51
|
Jing YZ, Li SJ, Sun ZJ. Gas and gas-generating nanoplatforms in cancer therapy. J Mater Chem B 2021; 9:8541-8557. [PMID: 34608920 DOI: 10.1039/d1tb01661j] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Gas therapy is the usage of certain gases with special therapeutic effects for the treatment of diseases. Hydrogen (H2), nitric oxide (NO), carbon monoxide (CO), and hydrogen sulfide (H2S) acting as gas signalling molecules are representative gases in cancer therapy. They act directly on mitochondria or nuclei to lead to cell apoptosis. They can also alleviate immuno-suppression in the tumour microenvironment and promote phenotype conversion of tumour-associated macrophages. Moreover, the combination of gas therapy and other traditional therapy methods can reduce side effects and improve therapeutic efficacy. Here, we discuss the roles of NO, CO, H2S and H2 in cancer biology. Considering the rapidly developing nanotechnology, gas-generating nanoplatforms which can achieve targeted delivery and controlled release were also discussed. Finally, we highlight the current challenges and future opportunities of gas-based cancer therapy.
Collapse
Affiliation(s)
- Yuan-Zhe Jing
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine, Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, Hubei 430079, P. R. China.
| | - Shu-Jin Li
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine, Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, Hubei 430079, P. R. China.
| | - Zhi-Jun Sun
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine, Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, Hubei 430079, P. R. China. .,Department of Oral Maxillofacial-Head Neck Oncology, School and Hospital of Stomatology, Wuhan University, Wuhan, Hubei 430079, P. R. China
| |
Collapse
|
52
|
Zhang Z, Zhang J, Tian J, Li H. A polydopamine nanomedicine used in photothermal therapy for liver cancer knocks down the anti-cancer target NEDD8-E3 ligase ROC1 (RBX1). J Nanobiotechnology 2021; 19:323. [PMID: 34654435 PMCID: PMC8518243 DOI: 10.1186/s12951-021-01063-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 09/28/2021] [Indexed: 12/12/2022] Open
Abstract
Knocking down the oncogene ROC1 with siRNA inhibits the proliferation of cancer cells by suppressing the Neddylation pathway. However, methods for delivering siRNA in vivo to induce this high anticancer activity with low potential side effects are urgently needed. Herein, a folic acid (FA)-modified polydopamine (PDA) nanomedicine used in photothermal therapy was designed for siRNA delivery. The designed nanovector can undergo photothermal conversion with good biocompatibility. Importantly, this genetic nanomedicine was selectively delivered to liver cancer cells by FA through receptor-mediated endocytosis. Subsequently, the siRNA cargo was released from the PDA nanomedicine into the tumor microenvironment by controlled release triggered by pH. More importantly, the genetic nanomedicine not only inhibited liver cancer cell proliferation but also promoted liver cell apoptosis by slowing ROC1 activity, suppressing the Neddylation pathway, enabling the accumulation of apototic factor ATF4 and DNA damage factor P-H2AX. Combined with photothermal therapy, this genetic nanomedicine showed superior inhibition of the growth of liver cancer in vitro and in vivo. Taken together, the results indicate that this biodegradable nanomedicine exhibits good target recognition, an effective pH response, application potential for genetic therapy, photothermal imaging and treatment of liver cancer. Therefore, this work contributes to the design of a multifunctional nanoplatform that combines genetic therapy and photothermal therapy for the treatment of liver cancer. ![]()
Collapse
Affiliation(s)
- Zhanxia Zhang
- Cancer Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 725 Wanping South Road, Shanghai, 200032, China.
| | - Junqian Zhang
- Cancer Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 725 Wanping South Road, Shanghai, 200032, China
| | - Jianhui Tian
- Cancer Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 725 Wanping South Road, Shanghai, 200032, China
| | - Hegen Li
- Department of Medical Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 725 Wanping South Road, Shanghai, 200032, China
| |
Collapse
|
53
|
Shi C, Huang H, Zhou X, Zhang Z, Ma H, Yao Q, Shao K, Sun W, Du J, Fan J, Liu B, Wang L, Peng X. Reversing Multidrug Resistance by Inducing Mitochondrial Dysfunction for Enhanced Chemo-Photodynamic Therapy in Tumor. ACS APPLIED MATERIALS & INTERFACES 2021; 13:45259-45268. [PMID: 34533937 DOI: 10.1021/acsami.1c12725] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Efficiency of standard chemotherapy is dramatically hindered by intrinsic multidrug resistance (MDR). Recently, to amplify therapeutic efficacy, photodynamic therapy (PDT)-induced mitochondrial dysfunction by decorating targeting moieties on nanocarriers has obtained considerable attention. Nevertheless, low targeting efficiency, complex synthesis routes, and difficulty in releasing contents become the major obstacles in further clinical application. Herein, an ingenious liposomal-based nanomedicine (L@BP) was fabricated by encapsulating a mitochondria-anchored photosensitizer (Cy-Br) and paclitaxel (PTX) for realizing enhanced cooperation therapy. At the cellular level, L@BP could hurdle endosomal traps to localize and implement PDT in mitochondria. Intriguingly, the PDT-induced in situ mitochondrial dysfunction led to intracellular ATP reduction, which triggered the downregulated P-glycoprotein transportation capacity and thus resulted in diminishing the efflux of chemotherapeutic agents and increasing drug uptake by drug-resistant cells. The prepared nanomedicine eminently accumulated in the tumor site and acquired enhanced therapeutic efficiency on PTX-resistant lung cancer cells, which possessed great potential in circumventing MDR tumors.
Collapse
Affiliation(s)
- Chao Shi
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Hi-tech Zone, Dalian 116024, P.R. China
| | - Haiqiao Huang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Hi-tech Zone, Dalian 116024, P.R. China
| | - Xiao Zhou
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Hi-tech Zone, Dalian 116024, P.R. China
| | - Zhen Zhang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Hi-tech Zone, Dalian 116024, P.R. China
| | - He Ma
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Hi-tech Zone, Dalian 116024, P.R. China
| | - Qichao Yao
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Hi-tech Zone, Dalian 116024, P.R. China
| | - Kun Shao
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Hi-tech Zone, Dalian 116024, P.R. China
| | - Wen Sun
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Hi-tech Zone, Dalian 116024, P.R. China
- Shenzhen Research Institute, Dalian University of Technology, Nanshan District, Shenzhen 518057, P. R. China
| | - Jianjun Du
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Hi-tech Zone, Dalian 116024, P.R. China
- Shenzhen Research Institute, Dalian University of Technology, Nanshan District, Shenzhen 518057, P. R. China
| | - Jiangli Fan
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Hi-tech Zone, Dalian 116024, P.R. China
- Shenzhen Research Institute, Dalian University of Technology, Nanshan District, Shenzhen 518057, P. R. China
| | - Bin Liu
- State Key Laboratory of Fine Chemicals, Shenzhen University, Nanshan District, Shenzhen 518071, P. R. China
| | - Lei Wang
- State Key Laboratory of Fine Chemicals, Shenzhen University, Nanshan District, Shenzhen 518071, P. R. China
| | - Xiaojun Peng
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Hi-tech Zone, Dalian 116024, P.R. China
- Shenzhen Research Institute, Dalian University of Technology, Nanshan District, Shenzhen 518057, P. R. China
| |
Collapse
|
54
|
Liu X, Liu Y, Guo Y, Shi W, Sun Y, He Z, Shen Y, Zhang X, Xiao H, Ge D. Metabolizable pH/H 2O 2 dual-responsive conductive polymer nanoparticles for safe and precise chemo-photothermal therapy. Biomaterials 2021; 277:121115. [PMID: 34488118 DOI: 10.1016/j.biomaterials.2021.121115] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/27/2021] [Accepted: 08/28/2021] [Indexed: 01/10/2023]
Abstract
Conductive polymers with high near-infrared absorbance, have attracted considerable attention in the design of intelligent nanomedicines for cancer therapy, especially chemo-photothermal therapy. However, the unknown long-term biosafety of conductive polymers in vivo due to non-degradability hinders their clinic application. Herein, a H2O2-triggered degradable conductive polymer, polyacrylic acid (PAA) stabilized poly(pyrrole-3-COOH) (PAA@PPyCOOH), is fabricated to form nanoparticles with doxorubicin (DOX) for safe and precise chemo-phototherapy. The PAA@PPyCOOH was found to be an ideal photothermal nano-agent with good dispersity, excellent biocompatibility and high photothermal conversion efficiency (56%). After further loading of doxorubicin (DOX), PAA@PPyCOOH@DOX demonstrates outstanding photothermal performance, as well as pH/H2O2 dual-responsive release of DOX in tumors with an acidic and overexpressed H2O2 microenvironment, resulting in superior chemo-photothermal therapeutic effects. The degradation mechanism of PAA@PPyCOOH is proposed to be the ring-opening reaction between the pyrrole-3-COOH unit and H2O2. More importantly, the nanoparticles can be specifically degraded by excess H2O2 in tumor, and the degradation products were confirmed to be excreted via urine and feces. In vivo therapeutic evaluation of chemo-photothermal therapy reveals tumor growth of 4T1 breast cancer model is drastically inhibited and no apparent side-effect is detected, thus indicating substantial potential in clinic application.
Collapse
Affiliation(s)
- Xin Liu
- Key Laboratory of Biomedical Engineering of Fujian Province University/Research Center of Biomedical Engineering of Xiamen, Xiamen Key Laboratory of Fire Retardant Materials/Fujian Provincial Key Laboratory of Fire Retardant Materials, Department of Biomaterials, College of Materials, Xiamen University, Xiamen, 361005, China; Department of Pharmacy, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde, Foshan), Foshan, 528300, PR China
| | - Yang Liu
- Key Laboratory of Biomedical Engineering of Fujian Province University/Research Center of Biomedical Engineering of Xiamen, Xiamen Key Laboratory of Fire Retardant Materials/Fujian Provincial Key Laboratory of Fire Retardant Materials, Department of Biomaterials, College of Materials, Xiamen University, Xiamen, 361005, China
| | - Yijun Guo
- Key Laboratory of Biomedical Engineering of Fujian Province University/Research Center of Biomedical Engineering of Xiamen, Xiamen Key Laboratory of Fire Retardant Materials/Fujian Provincial Key Laboratory of Fire Retardant Materials, Department of Biomaterials, College of Materials, Xiamen University, Xiamen, 361005, China
| | - Wei Shi
- Key Laboratory of Biomedical Engineering of Fujian Province University/Research Center of Biomedical Engineering of Xiamen, Xiamen Key Laboratory of Fire Retardant Materials/Fujian Provincial Key Laboratory of Fire Retardant Materials, Department of Biomaterials, College of Materials, Xiamen University, Xiamen, 361005, China.
| | - Yanan Sun
- Key Laboratory of Biomedical Engineering of Fujian Province University/Research Center of Biomedical Engineering of Xiamen, Xiamen Key Laboratory of Fire Retardant Materials/Fujian Provincial Key Laboratory of Fire Retardant Materials, Department of Biomaterials, College of Materials, Xiamen University, Xiamen, 361005, China
| | - Zi He
- Key Laboratory of Biomedical Engineering of Fujian Province University/Research Center of Biomedical Engineering of Xiamen, Xiamen Key Laboratory of Fire Retardant Materials/Fujian Provincial Key Laboratory of Fire Retardant Materials, Department of Biomaterials, College of Materials, Xiamen University, Xiamen, 361005, China
| | - Yuqing Shen
- Transfusion Department, Woman and Children's Hospital, School of Medicine, Xiamen University, Xiamen, 361003, China
| | - Xiuming Zhang
- Key Laboratory of Biomedical Engineering of Fujian Province University/Research Center of Biomedical Engineering of Xiamen, Xiamen Key Laboratory of Fire Retardant Materials/Fujian Provincial Key Laboratory of Fire Retardant Materials, Department of Biomaterials, College of Materials, Xiamen University, Xiamen, 361005, China
| | - Haihua Xiao
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Dongtao Ge
- Key Laboratory of Biomedical Engineering of Fujian Province University/Research Center of Biomedical Engineering of Xiamen, Xiamen Key Laboratory of Fire Retardant Materials/Fujian Provincial Key Laboratory of Fire Retardant Materials, Department of Biomaterials, College of Materials, Xiamen University, Xiamen, 361005, China.
| |
Collapse
|
55
|
Liu Z, Zhong Y, Zhou X, Huang X, Zhou J, Huang D, Li Y, Wang Z, Dong B, Qiao H, Chen W. Inherently nitric oxide containing polymersomes remotely regulated by NIR for improving multi-modal therapy on drug resistant cancer. Biomaterials 2021; 277:121118. [PMID: 34481293 DOI: 10.1016/j.biomaterials.2021.121118] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 07/29/2021] [Accepted: 08/30/2021] [Indexed: 12/26/2022]
Abstract
The therapeutic potential of nitric oxide (NO) has been highly attractive to tumor treatment, especially for surmounting the multidrug resistance (MDR) of cancer. However, the NO-involved therapy remains extremely challenging because of the difficulty to simultaneously control the NO release rate and real-time concentration. Herein, we construct NO-containing polymersomes with high amount of NO donors inherently grown on the polymer chains to keep the stability. These polymersomes can be simultaneously loaded with photosensitizer of IR780 iodide on the membrane layer and chemotherapeutic of DOX·HCl in the lumen. NO release can be triggered by the reduction conditions, and further accelerated by remote NIR irradiation due to the increased local temperature. The instantaneous NO release with high concentration significantly inhibits the P-gp expression and sensitize the chemotherapy, thus overcoming the tumor MDR and improving the anti-tumor activity. Meanwhile, DOX·HCl release is highly promoted at the intracellular conditions because of the cleavage of acid-labile cis-aconitic amide at endo/lysosomal pH, and the improved hydrophilicity of the membrane layer after NO release. The in vivo results show that the single intravenous injection of polymersome formulation companying with NIR irradiation exerts multi-modal therapies of chemotherapy, PTT/PDT, and NO-therapy on the MCF-7/R tumor models, showing superior and combinational treatment efficacy with the complete eradication of tumors and few side effects.
Collapse
Affiliation(s)
- Zhihong Liu
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing, 210009, China
| | - Yinan Zhong
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing, 210009, China
| | - Xiang Zhou
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing, 210009, China
| | - Xin Huang
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing, 210009, China
| | - Jingjing Zhou
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing, 210009, China
| | - Dechun Huang
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing, 210009, China; Engineering Research Center for Smart Pharmaceutical Manufacturing Technologies, Ministry of Education, School of Engineering, China Pharmaceutical University, Nanjing, 210009, China.
| | - Yanfei Li
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing, 210009, China
| | - Zhixiang Wang
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing, 210009, China
| | - Bin Dong
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing, 210009, China
| | - Haishi Qiao
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing, 210009, China.
| | - Wei Chen
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing, 210009, China; Engineering Research Center for Smart Pharmaceutical Manufacturing Technologies, Ministry of Education, School of Engineering, China Pharmaceutical University, Nanjing, 210009, China.
| |
Collapse
|
56
|
Gao P, Shen X, Liu X, Chen Y, Pan W, Li N, Tang B. Nucleic Acid-Gated Covalent Organic Frameworks for Cancer-Specific Imaging and Drug Release. Anal Chem 2021; 93:11751-11757. [PMID: 34398599 DOI: 10.1021/acs.analchem.1c02105] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Developing nanoplatforms that simultaneously integrate diagnostic imaging and therapy functions has been a promising but challenging task for cancer theranostics. Herein, we report the rational design of a smart nucleic acid-gated covalent organic framework (COF) nanosystem for cancer-specific imaging and microenvironment-responsive drug release. Cy5 dye-labeled single-stranded DNA (ssDNA) for mRNA recognition was adsorbed on the surface of doxorubicin (Dox)-loaded COF nanoparticles (NPs). Dox loaded in the pores of COF NPs could strengthen the interactions between ssDNA and COF and enhance the fluorescence quenching effect toward Cy5, while the densely coated ssDNA could prevent the leakage of Dox from COF NPs. The obtained nanosystem exhibited low fluorescence signal and Dox release in normal cells; however, the ssDNA could be released by the overexpressed TK1 mRNA in cancer cells to recover the intense fluorescence signal of Cy5, and the loaded Dox could be further released for chemotherapy. Therefore, cancer cell-specific diagnostic imaging and drug release were realized with the rationally developed nanosystem. This work offers a universal nanoplatform for cancer theranostics and a promising strategy for regulating the interaction between COFs and biomolecules.
Collapse
Affiliation(s)
- Peng Gao
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, P. R. China
| | - Xiaoying Shen
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, P. R. China
| | - Xiaohan Liu
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, P. R. China
| | - Yuanyuan Chen
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, P. R. China
| | - Wei Pan
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, P. R. China
| | - Na Li
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, P. R. China
| | - Bo Tang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, P. R. China
| |
Collapse
|
57
|
Liu Y, Hong H, Xue J, Luo J, Liu Q, Chen X, Pan Y, Zhou J, Liu Z, Chen T. Near-Infrared Radiation-Assisted Drug Delivery Nanoplatform to Realize Blood-Brain Barrier Crossing and Protection for Parkinsonian Therapy. ACS APPLIED MATERIALS & INTERFACES 2021; 13:37746-37760. [PMID: 34318658 DOI: 10.1021/acsami.1c12675] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Mitochondrial dysfunction, which is directly involved in Parkinson's disease (PD), is characterized by the production of reactive oxygen species (ROS) and aberrant energy metabolism. Thus, regulating mitochondrial function might be an effective strategy to treat PD. However, the blood-brain barrier (BBB) presents a significant challenge for the intracerebral delivery of drugs. Here, we synthesized a zeolitic imidazolate framework 8-coated Prussian blue nanocomposite (ZIF-8@PB), which was encapsulated with quercetin (QCT), a natural antioxidant, to treat PD. ZIF-8@PB-QCT exhibited superior near-infrared radiation (NIR) response and penetrated through the BBB to the site of mitochondrial damage guided by the photothermal effect. In the mice model of PD, the QCT released from ZIF-8@PB-QCT significantly increased the adenosine triphosphate levels, reduced the oxidative stress levels, and reversed dopaminergic neuronal damage as well as PD-related behavioral deficits without any damage to the normal tissues. Furthermore, we explored the underlying neuroprotective mechanism of ZIF-8@PB-QCT that was mediated by activating the PI3K/Akt signaling pathway. Thus, combined with noninvasive NIR radiation, the biocompatible ZIF-8@PB-QCT nanocomposite could be used to treat neurodegenerative diseases.
Collapse
Affiliation(s)
- Yao Liu
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Honghai Hong
- Department of Clinical Laboratory, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510150, China
| | - Jincheng Xue
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510120, China
| | - Jingshan Luo
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Qiao Liu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau 999078, China
| | - Xiaojia Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau 999078, China
| | - Yue Pan
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Jingwei Zhou
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Zeming Liu
- Department of Plastic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Tongkai Chen
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| |
Collapse
|
58
|
Du Z, Mao Y, Zhang P, Hu J, Fu J, You Q, Yin J. TPGS-Galactose-Modified Polydopamine Co-delivery Nanoparticles of Nitric Oxide Donor and Doxorubicin for Targeted Chemo-Photothermal Therapy against Drug-Resistant Hepatocellular Carcinoma. ACS APPLIED MATERIALS & INTERFACES 2021; 13:35518-35532. [PMID: 34286569 DOI: 10.1021/acsami.1c09610] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The lack of cancer cell specificity and the occurrence of multidrug resistance (MDR) are two major obstacles in the treatment of hepatocellular carcinoma (HCC). To tackle these challenges, a novel nanoparticle (NP)-based drug delivery system (DDS) with a core/shell structure consisted of d-α-tocopheryl polyethylene glycol 1000 succinate (TPGS)-galactose (Gal)/polydopamine (PDA) is fabricated. The NP is loaded with doxorubicin (DOX) and a nitric oxide (NO) donor N,N'-di-sec-butyl-N,N'-dinitroso-1,4-phenylenediamine (BNN) sensitive to heat to afford NO-DOX@PDA-TPGS-Gal. The unique binding of Gal to asialoglycoprotein receptor (ASGPR) and the pH-sensitive degradation of NP ensure the targeted transportation of NP into liver cells and the release of DOX in HCC cells. The near-infrared (NIR) light further facilitates DOX release and initiates NO generation from BNN due to the photothermal property of PDA. In addition to the cytotoxicity contributed by DOX, NO, and heat, TPGS and NO act as MDR reversal agents to inhibit P-glycoprotein (P-gp)-related efflux of DOX by HepG2/ADR cells. The combined chemo-photothermal therapy (chemo-PTT) by NO-DOX@PDA-TPGS-Gal thus shows potent anti-cancer activity against drug-resistant HCC cells in vitro and in vivo and significantly prolongs the life span of drug-resistant tumor-bearing mice. The present work provides a useful strategy for highly targeted and MDR reversal treatment of HCC.
Collapse
Affiliation(s)
- Zijing Du
- Department of Oncology, Affiliated Hospital of Jiangnan University, Wuxi 214062, PR China
- Wuxi School of Medicine, Jiangnan University, Wuxi 214122, PR China
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, PR China
| | - Yong Mao
- Department of Oncology, Affiliated Hospital of Jiangnan University, Wuxi 214062, PR China
| | - Pengfei Zhang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, PR China
| | - Jing Hu
- Wuxi School of Medicine, Jiangnan University, Wuxi 214122, PR China
| | - Junjie Fu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, PR China
| | - Qingjun You
- Department of Oncology, Affiliated Hospital of Jiangnan University, Wuxi 214062, PR China
| | - Jian Yin
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, PR China
| |
Collapse
|
59
|
Song Y, Ding Y, Dong CM. Stimuli-responsive polypeptide nanoassemblies: Recent progress and applications in cancer nanomedicine. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2021; 14:e1742. [PMID: 34310063 DOI: 10.1002/wnan.1742] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 07/03/2021] [Accepted: 07/06/2021] [Indexed: 12/17/2022]
Abstract
Stimuli-responsive polypeptide nanoassemblies exhibit great potentials for cancer nanomedicines because of desirable biocompatibility and biodegradability, unique secondary conformations, varying functionalities, and especially the stimuli-enhanced therapeutic efficacy and reduced side effect. This review introduces the design and fabrication of stimuli-responsive polypeptide nanoassemblies that exhibit endogenous stimuli (e.g., pH, reduction, reactive oxygen species, adenosine triphosphate and enzyme, etc.) and exogenous light stimuli (e.g., UV and near-infrared light), which are biologically related or applied in the clinic. We also discuss the applications and prospects of those stimuli-responsive polypeptide nanoassemblies that might overcome the biological barriers of cancer nanomedicines for in vivo administration. Much more effort is needed to accelerate the second-generation stimuli-responsive polypeptide nanomedicines for clinical transition and applications. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease.
Collapse
Affiliation(s)
- Yingying Song
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, Shanghai, China
| | - Yue Ding
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, China
| | - Chang-Ming Dong
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
60
|
Nitric oxide release activated near-Infrared photothermal agent for synergistic tumor treatment. Biomaterials 2021; 276:121017. [PMID: 34280826 DOI: 10.1016/j.biomaterials.2021.121017] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 07/04/2021] [Accepted: 07/07/2021] [Indexed: 11/20/2022]
Abstract
Activatable phototherapeutic agents (PTA) in one system with synergistic gas therapy (GT) and photothermal therapy (PTT) hold great promise for highly efficient tumor treatments. In this study, an activatable multifunctional platform with photothermal conversion "turn on" features via nitric oxide (NO) release for synergistic GT and PTT was rationally designed using an aryl N-nitrosamine (NO-donating unit) functionalized aza-BODIPY framework (S-NO). As expected, after NO release from S-NO, the product (Red-S) showed obviously enhanced heat production performance under a longer excited wavelength via improved near-infrared light absorption and decreased fluorescence emission. Furthermore, water-soluble and biocompatible S-NO nanoparticles (S-NO NPs) with negligible dark cytotoxicity successfully suppressed tumor growth and enhanced the survival rate of mice via synergistic GT and PTT under the guidance of multimode imaging. The study offered rational guidance to design better platforms for synergistic tumor treatments and validated that S-NO NPs can act as potential PTAs in biological applications.
Collapse
|
61
|
Luan X, Pan Y, Gao Y, Song Y. Recent near-infrared light-activated nanomedicine toward precision cancer therapy. J Mater Chem B 2021; 9:7076-7099. [PMID: 34124735 DOI: 10.1039/d1tb00671a] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Light has been present throughout the history of mankind and even the universe. It is of great significance to human life, contributing to energy, agriculture, communication, and much more. In the biomedical field, light has been developed as a switch to control medical processes with minimal invasion and high spatiotemporal selectivity. During the past three years, near-infrared (NIR) light as long-wavelength light has been applied to more than 3000 achievements in biological applications due to its deep penetration depth and low phototoxicity. Remotely controlled cancer therapy usually involves the conversion of biologically inert NIR light. Thus, various materials, especially nanomaterials that can generate reactive oxygen species (ROS), ultraviolet (UV)/visual light, or thermal energy and so on under NIR illumination achieve great potential for the research of nanomedicine. Here, we offered an overview of recent advances in NIR light-activated nanomedicine for cancer therapeutic applications. NIR-light-conversion nanotechnologies for both directly triggering nanodrugs and smart drug delivery toward tumor therapy were discussed emphatically. The challenges and future trends of the use of NIR light in biomedical applications were also provided as a conclusion. We expect that this review will spark inspiration for biologists, materials scientists, pharmacologists, and chemists to fight against diseases and boost the future clinical-translational applications of NIR technology-based precision nanomedicine.
Collapse
Affiliation(s)
- Xiaowei Luan
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, Collaborative Innovation Center of Advanced Icrostructures, Nanjing University, Nanjing, 210023, China.
| | - Yongchun Pan
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, Collaborative Innovation Center of Advanced Icrostructures, Nanjing University, Nanjing, 210023, China.
| | - Yanfeng Gao
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, Collaborative Innovation Center of Advanced Icrostructures, Nanjing University, Nanjing, 210023, China.
| | - Yujun Song
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, Collaborative Innovation Center of Advanced Icrostructures, Nanjing University, Nanjing, 210023, China.
| |
Collapse
|
62
|
Zhang Y, He P, Zhang P, Yi X, Xiao C, Chen X. Polypeptides-Drug Conjugates for Anticancer Therapy. Adv Healthc Mater 2021; 10:e2001974. [PMID: 33929786 DOI: 10.1002/adhm.202001974] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 01/30/2021] [Indexed: 12/15/2022]
Abstract
Polypeptides are an important class of biodegradable polymers that have been widely used in drug delivery field. Owing to the controllable synthesis and robust side chain-functionalization ability, polypeptides have long been ideal candidates for conjugation with anticancer drugs. The chemical conjugation of anticancer drugs with polypeptides, termed polypeptides-drug conjugates, has demonstrated several advantages in improving pharmacokinetics, enhancing drug targeting, and controlling drug release, thereby leading to enhanced therapeutic outcomes with reduced side toxicities. This review focuses on the recent advances in the design and preparation of polypeptides-drug conjugates for enhanced anticancer therapy. Strategies for conjugation of different types of drugs, including small-molecule chemotherapeutic drugs, proteins, vascular disrupting agents, and gas molecules, onto polypeptides backbone are summarized. Finally, the challenges and future perspectives on the development of innovative polypeptides-drug conjugates for clinical cancer treatment are also presented.
Collapse
Affiliation(s)
- Yu Zhang
- Key Laboratory of Polymer Ecomaterials Jilin Biomedical Polymers Engineering Laboratory Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun 130022 P. R. China
| | - Pan He
- School of Materials Science and Engineering Changchun University of Science and Technology Changchun 130022 P. R. China
| | - Peng Zhang
- Key Laboratory of Polymer Ecomaterials Jilin Biomedical Polymers Engineering Laboratory Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun 130022 P. R. China
| | - Xuan Yi
- Key Laboratory of Polymer Ecomaterials Jilin Biomedical Polymers Engineering Laboratory Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun 130022 P. R. China
| | - Chunsheng Xiao
- Key Laboratory of Polymer Ecomaterials Jilin Biomedical Polymers Engineering Laboratory Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun 130022 P. R. China
| | - Xuesi Chen
- Key Laboratory of Polymer Ecomaterials Jilin Biomedical Polymers Engineering Laboratory Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun 130022 P. R. China
| |
Collapse
|
63
|
Wang X, Song Z, Wei S, Ji G, Zheng X, Fu Z, Cheng J. Polypeptide-based drug delivery systems for programmed release. Biomaterials 2021; 275:120913. [PMID: 34217020 DOI: 10.1016/j.biomaterials.2021.120913] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 05/14/2021] [Accepted: 05/20/2021] [Indexed: 01/01/2023]
Abstract
Recent years have seen increasing interests in the use of ring-opening polymerization of α-amino acid N-carboxyanhydrides (NCAs) to prepare synthetic polypeptides, a class of biocompatible and versatile materials, for various biomedical applications. Because of their rich side-chain functionalities, diverse hydrophilicity/hydrophobicity profiles, and the capability of forming stable secondary structures, polypeptides can assemble into a variety of well-organized nano-structures that have unique advantages in drug delivery and controlled release. Herein, we review the design and use of polypeptide-based drug delivery system derived from NCA chemistry, and discuss the future perspectives of this exciting and important biomaterial area that may potentially change the landscape of next-generation therapeutics and diagnosis. Given the high significance of precise control over release for polypeptide-based systems, we specifically focus on the versatile designs of drug delivery systems capable of programmed release, through the changes in the chemical and physical properties controlled by the built-in molecular structures of polypeptides.
Collapse
Affiliation(s)
- Xu Wang
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University, Tianjin, 300070, PR China; Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, United States
| | - Ziyuan Song
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, United States; Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, China.
| | - Shiqi Wei
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, United States
| | - Guonan Ji
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, China
| | - Xuetao Zheng
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, United States
| | - Zihuan Fu
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, United States
| | - Jianjun Cheng
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, United States; Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, United States; Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, United States.
| |
Collapse
|
64
|
Guo W, Chen Z, Feng X, Shen G, Huang H, Liang Y, Zhao B, Li G, Hu Y. Graphene oxide (GO)-based nanosheets with combined chemo/photothermal/photodynamic therapy to overcome gastric cancer (GC) paclitaxel resistance by reducing mitochondria-derived adenosine-triphosphate (ATP). J Nanobiotechnology 2021; 19:146. [PMID: 34011375 PMCID: PMC8136184 DOI: 10.1186/s12951-021-00874-9] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 04/27/2021] [Indexed: 12/14/2022] Open
Abstract
Background Paclitaxel (PTX) has been suggested to be a promising front-line drug for gastric cancer (GC), while P-glycoprotein (P-gp) could lead to drug resistance by pumping PTX out of GC cells. Consequently, it might be a hopeful way to combat drug resistance by inhibiting the out-pumping function of P-gp. Results In this study, we developed a drug delivery system incorporating PTX onto polyethylene glycol (PEG)-modified and oxidized sodium alginate (OSA)-functionalized graphene oxide (GO) nanosheets (NSs), called PTX@GO-PEG-OSA. Owing to pH/thermal-sensitive drug release properties, PTX@GO-PEG-OSA could induced more obvious antitumor effects on GC, compared to free PTX. With near infrared (NIR)-irradiation, PTX@GO-PEG-OSA could generate excessive reactive oxygen species (ROS), attack mitochondrial respiratory chain complex enzyme, reduce adenosine-triphosphate (ATP) supplement for P-gp, and effectively inhibit P-gp’s efflux pump function. Since that, PTX@GO-PEG-OSA achieved better therapeutic effect on PTX-resistant GC without evident toxicity. Conclusions In conclusion, PTX@GO-PEG-OSA could serve as a desirable strategy to reverse PTX’s resistance, combined with chemo/photothermal/photodynamic therapy. Graphic Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s12951-021-00874-9.
Collapse
Affiliation(s)
- Weihong Guo
- Department of General Surgery & Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| | - Zhian Chen
- Department of General Surgery & Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Xiaoli Feng
- Guangdong Provincial Stomatology Hospital, Southern Medical University, Guangzhou, 510000, China
| | - Guodong Shen
- Department of General Surgery & Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Huilin Huang
- Department of General Surgery & Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Yanrui Liang
- Department of General Surgery & Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Bingxia Zhao
- Guangdong Provincial Key Laboratory of Cancer Immunotherapy, Guangzhou Key Laboratory of Tumor Immunology Research, Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, PR China.
| | - Guoxin Li
- Department of General Surgery & Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| | - Yanfeng Hu
- Department of General Surgery & Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
65
|
Zhu J, Wang W, Wang X, Zhong L, Song X, Wang W, Zhao Y, Dong X. Multishell Nanoparticles with "Linkage Mechanism" for Thermal Responsive Photodynamic and Gas Synergistic Therapy. Adv Healthc Mater 2021; 10:e2002038. [PMID: 33586335 DOI: 10.1002/adhm.202002038] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 01/23/2021] [Indexed: 12/23/2022]
Abstract
The strategies of combining photodynamic therapy (PDT) with other therapeutics are considered to be the most suitable methods in improving the antitumor therapeutic efficiency. Herein, a "Linkage Mechanism" strategy based on thermal controllable multishell nanoparticles (CuS@SiO2 -l-Arg (l-arginine)@PCM (phase-change material)-Ce6 (chiorin e6)) is proposed for combing PDT and NO-based gas therapy. Upon 1060 nm laser irradiation, the PCMs will melt under the photothermal effect induced by CuS and the loaded Ce6 and l-Arg can accurately release from the nanoparticles. Under further 660 nm laser irradiation, the released Ce6 will produce plenty of singlet oxygen (1 O2 ) for PDT, while the generated 1 O2 can oxidize l-Arg to release NO for the synergy of PDT and gas therapy. The "Linkage Mechanism" can achieve precise release of the payloads under the control of photothermal effect at tumor site, and the chain reaction of PDT and gas therapy overcomes the problem of premature release of gas during transportation. Benefiting from the guidance of fluorescence imaging and second near infrared photoacoustic imaging by Ce6 and CuS, both in vitro and in vivo experiments present effective antitumor efficiencies. The nanoparticles provide new ideas for controllable release of drugs and the synergistic effect of multiple treatments, possessing great application prospects.
Collapse
Affiliation(s)
- Jiawei Zhu
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM) School of Physical and Mathematical Sciences Nanjing Tech University (NanjingTech) Nanjing 211800 China
| | - Weili Wang
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM) School of Physical and Mathematical Sciences Nanjing Tech University (NanjingTech) Nanjing 211800 China
| | - Xiaorui Wang
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM) School of Physical and Mathematical Sciences Nanjing Tech University (NanjingTech) Nanjing 211800 China
| | - Liping Zhong
- National Center for International Biotargeting Theranostics Guangxi Key Laboratory of Biotargeting Theranostics Collaborative Innovation Center for Targeting Tumor Theranostics Guangxi Medical University Guangxi 530021 China
| | - Xuejiao Song
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM) School of Physical and Mathematical Sciences Nanjing Tech University (NanjingTech) Nanjing 211800 China
| | - Wenjun Wang
- School of Physical Science and Information Technology Liaocheng University Liaocheng 252059 China
| | - Yongxiang Zhao
- National Center for International Biotargeting Theranostics Guangxi Key Laboratory of Biotargeting Theranostics Collaborative Innovation Center for Targeting Tumor Theranostics Guangxi Medical University Guangxi 530021 China
| | - Xiaochen Dong
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM) School of Physical and Mathematical Sciences Nanjing Tech University (NanjingTech) Nanjing 211800 China
- School of Chemistry and Materials Science Nanjing University of Information Science and Technology Nanjing 210044 China
| |
Collapse
|
66
|
Wu J, Williams GR, Zhu Y, Hu T, Wang H, Zhao W, Liang R, Weng X, Wei M. Ultrathin chalcogenide nanosheets for photoacoustic imaging-guided synergistic photothermal/gas therapy. Biomaterials 2021; 273:120807. [PMID: 33848730 DOI: 10.1016/j.biomaterials.2021.120807] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 03/24/2021] [Accepted: 04/01/2021] [Indexed: 01/15/2023]
Abstract
Previous preclinical and clinical studies have shown that using only a single therapy makes it difficult to completely eradicate tumors and restrain cancer metastasis. To overcome this challenge, multi-modal synergistic treatments have attracted considerable attention. Herein, an ultrathin Cu-loaded CoCuFe-selenide (CCFS) was prepared by a facile topotactic transformation from CoCuFe layered double hydroxide (LDH) nanosheets (NSs), followed by surface modification with polyvinyl pyrrolidone (PVP) and l-arginine (L-Arg). The resultant CCFS-PVP-L-Arg (CPA) system shows excellent synergetic photothermal and gas therapy (PTT/GT). The CCFS NSs have strong LSPR absorbance characteristic, with enhanced light absorption in the near-infrared (NIR) region. This endows the CPA nanocomposite with an outstanding photothermal conversion efficiency of 72.0% (pH 7.4) and 81.0% (pH 5.4), among the highest reported for 2D chalcogenide nanomaterials. In addition, NO release from CPA is triggered by decomposition of L-Arg in the H2O2-rich and acidic tumor microenvironment, permitting localized NO gas therapy in the tumor site. In vitro experiments revealed 91.8% apoptosis of HepG2 cells, and in vivo studies showed complete tumor elimination upon treatment with the CPA nanocomposite under NIR irradiation. To the best of our knowledge, this is the first report of combined defect-induced high-efficiency PTT with H2O2 and pH targeted GT.
Collapse
Affiliation(s)
- Jingjing Wu
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, PR China
| | - Gareth R Williams
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London, WC1N 1AX, UK
| | - Yu Zhu
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, PR China
| | - Tingting Hu
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, PR China
| | - Hui Wang
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, PR China
| | - Wei Zhao
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, PR China
| | - Ruizheng Liang
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, PR China.
| | - Xisheng Weng
- Department of Orthopaedics, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, 100730, China.
| | - Min Wei
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, PR China.
| |
Collapse
|
67
|
Li J, Zhang Z, Deng H, Zheng Z. Cinobufagin-Loaded and Folic Acid-Modified Polydopamine Nanomedicine Combined With Photothermal Therapy for the Treatment of Lung Cancer. Front Chem 2021; 9:637754. [PMID: 33855009 PMCID: PMC8039290 DOI: 10.3389/fchem.2021.637754] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 02/11/2021] [Indexed: 12/22/2022] Open
Abstract
Cinobufagin is used as a traditional Chinese medicine for cancer therapy. However, it has some disadvantages, such as poor water solubility, short circulating half-life, and low bioavailability. In the present study, a targeted delivery and smart responsive polydopamine (PDA)-based nanomedicine for delivering cinobufagin was rationally designed to improve the anticancer efficacy of the compound for the treatment of lung cancer. The modification of the nanomedicine using folic acid first mediated tumor targeting via the interaction between folic acid and its receptors on tumor cells. After lysosomes escape, the PDA nanomedicine was triggered by the low pH and released its cargo into the tumor microenvironment. The nanomedicine had a better therapeutic effect against lung cancer when used in combination with photothermal therapy. Compared with other nanomedicines used with photothermal therapy, this nanocarrier was not only sensitive to biologically low pH levels for on-demand drug release, but was also biodegradable, breaking down into biocompatible terminal products. Therefore, the proposed drug delivery system with targeted delivery and smart release demonstrated potential as a multifunctional nanoplatform that can enhance the bioavailability and reduce the side effects of chemotherapeutic agents.
Collapse
Affiliation(s)
- Jianwen Li
- Department of Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zhanxia Zhang
- Cancer Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Haibin Deng
- Department of Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zhan Zheng
- Department of Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
68
|
Du C, Wu X, He M, Zhang Y, Zhang R, Dong CM. Polymeric photothermal agents for cancer therapy: recent progress and clinical potential. J Mater Chem B 2021; 9:1478-1490. [PMID: 33427844 DOI: 10.1039/d0tb02659j] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Over the past decades, near infrared light (NIR)-sensitive photothermal agents (PTAs) that can efficiently absorb light and generate heat have been investigated worldwide for cancer photothermal therapy (PTT) and the combination treatments, which have some peculiar advantages including spatiotemporal targeting, the ability-to-reverse multidrug resistance, the immunity-stimulating function, and the synergistic effect in combination treatments. In this review, we first focus on emerging melanin-like polymers and coordination polyphenol polymer-based PTAs that hold transition potential because of their facile synthesis and good biocompatibility/biodegradability. We briefly introduce polymeric PTAs for emerging NIR-II (1000-1700 nm) PTT in deep tumors to overcome shallow penetration depth and threshold irradiation intensity of NIR-I (700-900 nm). Then we discuss polymeric PTAs for combination PTT treatments with photodynamic therapy (PDT), ferroptosis therapy (ferrotherapy), and immunotherapy, which are intensively studied for achieving anticancer synergistic effects. Finally, we discuss those polymeric PTAs for reversing cancer multidrug resistance and for mild/low-temperature PTT (43 °C ≤ T < 50 °C) in contrast to conventional high-temperature PTT (>50 °C). The polymeric PTA-based PTT and the combination treatments are still being developed in the early stage and need much more effort before potential clinical transitions and applications.
Collapse
Affiliation(s)
- Chang Du
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, Shanghai 200240, P. R. China. and Joint Research Center for Precision Medicine, Shanghai Jiao Tong University, Affiliated Sixth People's Hospital South Campus, Shanghai Fengxian Central Hospital, Shanghai 201499, P. R. China.
| | - Xingjie Wu
- School of Pharmaceutical Science, Guizhou Medical University, Guizhou 550025, P. R. China
| | - Meng He
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, Shanghai 200240, P. R. China.
| | - Yongming Zhang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, Shanghai 200240, P. R. China. and State Key Laboratory of Fluorinated Functional Membrane Materials, Shandong Huaxia Shenzhou New Material Co. Ltd, Zibo 256401, P. R. China
| | - Rong Zhang
- Joint Research Center for Precision Medicine, Shanghai Jiao Tong University, Affiliated Sixth People's Hospital South Campus, Shanghai Fengxian Central Hospital, Shanghai 201499, P. R. China. and Department of Obstetrics and Gynecology, Shanghai Fengxian Central Hospital, Southern Medical University, Shanghai 201499, P. R. China
| | - Chang-Ming Dong
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, Shanghai 200240, P. R. China. and Joint Research Center for Precision Medicine, Shanghai Jiao Tong University, Affiliated Sixth People's Hospital South Campus, Shanghai Fengxian Central Hospital, Shanghai 201499, P. R. China.
| |
Collapse
|
69
|
Briolay T, Petithomme T, Fouet M, Nguyen-Pham N, Blanquart C, Boisgerault N. Delivery of cancer therapies by synthetic and bio-inspired nanovectors. Mol Cancer 2021; 20:55. [PMID: 33761944 PMCID: PMC7987750 DOI: 10.1186/s12943-021-01346-2] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 03/05/2021] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND As a complement to the clinical development of new anticancer molecules, innovations in therapeutic vectorization aim at solving issues related to tumor specificity and associated toxicities. Nanomedicine is a rapidly evolving field that offers various solutions to increase clinical efficacy and safety. MAIN: Here are presented the recent advances for different types of nanovectors of chemical and biological nature, to identify the best suited for translational research projects. These nanovectors include different types of chemically engineered nanoparticles that now come in many different flavors of 'smart' drug delivery systems. Alternatives with enhanced biocompatibility and a better adaptability to new types of therapeutic molecules are the cell-derived extracellular vesicles and micro-organism-derived oncolytic viruses, virus-like particles and bacterial minicells. In the first part of the review, we describe their main physical, chemical and biological properties and their potential for personalized modifications. The second part focuses on presenting the recent literature on the use of the different families of nanovectors to deliver anticancer molecules for chemotherapy, radiotherapy, nucleic acid-based therapy, modulation of the tumor microenvironment and immunotherapy. CONCLUSION This review will help the readers to better appreciate the complexity of available nanovectors and to identify the most fitting "type" for efficient and specific delivery of diverse anticancer therapies.
Collapse
Affiliation(s)
- Tina Briolay
- Université de Nantes, Inserm, CRCINA, F-44000, Nantes, France
| | | | - Morgane Fouet
- Université de Nantes, Inserm, CRCINA, F-44000, Nantes, France
| | | | | | | |
Collapse
|
70
|
de Oliveira SA, Borges R, dos Santos Rosa D, de Souza ACS, Seabra AB, Baino F, Marchi J. Strategies for Cancer Treatment Based on Photonic Nanomedicine. MATERIALS 2021; 14:ma14061435. [PMID: 33809479 PMCID: PMC8001287 DOI: 10.3390/ma14061435] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 03/02/2021] [Accepted: 03/03/2021] [Indexed: 12/11/2022]
Abstract
Traditional cancer treatments, such as surgery, radiotherapy, and chemotherapy, are still the most effective clinical practice options. However, these treatments may display moderate to severe side effects caused by their low temporal or spatial resolution. In this sense, photonic nanomedicine therapies have been arising as an alternative to traditional cancer treatments since they display more control of temporal and spatial resolution, thereby yielding fewer side effects. In this work, we reviewed the challenge of current cancer treatments, using the PubMed and Web of Science database, focusing on the advances of three prominent therapies approached by photonic nanomedicine: (i) photothermal therapy; (ii) photodynamic therapy; (iii) photoresponsive drug delivery systems. These photonic nanomedicines act on the cancer cells through different mechanisms, such as hyperthermic effect and delivery of chemotherapeutics and species that cause oxidative stress. Furthermore, we covered the recent advances in materials science applied in photonic nanomedicine, highlighting the main classes of materials used in each therapy, their applications in the context of cancer treatment, as well as their advantages, limitations, and future perspectives. Finally, although some photonic nanomedicines are undergoing clinical trials, their effectiveness in cancer treatment have already been highlighted by pre-clinical studies.
Collapse
Affiliation(s)
- Sueli Aparecida de Oliveira
- Centro de Engenharia, Modelagem e Ciências Sociais Aplicadas, Universidade Federal do ABC, Avenida dos Estados, 5001 Santa Terezinha, Santo André 09210580, Brazil; (S.A.d.O.); (D.d.S.R.)
| | - Roger Borges
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Avenida dos Estados, 5001 Santa Terezinha, Santo André 09210580, Brazil; (R.B.); (A.C.S.d.S.); (A.B.S.)
| | - Derval dos Santos Rosa
- Centro de Engenharia, Modelagem e Ciências Sociais Aplicadas, Universidade Federal do ABC, Avenida dos Estados, 5001 Santa Terezinha, Santo André 09210580, Brazil; (S.A.d.O.); (D.d.S.R.)
| | - Ana Carolina Santos de Souza
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Avenida dos Estados, 5001 Santa Terezinha, Santo André 09210580, Brazil; (R.B.); (A.C.S.d.S.); (A.B.S.)
| | - Amedea B. Seabra
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Avenida dos Estados, 5001 Santa Terezinha, Santo André 09210580, Brazil; (R.B.); (A.C.S.d.S.); (A.B.S.)
| | - Francesco Baino
- Department of Applied Science and Technology, Institute of Materials Physics and Engineering, Politecnico di Torino, Corso Duca degli Abruzzi, 10129 Torino, Italy;
| | - Juliana Marchi
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Avenida dos Estados, 5001 Santa Terezinha, Santo André 09210580, Brazil; (R.B.); (A.C.S.d.S.); (A.B.S.)
- Correspondence: ; Tel.: +55-11-3356-7588
| |
Collapse
|
71
|
Ding Y, Ma Y, Du C, Wang C, Chen T, Wang Y, Wang J, Yao Y, Dong CM. NO-releasing polypeptide nanocomposites reverse cancer multidrug resistance via triple therapies. Acta Biomater 2021; 123:335-345. [PMID: 33476826 DOI: 10.1016/j.actbio.2021.01.015] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 12/15/2020] [Accepted: 01/12/2021] [Indexed: 02/06/2023]
Abstract
Multidrug resistance (MDR) induced by the overexpression of P-glycoprotein (P-gp) transporters mainly leads to chemotherapy (CT) failure. Herein, a NIR/pH dual-sensitive charge-reversal polypeptide nanocomposite (PDA-PLC) was developed for co-delivering a nitric oxide (NO) donor and doxorubicin (DOX). Under near-infrared (NIR) irradiation, the released high-concentration of NO gas inhibited the P-gp expression to sensitize the chemotherapeutic medicine DOX and assisted photothermal therapy (PTT) to eradicate cancer cells without skin scarring. Further, the distinctive charge-reversal capacity of PDA-PLC significantly facilitated cellular uptake in the tumor acidic microenvironment (pH 6.8) and enhanced its stability in the physiological environment (pH 7.4). This DOX-loading polypeptide nanocomposite (PDA-PLC/DOX) provides an effective strategy for the PTT-NO-CT triple-combination therapy to overcome MDR STATEMENT OF SIGNIFICANCE: Multidrug resistance (MDR) has been considered to be the paramount factor of chemotherapy (CT) failure in cancer. In this work, an NIR/pH dual-sensitive charge-reversal polypeptide nanomedicine (PDA-PLC/DOX) was developed to overcome MDR through the triple combination therapy of photothermal therapy (PTT), NO gas therapy, and CT. The distinctive charge-reversal capacity of PDA-PLC/DOX significantly facilitated cellular uptake in the tumor acidic microenvironment (pH 6.8) and enhanced its stability in the physiological environment (pH 7.4), while the NIR trigger-released NO gas greatly inhibited the expression of P-gp and synergistically enhanced PTT and CT efficacy. This polypeptide nanocomposite PDA-PLC/DOX provides an effective strategy of using the PTT-NO-CT triple combination therapy with charge-reversal property to completely eradicate the MCF-7/ADR tumor.
Collapse
Affiliation(s)
- Yue Ding
- School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, PR China.
| | - Yuxuan Ma
- School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, PR China
| | - Chang Du
- School of Chemistry and Chemical Engineering, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Chenwei Wang
- School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, PR China
| | - Tingting Chen
- School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, PR China
| | - Yang Wang
- School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, PR China
| | - Jin Wang
- School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, PR China
| | - Yong Yao
- School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, PR China.
| | - Chang-Ming Dong
- School of Chemistry and Chemical Engineering, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, Shanghai 200240, PR China.
| |
Collapse
|
72
|
Lu J, Cai L, Dai Y, Liu Y, Zuo F, Ni C, Shi M, Li J. Polydopamine-Based Nanoparticles for Photothermal Therapy/Chemotherapy and their Synergistic Therapy with Autophagy Inhibitor to Promote Antitumor Treatment. CHEM REC 2021; 21:781-796. [PMID: 33634962 DOI: 10.1002/tcr.202000170] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 01/20/2021] [Accepted: 01/20/2021] [Indexed: 12/12/2022]
Abstract
Polydopamine (PDA) has attracted much attention recently due to its strong adhesion capability to most substrates. After combining with organic (such as organic metal framework, micelles, hydrogel, polypeptide copolymer) or inorganic nanomaterials (such as gold, silicon, carbon), polydopamine-based nanoparticles (PDA NPs) exhibit the merging of characteristics. Until now, the preparation methods, polymerization mechanism, and photothermal therapy (PTT) or chemotherapy (CT) applications of PDA NPs have been reported detailly. Since the PTT or CT treatment process is often accompanied by exogenous stimuli, tumor cells usually induce pro-survival autophagy to protect the cells from further damage, which will weaken the therapeutic effect. Therefore, an in-depth understanding of PDA NPs modulated PTT, CT, and autophagy is required. However, this association is rarely reviewed. Herein, we briefly described the relationship between PTT/CT, autophagy, and tumor treatment. Then, the outstanding performances of PDA NPs in PTT/CT and their combination with autophagy inhibitors for tumor synergistic therapy have been summarized. This work is expected to shed light on the multi-strategy antitumor therapy applications of PDA NPs.
Collapse
Affiliation(s)
- Jiahui Lu
- School of Medical Imaging, Xuzhou Medical University, Xuzhou, 221004, People's Republic of China.,Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, Jiangsu Province, China
| | - Lulu Cai
- School of Medical Imaging, Xuzhou Medical University, Xuzhou, 221004, People's Republic of China.,Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, Jiangsu Province, China
| | - Yue Dai
- School of Medical Imaging, Xuzhou Medical University, Xuzhou, 221004, People's Republic of China.,Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, Jiangsu Province, China
| | - Yawen Liu
- School of Medical Imaging, Xuzhou Medical University, Xuzhou, 221004, People's Republic of China
| | - Fengmei Zuo
- Jiangsu Vocational College of Medicine, Yancheng, 224000, Jiangsu Province, China
| | - Chen Ni
- School of Medical Imaging, Xuzhou Medical University, Xuzhou, 221004, People's Republic of China
| | - Meilin Shi
- School of Medical Imaging, Xuzhou Medical University, Xuzhou, 221004, People's Republic of China
| | - Jingjing Li
- School of Medical Imaging, Xuzhou Medical University, Xuzhou, 221004, People's Republic of China.,Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, Jiangsu Province, China
| |
Collapse
|
73
|
Wei C, Wang P, Huang Z, He D, Zhu W, Liu H, Chen Z, Wang W, Li Y, Shen J, Qin L. Construction of Surface-Modified Polydopamine Nanoparticles for Sequential Drug Release and Combined Chemo-Photothermal Cancer Therapy. Mol Pharm 2021; 18:1327-1343. [PMID: 33530691 DOI: 10.1021/acs.molpharmaceut.0c01164] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Single chemotherapy often causes severe adverse effects and drug resistance to limit therapeutic efficacy. As a noninvasive approach, photothermal therapy (PTT) represents an attractive option for cancer therapy due to the benefits of remote control and precise treatment methods. Nanomedicines constructed with combined chemo-photothermal properties may exert synergistic effects and improved antitumor efficacy. In this study, we developed polydopamine (PDA)-coated nanoparticles grafted with folic acid (FA) and polyethylene glycol to transport doxorubicin (DOX) for targeted cancer therapy. The results showed that this delivery vehicle has a nanoscale particle size and narrow size distribution. No particle aggregation or significant drug leakage was observed during the stability test. This system presented excellent photothermal conversion capability under near-infrared light (NIR) laser irradiation due to the PDA layer covering. In vitro dissolution profiles demonstrated that sequential and triggered DOX release from nanoparticles was pH-, NIR irradiation-, and redox level-dependent and could be best fitted with the Ritger-Peppas equation. FA modification effectively promoted the intracellular uptake of nanoparticles by HepG2 cells and therefore significantly inhibited cell recovery and induced tumor cell apoptosis. Compared to the free DOX group, nanoparticles reduced the DOX concentration in the heart to avoid drug-related cardiotoxicity. More importantly, the in vivo antitumor efficacy results showed that compared with the single chemotherapy strategy, the nanoparticle group exerted combined and satisfactory tumor growth inhibition effects with good biocompatibility. In summary, this nanocarrier delivery system can organically combine chemotherapy and PTT to achieve effective and precise cancer treatment.
Collapse
Affiliation(s)
- Cui Wei
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Pengfei Wang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Zhenpeng Huang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Dahua He
- Department of Pharmacy, Guangdong Women and Children Hospital, Guangzhou 510010, China
| | - Wanye Zhu
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Huan Liu
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Zhihao Chen
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Wanting Wang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Yusheng Li
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Juan Shen
- Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Linghao Qin
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| |
Collapse
|
74
|
Jin G, Gao Z, Liu Y, Zhao J, Ou H, Xu F, Ding D. Polymeric Nitric Oxide Delivery Nanoplatforms for Treating Cancer, Cardiovascular Diseases, and Infection. Adv Healthc Mater 2021; 10:e2001550. [PMID: 33314793 DOI: 10.1002/adhm.202001550] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 11/05/2020] [Indexed: 02/06/2023]
Abstract
The shortened Abstract is as follows: Therapeutic gas nitric oxide (NO) has demonstrated the unique advances in biomedical applications due to its prominent role in regulating physiological/pathophysiological activities in terms of vasodilation, angiogenesis, chemosensitizing effect, and bactericidal effect. However, it is challenging to deliver NO, due to its short half-life (<5 s) and short diffusion distances (20-160 µm). To address these, various polymeric NO delivery nanoplatforms (PNODNPs) have been developed for cancer therapy, antimicrobial and cardiovascular therapeutics, because of the important advantages of polymeric delivery nanoplatforms in terms of controlled release of therapeutics and the extremely versatile nature. This reviews highlights the recent significant advances made in PNODNPs for NO storing and targeting delivery. The ideal and unique criteria that are required for PNODNPs for treating cancer, cardiovascular diseases and infection, respectively, are summarized. Hopefully, effective storage and targeted delivery of NO in a controlled manner using PNODNPs could pave the way for NO-sensitized synergistic therapy in clinical practice for treating the leading death-causing diseases.
Collapse
Affiliation(s)
- Guorui Jin
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education School of Life Science and Technology Xi'an Jiaotong University Xi'an 710049 China
- Bioinspired Engineering and Biomechanics Center (BEBC) Xi'an Jiaotong University Xi'an 710049 China
| | - Zhiyuan Gao
- State Key Laboratory of Medicinal Chemical Biology Key Laboratory of Bioactive Materials Ministry of Education, and College of Life Sciences Nankai University Tianjin 300071 China
| | - Yangjing Liu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education School of Life Science and Technology Xi'an Jiaotong University Xi'an 710049 China
- Bioinspired Engineering and Biomechanics Center (BEBC) Xi'an Jiaotong University Xi'an 710049 China
| | - Jing Zhao
- Shaanxi Key Lab Degradable Biomedical Materials School of Chemical Engineering Northwest University 229 North Taibai North Road Xi'an 710069 China
| | - Hanlin Ou
- State Key Laboratory of Medicinal Chemical Biology Key Laboratory of Bioactive Materials Ministry of Education, and College of Life Sciences Nankai University Tianjin 300071 China
| | - Feng Xu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education School of Life Science and Technology Xi'an Jiaotong University Xi'an 710049 China
- Bioinspired Engineering and Biomechanics Center (BEBC) Xi'an Jiaotong University Xi'an 710049 China
| | - Dan Ding
- State Key Laboratory of Medicinal Chemical Biology Key Laboratory of Bioactive Materials Ministry of Education, and College of Life Sciences Nankai University Tianjin 300071 China
| |
Collapse
|
75
|
A Single-wavelength NIR-triggered Polymer for in Situ Generation of Peroxynitrite (ONOO−) to Enhance Phototherapeutic Efficacy. CHINESE JOURNAL OF POLYMER SCIENCE 2021. [DOI: 10.1007/s10118-021-2540-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
76
|
Wang Z, Zhan M, Li W, Chu C, Xing D, Lu S, Hu X. Photoacoustic Cavitation‐Ignited Reactive Oxygen Species to Amplify Peroxynitrite Burst by Photosensitization‐Free Polymeric Nanocapsules. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202013301] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Zhixiong Wang
- Guangdong Provincial Key Laboratory of Laser Life Science MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science College of Biophotonics South China Normal University Guangzhou 510631 China
- College of Biophotonics South China Normal University Guangzhou 510631 China
| | - Meixiao Zhan
- Zhuhai Precision Medical Center, Zhuhai People's Hospital Zhuhai Hospital Affiliated with Jinan University Jinan University Zhuhai Guangdong 519000 China
| | - Weijie Li
- Guangdong Provincial Key Laboratory of Laser Life Science MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science College of Biophotonics South China Normal University Guangzhou 510631 China
- College of Biophotonics South China Normal University Guangzhou 510631 China
| | - Chengyan Chu
- Guangdong Provincial Key Laboratory of Laser Life Science MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science College of Biophotonics South China Normal University Guangzhou 510631 China
- College of Biophotonics South China Normal University Guangzhou 510631 China
| | - Da Xing
- Guangdong Provincial Key Laboratory of Laser Life Science MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science College of Biophotonics South China Normal University Guangzhou 510631 China
- College of Biophotonics South China Normal University Guangzhou 510631 China
| | - Siyu Lu
- Green Catalysis Center College of Chemistry Zhengzhou University Zhengzhou 450000 China
| | - Xianglong Hu
- Guangdong Provincial Key Laboratory of Laser Life Science MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science College of Biophotonics South China Normal University Guangzhou 510631 China
- College of Biophotonics South China Normal University Guangzhou 510631 China
| |
Collapse
|
77
|
Wang Z, Zhan M, Li W, Chu C, Xing D, Lu S, Hu X. Photoacoustic Cavitation-Ignited Reactive Oxygen Species to Amplify Peroxynitrite Burst by Photosensitization-Free Polymeric Nanocapsules. Angew Chem Int Ed Engl 2021; 60:4720-4731. [PMID: 33210779 DOI: 10.1002/anie.202013301] [Citation(s) in RCA: 91] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 11/06/2020] [Indexed: 12/25/2022]
Abstract
Photoacoustic (PA) technology can transform light energy into acoustic wave, which can be used for either imaging or therapy that depends on the power density of pulsed laser. Here, we report photosensitizer-free polymeric nanocapsules loaded with nitric oxide (NO) donors, namely NO-NCPs, formulated from NIR light-absorbable amphiphilic polymers and a NO-releasing donor, DETA NONOate. Controlled NO release and nanocapsule dissociation are achieved in acidic lysosomes of cancer cells. More importantly, upon pulsed laser irradiation, the PA cavitation can excite water to generate significant reactive oxygen species (ROS) such as superoxide radical (O2 .- ), which further spontaneously reacts with the in situ released NO to burst highly cytotoxic peroxynitrite (ONOO- ) in cancer cells. The resultant ONOO- generation greatly promotes mitochondrial damage and DNA fragmentation to initiate programmed cancer cell death. Apart from PA imaging, PA cavitation can intrinsically amplify reactive species via photosensitization-free materials for promising disease theranostics.
Collapse
Affiliation(s)
- Zhixiong Wang
- Guangdong Provincial Key Laboratory of Laser Life Science, MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China.,College of Biophotonics, South China Normal University, Guangzhou, 510631, China
| | - Meixiao Zhan
- Zhuhai Precision Medical Center, Zhuhai People's Hospital, Zhuhai Hospital Affiliated with Jinan University, Jinan University, Zhuhai, Guangdong, 519000, China
| | - Weijie Li
- Guangdong Provincial Key Laboratory of Laser Life Science, MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China.,College of Biophotonics, South China Normal University, Guangzhou, 510631, China
| | - Chengyan Chu
- Guangdong Provincial Key Laboratory of Laser Life Science, MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China.,College of Biophotonics, South China Normal University, Guangzhou, 510631, China
| | - Da Xing
- Guangdong Provincial Key Laboratory of Laser Life Science, MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China.,College of Biophotonics, South China Normal University, Guangzhou, 510631, China
| | - Siyu Lu
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou, 450000, China
| | - Xianglong Hu
- Guangdong Provincial Key Laboratory of Laser Life Science, MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China.,College of Biophotonics, South China Normal University, Guangzhou, 510631, China
| |
Collapse
|
78
|
Gao P, Wei R, Liu X, Chen Y, Wu T, Shi M, Wang M, Li N, Tang B. Covalent organic framework-engineered polydopamine nanoplatform for multimodal imaging-guided tumor photothermal-chemotherapy. Chem Commun (Camb) 2021; 57:5646-5649. [DOI: 10.1039/d1cc00314c] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A covalent organic framework-engineered polydopamine nanoplatform with improved drug loading capacity and reduced premature leakage has been developed for multimodal imaging-guided tumor-targeted photothermal-chemotherapy.
Collapse
Affiliation(s)
- Peng Gao
- College of Chemistry
- Chemical Engineering and Materials Science
- Key Laboratory of Molecular and Nano Probes
- Ministry of Education
- Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong
| | - Ruyue Wei
- College of Chemistry
- Chemical Engineering and Materials Science
- Key Laboratory of Molecular and Nano Probes
- Ministry of Education
- Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong
| | - Xiaohan Liu
- College of Chemistry
- Chemical Engineering and Materials Science
- Key Laboratory of Molecular and Nano Probes
- Ministry of Education
- Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong
| | - Yuanyuan Chen
- College of Chemistry
- Chemical Engineering and Materials Science
- Key Laboratory of Molecular and Nano Probes
- Ministry of Education
- Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong
| | - Tong Wu
- College of Chemistry
- Chemical Engineering and Materials Science
- Key Laboratory of Molecular and Nano Probes
- Ministry of Education
- Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong
| | - Mingwan Shi
- College of Chemistry
- Chemical Engineering and Materials Science
- Key Laboratory of Molecular and Nano Probes
- Ministry of Education
- Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong
| | - Mengzhen Wang
- College of Chemistry
- Chemical Engineering and Materials Science
- Key Laboratory of Molecular and Nano Probes
- Ministry of Education
- Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong
| | - Na Li
- College of Chemistry
- Chemical Engineering and Materials Science
- Key Laboratory of Molecular and Nano Probes
- Ministry of Education
- Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong
| | - Bo Tang
- College of Chemistry
- Chemical Engineering and Materials Science
- Key Laboratory of Molecular and Nano Probes
- Ministry of Education
- Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong
| |
Collapse
|
79
|
Du C, Zhou L, Qian J, He M, Dong CM, Xia JD, Zhang ZG, Zhang R. A zwitterionic polypeptide nanocomposite with unique NIR-I/II photoacoustic imaging for NIR-I/II cancer photothermal therapy. J Mater Chem B 2021; 9:5484-5491. [PMID: 34161406 DOI: 10.1039/d1tb00823d] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The second near infrared photoacoustic imaging (NIR-II PAI) and photothermal therapy (NIR-II PTT) have attracted wide interest in cancer theranostics because of maximum permission exposure (MPE), deep penetration, and lower scattering and background noise compared to NIR-I counterparts; however, it is imperative to develop biocompatible nanomaterials having NIR-II response. By utilizing multivalent Au-S coordination bonds, we constructed a zwitterionic polypeptide nanocomposite of PMC@AuNP with a suitable size of 48 ± 2 nm, which possessed a strong and broad absorbance at 650-1100 nm and an excellent photothermal conversion efficiency of 49.5%. In vitro biological studies demonstrated that NIR-II PTT within MPE was more effective than NIR-I PTT beyond MPE. Along with X-ray computed tomography and photothermal imaging functions, PMC@AuNP in vivo presented unique NIR-I/II PAI with 2.6-5.9 times signal enhancement compared to the contrast. By single dose and NIR-II irradiation (1064 nm, 1 W cm-2, 10 min), NIR-II PTT within MPE completely eradicated MCF-7 tumors without tissue damage and tumor recurrence within 24 days, inducing a better antitumor efficacy than NIR-I PTT beyond MPE. Importantly, this study provides an innovative method for the fabrication of biocompatible zwitterionic polypeptide nanocomposites with unique NIR-I/II PAI and NIR-II PTT attributes, thus holding great potential for precise cancer theranostics and further clinical transitions.
Collapse
Affiliation(s)
- Chang Du
- Joint Research Center for Precision Medicine, Department of Obstetrics and Gynecology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital South Campus, Shanghai Fengxian Central Hospital, Shanghai 201499, P. R. China. and School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Lei Zhou
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Jiwen Qian
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Meng He
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Chang-Ming Dong
- Joint Research Center for Precision Medicine, Department of Obstetrics and Gynecology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital South Campus, Shanghai Fengxian Central Hospital, Shanghai 201499, P. R. China. and School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Jin-Dong Xia
- Department of Radiology, Shanghai Songjiang District Central Hospital, Shanghai 201600, P. R. China
| | - Zhi-Gang Zhang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Rong Zhang
- Joint Research Center for Precision Medicine, Department of Obstetrics and Gynecology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital South Campus, Shanghai Fengxian Central Hospital, Shanghai 201499, P. R. China.
| |
Collapse
|
80
|
Zhou L, Du C, Zhang R, Dong C. Stimuli-responsive dual drugs-conjugated polydopamine nanoparticles for the combination photothermal-cocktail chemotherapy. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2020.02.043] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
81
|
Yang Z, Gao D, Guo X, Jin L, Zheng J, Wang Y, Chen S, Zheng X, Zeng L, Guo M, Zhang X, Tian Z. Fighting Immune Cold and Reprogramming Immunosuppressive Tumor Microenvironment with Red Blood Cell Membrane-Camouflaged Nanobullets. ACS NANO 2020; 14:17442-17457. [PMID: 33166111 DOI: 10.1021/acsnano.0c07721] [Citation(s) in RCA: 163] [Impact Index Per Article: 40.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Nanomedicine, acting as the magic bullet, is capable of combining immunotherapy with other treatments to reverse a cold tumor (immune depletion) into a hot tumor. However, how to comprehensively inhibit the immunosuppressive tumor microenvironment (TME) remains a major challenge for immunotherapy to achieve the maximum benefits. Thus, a strategy that can simultaneously increase the recruitment of tumor infiltrating lymphocytes (TILs) and comprehensively reprogram the immunosuppressive TME is still urgently needed. Herein, a thermal-sensitive nitric oxide (NO) donor S-nitrosothiols (SNO)-pendant copolymer (poly(acrylamide-co-acrylonitrile-co-vinylimidazole)-SNO copolymer, PAAV-SNO) with upper critical solution temperature (UCST) was synthesized and employed to fabricate an erythrocyte membrane-camouflaged nanobullet for codelivery of NIR II photothermal agent IR1061 and indoleamine 2,3-dioxygenase 1 (IDO-1) inhibitor 1-methyl-tryptophan (1-MT). This multifunctional nanobullet possessed long circulation in vivo, enhanced accumulation at the tumor site, and therapeutics-controlled release by NIR II laser, thereby it could avoid unspecific drug leakage while enhancing biosecurity. More importantly, the immunogenic cell death (ICD) induced by local hyperthermia from photothermal therapy (PTT) could be conducive for the increased recruitment of CD8+ cytotoxic T lymphocytes (CTLs) at the tumor site. Furthermore, through interfering in the IDO-1 activity by 1-MT and normalizing the tumor vessels by in situ generated NO, the immunosuppressive TME was comprehensively reprogrammed toward an immunostimulatory phenotype, achieving the excellent therapeutic efficacy against both primary breast cancer and metastases. Collectively, this multifunctional nanobullet described in this study developed an effective and promising strategy to comprehensively reprogram suppressive TME and treat "immune cold" tumors.
Collapse
Affiliation(s)
- Zhe Yang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Di Gao
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Xiaoqing Guo
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Lin Jin
- International Joint Research Laboratory for Biomedical Nanomaterials of Henan, Zhoukou Normal University, Zhoukou 466001, P. R. China
| | - Juanjuan Zheng
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Ying Wang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Shuojia Chen
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Xuewei Zheng
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Li Zeng
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Ming Guo
- School of Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Xingcai Zhang
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
- School of Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Zhongmin Tian
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| |
Collapse
|
82
|
Abstract
Therapeutic nanomaterials serve as an important platform for drug delivery under image guidance. Despite significant growth and broad applications, their design specifics remain a subject of continued interest primarily due to multifunctional factors involved, ranging from nanomaterial properties, imaging modalities, and therapeutic agents to activation strategies. This review article summarizes key findings on their design characteristics with a particular interest in strategies developed for therapeutic activation (release). First, their activation can be controlled using either an endogenous factor including low pH and glutathione or an external stimulation by light, ultrasound, or electromagnetic field. The former is passively controlled from a spatiotemporal aspect compared to the latter, which is otherwise actively controlled through drug linker photolysis, nanomaterial disassembly, or gate opening. Second, light stimulation serves a most notable strategy due to its essential role in controlled drug release, photothermal activation (hyperthermia), and photodynamic production of reactive oxygen species (ROS). Third, some of those activation strategies that rely on ultrasound, photothermal, photoacoustic, magnetic field, or X-ray radiation are dually functional due to their role in imaging modalities. In summary, this review article presents recent advances and new insights that pertain to nanotherapeutic delivery systems. It also addresses their technical limitations associated with tissue penetration (light), spatial resolution (ultrasound, hyperthermia), and occurrence of cellular resistance (ROS).
Collapse
|
83
|
Cen M, Ding Y, Wang J, Yuan X, Lu B, Wang Y, Yao Y. Cationic Water-Soluble Pillar[5]arene-Modified Cu 2-xSe Nanoparticles: Supramolecular Trap for ATP and Application in Targeted Photothermal Therapy in the NIR-II Window. ACS Macro Lett 2020; 9:1558-1562. [PMID: 35617083 DOI: 10.1021/acsmacrolett.0c00714] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
With the rapid progress of nanotechnology, near-infrared (NIR), light-assisted phototherapy as a minimally invasive local cancer therapy, especially photothermal therapy (PTT), has captured broad research attention in recent years. However, combined target molecules with a PTT system through reversible supramolecular interactions has been reported rarely. In this work, we constructed a supramolecular nanosystem combining ATP capture and target PTT based on cationic pillar[5]arene (CWP5)-functionalized Cu2-xSe nanoparticles (Cu2-xSe@CWP5 NPs). Cu2-xSe@CWP5 NPs, with an average diameter of approximately 100 nm and strong absorption in the near-infrared-II window, were prepared in water through a facile one-step in situ synthesis method, then (4-carboxybutyl)triphenylphosphonium bromide (TPP), a mitochondria-targeted molecule, was modified on the surface of the particles through the host-guest recognition. Upon irradiation with a 1064 nm laser, the obtained Cu2-xSe@CWP5/TPP NPs showed remarkably photothermal ablation capability to HeLa cells. Importantly, our Cu2-xSe@CWP5/TPP NPs exhibited excellent therapeutic effect due to the combination of inhibited hydrolysis of ATP and targeted photothermal therapy upon in vitro and in vivo studies. Significantly, through host-guest interactions, we can modify different types of target molecules within this PTT system at will.
Collapse
Affiliation(s)
- Moupan Cen
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu 226019, People’s Republic of China
| | - Yue Ding
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu 226019, People’s Republic of China
| | - Jin Wang
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu 226019, People’s Republic of China
| | - Xiaolei Yuan
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu 226019, People’s Republic of China
| | - Bing Lu
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu 226019, People’s Republic of China
| | - Yang Wang
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu 226019, People’s Republic of China
| | - Yong Yao
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu 226019, People’s Republic of China
| |
Collapse
|
84
|
Chen J, Zhu Y, Wu C, Shi J. Nanoplatform-based cascade engineering for cancer therapy. Chem Soc Rev 2020; 49:9057-9094. [PMID: 33112326 DOI: 10.1039/d0cs00607f] [Citation(s) in RCA: 89] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Various therapeutic techniques have been studied for treating cancer precisely and effectively, such as targeted drug delivery, phototherapy, tumor-specific catalytic therapy, and synergistic therapy, which, however, evoke numerous challenges due to the inherent limitations of these therapeutic modalities and intricate biological circumstances as well. With the remarkable advances of nanotechnology, nanoplatform-based cascade engineering, as an efficient and booming strategy, has been tactfully introduced to optimize these cancer therapies. Based on the designed nanoplatforms, pre-supposed cascade processes could be triggered under specific conditions to generate/deliver more therapeutic species or produce stronger tumoricidal effects inside tumors, aiming to achieve cancer therapy with increased anti-tumor efficacy and diminished side effects. In this review, the recent advances in nanoplatform-based cascade engineering for cancer therapy are summarized and discussed, with an emphasis on the design of smart nanoplatforms with unique structures, compositions and properties, and the implementation of specific cascade processes by means of endogenous tumor microenvironment (TME) resources and/or exogenous energy inputs. This fascinating strategy presents unprecedented potential in the enhancement of cancer therapies, and offers better controllability, specificity and effectiveness of therapeutic functions compared to the corresponding single components/functions. In the end, challenges and prospects of such a burgeoning strategy in the field of cancer therapy will be discussed, hopefully to facilitate its further development to meet the personalized treatment demands.
Collapse
Affiliation(s)
- Jiajie Chen
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P. R. China.
| | | | | | | |
Collapse
|
85
|
Guo D, Huang Y, Jin X, Zhang C, Zhu X. A Redox-Responsive, In-Situ Polymerized Polyplatinum(IV)-Coated Gold Nanorod as An Amplifier of Tumor Accumulation for Enhanced Thermo-Chemotherapy. Biomaterials 2020; 266:120400. [PMID: 33022477 DOI: 10.1016/j.biomaterials.2020.120400] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 09/14/2020] [Accepted: 09/17/2020] [Indexed: 12/19/2022]
Abstract
It remains a major challenge to develop an effective therapeutic system based on gold nanorods (GNRs) for cancer therapy. Herein, we developed a redox-responsive, in-situ polymerized polyplatinum(IV)-coated gold nanorod (GNR@polyPt(IV)) with coupling of the near-infrared (NIR)-induced hyperthermal effect and redox-triggered drug release in one therapeutic platform as an amplifier of tumor accumulation through mild hyperthermia for enhanced synergistical thermo-chemotherapy. After in-situ polymerized with 2-methacryloyloxy ethyl phosphorylcholine (MPC) and Pt(IV) complex-based prodrug monomer (PPM) onto the surface of GNRs, the nanosized GNR@polyPt(IV) exhibited the advantages of high drug encapsulation efficiency, triggered drug release, and reduced side effect. As demonstrated by thermal imaging and photoacoustic imaging in vitro and in vivo, this GNR@polyPt(IV) exhibited an excellent NIR-associated hyperthermal effect and outstanding capacity of tumor accumulation. Importantly, under a mild hyperthermia process, the vascular endothelial growth factor (VEGF) and hypoxia-inducible factor-1α (HIF-1α) were upregulation, resulting in angiogenic vessel around the tumor. Combination with accelerated blood flow and angiogenesis by mild hyperthermia, a dramatic increase of drug accumulation in tumor could be realized after systematic administration. As a result, this amplification fashion of tumor accumulation would contribute the GNR@polyPt(IV) to inhibit tumor progression effectively. Such a facile and simple methodology for enhanced therapeutic effect based on GNRs holds great promises for cancer therapy with further development.
Collapse
Affiliation(s)
- Dongbo Guo
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, PR China; South China Institute of Collaborative Innovation, School of Materials Science and Engineering, South China University of Technology, Guangzhou, 381 Wushan Road, 510640, PR China
| | - Yu Huang
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, PR China.
| | - Xin Jin
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, PR China.
| | - Chuan Zhang
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, PR China
| | - Xinyuan Zhu
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, PR China.
| |
Collapse
|
86
|
Du C, Ding Y, Qian J, Zhang R, Dong CM. Dual drug-paired polyprodrug nanotheranostics reverse multidrug resistant cancers via mild photothermal-cocktail chemotherapy. J Mater Chem B 2020; 7:5306-5319. [PMID: 31411235 DOI: 10.1039/c9tb01368g] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Combating multidrug resistance (MDR) of tumors is still challenging for clinical chemotherapy, cocktail chemotherapy (CCT), and currently widely-studied nanodrug-based treatments. Inspired by different MDR-overcoming and antitumor mechanisms of CCT and photothermal therapy (PT), a dual drug-paired polyprodrug nanoparticle (PDCN25-CDDP) was constructed to achieve the combination therapy PT-CCT for reversing MDR and combating multidrug resistant cancers. The PT-CCT treatment can greatly downregulate the P-gp expression level and achieve utmost MDR-reversal and antitumor efficacy by both a cocktail effect of CCT and a synergistic effect of CCT with PT; meanwhile, PT can inhibit the expression of heat shock protein 90 and enhance the thermosensitivity of cancer cells. Upon NIR irradiation, PDCN25-CDDPin vivo produced a selective tumor accumulation effect and relatively deep tumor penetration, as evidenced by fluorescent and photoacoustic imaging and CLSM. The mild PT-CCT treatment completely eradicated MCF-7/ADR and OVCAR-3/DDP tumors without skin damage or tumor recurrence for 30 days, exhibiting synergistic MDR-reversal and superior antitumor efficacy in vivo. Importantly, this work provides an innovative strategy for reversing MDR and combating DOX-resistant breast and CDDP-resistant ovarian cancers.
Collapse
Affiliation(s)
- Chang Du
- School of Chemistry and Chemical Engineering, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, Shanghai 200240, P. R. China.
| | - Yue Ding
- School of Chemistry and Chemical Engineering, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, Shanghai 200240, P. R. China.
| | - Jiwen Qian
- School of Chemistry and Chemical Engineering, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, Shanghai 200240, P. R. China.
| | - Rong Zhang
- Department of Obstetrics and Gynecology, Shanghai Fengxian Central Hospital, Southern Medical University, Shanghai 201499, P. R. China.
| | - Chang-Ming Dong
- School of Chemistry and Chemical Engineering, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, Shanghai 200240, P. R. China.
| |
Collapse
|
87
|
Choi SK. Photoactivation Strategies for Therapeutic Release in Nanodelivery Systems. ADVANCED THERAPEUTICS 2020. [DOI: 10.1002/adtp.202000117] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Seok Ki Choi
- Michigan Nanotechnology Institute for Medicine and Biological Sciences University of Michigan Medical School Ann Arbor MI 48109 USA
- Department of Internal Medicine University of Michigan Medical School Ann Arbor MI 48109 USA
| |
Collapse
|
88
|
Yang F, Huang J, Liu H, Lin W, Li X, Zhu X, Chen T. Lentinan-functionalized selenium nanosystems with high permeability infiltrate solid tumors by enhancing transcellular transport. NANOSCALE 2020; 12:14494-14503. [PMID: 32614349 DOI: 10.1039/d0nr02171g] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The delivery of nanomedicines into internal areas of solid tumors is a great challenge for the design of chemotherapeutic drugs and the realization of their successful application. Herein, we synthesized stable and efficient selenium nanoparticles (SeNPs) with an ideal size and a transcellular transport capability for the penetration and treatment of a solid tumor, utilizing Tw-80 as a dispersing agent and mushroom polysaccharide lentinan (LET) as a decorator. In vitro cellular experiments demonstrated that this nanosystem, LET-Tw-SeNPs, renders significant cellular uptake of HepG2 by receptor-mediated endocytosis and exhibits predominant transcellular transport and penetration capacity towards HepG2 tumor spheroids. Moreover, this therapeutic agent simultaneously inhibits the proliferation and migration of HepG2 cells via a cell cycle arrest pathway. Internalized LET-Tw-SeNPs give rise to the overproduction of intracellular reactive oxygen species (ROS), thus inducing mitochondrial rupture. Meanwhile, pharmacokinetic analysis showed that LET-Tw-SeNPs displayed a long half-life in blood. Altogether, this study demonstrates an inventive strategy for designing nanosystems with high permeability and low blood clearance, in order to achieve efficient in-depth tumor drug delivery and future clinical treatment of solid tumors.
Collapse
Affiliation(s)
- Fan Yang
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, China and Department of Chemistry, Jinan University, Guangzhou 510632, P. R. China.
| | - Jiarun Huang
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, China and Department of Chemistry, Jinan University, Guangzhou 510632, P. R. China.
| | - Hongxing Liu
- Department of Chemistry, Jinan University, Guangzhou 510632, P. R. China. and Shenzhen Agricultural Product Quality and Safety Inspection and Testing Center (Guangdong Provincial Key Laboratory of Supervision and Administration of Edible Agricultural Products, Market Supervision Administration), Shenzhen, China
| | - Weiqiang Lin
- Department of Chemistry, Jinan University, Guangzhou 510632, P. R. China.
| | - Xiaoling Li
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, China and Institute of Food Safety and Nutrition, Jinan University, Guangzhou 510632, China.
| | - Xueqiong Zhu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Tianfeng Chen
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, China and Department of Chemistry, Jinan University, Guangzhou 510632, P. R. China.
| |
Collapse
|
89
|
Polydopamine-coated nucleic acid nanogel for siRNA-mediated low-temperature photothermal therapy. Biomaterials 2020; 245:119976. [DOI: 10.1016/j.biomaterials.2020.119976] [Citation(s) in RCA: 115] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 03/02/2020] [Accepted: 03/14/2020] [Indexed: 12/15/2022]
|
90
|
Li Y, Xu X. Nanomedicine solutions to intricate physiological-pathological barriers and molecular mechanisms of tumor multidrug resistance. J Control Release 2020; 323:483-501. [DOI: 10.1016/j.jconrel.2020.05.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 04/30/2020] [Accepted: 05/04/2020] [Indexed: 01/08/2023]
|
91
|
Wang J, Wang Y, Cao H, Wang H, Li J, Li Y, Li Y, Zhang Z. Orally delivered legumain-activated nanovehicles improve tumor accumulation and penetration for combinational photothermal-chemotherapy. J Control Release 2020; 323:59-70. [DOI: 10.1016/j.jconrel.2020.04.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 04/09/2020] [Accepted: 04/10/2020] [Indexed: 01/26/2023]
|
92
|
Li Z, Zhu L, Liu W, Zheng Y, Li X, Ye J, Li B, Chen H, Gao Y. Near-infrared/pH dual-responsive nanocomplexes for targeted imaging and chemo/gene/photothermal tri-therapies of non-small cell lung cancer. Acta Biomater 2020; 107:242-259. [PMID: 32151700 DOI: 10.1016/j.actbio.2020.03.004] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 02/25/2020] [Accepted: 03/03/2020] [Indexed: 12/19/2022]
Abstract
Combination therapy offers promising opportunities for treating advanced non-small cell lung cancer (NSCLC). Here, we established a chitosan-based nanocomplex CE7Q/CQ/S to deliver molecular-targeted drug erlotinib (Er), Survivin shRNA-expressing plasmid (SV), and photothermal agent heptamethine cyanine dye (Cy7) in one platform for simultaneous near-infrared (NIR) fluorescence imaging and triple-combination therapy of NSCLC bearing epidermal growth factor receptor (EGFR) mutations. The obtained CE7Q/CQ/S exhibited favorable photothermal effects, good DNA binding ability, and pH/NIR dual-responsive release behaviors. The conjugated Er could mediate specific delivery of Cy7 to EGFR-mutated NSCLC cells to enable targeted NIR fluorescence imaging and photothermal therapy (PTT). The in vitro and in vivo results showed that downregulation of Survivin expression and the photothermal effects could act synergistically with Er to induce satisfactory anticancer effects in either Er-sensitive or Er-resistant EGFR-mutated NSCLC cells. By integrating chemo/gene/photothermal therapies into one theranostic nanoplatform, CE7Q/CQ/S could significantly suppress EGFR-mutated NSCLC, indicating its potential use in treating NSCLC. STATEMENT OF SIGNIFICANCE: The development of epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs) has improved overall survival in patients with NSCLC driven by EGFR mutations. Unfortunately, the emergence of acquired resistance of EGFR-TKIs is almost inevitable after treatment. Here, we constructed a NIR/pH dual-responsive nanocomplex CE7Q/CQ/S based on chitosan which could integrate targeted near-infrared fluorescence imaging and chemo/gene/phototheramal tri-therapies together. We found that CE7Q/CQ/S possessed a promising outcome in fighting against EGFR-mutated NSCLC. The inhibition of Survivin expression and the application of photothermal therapy could act synergistically with erlotinib and reverse erlotinib resistance. The results of this work suggested that this chitosan-based combination therapeutic nanoplatform could be a promising candidate for NSCLC treatment.
Collapse
Affiliation(s)
- Ziying Li
- Cancer Metastasis Alert and Prevention Center, College of Chemistry, Fuzhou University, 2 Xueyuan Road, Yangguang Building, 6FL, Fuzhou 350108, China; Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Fuzhou University, Fuzhou 350108, China
| | - Lisheng Zhu
- Cancer Metastasis Alert and Prevention Center, College of Chemistry, Fuzhou University, 2 Xueyuan Road, Yangguang Building, 6FL, Fuzhou 350108, China; Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Fuzhou University, Fuzhou 350108, China
| | - Weiqun Liu
- Cancer Metastasis Alert and Prevention Center, College of Chemistry, Fuzhou University, 2 Xueyuan Road, Yangguang Building, 6FL, Fuzhou 350108, China; Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Fuzhou University, Fuzhou 350108, China
| | - Yilin Zheng
- Cancer Metastasis Alert and Prevention Center, College of Chemistry, Fuzhou University, 2 Xueyuan Road, Yangguang Building, 6FL, Fuzhou 350108, China; Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Fuzhou University, Fuzhou 350108, China
| | - Xudong Li
- Cancer Metastasis Alert and Prevention Center, College of Chemistry, Fuzhou University, 2 Xueyuan Road, Yangguang Building, 6FL, Fuzhou 350108, China; Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Fuzhou University, Fuzhou 350108, China
| | - Jinxiang Ye
- Cancer Metastasis Alert and Prevention Center, College of Chemistry, Fuzhou University, 2 Xueyuan Road, Yangguang Building, 6FL, Fuzhou 350108, China; Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Fuzhou University, Fuzhou 350108, China
| | - Bifei Li
- Cancer Metastasis Alert and Prevention Center, College of Chemistry, Fuzhou University, 2 Xueyuan Road, Yangguang Building, 6FL, Fuzhou 350108, China; Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Fuzhou University, Fuzhou 350108, China
| | - Haijun Chen
- Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Fuzhou University, Fuzhou 350108, China
| | - Yu Gao
- Cancer Metastasis Alert and Prevention Center, College of Chemistry, Fuzhou University, 2 Xueyuan Road, Yangguang Building, 6FL, Fuzhou 350108, China; Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Fuzhou University, Fuzhou 350108, China.
| |
Collapse
|
93
|
Shen S, Feng L, Qi S, Cao J, Ge Y, Wu L, Wang S. Reversible Thermochromic Nanoparticles Composed of a Eutectic Mixture for Temperature-Controlled Photothermal Therapy. NANO LETTERS 2020; 20:2137-2143. [PMID: 32048853 DOI: 10.1021/acs.nanolett.0c00147] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Photothermal therapy (PTT) is an effective approach to cancer therapy. However, the high temperature during the therapy increases the damage to surrounding normal tissues. Thermochromic material, which exhibits temperature-activated color change and optical absorption, is a promising photothermal agent for precisely temperature-controlled PTT. Nevertheless, the construction of nanosized thermochromic particles with an appropriate transition temperature (44-47 °C) is still a great challenge. Here, thermochromic nanoparticles with the transition temperature at 45 °C based on a leuco dye-developer-solvent system are developed for thermostatic photothermal tumor therapy. Below the temperature, the nanoparticles take a dark green color to absorb light and convert it into heat efficiently. Once the temperature reaches the transition point, the colored nanoparticles switch to a colorless state, maintaining the temperature at the predefined level and allowing deeper light penetration. The autoregulated nanoparticles exhibit a prominent therapeutic effect for the tumor without destroying normal tissues.
Collapse
Affiliation(s)
- Song Shen
- College of Pharmaceutical Sciences, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Lei Feng
- College of Pharmaceutical Sciences, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Shunyao Qi
- China Pharmaceutical University, Nanjing 210000, China
| | - Jin Cao
- College of Pharmaceutical Sciences, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Yanru Ge
- College of Pharmaceutical Sciences, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Lin Wu
- Affiliated Hospital of Jiangsu University, Zhenjiang 212001, China
| | - Shu Wang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
94
|
Singh RK, Kurian AG, Patel KD, Mandakhbayar N, Lee NH, Knowles JC, Lee JH, Kim HW. Label-Free Fluorescent Mesoporous Bioglass for Drug Delivery, Optical Triple-Mode Imaging, and Photothermal/Photodynamic Synergistic Cancer Therapy. ACS APPLIED BIO MATERIALS 2020; 3:2218-2229. [DOI: 10.1021/acsabm.0c00050] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Rajendra K. Singh
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan 330-714, Republic of Korea
- Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan 330-714, Republic of Korea
| | - Amal George Kurian
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan 330-714, Republic of Korea
- Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan 330-714, Republic of Korea
| | - Kapil D. Patel
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan 330-714, Republic of Korea
- Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan 330-714, Republic of Korea
- Biomaterials and Tissue Engineering, UCL Eastman Dental Institute, London WC1X8LD, U.K
| | - Nandin Mandakhbayar
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan 330-714, Republic of Korea
- Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan 330-714, Republic of Korea
| | - Na-Hyun Lee
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan 330-714, Republic of Korea
- Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan 330-714, Republic of Korea
| | - Jonathan C. Knowles
- Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan 330-714, Republic of Korea
- Biomaterials and Tissue Engineering, UCL Eastman Dental Institute, London WC1X8LD, U.K
- UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, Cheonan 31116, Republic of Korea
| | - Jung-Hwan Lee
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan 330-714, Republic of Korea
- Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan 330-714, Republic of Korea
- Department of Biomaterials Science, School of Dentistry, Dankook University, Cheonan 330-714, Republic of Korea
- UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, Cheonan 31116, Republic of Korea
| | - Hae-Won Kim
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan 330-714, Republic of Korea
- Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan 330-714, Republic of Korea
- Department of Biomaterials Science, School of Dentistry, Dankook University, Cheonan 330-714, Republic of Korea
- UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, Cheonan 31116, Republic of Korea
| |
Collapse
|
95
|
He Y, Cong C, Li L, Luo L, He Y, Hao Z, Gao D. Sequential Intra-Intercellular Delivery of Nanomedicine for Deep Drug-Resistant Solid Tumor Penetration. ACS APPLIED MATERIALS & INTERFACES 2020; 12:8978-8988. [PMID: 32020804 DOI: 10.1021/acsami.9b20062] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Cells in the center of solid tumors have always been an abyss untouched by treatments because of their deep location and increased drug resistance. Herein, we designed a rational strategy for sequential intra-intercellular delivery of nanomedicine to deep sites of drug-resistant solid tumors. In our formulation, dopamine and hemoglobin were polymerized to form a smart nanocarrier (PDA/Hb). Subsequently, the doxorubicin and nitric oxide donor were connected on the surface of PDA/Hb to obtain D/N-PDA/Hb. Ultimately, the hyaluronic acid was combined with D/N-PDA/Hb to form D/N-PDA/Hb@HA. Concretely, acidic and neutral environments of tumor cells were treated as a switch to turn on or off the drug release of a nanodrug. Meanwhile, the generation of nitric oxide in situ was exploited to favor the lysosomal escape of nanocarriers and overcome the drug resistance of deep solid tumor cells. The results indicated that the nanodrug based on sequential intra-intercellular delivery showed exciting penetration efficiency and resistance reversal of solid tumors. Conventional nanodrug delivery was highly dependent on the enhanced permeability and retention (EPR) effect and limited by tumorous interstitial fluid pressure. Plenty of drugs stayed on the surface of solid tumors, and the infiltrated drugs were inefficient due to strict resistance. To conquer this dilemma, this work proposed a new mechanism reversing the EPR effect for drug delivery, leading to better penetration and resistance reversal of solid tumors.
Collapse
Affiliation(s)
- Yuchu He
- State Key Laboratory of Metastable Materials Science and Technology, Applying Chemistry Key Lab of Hebei Province, Hebei Key Laboratory of Heavy Metal Deep-remediation in Water and Resource Reuse , Yanshan University , Qinhuangdao 066004 , P. R. China
| | - Cong Cong
- State Key Laboratory of Metastable Materials Science and Technology, Applying Chemistry Key Lab of Hebei Province, Hebei Key Laboratory of Heavy Metal Deep-remediation in Water and Resource Reuse , Yanshan University , Qinhuangdao 066004 , P. R. China
| | - Lei Li
- State Key Laboratory of Metastable Materials Science and Technology, Applying Chemistry Key Lab of Hebei Province, Hebei Key Laboratory of Heavy Metal Deep-remediation in Water and Resource Reuse , Yanshan University , Qinhuangdao 066004 , P. R. China
| | - Liyao Luo
- State Key Laboratory of Metastable Materials Science and Technology, Applying Chemistry Key Lab of Hebei Province, Hebei Key Laboratory of Heavy Metal Deep-remediation in Water and Resource Reuse , Yanshan University , Qinhuangdao 066004 , P. R. China
| | - Yaqian He
- State Key Laboratory of Metastable Materials Science and Technology, Applying Chemistry Key Lab of Hebei Province, Hebei Key Laboratory of Heavy Metal Deep-remediation in Water and Resource Reuse , Yanshan University , Qinhuangdao 066004 , P. R. China
| | - Zining Hao
- State Key Laboratory of Metastable Materials Science and Technology, Applying Chemistry Key Lab of Hebei Province, Hebei Key Laboratory of Heavy Metal Deep-remediation in Water and Resource Reuse , Yanshan University , Qinhuangdao 066004 , P. R. China
| | - Dawei Gao
- State Key Laboratory of Metastable Materials Science and Technology, Applying Chemistry Key Lab of Hebei Province, Hebei Key Laboratory of Heavy Metal Deep-remediation in Water and Resource Reuse , Yanshan University , Qinhuangdao 066004 , P. R. China
| |
Collapse
|
96
|
Zhang L, Wang Y, Wang C, He M, Wan J, Wei Y, Zhang J, Yang X, Zhao Y, Zhang Y. Light-Activable On-Demand Release of Nano-Antibiotic Platforms for Precise Synergy of Thermochemotherapy on Periodontitis. ACS APPLIED MATERIALS & INTERFACES 2020; 12:3354-3362. [PMID: 31872756 DOI: 10.1021/acsami.9b17335] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The overprescription and improper use of antibiotics have contributed to the evolution of bacterial resistance, making it urgent to develop alternative therapies and agents with better efficacy as well as less toxicity to combat bacterial infections and keep new resistance from developing. In this work, a novel light-activable nano-antibiotic platform (TC-PCM@GNC-PND) was constructed by the incorporation of gold nanocages (GNC) and two thermosensitive gatekeepers, phase-change materials (PCM) and thermosensitive polymer poly(N-isopropylacrylamide-co-diethylaminoethyl methacrylate) (PND), to realize precisely the synergy of photothermal and antimicrobial drugs. GNC exhibits an excellent photothermal effect owing to its strong absorbance in the near-infrared (NIR) region, and hollow interiors make it a favorable vehicle for loading various antibiotics such as tetracycline (TC). The release of the encapsulated drugs could be precisely controlled by NIR light through the dual thermosensitive interaction of liquid-solid transition of PCM and coil-granule transition of PND, improving efficacy and alleviating side effects with on-demand drug release. The thermosensitive hydrogel was formed in situ upon application with body temperature, enhancing retention of the antimicrobial agent in local infectious sites. Highly effective ablation of bacteria is achieved both in vitro and in periodontitis models with little toxicity owing to the synergy of photothermal effects and chemotherapeutic drug release induced by NIR. This study could provide guidance for the design of antibacterial materials and shed substantial light on synergistic treatment.
Collapse
Affiliation(s)
- Lingling Zhang
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine, Ministry of Education, School and Hospital of Stomatology , Wuhan University , Wuhan 430079 , China
- Medical Research Institute, School of Medicine , Wuhan University , Wuhan 430071 , China
| | - Yulan Wang
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine, Ministry of Education, School and Hospital of Stomatology , Wuhan University , Wuhan 430079 , China
- Medical Research Institute, School of Medicine , Wuhan University , Wuhan 430071 , China
| | - Can Wang
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine, Ministry of Education, School and Hospital of Stomatology , Wuhan University , Wuhan 430079 , China
- Medical Research Institute, School of Medicine , Wuhan University , Wuhan 430071 , China
| | - Ming He
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology , Huazhong University of Science and Technology , Wuhan 430074 , China
| | - Jiangshan Wan
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology , Huazhong University of Science and Technology , Wuhan 430074 , China
| | - Yan Wei
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine, Ministry of Education, School and Hospital of Stomatology , Wuhan University , Wuhan 430079 , China
- Medical Research Institute, School of Medicine , Wuhan University , Wuhan 430071 , China
| | - Jinglun Zhang
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine, Ministry of Education, School and Hospital of Stomatology , Wuhan University , Wuhan 430079 , China
- Medical Research Institute, School of Medicine , Wuhan University , Wuhan 430071 , China
| | - Xiangliang Yang
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology , Huazhong University of Science and Technology , Wuhan 430074 , China
| | - Yanbing Zhao
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology , Huazhong University of Science and Technology , Wuhan 430074 , China
| | - Yufeng Zhang
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine, Ministry of Education, School and Hospital of Stomatology , Wuhan University , Wuhan 430079 , China
- Medical Research Institute, School of Medicine , Wuhan University , Wuhan 430071 , China
| |
Collapse
|
97
|
Gao L, Dong B, Zhang J, Chen Y, Qiao H, Liu Z, Chen E, Dong Y, Cao C, Huang D, Chen W. Functional Biodegradable Nitric Oxide Donor-Containing Polycarbonate-Based Micelles for Reduction-Triggered Drug Release and Overcoming Multidrug Resistance. ACS Macro Lett 2019; 8:1552-1558. [PMID: 35619381 DOI: 10.1021/acsmacrolett.9b00758] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Nitric oxide (NO), as a bioeffector to improve chemosensitivity by reversing multidrug resistance (MDR), is highly attractive for developing combinational delivery systems to deal with MDR tumors, while it is highly challenged by the stability and controlled release of NO during the pathway. Here we design and synthesize a cyclic nitrate trimethylene carbonate monomer (NTC), followed by ring-opening polymerization to prepare amphiphilic biodegradable polycarbonate-based copolymers as polymeric NO donors with tailored contents. The copolymer with desirable molecular weight is readily self-assembled to biodegradable micelles (NO-M) with a uniform size of 130 nm for highly stabilizing NO donors at the physiological conditions, while triggered NO release from micelles is performed at the intracellular reduction conditions. More importantly, NO-M shows superior inhibition of P-gP expression to enhance the chemosensitivity of multidrug-resistant MCF7 cells (MCF7/DOXR). DOX-loaded NO-M (NO-M@DOX) realizes fast DOX release at the intracellular conditions, resulting in more intracellular DOX accumulation and higher antitumor activity mediated by the reduction-triggered NO/DOX release and NO-induced MDR reversal. Furthermore, the in vivo results show that NO-M@DOX effectively suppresses the MCF7/DOXR tumor growth by a combination of directly NO-induced therapy and NO-mediated enhanced chemotherapy; meanwhile, the treatment with NO-M systems have much fewer side effects.
Collapse
|
98
|
Wu M, Ding Y, Li L. Recent progress in the augmentation of reactive species with nanoplatforms for cancer therapy. NANOSCALE 2019; 11:19658-19683. [PMID: 31612164 DOI: 10.1039/c9nr06651a] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Reactive species (RS), mainly including reactive oxygen species (ROS) and reactive nitrogen species (RNS), are indispensable in a wide variety of biological processes. RS often have elevated levels in cancer cells and tumor microenvironments. They also have a dual effect on cancer: on the one hand, they promote pro-tumorigenic signaling to facilitate tumor survival and on the other hand, they promote antitumorigenic pathways to induce cell death. Excessive RS would disrupt the cellular redox homeostasis balance and show partiality as oxidants, which would cause irreversible damage to the adjacent biomolecules such as lipids, proteins and nucleic acids. The altered redox environment and the corresponding increased antioxidant capacity in cancer cells render the cells susceptible to RS-manipulated therapies, especially the augmentation of RS. With the rapid development of nanotechnology and nanomedicine, a large number of cancer therapeutic nanoplatforms have been developed to trigger RS overproduction by exogenous and/or endogenous stimulation. In this review, we highlighted the latest progress in the nanoplatforms designed for the augmentation of RS in cancer therapy. Nanoplatforms based on strategies including disabling the antioxidant defense system, photodynamic therapy (PDT), sonodynamic therapy (SDT), and chemodynamic therapy (CDT) were introduced. The crucial obstacles involved in these strategies, such as the light penetration limitation of PDT, relatively low RS release by SDT, and strict conditions of Fenton reaction-mediated CDT, were also discussed, and feasible solutions for improvement were proposed. Furthermore, synergistic therapies among individual therapeutic modalities such as chemotherapy, photothermal therapy, and RS-based dynamic therapies were overviewed, which contributed to achieving more optimal anticancer efficacy than linear addition. This review sheds light on the development of non-invasive cancer therapy based on RS manipulation and provides guidance for establishing promising cancer therapeutic platforms in clinical settings.
Collapse
Affiliation(s)
- Mengqi Wu
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Science, Beijing, 100083, P. R. China. and School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Yiming Ding
- Center on Nanoenergy Research, School of Physical Science and Technology, Guangxi University, Nanning 530004, P. R. China and Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Science, Beijing, 100083, P. R. China.
| | - Linlin Li
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Science, Beijing, 100083, P. R. China. and School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China and Center on Nanoenergy Research, School of Physical Science and Technology, Guangxi University, Nanning 530004, P. R. China
| |
Collapse
|
99
|
Li Z, Chen Y, Yang Y, Yu Y, Zhang Y, Zhu D, Yu X, Ouyang X, Xie Z, Zhao Y, Li L. Recent Advances in Nanomaterials-Based Chemo-Photothermal Combination Therapy for Improving Cancer Treatment. Front Bioeng Biotechnol 2019; 7:293. [PMID: 31696114 PMCID: PMC6817476 DOI: 10.3389/fbioe.2019.00293] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 10/09/2019] [Indexed: 01/04/2023] Open
Abstract
Conventional chemotherapy for cancer treatment is usually compromised by shortcomings such as insufficient therapeutic outcome and undesired side effects. The past decade has witnessed the rapid development of combination therapy by integrating chemotherapy with hyperthermia for enhanced therapeutic efficacy. Near-infrared (NIR) light-mediated photothermal therapy, which has advantages such as great capacity of heat ablation and minimally invasive manner, has emerged as a powerful approach for cancer treatment. A variety of nanomaterials absorbing NIR light to generate heat have been developed to simultaneously act as carriers for chemotherapeutic drugs, contributing as heat trigger for drug release and/or inducing hyperthermia for synergistic effects. This review aims to summarize the recent development of advanced nanomaterials in chemo-photothermal combination therapy, including metal-, carbon-based nanomaterials and particularly organic nanomaterials. The potential challenges and perspectives for the future development of nanomaterials-based chemo-photothermal therapy were also discussed.
Collapse
Affiliation(s)
- Zuhong Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Centre for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yangjun Chen
- School of Ophthalmology & Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Ya Yang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Centre for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yan Yu
- Department of Gynecologic Oncology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yanhong Zhang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Centre for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Danhua Zhu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Centre for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaopeng Yu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Centre for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaoxi Ouyang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Centre for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhongyang Xie
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Centre for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yalei Zhao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Centre for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Lanjuan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Centre for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|