51
|
Szczerbiński J, Metternich JB, Goubert G, Zenobi R. How Peptides Dissociate in Plasmonic Hot Spots. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e1905197. [PMID: 31894644 DOI: 10.1002/smll.201905197] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 11/01/2019] [Indexed: 06/10/2023]
Abstract
Plasmon-induced hot carriers enable dissociation of strong chemical bonds by visible light. This unusual chemistry has been demonstrated for several diatomic and small organic molecules. Here, the scope of plasmon-driven photochemistry is extended to biomolecules and the reactivity of proteins and peptides in plasmonic hot spots is described. Tip-enhanced Raman spectroscopy (TERS) is used to both drive the reactions and to monitor their products. Peptide backbone bonds are found to dissociate in the hot spot, which is reflected in the disappearance of the amide I band in the TER spectra. The observed fragmentation pathway involves nonthermal activation, presumably by dissociative capture of a plasmon-induced hot electron. This fragmentation pathway is known from electron transfer dissociation (ETD) of peptides in gas-phase mass spectrometry (MS), which suggests a general similarity between plasmon-induced photochemistry and nonergodic reactions triggered by electron capture. This analogy may serve as a design principle for plasmon-induced reactions of biomolecules.
Collapse
Affiliation(s)
- Jacek Szczerbiński
- Department of Chemistry and Applied Biosciences, Laboratory of Organic Chemistry, ETH Zurich, 8093, Zurich, Switzerland
| | - Jonas B Metternich
- Department of Chemistry and Applied Biosciences, Laboratory of Organic Chemistry, ETH Zurich, 8093, Zurich, Switzerland
| | - Guillaume Goubert
- Department of Chemistry and Applied Biosciences, Laboratory of Organic Chemistry, ETH Zurich, 8093, Zurich, Switzerland
| | - Renato Zenobi
- Department of Chemistry and Applied Biosciences, Laboratory of Organic Chemistry, ETH Zurich, 8093, Zurich, Switzerland
| |
Collapse
|
52
|
Su HS, Feng HS, Zhao QQ, Zhang XG, Sun JJ, He Y, Huang SC, Huang TX, Zhong JH, Wu DY, Ren B. Probing the Local Generation and Diffusion of Active Oxygen Species on a Pd/Au Bimetallic Surface by Tip-Enhanced Raman Spectroscopy. J Am Chem Soc 2020; 142:1341-1347. [DOI: 10.1021/jacs.9b10512] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Hai-Sheng Su
- Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Hui-Shu Feng
- Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Qing-Qing Zhao
- Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Xia-Guang Zhang
- Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Juan-Juan Sun
- Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Yuhan He
- Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Sheng-Chao Huang
- Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Teng-Xiang Huang
- Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Jin-Hui Zhong
- Institute of Physics, Carl von Ossietzky University, Oldenburg 26129, Germany
| | - De-Yin Wu
- Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Bin Ren
- Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| |
Collapse
|
53
|
Queffélec C, Forato F, Bujoli B, Knight DA, Fonda E, Humbert B. Investigation of copper oxidation states in plasmonic nanomaterials by XAS and Raman spectroscopy. Phys Chem Chem Phys 2020; 22:2193-2199. [DOI: 10.1039/c9cp06478h] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
A shell-isolated nanoparticle enhanced surface Raman technique and XANES for detection of copper(ii) or copper(i) plasmonic-nanocatalysts.
Collapse
Affiliation(s)
| | | | - Bruno Bujoli
- Université de Nantes
- CNRS
- CEISAM
- UMR 6230
- F-44000 Nantes
| | - D. Andrew Knight
- Department of Biomedical & Chemical Engineering & Sciences
- Florida Institute of Technology
- Melbourne
- USA
| | - Emiliano Fonda
- Synchrotron SOLEIL
- L’ormes des merisiers
- Gif-Sur-Yvette Cedex
- France
| | - Bernard Humbert
- Institut des Matériaux Jean Rouxel
- CNRS-Université de Nantes
- 44322 Nantes Cedex 3
- France
| |
Collapse
|
54
|
Zheng LQ, Servalli M, Schlüter AD, Zenobi R. Tip-enhanced Raman spectroscopy for structural analysis of two-dimensional covalent monolayers synthesized on water and on Au (111). Chem Sci 2019; 10:9673-9678. [PMID: 32055337 PMCID: PMC6984395 DOI: 10.1039/c9sc03296g] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 09/24/2019] [Indexed: 01/15/2023] Open
Abstract
A two-dimensional (2D) covalent monolayer based on [4 + 4] cycloaddition reactions between adjacent anthracene units was synthesized at an air/water interface. For structural analysis, tip-enhanced Raman spectroscopy (TERS) provides direct evidence for the covalent bonds formed between monomer molecules. For the first time, progress of the photopolymerization reaction was monitored by irradiation (λ = 385 nm) of the monomer monolayer for different times, based on averaged TER spectra extracted from maps. In addition, a 2D polymerization on a Au (111) substrate was realized, which opens up new possibilities for such chemical transformations. This work uses TERS as a minimally invasive tool to investigate how the reaction conditions affect polymerization conversion. We show that the high sensitivity and the high spatial resolution of TERS can be used to estimate the crystallinity of 2D covalent monolayers, which is a key question in polymer synthesis.
Collapse
Affiliation(s)
- Li-Qing Zheng
- Department of Chemistry and Applied Biosciences , ETH Zurich , Vladimir-Prelog-Weg 3 , 8093 Zurich , Switzerland .
| | - Marco Servalli
- Department of Materials , Institute of Polymer Chemistry , ETH Zurich , Vladimir-Prelog-Weg 5 , 8093 Zurich , Switzerland
| | - A Dieter Schlüter
- Department of Materials , Institute of Polymer Chemistry , ETH Zurich , Vladimir-Prelog-Weg 5 , 8093 Zurich , Switzerland
| | - Renato Zenobi
- Department of Chemistry and Applied Biosciences , ETH Zurich , Vladimir-Prelog-Weg 3 , 8093 Zurich , Switzerland .
| |
Collapse
|
55
|
Gellé A, Jin T, de la Garza L, Price GD, Besteiro LV, Moores A. Applications of Plasmon-Enhanced Nanocatalysis to Organic Transformations. Chem Rev 2019; 120:986-1041. [PMID: 31725267 DOI: 10.1021/acs.chemrev.9b00187] [Citation(s) in RCA: 182] [Impact Index Per Article: 36.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Alexandra Gellé
- Centre for Green Chemistry and Catalysis, Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, Quebec H3A 0B8, Canada
| | - Tony Jin
- Centre for Green Chemistry and Catalysis, Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, Quebec H3A 0B8, Canada
| | - Luis de la Garza
- Centre for Green Chemistry and Catalysis, Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, Quebec H3A 0B8, Canada
| | - Gareth D. Price
- Centre for Green Chemistry and Catalysis, Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, Quebec H3A 0B8, Canada
| | - Lucas V. Besteiro
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, China
- Centre Énergie Matériaux et Télécommunications, Institut National de la Recherche Scientifique, 1650 Boul. Lionel Boulet, Varennes, Quebec J3X 1S2, Canada
| | - Audrey Moores
- Centre for Green Chemistry and Catalysis, Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, Quebec H3A 0B8, Canada
- Department of Materials Engineering, McGill University, 3610 University Street, Montreal, Quebec H3A 0C5, Canada
| |
Collapse
|
56
|
Lemelin V, Bass AD, Cloutier P, Sanche L. Low energy (1-19 eV) electron scattering from condensed thymidine (dT) I: absolute vibrational excitation cross sections. Phys Chem Chem Phys 2019; 21:23808-23817. [PMID: 31503266 DOI: 10.1039/c9cp03447a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Absolute cross sections (CSs) for vibrational excitation by electrons of energy between 1-19 eV scattering from condensed thymidine (dT) were measured by means of high-resolution electron energy loss spectroscopy (HREELS). The CSs were extracted from electron energy loss spectra of dT condensed on multilayers film of Ar held at about 20 K under ultra-high vacuum (∼1 × 10-11 Torr). dT is one of the most complex molecules to be studied in condensed phase by HREELS. The magnitudes of the vibrational CSs lie within the 10-17 cm2 range. Structures observed in the energy dependence of the vibrational CSs under 3 eV and around 4 eV were compared with previous results of gas- and solid-phase studies on dT and related molecules (e.g., thymine and tetrahydrofuran). These structures were attributed to the formation of shape resonances.
Collapse
Affiliation(s)
- V Lemelin
- Groupe en Sciences des Radiations, Département de Médecine Nucléaire et Radiobiologie, Faculté de Médecine et Sciences des radiations, Université de Sherbrooke, Québec J1H 5N4, Canada.
| | | | | | | |
Collapse
|
57
|
Yin H, Lan JG, Goubert G, Wang YH, Li JF, Zenobi R. Nanoscale Surface Redox Chemistry Triggered by Plasmon-Generated Hot Carriers. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1903674. [PMID: 31588678 DOI: 10.1002/smll.201903674] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 08/30/2019] [Indexed: 06/10/2023]
Abstract
Direct photoexcitation of charges at a plasmonic metal hotspot produces energetic carriers that are capable of performing photocatalysis in the visible spectrum. However, the mechanisms of generation and transport of hot carriers are still not fully understood and under intense investigation because of their potential technological importance. Here, spectroscopic evidence proves that the reduction of dye molecules tethered to a Au(111) surface can be triggered by plasmonic carriers via a tunneling mechanism, which results in anomalous Raman intensity fluctuations. Tip-enhanced Raman spectroscopy (TERS) helps to correlate Raman intensity fluctuations with temperature and with properties of the molecular spacer. In combination with electrochemical surface-enhanced Raman spectroscopy, TERS results show that plasmon-induced energetic carriers can directly tunnel to the dye through the spacer. This organic spacer chemically isolates the adsorbate from the metal but does not block photo-induced redox reactions, which offers new possibilities for optimizing plasmon-induced photocatalytic systems.
Collapse
Affiliation(s)
- Hao Yin
- MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
- Department of Chemistry and Applied Biosciences, ETH Zurich, CH-8093, Zurich, Switzerland
| | - Jing-Gang Lan
- Department of Chemistry, University of Zurich, CH-8057, Zurich, Switzerland
| | - Guillaume Goubert
- Department of Chemistry and Applied Biosciences, ETH Zurich, CH-8093, Zurich, Switzerland
| | - Yao-Hui Wang
- MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Jian-Feng Li
- MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Renato Zenobi
- MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
- Department of Chemistry and Applied Biosciences, ETH Zurich, CH-8093, Zurich, Switzerland
| |
Collapse
|
58
|
Dong Y, Su Y, Du L, Wang R, Zhang L, Zhao D, Xie W. Plasmon-Enhanced Deuteration under Visible-Light Irradiation. ACS NANO 2019; 13:10754-10760. [PMID: 31487455 DOI: 10.1021/acsnano.9b05523] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Deuteration has found important applications in synthetic chemistry especially for pharmaceutical developments. However, conventional deuteration methods using transition-metal catalysts or strong bases generally involve harsh reaction conditions, expensive deuterium source, insufficient efficiency, and poor selectivity. Herein, we report an efficient visible-light-driven dehalogenative deuteration of organic halides using plasmonic Au/CdS as photocatalyst and D2O as deuterium donor. Electron transfer from Au to CdS, which has been confirmed by surface-enhanced Raman spectroscopy, plays a decisive role for the plasmon-mediated dehalogenation. The deuteration is revealed to proceed via a radical pathway in which substrates are first activated by the photoinduced electron transfer to generate aryl radicals, and the radicals are further trapped by D2O to give deuterated products. Under visible-light irradiation, excellent deuteration efficiency is achieved with high functional group tolerance and a wide range of substrates at room temperature. Compared with bare CdS, the photocatalytic activity increases ∼18 times after the loading of plasmonic Au nanoparticles. This work sheds light on the interfacial charge transfer between plasmonic metals and semiconductors as an important criterion for rational design of visible-light photocatalysts.
Collapse
Affiliation(s)
- Yueyue Dong
- Key Lab of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Center, College of Chemistry , Nankai University , Weijin Road 94 , Tianjin 300071 , China
| | - Yanling Su
- Key Lab of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Center, College of Chemistry , Nankai University , Weijin Road 94 , Tianjin 300071 , China
| | - Lili Du
- Key Lab of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Center, College of Chemistry , Nankai University , Weijin Road 94 , Tianjin 300071 , China
| | - Ruifeng Wang
- Key Lab of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Center, College of Chemistry , Nankai University , Weijin Road 94 , Tianjin 300071 , China
| | - Li Zhang
- Key Lab of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Center, College of Chemistry , Nankai University , Weijin Road 94 , Tianjin 300071 , China
| | - Dongbing Zhao
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry , Nankai University , Weijin Road 94 , Tianjin 300071 , China
| | - Wei Xie
- Key Lab of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Center, College of Chemistry , Nankai University , Weijin Road 94 , Tianjin 300071 , China
| |
Collapse
|
59
|
Chen Z, Jiang S, Kang G, Nguyen D, Schatz GC, Van Duyne RP. Operando Characterization of Iron Phthalocyanine Deactivation during Oxygen Reduction Reaction Using Electrochemical Tip-Enhanced Raman Spectroscopy. J Am Chem Soc 2019; 141:15684-15692. [DOI: 10.1021/jacs.9b07979] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
60
|
Heck C, Kanehira Y, Kneipp J, Bald I. Amorphous Carbon Generation as a Photocatalytic Reaction on DNA-Assembled Gold and Silver Nanostructures. Molecules 2019; 24:E2324. [PMID: 31238571 PMCID: PMC6630242 DOI: 10.3390/molecules24122324] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 06/08/2019] [Accepted: 06/20/2019] [Indexed: 11/17/2022] Open
Abstract
Background signals from in situ-formed amorphous carbon, despite not being fully understood, are known to be a common issue in few-molecule surface-enhanced Raman scattering (SERS). Here, discrete gold and silver nanoparticle aggregates assembled by DNA origami were used to study the conditions for the formation of amorphous carbon during SERS measurements. Gold and silver dimers were exposed to laser light of varied power densities and wavelengths. Amorphous carbon prevalently formed on silver aggregates and at high power densities. Time-resolved measurements enabled us to follow the formation of amorphous carbon. Silver nanolenses consisting of three differently-sized silver nanoparticles were used to follow the generation of amorphous carbon at the single-nanostructure level. This allowed observation of the many sharp peaks that constitute the broad amorphous carbon signal found in ensemble measurements. In conclusion, we highlight strategies to prevent amorphous carbon formation, especially for DNA-assembled SERS substrates.
Collapse
Affiliation(s)
- Christian Heck
- Institute of Chemistry, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476 Potsdam, Germany.
- BAM Federal Institute for Materials Research and Testing, Richard-Willstätter-Str. 11, 12489 Berlin, Germany.
- Department of Chemistry & SALSA, Humboldt Universität zu Berlin, Brook-Taylor-Str. 2, 12489 Berlin, Germany.
| | - Yuya Kanehira
- Institute of Chemistry, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476 Potsdam, Germany.
| | - Janina Kneipp
- BAM Federal Institute for Materials Research and Testing, Richard-Willstätter-Str. 11, 12489 Berlin, Germany.
- Department of Chemistry & SALSA, Humboldt Universität zu Berlin, Brook-Taylor-Str. 2, 12489 Berlin, Germany.
| | - Ilko Bald
- Institute of Chemistry, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476 Potsdam, Germany.
- BAM Federal Institute for Materials Research and Testing, Richard-Willstätter-Str. 11, 12489 Berlin, Germany.
| |
Collapse
|
61
|
Dong Y, Gao Y, Liu W, Gao T, Zheng Y, Sanche L. Clustered DNA Damage Induced by 2-20 eV Electrons and Transient Anions: General Mechanism and Correlation to Cell Death. J Phys Chem Lett 2019; 10:2985-2990. [PMID: 31099579 DOI: 10.1021/acs.jpclett.9b01063] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The mechanisms of action of low-energy electrons (LEEs) generated in large quantities by ionizing radiation constitute an essential element of our understanding of early events in radiolysis and radiobiology. We present the 2-20 eV electron energy dependence of the yields of base damage (BD), BD-related cross-links (CLs), and non-double-strand break (NDSB) clustered damage induced in DNA. These new yield functions are generated by the impact of LEEs on plasmid DNA films. The damage is analyzed by gel electrophoresis with and without enzyme treatment. Maxima at 5 and 10 eV in BDs and BD-related CLs yield functions, and two others, at 6 and 10 eV, in those of NDSB clustered damage are ascribed to core-excited transient anions that decay into bond-breaking channels. The mechanism causing all types of DNA damages can be attributed to the capture of a single electron by a base followed by multiple different electron transfer pathways.
Collapse
Affiliation(s)
- Yanfang Dong
- State Key Laboratory of Photocatalysis on Energy and Environment, Faculty of Chemistry , Fuzhou University , Fuzhou 350116 , P. R. China
| | - Yingxia Gao
- State Key Laboratory of Photocatalysis on Energy and Environment, Faculty of Chemistry , Fuzhou University , Fuzhou 350116 , P. R. China
| | - Wenhui Liu
- State Key Laboratory of Photocatalysis on Energy and Environment, Faculty of Chemistry , Fuzhou University , Fuzhou 350116 , P. R. China
| | - Ting Gao
- State Key Laboratory of Photocatalysis on Energy and Environment, Faculty of Chemistry , Fuzhou University , Fuzhou 350116 , P. R. China
| | - Yi Zheng
- State Key Laboratory of Photocatalysis on Energy and Environment, Faculty of Chemistry , Fuzhou University , Fuzhou 350116 , P. R. China
| | - Léon Sanche
- Department of Nuclear Medicine and Radiobiology and Clinical Research Center, Faculty of Medicine , Université de Sherbrooke , Sherbrooke , QC , Canada J1H 5N4
| |
Collapse
|
62
|
Bhattarai A, El-Khoury PZ. Nanoscale Chemical Reaction Imaging at the Solid-Liquid Interface via TERS. J Phys Chem Lett 2019; 10:2817-2822. [PMID: 31074285 DOI: 10.1021/acs.jpclett.9b00935] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Not all regions of optical field nanolocalization and enhancement are suitable sites for chemical transformations on plasmonic metals. We illustrate the concept using chemically functionalized monocrystalline gold platelets in aqueous solution imaged using a Au-coated tip-enhanced Raman scattering (TERS) probe. For our proof-of-principle study, we select a model plasmon-driven chemical process, namely, the dimerization of p-nitrothiophenol (NTP) to dimercaptoazobenzene. Consistent with recent observations from our group, we find that TERS maps at vibrational resonances corresponding to NTP trace the optical fields that are maximally enhanced toward the edges of the platelets. Conversely, simultaneously recorded product maps reveal that the dimerization process occurs only at specific sites on our substrate. Given the uniformity of the structures and local optical fields at the edges of the gold platelets, our results suggest that molecular crowding and steric effects play a key role in our case of plasmon-driven NTP dimerization at the gold-water interface.
Collapse
Affiliation(s)
- Ashish Bhattarai
- Physical Sciences Division , Pacific Northwest National Laboratory , P.O. Box 999, Richland , Washington 99352 , United States
| | - Patrick Z El-Khoury
- Physical Sciences Division , Pacific Northwest National Laboratory , P.O. Box 999, Richland , Washington 99352 , United States
| |
Collapse
|
63
|
Progress in the Utilization Efficiency Improvement of Hot Carriers in Plasmon-Mediated Heterostructure Photocatalysis. APPLIED SCIENCES-BASEL 2019. [DOI: 10.3390/app9102093] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The effect of plasmon-induced hot carriers (HCs) enables the possibility of applying semiconductors with wide band gaps to visible light catalysis, which becomes an emerging research field in environmental protections. Continued efforts have been made for an efficient heterostructure photocatalytic process with controllable behaviors of HCs. Recently, it has been discovered that the improvement of the utilization of HCs by band engineering is a promising strategy for an enhanced catalytic process, and relevant works have emerged for such a purpose. In this review, we give an overview of the recent progress relating to optimized methods for designing efficient photocatalysts by considering the intrinsic essence of HCs. First, the basic mechanism of the heterostructure photocatalytic process is discussed, including the formation of the Schokkty barrier and the process of photocatalysis. Then, the latest studies for improving the utilization efficiency of HCs in two aspects, the generation and extraction of HCs, are introduced. Based on this, the applications of such heterostructure photocatalysts, such as water/air treatments and organic transformations, are briefly illustrated. Finally, we conclude by discussing the remaining bottlenecks and future directions in this field.
Collapse
|
64
|
Sun JJ, Su HS, Yue HL, Huang SC, Huang TX, Hu S, Sartin MM, Cheng J, Ren B. Role of Adsorption Orientation in Surface Plasmon-Driven Coupling Reactions Studied by Tip-Enhanced Raman Spectroscopy. J Phys Chem Lett 2019; 10:2306-2312. [PMID: 31013094 DOI: 10.1021/acs.jpclett.9b00203] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
In the field of surface plasmon-mediated photocatalysis, the coupling reactions of p-aminothiophenol (PATP) and p-nitrothiophenol (PNTP) to produce p, p'-dimercaptoazobenzene (DMAB) are the most widely investigated systems. However, a clear understanding of the structure-function relationship is still required. Here, we used tip-enhanced Raman spectroscopy (TERS) to study the coupling reactions of PATP and PNTP on well-defined Ag(111) and Au(111) surfaces using 632.8 and 532 nm lasers. On Au(111), the oxidative coupling of PATP can proceed under irradiation by a 632.8 nm laser, and the reductive coupling of PNTP can only occur under irradiation by a 532 nm laser. Neither wavelength of laser light can induce the coupling reactions of these two molecules on Ag(111). Density functional theory (DFT) was used to calculate the stable adsorption configurations of PATP and PNTP on Ag(111) and Au(111). Both the adsorption configurations of the two molecules on the surfaces and laser energies were, experimentally and theoretically, found to determine whether the coupling reactions can occur on different substrates. These results may help the rational design of photocatalysts with enhanced reactivity.
Collapse
Affiliation(s)
- Juan-Juan Sun
- Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), State Key Laboratory of Physical Chemistry of Solid Surfaces, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, College of Chemistry and Chemical Engineering , Xiamen University , Xiamen 361005 , China
| | - Hai-Sheng Su
- Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), State Key Laboratory of Physical Chemistry of Solid Surfaces, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, College of Chemistry and Chemical Engineering , Xiamen University , Xiamen 361005 , China
| | - Hui-Li Yue
- Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), State Key Laboratory of Physical Chemistry of Solid Surfaces, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, College of Chemistry and Chemical Engineering , Xiamen University , Xiamen 361005 , China
| | - Sheng-Chao Huang
- Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), State Key Laboratory of Physical Chemistry of Solid Surfaces, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, College of Chemistry and Chemical Engineering , Xiamen University , Xiamen 361005 , China
| | - Teng-Xiang Huang
- Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), State Key Laboratory of Physical Chemistry of Solid Surfaces, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, College of Chemistry and Chemical Engineering , Xiamen University , Xiamen 361005 , China
| | - Shu Hu
- Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), State Key Laboratory of Physical Chemistry of Solid Surfaces, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, College of Chemistry and Chemical Engineering , Xiamen University , Xiamen 361005 , China
| | - Matthew M Sartin
- Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), State Key Laboratory of Physical Chemistry of Solid Surfaces, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, College of Chemistry and Chemical Engineering , Xiamen University , Xiamen 361005 , China
| | - Jun Cheng
- Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), State Key Laboratory of Physical Chemistry of Solid Surfaces, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, College of Chemistry and Chemical Engineering , Xiamen University , Xiamen 361005 , China
| | - Bin Ren
- Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), State Key Laboratory of Physical Chemistry of Solid Surfaces, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, College of Chemistry and Chemical Engineering , Xiamen University , Xiamen 361005 , China
| |
Collapse
|
65
|
Kumar N, Weckhuysen BM, Wain AJ, Pollard AJ. Nanoscale chemical imaging using tip-enhanced Raman spectroscopy. Nat Protoc 2019; 14:1169-1193. [PMID: 30911174 DOI: 10.1038/s41596-019-0132-z] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 01/09/2019] [Indexed: 11/09/2022]
Abstract
Confocal and surface-enhanced Raman spectroscopy (SERS) are powerful techniques for molecular characterization; however, they suffer from the drawback of diffraction-limited spatial resolution. Tip-enhanced Raman spectroscopy (TERS) overcomes this limitation and provides chemical information at length scales in the tens of nanometers. In contrast to alternative approaches to nanoscale chemical analysis, TERS is label free, is non-destructive, and can be performed in both air and liquid environments, allowing its use in a diverse range of applications. Atomic force microscopy (AFM)-based TERS is especially versatile, as it can be applied to a broad range of samples on various substrates. Despite its advantages, widespread uptake of this technique for nanoscale chemical imaging has been inhibited by various experimental challenges, such as limited lifetime, and the low stability and yield of TERS probes. This protocol details procedures that will enable researchers to reliably perform TERS imaging using a transmission-mode AFM-TERS configuration on both biological and non-biological samples. The procedure consists of four stages: (i) preparation of plasmonically active TERS probes; (ii) alignment of the TERS system; (iii) experimental procedures for nanoscale imaging using TERS; and (iv) TERS data processing. We provide procedures and example data for a range of different sample types, including polymer thin films, self-assembled monolayers (SAMs) of organic molecules, photocatalyst surfaces, small molecules within biological cells, single-layer graphene and single-walled carbon nanotubes in both air and water. With this protocol, TERS probes can be prepared within ~23 h, and each subsequent TERS experimental procedure requires 3-5 h.
Collapse
Affiliation(s)
- Naresh Kumar
- National Physical Laboratory, Teddington, UK.,Inorganic Chemistry and Catalysis Group, Debye Institute for Nanomaterials Science, Utrecht University, Utrecht, the Netherlands
| | - Bert M Weckhuysen
- Inorganic Chemistry and Catalysis Group, Debye Institute for Nanomaterials Science, Utrecht University, Utrecht, the Netherlands
| | | | | |
Collapse
|
66
|
Cai YY, Sung E, Zhang R, Tauzin LJ, Liu JG, Ostovar B, Zhang Y, Chang WS, Nordlander P, Link S. Anti-Stokes Emission from Hot Carriers in Gold Nanorods. NANO LETTERS 2019; 19:1067-1073. [PMID: 30657694 DOI: 10.1021/acs.nanolett.8b04359] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The origin of light emission from plasmonic nanoparticles has been strongly debated lately. It is present as the background of surface-enhanced Raman scattering and, despite the low yield, has been used for novel sensing and imaging applications because of its photostability. Although the role of surface plasmons as an enhancing antenna is widely accepted, the main controversy regarding the mechanism of the emission is its assignment to either radiative recombination of hot carriers (photoluminescence) or electronic Raman scattering (inelastic light scattering). We have previously interpreted the Stokes-shifted emission from gold nanorods as the Purcell effect enhanced radiative recombination of hot carriers. Here we specifically focused on the anti-Stokes emission from single gold nanorods of varying aspect ratios with excitation wavelengths below and above the interband transition threshold while still employing continuous wave lasers. Analysis of the intensity ratios between Stokes and anti-Stokes emission yields temperatures that can only be interpreted as originating from the excited electron distribution and not a thermally equilibrated phonon population despite not using pulsed laser excitation. Consistent with this result as well as previous emission studies using ultrafast lasers, the power-dependence of the upconverted emission is nonlinear and gives the average number of participating photons as a function of emission wavelength. Our findings thus show that hot carriers and photoluminescence play a major role in the upconverted emission.
Collapse
|
67
|
Cui X, Qin F, Lai Y, Wang H, Shao L, Chen H, Wang J, Lin HQ. Molecular Tunnel Junction-Controlled High-Order Charge Transfer Plasmon and Fano Resonances. ACS NANO 2018; 12:12541-12550. [PMID: 30462918 DOI: 10.1021/acsnano.8b07066] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Quantum tunneling plays an important role in coupled plasmonic nanocavities with ultrasmall gap distances. It can lead to intriguing applications such as plasmon mode excitation, hot carrier generation, and construction of ultracompact electro-optic devices. Molecular junctions bridging plasmonic nanocavities can provide a tunneling channel at moderate gap distances and therefore allow for the facile fabrication of quantum plasmonic devices. Herein we report on the large-scale bottom-up fabrication of molecular junction-bridged plasmonic nanocavities formed from Au nanoplate-Au nanosphere heterodimers. When the molecular junction turns from insulating to conductive, a distinct spectral change is observed, together with the emergence of a high-order charge transfer plasmon mode. The evolution of the electron tunneling-induced plasmon mode also greatly affects the Fano resonance feature in the scattering spectrum of the individual heterodimers. The molecular conductance at optical frequencies is estimated. The molecular junction-assisted electron tunneling is further verified by the reduced surface-enhanced Raman intensities of the molecules in the plasmonic nanocavity. We believe that our results provide an interesting system that can boost the investigation on the use of molecular junctions to modulate quantum plasmon resonances and construct molecular plasmonic devices.
Collapse
Affiliation(s)
- Ximin Cui
- Department of Physics , The Chinese University of Hong Kong , Shatin , Hong Kong SAR , China
| | - Feng Qin
- Key Laboratory of Science and Technology of Complex Electromagnetic Environment , China Academy of Engineering Physics , Mianyang 621999 , China
| | - Yunhe Lai
- Department of Physics , The Chinese University of Hong Kong , Shatin , Hong Kong SAR , China
| | - Hao Wang
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology , Sun Yat-sen University , Guangzhou 510275 , China
| | - Lei Shao
- Department of Physics , The Chinese University of Hong Kong , Shatin , Hong Kong SAR , China
| | - Huanjun Chen
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology , Sun Yat-sen University , Guangzhou 510275 , China
| | - Jianfang Wang
- Department of Physics , The Chinese University of Hong Kong , Shatin , Hong Kong SAR , China
| | - Hai-Qing Lin
- Beijing Computational Science Research Center , Beijing 100193 , China
| |
Collapse
|