51
|
Barel I, Naughton B, Reich NO, Brown FLH. Specificity versus Processivity in the Sequential Modification of DNA: A Study of DNA Adenine Methyltransferase. J Phys Chem B 2018; 122:1112-1120. [DOI: 10.1021/acs.jpcb.7b10349] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Itay Barel
- Department
of Chemistry and Biochemistry, University of California, Santa
Barbara, California 93106, United States
- Department
of Physics, University of California, Santa Barbara, California 93106, United States
| | - Brigitte Naughton
- Department
of Chemistry and Biochemistry, University of California, Santa
Barbara, California 93106, United States
| | - Norbert O. Reich
- Department
of Chemistry and Biochemistry, University of California, Santa
Barbara, California 93106, United States
| | - Frank L. H. Brown
- Department
of Chemistry and Biochemistry, University of California, Santa
Barbara, California 93106, United States
- Department
of Physics, University of California, Santa Barbara, California 93106, United States
| |
Collapse
|
52
|
D'Adamo G, Pelissetto A. Polymer models with optimal good-solvent behavior. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2017; 29:435104. [PMID: 28737167 DOI: 10.1088/1361-648x/aa8191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
We consider three different continuum polymer models, which all depend on a tunable parameter r that determines the strength of the excluded-volume interactions. In the first model, chains are obtained by concatenating hard spherocylinders of height b and diameter rb (we call them thick self-avoiding chains). The other two models are generalizations of the tangent hard-sphere and of the Kremer-Grest models. We show that for a specific value [Formula: see text], all models show optimal behavior: asymptotic long-chain behavior is observed for relatively short chains. For [Formula: see text], instead, the behavior can be parametrized by using the two-parameter model, which also describes the thermal crossover close to the θ point. The bonds of the thick self-avoiding chains cannot cross each other, and therefore the model is suited for the investigation of topological properties and for dynamical studies. Such a model also provides a coarse-grained description of double-stranded DNA, so that we can use our results to discuss under which conditions DNA can be considered as a model good-solvent polymer.
Collapse
|
53
|
Kriegel F, Ermann N, Forbes R, Dulin D, Dekker NH, Lipfert J. Probing the salt dependence of the torsional stiffness of DNA by multiplexed magnetic torque tweezers. Nucleic Acids Res 2017; 45:5920-5929. [PMID: 28460037 PMCID: PMC5449586 DOI: 10.1093/nar/gkx280] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 04/28/2017] [Indexed: 12/14/2022] Open
Abstract
The mechanical properties of DNA fundamentally constrain and enable the storage and transmission of genetic information and its use in DNA nanotechnology. Many properties of DNA depend on the ionic environment due to its highly charged backbone. In particular, both theoretical analyses and direct single-molecule experiments have shown its bending stiffness to depend on salt concentration. In contrast, the salt-dependence of the twist stiffness of DNA is much less explored. Here, we employ optimized multiplexed magnetic torque tweezers to study the torsional stiffness of DNA under varying salt conditions as a function of stretching force. At low forces (<3 pN), the effective torsional stiffness is ∼10% smaller for high salt conditions (500 mM NaCl or 10 mM MgCl2) compared to lower salt concentrations (20 mM NaCl and 100 mM NaCl). These differences, however, can be accounted for by taking into account the known salt dependence of the bending stiffness. In addition, the measured high-force (6.5 pN) torsional stiffness values of C = 103 ± 4 nm are identical, within experimental errors, for all tested salt concentration, suggesting that the intrinsic torsional stiffness of DNA does not depend on salt.
Collapse
Affiliation(s)
- Franziska Kriegel
- Department of Physics, Nanosystems Initiative Munich, and Center for Nanoscience, LMU Munich, Amalienstrasse 54, 80799 Munich, Germany
| | - Niklas Ermann
- Department of Physics, Nanosystems Initiative Munich, and Center for Nanoscience, LMU Munich, Amalienstrasse 54, 80799 Munich, Germany
| | - Ruaridh Forbes
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - David Dulin
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands.,Junior Research Group 2, Interdisciplinary Center for Clinical Research, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Hartmannstrasse 14, 91052 Erlangen, Germany
| | - Nynke H Dekker
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Jan Lipfert
- Department of Physics, Nanosystems Initiative Munich, and Center for Nanoscience, LMU Munich, Amalienstrasse 54, 80799 Munich, Germany
| |
Collapse
|
54
|
Tardin C. The mechanics of DNA loops bridged by proteins unveiled by single-molecule experiments. Biochimie 2017; 142:80-92. [PMID: 28804000 DOI: 10.1016/j.biochi.2017.08.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Accepted: 08/06/2017] [Indexed: 12/28/2022]
Abstract
Protein-induced DNA bridging and looping is a common mechanism for various and essential processes in bacterial chromosomes. This mechanism is preserved despite the very different bacterial conditions and their expected influence on the thermodynamic and kinetic characteristics of the bridge formation and stability. Over the last two decades, single-molecule techniques carried out on in vitro DNA systems have yielded valuable results which, in combination with theoretical works, have clarified the effects of different parameters of nucleoprotein complexes on the protein-induced DNA bridging and looping process. In this review, I will outline the features that can be measured for such processes with various single-molecule techniques in use in the field. I will then describe both the experimental results and the theoretical models that illuminate the contribution of the DNA molecule itself as well as that of the bridging proteins in the DNA looping mechanism at play in the nucleoid of E. coli.
Collapse
Affiliation(s)
- Catherine Tardin
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, France.
| |
Collapse
|
55
|
Yu ZL, Leung KK, Yu HZ, Bizzotto D. A non-linear harmonic analysis of potential induced fluorescence modulation of a DNA self assembled monolayer. Electrochim Acta 2017. [DOI: 10.1016/j.electacta.2017.05.129] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
56
|
Merkus KE, Prins MWJ, Storm C. Single-Bond Association Kinetics Determined by Tethered Particle Motion: Concept and Simulations. Biophys J 2017; 111:1612-1620. [PMID: 27760349 DOI: 10.1016/j.bpj.2016.08.045] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Revised: 07/20/2016] [Accepted: 08/01/2016] [Indexed: 11/30/2022] Open
Abstract
Tethered particle motion (TPM), the motion of a micro- or nanoparticle tethered to a substrate by a macromolecule, is a system that has proven to be extremely useful for its ability to reveal physical features of the tether, because the thermal motion of the bound particle reports sensitively on parameters like the length, the rigidity, or the folding state of its tether. In this article, we survey the applicability of TPM to probe the kinetics of single secondary bonds, bonds that form and break between the tethered particle and a substrate due, for instance, to receptor/ligand pairs on particle and substrate. Much like the tether itself affects the motion pattern, so do the presence and absence of such secondary connections. Keeping the tether properties constant, we demonstrate how raw positional TPM data may be parsed to generate detailed insights into the association and dissociation kinetics of single secondary bonds. We do this using coarse-grained molecular dynamics simulations specifically developed to treat the motion of particles close to interfaces.
Collapse
Affiliation(s)
- Koen E Merkus
- Department of Applied Physics, Eindhoven University of Technology, Eindhoven, the Netherlands
| | - Menno W J Prins
- Department of Applied Physics, Eindhoven University of Technology, Eindhoven, the Netherlands; Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands; Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, the Netherlands.
| | - Cornelis Storm
- Department of Applied Physics, Eindhoven University of Technology, Eindhoven, the Netherlands; Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, the Netherlands
| |
Collapse
|
57
|
Zoli M. Twist-stretch profiles of DNA chains. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2017; 29:225101. [PMID: 28394255 DOI: 10.1088/1361-648x/aa6c50] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Helical molecules change their twist number under the effect of a mechanical load. We study the twist-stretch relation for a set of short DNA molecules modeled by a mesoscopic Hamiltonian. Finite temperature path integral techniques are applied to generate a large ensemble of possible configurations for the base pairs of the sequence. The model also accounts for the bending and twisting fluctuations between adjacent base pairs along the molecules stack. Simulating a broad range of twisting conformation, we compute the helix structural parameters by averaging over the ensemble of base pairs configurations. The method selects, for any applied force, the average twist angle which minimizes the molecule's free energy. It is found that the chains generally over-twist under an applied stretching and the over-twisting is physically associated to the contraction of the average helix diameter, i.e. to the damping of the base pair fluctuations. Instead, assuming that the maximum amplitude of the bending fluctuations may decrease against the external load, the DNA molecule first over-twists for weak applied forces and then untwists above a characteristic force value. Our results are discussed in relation to available experimental information albeit for kilo-base long molecules.
Collapse
Affiliation(s)
- Marco Zoli
- School of Science and Technology, University of Camerino, I-62032 Camerino, Italy
| |
Collapse
|
58
|
Rau T, Weik F, Holm C. A dsDNA model optimized for electrokinetic applications. SOFT MATTER 2017; 13:3918-3926. [PMID: 28497827 DOI: 10.1039/c7sm00270j] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
We present a coarse-grained (CG) model of a charged double-stranded DNA immersed in an electrolyte solution that can be used for a variety of electrokinetic applications. The model is based on an earlier rigid and immobile model of Weik et al. and includes now semi-flexibility and mobility, so that DNA dynamics can be sufficiently captured to simulate a full nanopore translocation process. To this end we couple the DNA hydrodynamically via a raspberry approach to a lattice-Boltzmann fluid and parametrize the counterions with a distant dependent friction. The electrokinetic properties of the CG DNA model inside an infinite cylinder is fitted against experimental data from Smeets et al. and all-atom simulation data from Kesselheim et al. The stiffness of our CG DNA is modeled via a harmonic angle potential fitted against experimental data of Brunet et al. Finally, the quality of our tuned parameters is tested by measuring the electrophoretic mobility of our DNA model for various numbers of base pairs and salt concentrations. Our results compare excellently with the experimental data sets of Stellwagen et al. and Hoagland et al.
Collapse
Affiliation(s)
- Tobias Rau
- Institute for Computational Physics, Universität Stuttgart, Allmandring 3, Stuttgart, Germany
| | | | | |
Collapse
|
59
|
Mitchell JS, Glowacki J, Grandchamp AE, Manning RS, Maddocks JH. Sequence-Dependent Persistence Lengths of DNA. J Chem Theory Comput 2017; 13:1539-1555. [DOI: 10.1021/acs.jctc.6b00904] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
| | - Jaroslaw Glowacki
- Ecole Polytechnique Fédérale de Lausanne, Lausanne CH 1273, Switzerland
| | | | | | - John H. Maddocks
- Ecole Polytechnique Fédérale de Lausanne, Lausanne CH 1273, Switzerland
| |
Collapse
|
60
|
Blank A. A new approach to distance measurements between two spin labels in the >10 nm range. Phys Chem Chem Phys 2017; 19:5222-5229. [PMID: 28149986 DOI: 10.1039/c6cp07597e] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
ESR spectroscopy can be efficiently used to acquire the distance between two spin labels placed on a macromolecule by measuring their mutual dipolar interaction frequency, as long as the distance is not greater than ∼10 nm. Any hope to significantly increase this figure is hampered by the fact that all available spin labels have a phase memory time (Tm), restricted to the microseconds range, which provides a limited window during which the dipolar interaction frequency can be measured. Thus, due to the inverse cubic dependence of the dipolar frequency over the labels' separation distance, evaluating much larger distances, e.g. 20 nm, would require to have a Tm that is ∼200 microsecond, clearly beyond any hope. Here we propose a new approach to greatly enhancing the maximum measured distance available by relying on another type of dipole interaction-mediated mechanism called spin diffusion. This mechanism operates and can be evaluated during the spin lattice relaxation time, T1 (commonly in the milliseconds range), rather than only during Tm. Up until recently, the observation of spin diffusion in solid electron spin systems was considered experimentally impractical. However, recent developments have enabled its direct measurement by means of high sensitivity pulsed ESR that employs intense short magnetic field gradients, thus opening the door to the subsequent utilization of these capabilities. The manuscript presents the subject of spin diffusion, the ways it can be directly measured, and a theoretical discussion on how intramolecular spin-pair distance, even in the range of 20-30 nm, could be accurately extracted from spin diffusion measurements.
Collapse
Affiliation(s)
- A Blank
- Schulich Faculty of Chemistry, Technion - Israel Institute of Technology, Haifa, 3200003, Israel.
| |
Collapse
|
61
|
Berezney JP, Saleh OA. Electrostatic Effects on the Conformation and Elasticity of Hyaluronic Acid, a Moderately Flexible Polyelectrolyte. Macromolecules 2017. [DOI: 10.1021/acs.macromol.6b02166] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- John P. Berezney
- Materials
Department and ‡BMSE Program, University of California, Santa Barbara, Santa
Barbara, California 93106, United States
| | - Omar A. Saleh
- Materials
Department and ‡BMSE Program, University of California, Santa Barbara, Santa
Barbara, California 93106, United States
| |
Collapse
|
62
|
Salari H, Eslami-Mossallam B, Ranjbar HF, Ejtehadi MR. Stiffer double-stranded DNA in two-dimensional confinement due to bending anisotropy. Phys Rev E 2017; 94:062407. [PMID: 28085439 DOI: 10.1103/physreve.94.062407] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2016] [Indexed: 11/07/2022]
Abstract
Using analytical approach and Monte Carlo (MC) simulations, we study the elastic behavior of the intrinsically twisted elastic ribbons with bending anisotropy, such as double-stranded DNA (dsDNA), in two-dimensional (2D) confinement. We show that, due to the bending anisotropy, the persistence length of dsDNA in 2D conformations is always greater than three-dimensional (3D) conformations. This result is in consistence with the measured values for DNA persistence length in 2D and 3D in equal biological conditions. We also show that in two dimensions, an anisotropic, intrinsically twisted polymer exhibits an implicit twist-bend coupling, which leads to the transient curvature increasing with a half helical turn periodicity along the bent polymer.
Collapse
Affiliation(s)
- H Salari
- Department of Physics, Sharif University of Technology, P.O. Box 11155-9161, Tehran, Iran
| | - B Eslami-Mossallam
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Lorentzweg 1, 2628 CJ Delft, the Netherlands
| | - H F Ranjbar
- Institute of Complex Systems (ICS-2), Forschungszentrum Jülich, Wilhelm-Johnen-Straße, 52425 Jülich, Germany
| | - M R Ejtehadi
- Department of Physics, Sharif University of Technology, P.O. Box 11155-9161, Tehran, Iran and School of Nano Science, Institute for Research in Fundamental Sciences (IPM), Tehran 19395-5531, Iran
| |
Collapse
|
63
|
Hsiao PY. Conformation Change, Tension Propagation and Drift-Diffusion Properties of Polyelectrolyte in Nanopore Translocation. Polymers (Basel) 2016; 8:E378. [PMID: 30974654 PMCID: PMC6432159 DOI: 10.3390/polym8100378] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Revised: 10/15/2016] [Accepted: 10/19/2016] [Indexed: 12/17/2022] Open
Abstract
Using Langevin dynamics simulations, conformational, mechanical and dynamical properties of charged polymers threading through a nanopore are investigated. The shape descriptors display different variation behaviors for the cis- and trans-side sub-chains, which reflects a strong cis-trans dynamical asymmetry, especially when the driving field is strong. The calculation of bond stretching shows how the bond tension propagates on the chain backbone, and the chain section straightened by the tension force is determined by the ratio of the direct to the contour distances of the monomer to the pore. With the study of the waiting time function, the threading process is divided into the tension-propagation stage and the tail-retraction stage. At the end, the drift velocity, diffusive property and probability density distribution are explored. Owing to the non-equilibrium nature, translocation is not a simple drift-diffusion process, but exhibits several intermediate behaviors, such as ballistic motion, normal diffusion and super diffusion, before ending with the last, negative-diffusion behavior.
Collapse
Affiliation(s)
- Pai-Yi Hsiao
- Department of Engineering and System Science, National Tsing Hua University, Hsinchu 30013, Taiwan.
- Institute of Nuclear Engineering and Science, National Tsing Hua University, Hsinchu 30013, Taiwan.
| |
Collapse
|
64
|
Jeong J, Le TT, Kim HD. Single-molecule fluorescence studies on DNA looping. Methods 2016; 105:34-43. [PMID: 27064000 PMCID: PMC4967024 DOI: 10.1016/j.ymeth.2016.04.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Revised: 04/01/2016] [Accepted: 04/05/2016] [Indexed: 11/17/2022] Open
Abstract
Structure and dynamics of DNA impact how the genetic code is processed and maintained. In addition to its biological importance, DNA has been utilized as building blocks of various nanomachines and nanostructures. Thus, understanding the physical properties of DNA is of fundamental importance to basic sciences and engineering applications. DNA can undergo various physical changes. Among them, DNA looping is unique in that it can bring two distal sites together, and thus can be used to mediate interactions over long distances. In this paper, we introduce a FRET-based experimental tool to study DNA looping at the single molecule level. We explain the connection between experimental measurables and a theoretical concept known as the J factor with the intent of raising awareness of subtle theoretical details that should be considered when drawing conclusions. We also explore DNA looping-assisted protein diffusion mechanism called intersegmental transfer using protein induced fluorescence enhancement (PIFE). We present some preliminary results and future outlooks.
Collapse
Affiliation(s)
- Jiyoun Jeong
- School of Physics, Georgia Institute of Technology, 837 State Street, Atlanta 30332, USA.
| | - Tung T Le
- School of Physics, Georgia Institute of Technology, 837 State Street, Atlanta 30332, USA.
| | - Harold D Kim
- School of Physics, Georgia Institute of Technology, 837 State Street, Atlanta 30332, USA.
| |
Collapse
|
65
|
Probing the mechanical properties, conformational changes, and interactions of nucleic acids with magnetic tweezers. J Struct Biol 2016; 197:26-36. [PMID: 27368129 DOI: 10.1016/j.jsb.2016.06.022] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Revised: 05/06/2016] [Accepted: 06/28/2016] [Indexed: 11/21/2022]
Abstract
Nucleic acids are central to the storage and transmission of genetic information. Mechanical properties, along with their sequence, both enable and fundamentally constrain the biological functions of DNA and RNA. For small deformations from the equilibrium conformations, nucleic acids are well described by an isotropic elastic rod model. However, external forces and torsional strains can induce conformational changes, giving rise to a complex force-torque phase diagram. This review focuses on magnetic tweezers as a powerful tool to precisely determine both the elastic parameters and conformational transitions of nucleic acids under external forces and torques at the single-molecule level. We review several variations of magnetic tweezers, in particular conventional magnetic tweezers, freely orbiting magnetic tweezers and magnetic torque tweezers, and discuss their characteristic capabilities. We then describe the elastic rod model for DNA and RNA and discuss conformational changes induced by mechanical stress. The focus lies on the responses to torque and twist, which are crucial in the mechanics and interactions of nucleic acids and can directly be measured using magnetic tweezers. We conclude by highlighting several recent studies of nucleic acid-protein and nucleic acid-small-molecule interactions as further applications of magnetic tweezers and give an outlook of some exciting developments to come.
Collapse
|
66
|
Direct Evidence of Divalent Manganese Ion-Induced DNA Condensation at Room Temperature. MACROMOL CHEM PHYS 2016. [DOI: 10.1002/macp.201600123] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
67
|
Sanchez R, Mackenzie SA. Information Thermodynamics of Cytosine DNA Methylation. PLoS One 2016; 11:e0150427. [PMID: 26963711 PMCID: PMC4786201 DOI: 10.1371/journal.pone.0150427] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Accepted: 02/12/2016] [Indexed: 01/10/2023] Open
Abstract
Cytosine DNA methylation (CDM) is a stable epigenetic modification to the genome and a widespread regulatory process in living organisms that involves multicomponent molecular machines. Genome-wide cytosine methylation patterning participates in the epigenetic reprogramming of a cell, suggesting that the biological information contained within methylation positions may be amenable to decoding. Adaptation to a new cellular or organismal environment also implies the potential for genome-wide redistribution of CDM changes that will ensure the stability of DNA molecules. This raises the question of whether or not we would be able to sort out the regulatory methylation signals from the CDM background (“noise”) induced by thermal fluctuations. Here, we propose a novel statistical and information thermodynamic description of the CDM changes to address the last question. The physical basis of our statistical mechanical model was evaluated in two respects: 1) the adherence to Landauer’s principle, according to which molecular machines must dissipate a minimum energy ε = kBT ln2 at each logic operation, where kB is the Boltzmann constant, and T is the absolute temperature and 2) whether or not the binary stretch of methylation marks on the DNA molecule comprise a language of sorts, properly constrained by thermodynamic principles. The study was performed for genome-wide methylation data from 152 ecotypes and 40 trans-generational variations of Arabidopsis thaliana and 93 human tissues. The DNA persistence length, a basic mechanical property altered by CDM, was estimated with values from 39 to 66.9 nm. Classical methylome analysis can be retrieved by applying information thermodynamic modelling, which is able to discriminate signal from noise. Our finding suggests that the CDM signal comprises a language scheme properly constrained by molecular thermodynamic principles, which is part of an epigenomic communication system that obeys the same thermodynamic rules as do current human communication systems.
Collapse
Affiliation(s)
- Robersy Sanchez
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, Nebraska, United States of America
- * E-mail: (RS); (SAM)
| | - Sally A. Mackenzie
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, Nebraska, United States of America
- * E-mail: (RS); (SAM)
| |
Collapse
|
68
|
Abstract
We study the elasticity of DNA based on local principal axes of bending identified from over 0.9-μs all-atom molecular dynamics simulations of DNA oligos. The calculated order parameters describe motion of DNA as an elastic rod. In 10 possible dinucleotide steps, bending about the two principal axes is anisotropic yet linearly elastic. Twist about the centroid axis is largely decoupled from bending, but DNA tends to overtwist for unbending beyond the typical range of thermal motion, which is consistent with experimentally observed twist-stretch coupling. The calculated elastic stiffness of dinucleotide steps yield sequence-dependent persistence lengths consistent with previous single-molecule experiments, which is further analyzed by performing coarse-grained simulations of DNA. Flexibility maps of oligos constructed from simulation also match with those from the precalculated stiffness of dinucleotide steps. These support the premise that base pair interaction at the dinucleotide-level is mainly responsible for the elasticity of DNA. Furthermore, we analyze 1381 crystal structures of protein-DNA complexes. In most structures, DNAs are mildly deformed and twist takes the highest portion of the total elastic energy. By contrast, in structures with the elastic energy per dinucleotide step greater than about 4.16 kBT (kBT: thermal energy), the major bending becomes dominant. The extensional energy of dinucleotide steps takes at most 35% of the total elastic energy except for structures containing highly deformed DNAs where linear elasticity breaks down. Such partitioning between different deformational modes provides quantitative insights into the conformational dynamics of DNA as well as its interaction with other molecules and surfaces.
Collapse
Affiliation(s)
- Xiaojing Teng
- Department of Biomedical Engineering, Texas A&M University , College Station, Texas 77843, United States
| | - Wonmuk Hwang
- Department of Biomedical Engineering, Texas A&M University , College Station, Texas 77843, United States
- Department of Materials Science and Engineering, Texas A&M University , College Station, Texas 77843, United States
- School of Computational Sciences, Korea Institute for Advanced Study , Seoul, Korea 02455
| |
Collapse
|
69
|
Cassina V, Manghi M, Salerno D, Tempestini A, Iadarola V, Nardo L, Brioschi S, Mantegazza F. Effects of cytosine methylation on DNA morphology: An atomic force microscopy study. Biochim Biophys Acta Gen Subj 2016; 1860:1-7. [DOI: 10.1016/j.bbagen.2015.10.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Revised: 09/11/2015] [Accepted: 10/08/2015] [Indexed: 12/19/2022]
|
70
|
Abstract
The flexibility of short DNA fragments is studied by a Hamiltonian model which treats the inter-strand and intra-strand forces at the level of the base pair.
Collapse
Affiliation(s)
- Marco Zoli
- School of Science and Technology
- University of Camerino
- I-62032 Camerino
- Italy
| |
Collapse
|
71
|
Iarko V, Werner E, Nyberg LK, Müller V, Fritzsche J, Ambjörnsson T, Beech JP, Tegenfeldt JO, Mehlig K, Westerlund F, Mehlig B. Extension of nanoconfined DNA: Quantitative comparison between experiment and theory. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2015; 92:062701. [PMID: 26764721 DOI: 10.1103/physreve.92.062701] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Indexed: 05/27/2023]
Abstract
The extension of DNA confined to nanochannels has been studied intensively and in detail. However, quantitative comparisons between experiments and model calculations are difficult because most theoretical predictions involve undetermined prefactors, and because the model parameters (contour length, Kuhn length, effective width) are difficult to compute reliably, leading to substantial uncertainties. Here we use a recent asymptotically exact theory for the DNA extension in the "extended de Gennes regime" that allows us to compare experimental results with theory. For this purpose, we performed experiments measuring the mean DNA extension and its standard deviation while varying the channel geometry, dye intercalation ratio, and ionic strength of the buffer. The experimental results agree very well with theory at high ionic strengths, indicating that the model parameters are reliable. At low ionic strengths, the agreement is less good. We discuss possible reasons. In principle, our approach allows us to measure the Kuhn length and the effective width of a single DNA molecule and more generally of semiflexible polymers in solution.
Collapse
Affiliation(s)
- V Iarko
- Department of Physics, University of Gothenburg, 412 96 Göteborg, Sweden
| | - E Werner
- Department of Physics, University of Gothenburg, 412 96 Göteborg, Sweden
| | - L K Nyberg
- Department of Biology and Biological Engineering, Chalmers University of Technology, 412 96 Göteborg, Sweden
| | - V Müller
- Department of Biology and Biological Engineering, Chalmers University of Technology, 412 96 Göteborg, Sweden
| | - J Fritzsche
- Department of Applied Physics, Chalmers University of Technology, 412 96 Göteborg, Sweden
| | - T Ambjörnsson
- Department of Astronomy and Theoretical Physics, Lund University, 22 100 Lund, Sweden
| | - J P Beech
- Department of Physics, Division of Solid State Physics, Lund University, 22 100 Lund, Sweden
| | - J O Tegenfeldt
- Department of Physics, Division of Solid State Physics, Lund University, 22 100 Lund, Sweden
- NanoLund, Lund University, 22 100 Lund, Sweden
| | - K Mehlig
- Department of Public Health and Community Medicine, University of Gothenburg, 413 46 Göteborg, Sweden
| | - F Westerlund
- Department of Biology and Biological Engineering, Chalmers University of Technology, 412 96 Göteborg, Sweden
| | - B Mehlig
- Department of Physics, University of Gothenburg, 412 96 Göteborg, Sweden
| |
Collapse
|
72
|
Manning GS. The energy of naturally curved elastic rods with an application to the stretching and contraction of a free helical spring as a model for DNA. J Chem Phys 2015; 143:104901. [PMID: 26374056 DOI: 10.1063/1.4928573] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We give a contemporary and direct derivation of a classical, but insufficiently familiar, result in the theory of linear elasticity-a representation for the energy of a stressed elastic rod with central axis that intrinsically takes the shape of a general space curve. We show that the geometric torsion of the space curve, while playing a crucial role in the bending energy, is physically unrelated to the elastic twist. We prove that the twist energy vanishes in the lowest-energy states of a rod subject to constraints that do not restrict the twist. The stretching and contraction energies of a free helical spring are computed. There are local high-energy minima. We show the possibility of using the spring to model the chirality of DNA. We then compare our results with an available atomic level energy simulation that was performed on DNA unconstrained in the same sense as the free spring. We find some possible reflections of springlike behavior in the mechanics of DNA, but, unsurprisingly, the base pairs lend a material substance to the core of DNA that a spring does not capture.
Collapse
Affiliation(s)
- Gerald S Manning
- Department of Chemistry and Chemical Biology, Rutgers University, 610 Taylor Road, Piscataway, New Jersey 08854-8087, USA
| |
Collapse
|
73
|
Gupta D, Miller JJ, Muralidhar A, Mahshid S, Reisner W, Dorfman KD. Experimental evidence of weak excluded volume effects for nanochannel confined DNA. ACS Macro Lett 2015; 4:759-763. [PMID: 26664782 PMCID: PMC4671635 DOI: 10.1021/acsmacrolett.5b00340] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We present experimental demonstration that weak excluded volume effects arise in DNA nanochannel confinement. In particular, by performing measurements of the variance in chain extension as a function of nanochannel dimension for effective channel size ranging from 305 nm to 453 nm, we show that the scaling of the variance in extension with channel size rejects the de Gennes scaling δ2X ~ D1/3 in favor of δ2X ~ D0 using uncertainty at the 95% confidence level. We also show how simulations and confinement spectroscopy can be combined to reduce molecular weight dispersity effects arising from shearing, photocleavage, and nonuniform staining of DNA.
Collapse
Affiliation(s)
- Damini Gupta
- Department of Chemical Engineering and Materials Science, University of Minnesota – Twin Cities, 421 Washington Ave SE, Minneapolis, Minnesota 55455, USA
| | - Jeremy J. Miller
- Department of Chemical Engineering and Materials Science, University of Minnesota – Twin Cities, 421 Washington Ave SE, Minneapolis, Minnesota 55455, USA
| | - Abhiram Muralidhar
- Department of Chemical Engineering and Materials Science, University of Minnesota – Twin Cities, 421 Washington Ave SE, Minneapolis, Minnesota 55455, USA
| | - Sara Mahshid
- Physics Department, McGill University, 3600 rue University, Montreal QC H3A 2T8, Canada
| | - Walter Reisner
- Physics Department, McGill University, 3600 rue University, Montreal QC H3A 2T8, Canada
| | - Kevin D. Dorfman
- Department of Chemical Engineering and Materials Science, University of Minnesota – Twin Cities, 421 Washington Ave SE, Minneapolis, Minnesota 55455, USA
| |
Collapse
|