force-fields for better biomolecular structure simulations.
Collapse
Affiliation(s)
- V Rao Mundlapati
- School of Chemical Sciences, National Institute of Science Education and Research (NISER) , PO- Bhimpur-Padanpur, Via-Jatni, District- Khurda, PIN - 752050, Bhubaneswar, India
- Homi Bhabha National Institute , Training School Complex, Anushakti Nagar, Mumbai 400094, India
| | - Dipak Kumar Sahoo
- School of Chemical Sciences, National Institute of Science Education and Research (NISER) , PO- Bhimpur-Padanpur, Via-Jatni, District- Khurda, PIN - 752050, Bhubaneswar, India
- Homi Bhabha National Institute , Training School Complex, Anushakti Nagar, Mumbai 400094, India
| | - Sanat Ghosh
- Tata Institute of Fundamental Research , Homi Bhabha Road, Mumbai 400005, India
| | - Umesh Kumar Purame
- Homi Bhabha National Institute , Training School Complex, Anushakti Nagar, Mumbai 400094, India
- School of Biological Sciences, National Institute of Science Education and Research (NISER) , PO- Bhimpur-Padanpur, Via-Jatni, District- Khurda, PIN - 752050, Bhubaneswar, India
| | - Shubhant Pandey
- Homi Bhabha National Institute , Training School Complex, Anushakti Nagar, Mumbai 400094, India
- School of Biological Sciences, National Institute of Science Education and Research (NISER) , PO- Bhimpur-Padanpur, Via-Jatni, District- Khurda, PIN - 752050, Bhubaneswar, India
| | - Rudresh Acharya
- Homi Bhabha National Institute , Training School Complex, Anushakti Nagar, Mumbai 400094, India
- School of Biological Sciences, National Institute of Science Education and Research (NISER) , PO- Bhimpur-Padanpur, Via-Jatni, District- Khurda, PIN - 752050, Bhubaneswar, India
| | - Nitish Pal
- School of Chemical Sciences, National Institute of Science Education and Research (NISER) , PO- Bhimpur-Padanpur, Via-Jatni, District- Khurda, PIN - 752050, Bhubaneswar, India
- Homi Bhabha National Institute , Training School Complex, Anushakti Nagar, Mumbai 400094, India
| | - Prince Tiwari
- School of Chemical Sciences, National Institute of Science Education and Research (NISER) , PO- Bhimpur-Padanpur, Via-Jatni, District- Khurda, PIN - 752050, Bhubaneswar, India
- Homi Bhabha National Institute , Training School Complex, Anushakti Nagar, Mumbai 400094, India
| | - Himansu S Biswal
- School of Chemical Sciences, National Institute of Science Education and Research (NISER) , PO- Bhimpur-Padanpur, Via-Jatni, District- Khurda, PIN - 752050, Bhubaneswar, India
- Homi Bhabha National Institute , Training School Complex, Anushakti Nagar, Mumbai 400094, India
| |
Collapse
|
57
|
Wang D, Fujii A. Structures of protonated hydrogen sulfide clusters, H+(H2S)n, highlighting the nature of sulfur-centered intermolecular interactions. Phys Chem Chem Phys 2017; 19:2036-2043. [DOI: 10.1039/c6cp07342e] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Though H2S has the same hydrogen bond coordination property as H2O, intermolecular structures of H+(H2S)n are very different from those of H+(H2O)n, indicating the competition among hydrogen bond and other intermolecular interactions.
Collapse
Affiliation(s)
- Dandan Wang
- Department of Chemistry
- Graduate School of Science
- Tohoku University
- Sendai 980-8578
- Japan
| | - Asuka Fujii
- Department of Chemistry
- Graduate School of Science
- Tohoku University
- Sendai 980-8578
- Japan
| |
Collapse
|
58
|
Wang P, Hu Y, Zhan H, Chen J. Gas-phase conformational preference of the smallest saccharide (glycolaldehyde) and its hydrated complexes with bridged hydrogen bonding. RSC Adv 2017. [DOI: 10.1039/c6ra26965f] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Glycoaldehyde (GA, HOCH2CHO) is the simplest sugar unit of the carbohydrates and the only sugar to have been detected in interstellar space to date.
Collapse
Affiliation(s)
- Pengchao Wang
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science
- College of Biophotonics
- South China Normal University
- Guangzhou 510631
- P. R. China
| | - Yongjun Hu
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science
- College of Biophotonics
- South China Normal University
- Guangzhou 510631
- P. R. China
| | - Huaqi Zhan
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science
- College of Biophotonics
- South China Normal University
- Guangzhou 510631
- P. R. China
| | - Jiaxin Chen
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science
- College of Biophotonics
- South China Normal University
- Guangzhou 510631
- P. R. China
| |
Collapse
|
59
|
Wang M, Yang Y, Qi M, Wang J. Separation performance of a large π-conjugated truxene-based dendrimer as stationary phase for gas chromatography. RSC Adv 2017. [DOI: 10.1039/c7ra09326h] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
High-resolution performance of a π-conjugated truxene-based dendrimer as the stationary phase for gas chromatographic separations.
Collapse
Affiliation(s)
- Meng Wang
- Key Laboratory of Cluster Science
- Ministry of Education of China
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials
- School of Chemistry and Chemical Engineering
- Beijing Institute of Technology
| | - Yinhui Yang
- Key Laboratory of Cluster Science
- Ministry of Education of China
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials
- School of Chemistry and Chemical Engineering
- Beijing Institute of Technology
| | - Meiling Qi
- Key Laboratory of Cluster Science
- Ministry of Education of China
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials
- School of Chemistry and Chemical Engineering
- Beijing Institute of Technology
| | - Jinliang Wang
- Key Laboratory of Cluster Science
- Ministry of Education of China
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials
- School of Chemistry and Chemical Engineering
- Beijing Institute of Technology
| |
Collapse
|
60
|
Assessment of the Presence and Strength of H-Bonds by Means of Corrected NMR. Molecules 2016; 21:molecules21111426. [PMID: 27801801 PMCID: PMC6274571 DOI: 10.3390/molecules21111426] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Revised: 10/19/2016] [Accepted: 10/21/2016] [Indexed: 11/30/2022] Open
Abstract
The downfield shift of the NMR signal of the bridging proton in a H-bond (HB) is composed of two elements. The formation of the HB causes charge transfer and polarization that lead to a deshielding. A second factor is the mere presence of the proton-accepting group, whose electron density and response to an external magnetic field induce effects at the position of the bridging proton, exclusive of any H-bonding phenomenon. This second positional shielding must be subtracted from the full observed shift in order to assess the deshielding of the proton caused purely by HB formation. This concept is applied to a number of H-bonded systems, both intramolecular and intermolecular. When the positional shielding is removed, the remaining chemical shift is in much better coincidence with other measures of HB strength.
Collapse
|
61
|
Gagrai AA, Mundlapati VR, Sahoo DK, Satapathy H, Biswal HS. The Role of Molecular Polarizability in Designing Organic Piezoelectric Materials. ChemistrySelect 2016. [DOI: 10.1002/slct.201601043] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Arun Anand Gagrai
- School of Chemical Sciences; National Institute of Science Education and Research (NISER), PO- Bhimpur-Padanpur, Via-Jatni, District- Khurda, PIN -; 752050 Bhubaneswar India
| | - V. Rao Mundlapati
- School of Chemical Sciences; National Institute of Science Education and Research (NISER), PO- Bhimpur-Padanpur, Via-Jatni, District- Khurda, PIN -; 752050 Bhubaneswar India
| | - Dipak Kumar Sahoo
- School of Chemical Sciences; National Institute of Science Education and Research (NISER), PO- Bhimpur-Padanpur, Via-Jatni, District- Khurda, PIN -; 752050 Bhubaneswar India
| | - H. Satapathy
- Department of Basic Sciences; International Institute of Information Technology, Gothapatna, PO: Malipada, PIN -; 751 003 Bhubaneswar India
| | - Himansu S. Biswal
- School of Chemical Sciences; National Institute of Science Education and Research (NISER), PO- Bhimpur-Padanpur, Via-Jatni, District- Khurda, PIN -; 752050 Bhubaneswar India
| |
Collapse
|
62
|
van Bergen LAH, Alonso M, Palló A, Nilsson L, De Proft F, Messens J. Revisiting sulfur H-bonds in proteins: The example of peroxiredoxin AhpE. Sci Rep 2016; 6:30369. [PMID: 27468924 PMCID: PMC4965862 DOI: 10.1038/srep30369] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 06/30/2016] [Indexed: 01/12/2023] Open
Abstract
In many established methods, identification of hydrogen bonds (H-bonds) is primarily based on pairwise comparison of distances between atoms. These methods often give rise to systematic errors when sulfur is involved. A more accurate method is the non-covalent interaction index, which determines the strength of the H-bonds based on the associated electron density and its gradient. We applied the NCI index on the active site of a single-cysteine peroxiredoxin. We found a different sulfur hydrogen-bonding network to that typically found by established methods, and we propose a more accurate equation for determining sulfur H-bonds based on geometrical criteria. This new algorithm will be implemented in the next release of the widely-used CHARMM program (version 41b), and will be particularly useful for analyzing water molecule-mediated H-bonds involving different atom types. Furthermore, based on the identification of the weakest sulfur-water H-bond, the location of hydrogen peroxide for the nucleophilic attack by the cysteine sulfur can be predicted. In general, current methods to determine H-bonds will need to be reevaluated, thereby leading to better understanding of the catalytic mechanisms in which sulfur chemistry is involved.
Collapse
Affiliation(s)
- Laura A H van Bergen
- Research Group of General Chemistry, Vrije Universiteit Brussel, 1050 Brussels, Belgium.,Structural Biology Research Center, VIB, 1050 Brussels, Belgium.,Brussels Center for Redox Biology, 1050 Brussels, Belgium.,Structural Biology Brussels, Vrije Universiteit Brussel, 1050 Brussels, Belgium
| | - Mercedes Alonso
- Research Group of General Chemistry, Vrije Universiteit Brussel, 1050 Brussels, Belgium
| | - Anna Palló
- Structural Biology Research Center, VIB, 1050 Brussels, Belgium.,Brussels Center for Redox Biology, 1050 Brussels, Belgium.,Structural Biology Brussels, Vrije Universiteit Brussel, 1050 Brussels, Belgium
| | - Lennart Nilsson
- Department of Biosciences and Nutrition, Karolinska Institutet, SE-14183 Huddinge, Sweden
| | - Frank De Proft
- Research Group of General Chemistry, Vrije Universiteit Brussel, 1050 Brussels, Belgium
| | - Joris Messens
- Structural Biology Research Center, VIB, 1050 Brussels, Belgium.,Brussels Center for Redox Biology, 1050 Brussels, Belgium.,Structural Biology Brussels, Vrije Universiteit Brussel, 1050 Brussels, Belgium
| |
Collapse
|
63
|
Sahoo DK, Mundlapati VR, Gagrai AA, Biswal HS. Efficient SO2Capture through Multiple Chalcogen Bonds, Sulfur-Centered Hydrogen Bonds and S•••π Interactions: A Computational Study. ChemistrySelect 2016. [DOI: 10.1002/slct.201600061] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Dipak Kumar Sahoo
- School of Chemical Sciences; National Institute of Science Education and Research (NISER); PO- Bhimpur-Padanpur, Via-Jatni, District- Khurda, PIN- 752050 Bhubaneswar India
| | - V. Rao Mundlapati
- School of Chemical Sciences; National Institute of Science Education and Research (NISER); PO- Bhimpur-Padanpur, Via-Jatni, District- Khurda, PIN- 752050 Bhubaneswar India
| | - Arun Anand Gagrai
- School of Chemical Sciences; National Institute of Science Education and Research (NISER); PO- Bhimpur-Padanpur, Via-Jatni, District- Khurda, PIN- 752050 Bhubaneswar India
| | - Himansu S. Biswal
- School of Chemical Sciences; National Institute of Science Education and Research (NISER); PO- Bhimpur-Padanpur, Via-Jatni, District- Khurda, PIN- 752050 Bhubaneswar India
| |
Collapse
|
64
|
Abstract
On the basis of many literature measurements, a critical overview is given on essential noncovalent interactions in synthetic supramolecular complexes, accompanied by analyses with selected proteins. The methods, which can be applied to derive binding increments for single noncovalent interactions, start with the evaluation of consistency and additivity with a sufficiently large number of different host-guest complexes by applying linear free energy relations. Other strategies involve the use of double mutant cycles, of molecular balances, of dynamic combinatorial libraries, and of crystal structures. Promises and limitations of these strategies are discussed. Most of the analyses stem from solution studies, but a few also from gas phase. The empirically derived interactions are then presented on the basis of selected complexes with respect to ion pairing, hydrogen bonding, electrostatic contributions, halogen bonding, π-π-stacking, dispersive forces, cation-π and anion-π interactions, and contributions from the hydrophobic effect. Cooperativity in host-guest complexes as well as in self-assembly, and entropy factors are briefly highlighted. Tables with typical values for single noncovalent free energies and polarity parameters are in the Supporting Information.
Collapse
Affiliation(s)
- Frank Biedermann
- Institute of Nanotechnology, Karlsruhe Institute of Technology (KIT) , Hermann-von-Helmholtz Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Hans-Jörg Schneider
- FR Organische Chemie der Universität des Saarlandes , D-66041 Saarbrücken, Germany
| |
Collapse
|
65
|
Ghosh S, Bhattacharyya S, Wategaonkar S. Dissociation Energies of Sulfur-Centered Hydrogen-Bonded Complexes. J Phys Chem A 2015; 119:10863-70. [DOI: 10.1021/acs.jpca.5b08185] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Sanat Ghosh
- Department of Chemical Sciences, Tata Institute of Fundamental Research, Homi Bhabha Road, Colaba, Mumbai 400 005, India
| | - Surjendu Bhattacharyya
- Department of Chemical Sciences, Tata Institute of Fundamental Research, Homi Bhabha Road, Colaba, Mumbai 400 005, India
| | - Sanjay Wategaonkar
- Department of Chemical Sciences, Tata Institute of Fundamental Research, Homi Bhabha Road, Colaba, Mumbai 400 005, India
| |
Collapse
|
66
|
Dissection of the Factors Affecting Formation of a CH∙∙∙O H-Bond. A Case Study. CRYSTALS 2015. [DOI: 10.3390/cryst5030327] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
67
|
Scheiner S. Comparison of CH···O, SH···O, Chalcogen, and Tetrel Bonds Formed by Neutral and Cationic Sulfur-Containing Compounds. J Phys Chem A 2015; 119:9189-99. [DOI: 10.1021/acs.jpca.5b06831] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Steve Scheiner
- Department of Chemistry and
Biochemistry, Utah State University, Logan, Utah 84322-0300, United States
| |
Collapse
|