51
|
Tang G, He J, Liu J, Yan X, Fan K. Nanozyme for tumor therapy: Surface modification matters. EXPLORATION (BEIJING, CHINA) 2021; 1:75-89. [PMID: 37366468 PMCID: PMC10291575 DOI: 10.1002/exp.20210005] [Citation(s) in RCA: 182] [Impact Index Per Article: 45.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 05/25/2021] [Indexed: 06/28/2023]
Abstract
As the next generation of artificial enzymes, nanozymes have shown unique properties compared to its natural counterparts, such as stability in harsh environment, low cost, and ease of production and modification, paving the way for its biomedical applications. Among them, tumor catalytic therapy mediated by the generation of reactive oxygen species (ROS) has made great progress mainly from the peroxidase-like activity of nanozymes. Fe3O4 nanozymes, the earliest type of nanomaterial discovered to possess peroxidase-like activity, has consequently received wide attention for tumor therapy due to its ROS generation ability and tumor cell killing ability. However, inconsistent results of cytotoxicity were observed between different reports, and some even showed the scavenging of ROS in some cases. By collectively studying these inconsistent outcomes, we raise the question whether surface modification of Fe3O4 nanozymes, either through affecting peroxidase activity or by affecting the biodistribution and intracellular fate, play an important role in its therapeutic effects. This review will go over the fundamental catalytic mechanisms of Fe3O4 nanozymes and recent advances in tumor catalytic therapy, and discuss the importance of surface modification. Employing Fe3O4 nanozymes as an example, we hope to provide an outlook on the improvement of nanozyme-based antitumor activity.
Collapse
Affiliation(s)
- Guoheng Tang
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Protein and Peptide Pharmaceutical, Institute of BiophysicsChinese Academy of SciencesBeijing100101P. R. China
- University of Chinese Academy of SciencesBeijing101408P. R. China
| | - Jiuyang He
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Protein and Peptide Pharmaceutical, Institute of BiophysicsChinese Academy of SciencesBeijing100101P. R. China
| | - Juewen Liu
- Department of Chemistry, Waterloo Institute for NanotechnologyUniversity of WaterlooWaterlooOntarioN2L 3G1Canada
| | - Xiyun Yan
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Protein and Peptide Pharmaceutical, Institute of BiophysicsChinese Academy of SciencesBeijing100101P. R. China
- University of Chinese Academy of SciencesBeijing101408P. R. China
- Nanozyme Medical Center, School of Basic Medical SciencesZhengzhou UniversityZhengzhou450001P. R. China
| | - Kelong Fan
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Protein and Peptide Pharmaceutical, Institute of BiophysicsChinese Academy of SciencesBeijing100101P. R. China
- University of Chinese Academy of SciencesBeijing101408P. R. China
- Nanozyme Medical Center, School of Basic Medical SciencesZhengzhou UniversityZhengzhou450001P. R. China
| |
Collapse
|
52
|
Liu H, Lu C, Han L, Zhang X, Song G. Optical – Magnetic probe for evaluating cancer therapy. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.213978] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
53
|
Lu C, Han L, Wang J, Wan J, Song G, Rao J. Engineering of magnetic nanoparticles as magnetic particle imaging tracers. Chem Soc Rev 2021; 50:8102-8146. [PMID: 34047311 DOI: 10.1039/d0cs00260g] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Magnetic particle imaging (MPI) has recently emerged as a promising non-invasive imaging technique because of its signal linearly propotional to the tracer mass, ability to generate positive contrast, low tissue background, unlimited tissue penetration depth, and lack of ionizing radiation. The sensitivity and resolution of MPI are highly dependent on the properties of magnetic nanoparticles (MNPs), and extensive research efforts have been focused on the design and synthesis of tracers. This review examines parameters that dictate the performance of MNPs, including size, shape, composition, surface property, crystallinity, the surrounding environment, and aggregation state to provide guidance for engineering MPI tracers with better performance. Finally, we discuss applications of MPI imaging and its challenges and perspectives in clinical translation.
Collapse
Affiliation(s)
- Chang Lu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China.
| | - Linbo Han
- College of Health Science and Environmental Engineering, Shenzhen Technology University, Shenzhen 518118, P. R. China
| | - Joanna Wang
- Molecular Imaging Program at Stanford, Department of Radiology, Stanford University School of Medicine, 1201 Welch Road, Stanford, California 94305-5484, USA.
| | - Jiacheng Wan
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China.
| | - Guosheng Song
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China.
| | - Jianghong Rao
- Molecular Imaging Program at Stanford, Department of Radiology, Stanford University School of Medicine, 1201 Welch Road, Stanford, California 94305-5484, USA.
| |
Collapse
|
54
|
Navigation of a magnetic micro-robot through a cerebral aneurysm phantom with magnetic particle imaging. Sci Rep 2021; 11:14082. [PMID: 34234207 PMCID: PMC8263782 DOI: 10.1038/s41598-021-93323-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 06/11/2021] [Indexed: 12/02/2022] Open
Abstract
Cerebral aneurysms are potentially life threatening and nowadays treated by a catheter-guided coiling or by a neurosurgical clipping intervention. Here, we propose a helically shaped magnetic micro-robot, which can be steered by magnetic fields in an untethered manner and could be applied for a novel coiling procedure. This is shown by navigating the micro-robot through an additively manufactured phantom of a human cerebral aneurysm. The magnetic fields are applied with a magnetic particle imaging (MPI) scanner, which allows for the navigation and tomographic visualization by the same machine. With MPI the actuation process can be visualized with a localization accuracy of 0.68 mm and an angiogram can be acquired both without any radiation exposure. First in-vitro phantom experiments are presented, showing an idea of a robot conducted treatment of cerebral aneurysms.
Collapse
|
55
|
Amplified antitumor efficacy by a targeted drug retention and chemosensitization strategy-based "combo" nanoagent together with PD-L1 blockade in reversing multidrug resistance. J Nanobiotechnology 2021; 19:200. [PMID: 34225744 PMCID: PMC8256488 DOI: 10.1186/s12951-021-00947-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 06/28/2021] [Indexed: 12/07/2022] Open
Abstract
BACKGROUND Recent studies have demonstrated that multidrug resistance (MDR) is a critical factor in the low efficacy of cancer chemotherapy. The main mechanism of MDR arises from the overexpression of P-glycoprotein (P-gp), which actively enhances drug efflux and limits the effectiveness of chemotherapeutic agents. RESULTS In this study, we fabricated a "combo" nanoagent equipping with triple synergistic strategies for enhancing antitumor efficacy against MDR cells. Tumor homing-penetrating peptide endows the nanosystem with targeting and penetrating capabilities in the first stage of tumor internalization. The abundant amine groups of polyethylenimine (PEI)-modified nanoparticles then trigger a proton sponge effect to promote endo/lysosomal escape, which enhances the intracellular accumulation and retention of anticancer drugs. Furthermore, copper tetrakis(4-carboxyphenyl)porphyrin (CuTCPP) encapsulated in the nanosystem, effectively scavenges endogenous glutathione (GSH) to reduce the detoxification mediated by GSH and sensitize the cancer cells to drugs, while simultaneously serving as a photoacoustic imaging (PAI) contrast agent for image visualization. Moreover, we also verify that these versatile nanoparticles in combination with PD-1/PD-L1 blockade therapy can not only activate immunological responses but also inhibit P-gp expression to obliterate primary and metastatic tumors. CONCLUSION This work shows a significant enhancement in therapeutic efficacy against MDR cells and syngeneic tumors by using multiple MDR reversing strategies compared to an equivalent dose of free paclitaxel.
Collapse
|
56
|
Stueber DD, Villanova J, Aponte I, Xiao Z, Colvin VL. Magnetic Nanoparticles in Biology and Medicine: Past, Present, and Future Trends. Pharmaceutics 2021; 13:943. [PMID: 34202604 PMCID: PMC8309177 DOI: 10.3390/pharmaceutics13070943] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/27/2021] [Accepted: 06/16/2021] [Indexed: 12/23/2022] Open
Abstract
The use of magnetism in medicine has changed dramatically since its first application by the ancient Greeks in 624 BC. Now, by leveraging magnetic nanoparticles, investigators have developed a range of modern applications that use external magnetic fields to manipulate biological systems. Drug delivery systems that incorporate these particles can target therapeutics to specific tissues without the need for biological or chemical cues. Once precisely located within an organism, magnetic nanoparticles can be heated by oscillating magnetic fields, which results in localized inductive heating that can be used for thermal ablation or more subtle cellular manipulation. Biological imaging can also be improved using magnetic nanoparticles as contrast agents; several types of iron oxide nanoparticles are US Food and Drug Administration (FDA)-approved for use in magnetic resonance imaging (MRI) as contrast agents that can improve image resolution and information content. New imaging modalities, such as magnetic particle imaging (MPI), directly detect magnetic nanoparticles within organisms, allowing for background-free imaging of magnetic particle transport and collection. "Lab-on-a-chip" technology benefits from the increased control that magnetic nanoparticles provide over separation, leading to improved cellular separation. Magnetic separation is also becoming important in next-generation immunoassays, in which particles are used to both increase sensitivity and enable multiple analyte detection. More recently, the ability to manipulate material motion with external fields has been applied in magnetically actuated soft robotics that are designed for biomedical interventions. In this review article, the origins of these various areas are introduced, followed by a discussion of current clinical applications, as well as emerging trends in the study and application of these materials.
Collapse
Affiliation(s)
- Deanna D. Stueber
- Center for Biomedical Engineering, School of Engineering, Brown University, 171 Meeting Street, Providence, RI 02912, USA; (D.D.S.); (J.V.); (I.A.)
| | - Jake Villanova
- Center for Biomedical Engineering, School of Engineering, Brown University, 171 Meeting Street, Providence, RI 02912, USA; (D.D.S.); (J.V.); (I.A.)
- Department of Chemistry, Brown University, 324 Brook Street, Providence, RI 02912, USA;
| | - Itzel Aponte
- Center for Biomedical Engineering, School of Engineering, Brown University, 171 Meeting Street, Providence, RI 02912, USA; (D.D.S.); (J.V.); (I.A.)
| | - Zhen Xiao
- Department of Chemistry, Brown University, 324 Brook Street, Providence, RI 02912, USA;
| | - Vicki L. Colvin
- Center for Biomedical Engineering, School of Engineering, Brown University, 171 Meeting Street, Providence, RI 02912, USA; (D.D.S.); (J.V.); (I.A.)
- Department of Chemistry, Brown University, 324 Brook Street, Providence, RI 02912, USA;
| |
Collapse
|
57
|
Rivera-Rodriguez A, Rinaldi-Ramos CM. Emerging Biomedical Applications Based on the Response of Magnetic Nanoparticles to Time-Varying Magnetic Fields. Annu Rev Chem Biomol Eng 2021; 12:163-185. [PMID: 33856937 DOI: 10.1146/annurev-chembioeng-102720-015630] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Magnetic nanoparticles are of interest for biomedical applications because of their biocompatibility, tunable surface chemistry, and actuation using applied magnetic fields. Magnetic nanoparticles respond to time-varying magnetic fields via physical particle rotation or internal dipole reorientation, which can result in signal generation or conversion of magnetic energy to heat. This dynamic magnetization response enables their use as tracers in magnetic particle imaging (MPI), an emerging biomedical imaging modality in which signal is quantitative of tracer mass and there is no tissue background signal or signal attenuation. Conversion of magnetic energy to heat motivates use in nanoscale thermal cancer therapy, magnetic actuation of drug release, and rapid rewarming of cryopreserved organs. This review introduces basic concepts of magnetic nanoparticle response to time-varying magnetic fields and presents recent advances in the field, with an emphasis on MPI and conversion of magnetic energy to heat.
Collapse
Affiliation(s)
- Angelie Rivera-Rodriguez
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, Florida 32611, USA; ,
| | - Carlos M Rinaldi-Ramos
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, Florida 32611, USA; , .,Department of Chemical Engineering, University of Florida, Gainesville, Florida 32611, USA
| |
Collapse
|
58
|
Jiang Z, Han X, Du Y, Li Y, Li Y, Li J, Tian J, Wu A. Mixed Metal Metal-Organic Frameworks Derived Carbon Supporting ZnFe 2O 4/C for High-Performance Magnetic Particle Imaging. NANO LETTERS 2021; 21:2730-2737. [PMID: 33797257 DOI: 10.1021/acs.nanolett.0c04455] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Recently, magnetic particle imaging (MPI) has shown diverse biomedical applications such as cell tracking, lung perfusion, image-guided hyperthermia, and so forth. However, the currently reported MPI agents cannot achieve the possible theoretical detection limit of MPI (20 nM). A previous theoretical study has shown that the MPI performance of superparamagnetic iron oxide nanoparticles (SPIONs) can be enhanced by carbon supporting and metal doping. In the current study, a series of mixed metal metal-organic framework-derived carbon supporting SPIONs were synthesized by pyrolysis. Among the synthesized SPIONs, the MPI signal intensity of ZnFe2O4/C@PDA was found to be 4.7 times higher than the commercial MPI contrast (Vivotrax) having the same Fe concentration. ZnFe2O4/C@PDA also showed the highest MPI intensity in tumor-bearing-mice among all tested samples. Furthermore, they were found highly biocompatible and showed linear cell quantification. This work can open new avenues for the design and development of novel and high-performance MPI agents.
Collapse
Affiliation(s)
- Zhenqi Jiang
- Cixi Institute of Biomedical Engineering, International Cooperation Base of Biomedical Materials Technology and Application, CAS Key Laboratory of Magnetic Materials and Devices, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- School of Life Science, Institute of Engineering Medicine, Beijing Institute of Technology, Beijing 100081, China
| | - Xiao Han
- CAS Key Laboratory of Molecular Imaging, The State Key Laboratory of Management and Control for Complex Systems, Institution of Automation, Chinese Academy of Sciences, Beijing 100190, China
- School of Life Science, Institute of Engineering Medicine, Beijing Institute of Technology, Beijing 100081, China
| | - Yang Du
- CAS Key Laboratory of Molecular Imaging, The State Key Laboratory of Management and Control for Complex Systems, Institution of Automation, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yanying Li
- Cixi Institute of Biomedical Engineering, International Cooperation Base of Biomedical Materials Technology and Application, CAS Key Laboratory of Magnetic Materials and Devices, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Advanced Energy Science and Technology Guangdong Laboratory, Huizhou 516003, China
| | - Yong Li
- Cixi Institute of Biomedical Engineering, International Cooperation Base of Biomedical Materials Technology and Application, CAS Key Laboratory of Magnetic Materials and Devices, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Juan Li
- Cixi Institute of Biomedical Engineering, International Cooperation Base of Biomedical Materials Technology and Application, CAS Key Laboratory of Magnetic Materials and Devices, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- Advanced Energy Science and Technology Guangdong Laboratory, Huizhou 516003, China
| | - Jie Tian
- CAS Key Laboratory of Molecular Imaging, The State Key Laboratory of Management and Control for Complex Systems, Institution of Automation, Chinese Academy of Sciences, Beijing 100190, China
- Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, School of Medicine, Beihang University, Beijing 100191, China
| | - Aiguo Wu
- Cixi Institute of Biomedical Engineering, International Cooperation Base of Biomedical Materials Technology and Application, CAS Key Laboratory of Magnetic Materials and Devices, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- Advanced Energy Science and Technology Guangdong Laboratory, Huizhou 516003, China
| |
Collapse
|
59
|
Zhang Z, Wells CJR, King AM, Bear JC, Davies GL, Williams GR. pH-Responsive nanocomposite fibres allowing MRI monitoring of drug release. J Mater Chem B 2021; 8:7264-7274. [PMID: 32642748 DOI: 10.1039/d0tb01033b] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Magnetic resonance imaging (MRI) is one of the most widely-used non-invasive clinical imaging tools, producing detailed anatomical images whilst avoiding side effects such as trauma or X-ray radiation exposure. In this article, a new approach to non-invasive monitoring of drug release from a delivery vehicle via MRI was developed, using pH-responsive Eudragit L100 and S100 fibres encapsulating superparamagnetic iron oxide nanoparticles (SPIONs) and carmofur (a drug used in the treatment of colon cancer). Fibres were prepared by electrospinning, and found to be smooth and cylindrical with diameters of 645 ± 225 nm for L100 and 454 ± 133 nm for S100. The fibres exhibited pH responsive dissolution behaviour. Around the physiological pH range, clear pH-responsive proton relaxation rate changes due to matrix swelling/dissolution can be observed: r2 values of L100 fibres increase from 29.3 ± 8.3 to 69.8 ± 2.5 mM-1 s-1 over 3 h immersion in a pH 7.4 medium, and from 13.5 ± 2.0 mM-1 s-1 to 42.1 ± 3.0 mM-1 s-1 at pH 6.5. The r2 values of S100 fibres grow from 30.4 ± 4.4 to 64.7 ± 1.0 mM-1 s-1 at pH 7.4, but at pH 6.5, where the S100 fibres are not soluble, r2 remains very low (< 4 mM-1 s-1). These dramatic changes in relaxivity demonstrate that pH-responsive dissolution results in SPION release. In vitro drug release studies showed the formulations gave rapid release of carmofur at physiological pH values (pH 6.5 and 7.4), and acid stability studies revealed that they can protect the SPIONs from digestion in acid environments, giving the fibres potential for oral administration. Exploration of the relationship between relaxivity and carmofur release suggests a linear correlation (R2 > 0.94) between the two. Mathematical equations were developed to predict carmofur release in vitro, with very similar experimental and predicted release profiles obtained. Therefore, the formulations developed herein have the potential to be used for non-invasive monitoring of drug release in vivo, and could ultimately result in dramatic reductions to off-target side effects from interventions such as chemotherapy.
Collapse
Affiliation(s)
- Ziwei Zhang
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK. and UCL Department of Chemistry, University College London, 20 Gordon St, London WC1H 0AJ, UK.
| | - Connor J R Wells
- UCL Department of Chemistry, University College London, 20 Gordon St, London WC1H 0AJ, UK.
| | - Aaron M King
- UCL Department of Chemistry, University College London, 20 Gordon St, London WC1H 0AJ, UK.
| | - Joseph C Bear
- Department of Chemical and Pharmaceutical Sciences, Kingston University, Penrhyn Rd, Kingston upon Thames, KT1 2EE, UK
| | - Gemma-Louise Davies
- UCL Department of Chemistry, University College London, 20 Gordon St, London WC1H 0AJ, UK.
| | - Gareth R Williams
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK.
| |
Collapse
|
60
|
Serkova NJ, Glunde K, Haney CR, Farhoud M, De Lille A, Redente EF, Simberg D, Westerly DC, Griffin L, Mason RP. Preclinical Applications of Multi-Platform Imaging in Animal Models of Cancer. Cancer Res 2021; 81:1189-1200. [PMID: 33262127 PMCID: PMC8026542 DOI: 10.1158/0008-5472.can-20-0373] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 06/10/2020] [Accepted: 11/25/2020] [Indexed: 11/16/2022]
Abstract
In animal models of cancer, oncologic imaging has evolved from a simple assessment of tumor location and size to sophisticated multimodality exploration of molecular, physiologic, genetic, immunologic, and biochemical events at microscopic to macroscopic levels, performed noninvasively and sometimes in real time. Here, we briefly review animal imaging technology and molecular imaging probes together with selected applications from recent literature. Fast and sensitive optical imaging is primarily used to track luciferase-expressing tumor cells, image molecular targets with fluorescence probes, and to report on metabolic and physiologic phenotypes using smart switchable luminescent probes. MicroPET/single-photon emission CT have proven to be two of the most translational modalities for molecular and metabolic imaging of cancers: immuno-PET is a promising and rapidly evolving area of imaging research. Sophisticated MRI techniques provide high-resolution images of small metastases, tumor inflammation, perfusion, oxygenation, and acidity. Disseminated tumors to the bone and lung are easily detected by microCT, while ultrasound provides real-time visualization of tumor vasculature and perfusion. Recently available photoacoustic imaging provides real-time evaluation of vascular patency, oxygenation, and nanoparticle distributions. New hybrid instruments, such as PET-MRI, promise more convenient combination of the capabilities of each modality, enabling enhanced research efficacy and throughput.
Collapse
Affiliation(s)
- Natalie J Serkova
- Department of Radiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado.
- Animal Imaging Shared Resource, University of Colorado Cancer Center, Aurora, Colorado
| | - Kristine Glunde
- Division of Cancer Imaging Research, The Russell H. Morgan Department of Radiology, and the Sydney Kimmel Comprehensive Cancer Center, Johns Hopkins Medical Institutions, Baltimore, Maryland
| | - Chad R Haney
- Center for Advanced Molecular Imaging, Northwestern University, Evanston, Illinois
| | | | | | | | - Dmitri Simberg
- Department of Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - David C Westerly
- Animal Imaging Shared Resource, University of Colorado Cancer Center, Aurora, Colorado
- Department of Radiation Oncology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Lynn Griffin
- Department of Radiology, Veterinary Teaching Hospital, Colorado State University, Fort Collins, Colorado
| | - Ralph P Mason
- Department of Radiology, University of Texas Southwestern, Dallas, Texas
| |
Collapse
|
61
|
Shi C, Zhou Z, Lin H, Gao J. Imaging Beyond Seeing: Early Prognosis of Cancer Treatment. SMALL METHODS 2021; 5:e2001025. [PMID: 34927817 DOI: 10.1002/smtd.202001025] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 11/24/2020] [Indexed: 06/14/2023]
Abstract
Assessing cancer response to therapeutic interventions has been realized as an important course to early predict curative efficacy and treatment outcomes due to tumor heterogeneity. Compared to the traditional invasive tissue biopsy method, molecular imaging techniques have fundamentally revolutionized the ability to evaluate cancer response in a spatiotemporal manner. The past few years has witnessed a paradigm shift on the efforts from manufacturing functional molecular imaging probes for seeing a tumor to a vantage stage of interpreting the tumor response during different treatments. This review is to stand by the current development of advanced imaging technologies aiming to predict the treatment response in cancer therapy. Special interest is placed on the systems that are able to provide rapid and noninvasive assessment of pharmacokinetic drug fates (e.g., drug distribution, release, and activation) and tumor microenvironment heterogeneity (e.g., tumor cells, macrophages, dendritic cells (DCs), T cells, and inflammatory cells). The current status, practical significance, and future challenges of the emerging artificial intelligence (AI) technology and machine learning in the applications of medical imaging fields is overviewed. Ultimately, the authors hope that this review is timely to spur research interest in molecular imaging and precision medicine.
Collapse
Affiliation(s)
- Changrong Shi
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics and Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Zijian Zhou
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics and Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Hongyu Lin
- State Key Laboratory of Physical Chemistry of Solid Surfaces, The Key Laboratory for Chemical Biology of Fujian Province and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Jinhao Gao
- State Key Laboratory of Physical Chemistry of Solid Surfaces, The Key Laboratory for Chemical Biology of Fujian Province and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| |
Collapse
|
62
|
Makvandi P, Baghbantaraghdari Z, Zhou W, Zhang Y, Manchanda R, Agarwal T, Wu A, Maiti TK, Varma RS, Smith BR. Gum polysaccharide/nanometal hybrid biocomposites in cancer diagnosis and therapy. Biotechnol Adv 2021; 48:107711. [PMID: 33592279 DOI: 10.1016/j.biotechadv.2021.107711] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 12/26/2020] [Accepted: 02/02/2021] [Indexed: 12/26/2022]
Abstract
Biopolymers are of prime importance among which gum polysaccharides hold an eminent standing owing to their high availability and non-toxic nature. Gum biopolymers offer a greener alternative to synthetic polymers and toxic chemicals in the synthesis of metal nanostructures. Metal nanostructures accessible via eco-friendly means endow astounding characteristics to gum-based biocomposites in the field of diagnosis and therapy towards cancer diseases. In this review, assorted approaches for the assembly of nanomaterials mediated by gum biopolymers are presented and their utility in cancer diagnosis and therapy, e.g., bioimaging, radiotherapy, and phototherapy, are deliberated to provide a groundwork for future stimulative research.
Collapse
Affiliation(s)
- Pooyan Makvandi
- Istituto Italiano di Tecnologia, Center for Materials Interface, Pontedera 56025, Pisa, Italy.
| | - Zahra Baghbantaraghdari
- Department of Chemical, Materials & Industrial Production Engineering, University of Naples Federico II, Naples 80125, Italy
| | - Wenxian Zhou
- Department of Orthopaedics, Zhejiang Provincial Key Laboratory of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Yapei Zhang
- Department of Biomedical Engineering, Institute for Quantitative Health Science & Engineering, Michigan State University, East Lansing, MI 48824, USA
| | - Romila Manchanda
- Department of Biomedical Engineering, Institute for Quantitative Health Science & Engineering, Michigan State University, East Lansing, MI 48824, USA
| | - Tarun Agarwal
- Department of Biotechnology, Indian Institute of Technology, Kharagpur 721302, India
| | - Aimin Wu
- Department of Orthopaedics, Zhejiang Provincial Key Laboratory of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Tapas Kumar Maiti
- Department of Biotechnology, Indian Institute of Technology, Kharagpur 721302, India
| | - Rajender S Varma
- Regional Centre of Advanced Technologies and Materials (RCPTM), Palacky University, Olomouc, Šlechtitelů 11, 783 71, Olomouc, Czech Republic.
| | - Bryan Ronain Smith
- Department of Biomedical Engineering, Institute for Quantitative Health Science & Engineering, Michigan State University, East Lansing, MI 48824, USA; Department of Radiology and the Molecular Imaging Program, Stanford University, Stanford, CA, 94305, USA.
| |
Collapse
|
63
|
Chandrasekharan P, Fung KB, Zhou XY, Cui W, Colson C, Mai D, Jeffris K, Huynh Q, Saayujya C, Kabuli L, Fellows B, Lu Y, Yu E, Tay ZW, Zheng B, Fong L, Conolly SM. Non-radioactive and sensitive tracking of neutrophils towards inflammation using antibody functionalized magnetic particle imaging tracers. Nanotheranostics 2021; 5:240-255. [PMID: 33614400 PMCID: PMC7893534 DOI: 10.7150/ntno.50721] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Accepted: 01/14/2021] [Indexed: 02/07/2023] Open
Abstract
White blood cells (WBCs) are a key component of the mammalian immune system and play an essential role in surveillance, defense, and adaptation against foreign pathogens. Apart from their roles in the active combat of infection and the development of adaptive immunity, immune cells are also involved in tumor development and metastasis. Antibody-based therapeutics have been developed to regulate (i.e. selectively activate or inhibit immune function) and harness immune cells to fight malignancy. Alternatively, non-invasive tracking of WBC distribution can diagnose inflammation, infection, fevers of unknown origin (FUOs), and cancer. Magnetic Particle Imaging (MPI) is a non-invasive, non-radioactive, and sensitive medical imaging technique that uses safe superparamagnetic iron oxide nanoparticles (SPIOs) as tracers. MPI has previously been shown to track therapeutic stem cells for over 87 days with a ~200 cell detection limit. In the current work, we utilized antibody-conjugated SPIOs specific to neutrophils for in situ labeling, and non-invasive and radiation-free tracking of these inflammatory cells to sites of infection and inflammation in an in vivo murine model of lipopolysaccharide-induced myositis. MPI showed sensitive detection of inflammation with a contrast-to-noise ratio of ~8-13.
Collapse
Affiliation(s)
- Prashant Chandrasekharan
- Department of Bioengineering, University of California, Berkeley, California 94720, United States
| | - K.L. Barry Fung
- Department of Bioengineering, University of California, Berkeley, California 94720, United States
- UC Berkeley-UCSF Graduate Group in Bioengineering, California, United States
| | - Xinyi Y. Zhou
- Department of Bioengineering, University of California, Berkeley, California 94720, United States
- UC Berkeley-UCSF Graduate Group in Bioengineering, California, United States
| | - Weiwen Cui
- Department of Bioengineering, University of California, Berkeley, California 94720, United States
| | - Caylin Colson
- Department of Bioengineering, University of California, Berkeley, California 94720, United States
- UC Berkeley-UCSF Graduate Group in Bioengineering, California, United States
| | - David Mai
- Department of Bioengineering, University of California, Berkeley, California 94720, United States
| | - Kenneth Jeffris
- Department of Bioengineering, University of California, Berkeley, California 94720, United States
| | - Quincy Huynh
- Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, California 94720, United States
| | - Chinmoy Saayujya
- Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, California 94720, United States
| | - Leyla Kabuli
- Department of Bioengineering, University of California, Berkeley, California 94720, United States
| | - Benjamin Fellows
- Department of Bioengineering, University of California, Berkeley, California 94720, United States
| | - Yao Lu
- Department of Bioengineering, University of California, Berkeley, California 94720, United States
| | - Elaine Yu
- Department of Bioengineering, University of California, Berkeley, California 94720, United States
| | - Zhi Wei Tay
- Department of Bioengineering, University of California, Berkeley, California 94720, United States
| | - Bo Zheng
- Department of Bioengineering, University of California, Berkeley, California 94720, United States
| | - Lawrence Fong
- UCSF Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, California 94143, United States
| | - Steven M. Conolly
- Department of Bioengineering, University of California, Berkeley, California 94720, United States
- Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, California 94720, United States
| |
Collapse
|
64
|
Anik MI, Hossain MK, Hossain I, Mahfuz AMUB, Rahman MT, Ahmed I. Recent progress of magnetic nanoparticles in biomedical applications: A review. NANO SELECT 2021. [DOI: 10.1002/nano.202000162] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Affiliation(s)
- Muzahidul I. Anik
- Chemical Engineering University of Rhode Island Kingston Rhode Island 02881 USA
| | - M. Khalid Hossain
- Interdisciplinary Graduate School of Engineering Science Kyushu University Fukuoka 816–8580 Japan
- Atomic Energy Research Establishment Bangladesh Atomic Energy Commission Dhaka 1349 Bangladesh
| | - Imran Hossain
- Institute for Micromanufacturing Louisiana Tech University Ruston Louisiana 71270 USA
| | - A. M. U. B. Mahfuz
- Biotechnology and Genetic Engineering University of Development Alternative Dhaka 1209 Bangladesh
| | - M. Tayebur Rahman
- Materials Science and Engineering University of Rajshahi Rajshahi 6205 Bangladesh
| | - Isteaque Ahmed
- Chemical Engineering University of Cincinnati Cincinnati Ohio 45221 USA
| |
Collapse
|
65
|
Zhang Y, Li X, Zhang Y, Wei J, Wang W, Dong C, Xue Y, Liu M, Pei R. Engineered Fe 3O 4-based nanomaterials for diagnosis and therapy of cancer. NEW J CHEM 2021. [DOI: 10.1039/d1nj00419k] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Recent developments of Fe3O4 NP-based theranostic nanoplatforms and their applications in tumor-targeted imaging and therapy.
Collapse
Affiliation(s)
- Yiwei Zhang
- Hubei Key Laboratory for Novel Reactor and Green Chemistry Technology
- School of Chemical Engineering and Pharmacy
- Wuhan Institute of Technology
- Wuhan 430205
- China
| | - Xinxin Li
- Hubei Key Laboratory for Novel Reactor and Green Chemistry Technology
- School of Chemical Engineering and Pharmacy
- Wuhan Institute of Technology
- Wuhan 430205
- China
| | - Yajie Zhang
- CAS Key Laboratory of Nano-Bio Interface
- Suzhou Institute of Nano-Tech and Nano-Bionics
- Chinese Academy of Sciences
- Suzhou 215123
- China
| | - Jun Wei
- Hubei Key Laboratory for Novel Reactor and Green Chemistry Technology
- School of Chemical Engineering and Pharmacy
- Wuhan Institute of Technology
- Wuhan 430205
- China
| | - Wei Wang
- Department of Anesthesiology
- Xinqiao Hospital
- Third Military Medical University
- Chongqing
- China
| | - Changzhi Dong
- University Paris Diderot
- Sorbonne Paris Cité
- ITODYS
- UMR CNRS 7086
- 75205 Paris Cedex 13
| | - Yanan Xue
- Hubei Key Laboratory for Novel Reactor and Green Chemistry Technology
- School of Chemical Engineering and Pharmacy
- Wuhan Institute of Technology
- Wuhan 430205
- China
| | - Min Liu
- Institute for Interdisciplinary Research
- Jianghan University
- Wuhan 430056
- China
- CAS Key Laboratory of Nano-Bio Interface
| | - Renjun Pei
- CAS Key Laboratory of Nano-Bio Interface
- Suzhou Institute of Nano-Tech and Nano-Bionics
- Chinese Academy of Sciences
- Suzhou 215123
- China
| |
Collapse
|
66
|
Cheng K, Zhang RY, Yang XQ, Zhang XS, Zhang F, An J, Wang ZY, Dong Y, Liu B, Zhao YD, Liu TC. One-for-All Nanoplatform for Synergistic Mild Cascade-Potentiated Ultrasound Therapy Induced with Targeting Imaging-Guided Photothermal Therapy. ACS APPLIED MATERIALS & INTERFACES 2020; 12:40052-40066. [PMID: 32806885 DOI: 10.1021/acsami.0c10475] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Ameliorated therapy based on the tumor microenvironment is becoming increasingly popular, yet only a few methods have achieved wide recognition. Herein, targeting multifunctional hydrophilic nanomicelles, AgBiS2@DSPE-PEG2000-FA (ABS-FA), were obtained and employed for tumor treatment. In a cascade amplification mode, ABS-FA exhibited favorable properties of actively enhancing computed tomography/infrared (CT/IR) imaging and gently relieving ambient oxygen concentration by cooperative photothermal and sonodynamic therapy. Compared with traditional Bi2S3 nanoparticles, the CT imaging capability of the probe was augmented (43.21%), and the photothermal conversion efficiency was increased (33.1%). Furthermore, remarkable ultrasonic dynamic features of ABS-FA were observed, with increased generation of reactive oxygen species (24.3%) being obtained compared to Ce6, a commonly used sonosensitizer. Furthermore, ABS-FA exhibited obvious inhibitory effects on HeLa cell migration at 6 μg/mL, which to some extent, demonstrated its suppressive effect on tumor growth. A lower dose, laser and ultrasonic power, and shorter processing time endowed ABS-FA with excellent photothermal and sonodynamic effects. By mild cascade mode, the hypoxic condition of the tumor site was largely improved, and a suitable oxygen-rich environment was provided, thereby endowing ABS-FA with a superior synergistically enhanced treatment effect compared with the single-mode approach, which ultimately realized the purpose of "one injection, multiple treatment". Moreover, our data showed that ABS-FA was given with a biological safety profile while harnessing in vivo. Taken together, as a synergistically enhanced medical diagnosis and treatment method, the one-for-all nanoplatform will pave a new avenue for further clinical applications.
Collapse
Affiliation(s)
- Kai Cheng
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, Hubei, P. R. China
| | - Ruo-Yun Zhang
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, Hubei, P. R. China
| | - Xiao-Quan Yang
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, Hubei, P. R. China
- Key Laboratory of Biomedical Photonics (HUST), Ministry of Education, Huazhong University of Science and Technology, Wuhan 430074, Hubei, P. R. China
| | - Xiao-Shuai Zhang
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, Hubei, P. R. China
| | - Fang Zhang
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, Hubei, P. R. China
| | - Jie An
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, Hubei, P. R. China
| | - Zhuo-Ya Wang
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, Hubei, P. R. China
| | - Ying Dong
- Key Laboratory of Antibody Engineering of Guangdong Higher Education Institutes, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou 510515, Guangdong, P. R. China
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Southern Medical University, Guangzhou 510515, Guangdong, P. R. China
| | - Bo Liu
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, Hubei, P. R. China
| | - Yuan-Di Zhao
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, Hubei, P. R. China
- Key Laboratory of Biomedical Photonics (HUST), Ministry of Education, Huazhong University of Science and Technology, Wuhan 430074, Hubei, P. R. China
| | - Tian-Cai Liu
- Key Laboratory of Antibody Engineering of Guangdong Higher Education Institutes, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou 510515, Guangdong, P. R. China
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Southern Medical University, Guangzhou 510515, Guangdong, P. R. China
| |
Collapse
|
67
|
Liu D, Zhou Z, Wang X, Deng H, Sun L, Lin H, Kang F, Zhang Y, Wang Z, Yang W, Rao L, Yang K, Yu G, Du J, Shen Z, Chen X. Yolk-shell nanovesicles endow glutathione-responsive concurrent drug release and T 1 MRI activation for cancer theranostics. Biomaterials 2020; 244:119979. [PMID: 32200104 PMCID: PMC7138217 DOI: 10.1016/j.biomaterials.2020.119979] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 03/15/2020] [Indexed: 01/04/2023]
Abstract
The effort of incorporating therapeutic drugs with imaging agents has been one of the mainstreams of nanomedicine, which holds great promise in cancer treatment in terms of monitoring therapeutic drug activity and evaluating prognostic index. However, it is still technically challenging to develop nanomedicine endowing a spatiotemporally controllable mechanism of drug release and activatable imaging capability. Here, we developed a yolk-shell type of GSH-responsive nanovesicles (NVs) in which therapeutic drug (Doxorubicin, DOX) and magnetic resonance imaging (MRI) contrast agent (ultrasmall paramagnetic iron oxide nanoparticles, USPIO NPs) formed complexes (denoted as USD) and were encapsulated inside the NVs. The formation of USD complexes is mediated by both the electrostatic adsorption between DOX and poly(acrylic acid) (PAA) polymers and the DOX-iron coordination effect on USPIO NPs. The obtained USD NVs showed a unique yolk-shell structure with restrained drug activity and quenched T1 MRI contrast ability which, on the other hand, can respond to glutathione (GSH) and lead to drug release and T1 contrast activation in a spatiotemporally concurrent manner. Furthermore, the USD NVs exhibited great potential to kill HCT116 cancer cells in vitro and effectively inhibit the tumor growth in vivo. This study may shed light on the design of sophisticated nanotheranostics in precision nanomedicine.
Collapse
Affiliation(s)
- Dahai Liu
- Lymph and Vascular Surgery Department, China-Japan Union Hospital of Jilin University, Changchun, Jilin, 130033, China
| | - Zijian Zhou
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, 20892, United States
| | - Xinyu Wang
- Lymph and Vascular Surgery Department, China-Japan Union Hospital of Jilin University, Changchun, Jilin, 130033, China
| | - Hongzhang Deng
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, 20892, United States
| | - Lin Sun
- Department of Materials Science and Engineering, International Institute for Nanotechnology, Northwestern University, Evanston, IL, 60208, United States
| | - Haixin Lin
- Department of Chemistry, International Institute for Nanotechnology, Northwestern University, Evanston, IL, 60208, United States
| | - Fei Kang
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, 20892, United States
| | - Yong Zhang
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, 20892, United States
| | - Zhantong Wang
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, 20892, United States
| | - Weijing Yang
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, 20892, United States
| | - Lang Rao
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, 20892, United States
| | - Kuikun Yang
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, 20892, United States
| | - Guocan Yu
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, 20892, United States
| | - Jianshi Du
- Lymph and Vascular Surgery Department, China-Japan Union Hospital of Jilin University, Changchun, Jilin, 130033, China.
| | - Zheyu Shen
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Biomaterials Research Center, School of Biomedical Engineering, Southern Medical University, Guangzhou, 510515, China.
| | - Xiaoyuan Chen
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, 20892, United States.
| |
Collapse
|
68
|
Wang T, Zhang D, Sun D, Gu J. Current status of in vivo bioanalysis of nano drug delivery systems. J Pharm Anal 2020; 10:221-232. [PMID: 32612868 PMCID: PMC7322761 DOI: 10.1016/j.jpha.2020.05.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 05/09/2020] [Accepted: 05/11/2020] [Indexed: 12/13/2022] Open
Abstract
The development of nano drug delivery systems (NDDSs) provides new approaches to fighting against diseases. The NDDSs are specially designed to serve as carriers for the delivery of active pharmaceutical ingredients (APIs) to their target sites, which would certainly extend the benefit of their unique physicochemical characteristics, such as prolonged circulation time, improved targeting and avoiding of drug-resistance. Despite the remarkable progress achieved over the last three decades, the understanding of the relationships between the in vivo pharmacokinetics of NDDSs and their safety profiles is insufficient. Analysis of NDDSs is far more complicated than the monitoring of small molecular drugs in terms of structure, composition and aggregation state, whereby almost all of the conventional techniques are inadequate for accurate profiling their pharmacokinetic behavior in vivo. Herein, the advanced bioanalysis for tracing the in vivo fate of NDDSs is summarized, including liquid chromatography tandem-mass spectrometry (LC-MS/MS), Förster resonance energy transfer (FRET), aggregation-caused quenching (ACQ) fluorophore, aggregation-induced emission (AIE) fluorophores, enzyme-linked immunosorbent assay (ELISA), magnetic resonance imaging (MRI), radiolabeling, fluorescence spectroscopy, laser ablation inductively coupled plasma MS (LA-ICP-MS), and size-exclusion chromatography (SEC). Based on these technologies, a comprehensive survey of monitoring the dynamic changes of NDDSs in structure, composition and existing form in system (i.e. carrier polymers, released and encapsulated drug) with recent progress is provided. We hope that this review will be helpful in appropriate application methodology for investigating the pharmacokinetics and evaluating the efficacy and safety profiles of NDDSs.
Collapse
Affiliation(s)
- Tingting Wang
- Clinical Laboratory, The First Hospital, Jilin University, Changchun, 130061, PR China
- Research Center for Drug Metabolism, College of Life Science, Jilin University, Changchun, 130012, PR China
| | - Di Zhang
- Research Center for Drug Metabolism, College of Life Science, Jilin University, Changchun, 130012, PR China
| | - Dong Sun
- Department of Biopharmacy, College of Life Science, Jilin University, Changchun, 130012, PR China
- Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Yantai University, Yantai, 264005, PR China
| | - Jingkai Gu
- Research Institute of Translational Medicine, The First Hospital, Jilin University, Changchun, 130061, PR China
- Research Center for Drug Metabolism, College of Life Science, Jilin University, Changchun, 130012, PR China
| |
Collapse
|
69
|
Guzy J, Chakravarty S, Buchanan FJ, Chen H, Gaudet JM, Hix JM, Mallett CL, Shapiro EM. Complex Relationship Between Iron Oxide Nanoparticle Degradation and Signal Intensity in Magnetic Particle Imaging. ACS APPLIED NANO MATERIALS 2020; 3:3991-3999. [PMID: 33163909 PMCID: PMC7643918 DOI: 10.1021/acsanm.0c00779] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Magnetic particle imaging (MPI), using superparamagnetic nanoparticles as an imaging tracer, is touted as a quantitative biomedical imaging technology, but MPI signal properties have never been characterized for magnetic nanoparticles undergoing biodegradation. We show that MPI signal properties can increase or decrease as iron oxide nanoparticles degrade, depending on the nanoparticle formulation and nanocrystal size, and degradation rate and mechanism. Further, we show that long-term in vitro MPI experiments only roughly approximate long-term in vivo MPI signal properties. Further, we demonstrate for the first time, an environmentally sensitive MPI contrast mechanism opening the door to smart contrast paradigms in MPI.
Collapse
Affiliation(s)
- Julia Guzy
- Department of Radiology and Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI 48824, USA
| | - Shatadru Chakravarty
- Department of Radiology and Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI 48824, USA
| | - Foster J. Buchanan
- Department of Radiology and Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI 48824, USA
| | - Haoran Chen
- Department of Radiology and Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI 48824, USA
| | - Jeffrey M. Gaudet
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI 48824, USA
- Magnetic Insight, Alameda, CA 94501, USA
| | - Jeremy M.L. Hix
- Department of Radiology and Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI 48824, USA
| | - Christiane L. Mallett
- Department of Radiology and Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI 48824, USA
| | - Erik M. Shapiro
- Department of Radiology and Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI 48824, USA
- Correspondence should be addressed to: Erik M. Shapiro, MSU Radiology, 846 Service Rd, East Lansing, MI 48824, , Phone: 517-884-3270, Fax: 517-432-2849
| |
Collapse
|
70
|
Copper-thioguanine metallodrug with self-reinforcing circular catalysis for activatable MRI imaging and amplifying specificity of cancer therapy. Sci China Chem 2020. [DOI: 10.1007/s11426-020-9738-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
71
|
Zhao S, Yu X, Qian Y, Chen W, Shen J. Multifunctional magnetic iron oxide nanoparticles: an advanced platform for cancer theranostics. Theranostics 2020; 10:6278-6309. [PMID: 32483453 PMCID: PMC7255022 DOI: 10.7150/thno.42564] [Citation(s) in RCA: 196] [Impact Index Per Article: 39.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 04/27/2020] [Indexed: 12/11/2022] Open
Abstract
Multifunctional magnetic nanoparticles and derivative nanocomposites have aroused great concern for multimode imaging and cancer synergistic therapies in recent years. Among the rest, functional magnetic iron oxide nanoparticles (Fe3O4 NPs) have shown great potential as an advanced platform because of their inherent magnetic resonance imaging (MRI), biocatalytic activity (nanozyme), magnetic hyperthermia treatment (MHT), photo-responsive therapy and drug delivery for chemotherapy and gene therapy. Magnetic Fe3O4 NPs can be synthesized through several methods and easily surface modified with biocompatible materials or active targeting moieties. The MRI capacity could be appropriately modulated to induce response between T1 and T2 modes by controlling the size distribution of Fe3O4 NPs. Besides, small-size nanoparticles are also desired due to the enhanced permeation and retention (EPR) effect, thus the imaging and therapeutic efficiency of Fe3O4 NP-based platforms can be further improved. Here, we firstly retrospect the typical synthesis and surface modification methods of magnetic Fe3O4 NPs. Then, the latest biomedical application including responsive MRI, multimodal imaging, nanozyme, MHT, photo-responsive therapy and drug delivery, the mechanism of corresponding treatments and cooperation therapeutics of multifunctional Fe3O4 NPs are also be explained. Finally, we also outline a brief discussion and perspective on the possibility of further clinical translations of these multifunctional nanomaterials. This review would provide a comprehensive reference for readers to understand the multifunctional Fe3O4 NPs in cancer diagnosis and treatment.
Collapse
Affiliation(s)
- Shengzhe Zhao
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, School of Ophthalmology & Optometry, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou 325027, China
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 32500, China
- State Key Lab of Metal Matrix Composites, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xujiang Yu
- State Key Lab of Metal Matrix Composites, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yuna Qian
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 32500, China
| | - Wei Chen
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, School of Ophthalmology & Optometry, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou 325027, China
| | - Jianliang Shen
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, School of Ophthalmology & Optometry, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou 325027, China
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 32500, China
| |
Collapse
|
72
|
Wang P, Kim T, Harada M, Contag C, Huang X, Smith BR. Nano-immunoimaging. NANOSCALE HORIZONS 2020; 5:628-653. [PMID: 32226975 DOI: 10.1039/c9nh00514e] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Immunoimaging is a rapidly growing field stoked in large part by the intriguing triumphs of immunotherapy. On the heels of immunotherapy's successes, there exists a growing need to evaluate tumor response to therapy particularly immunotherapy, stratify patients into responders vs. non-responders, identify inflammation, and better understand the fundamental roles of immune system components to improve both immunoimaging and immunotherapy. Innovative nanomaterials have begun to provide novel opportunities for immunoimaging, in part due to their sensitivity, modularity, capacity for many potentially varied ligands (high avidity), and potential for multifunctionality/multimodality imaging. This review strives to comprehensively summarize the integration of nanotechnology and immunoimaging, and the field's potential for clinical applications.
Collapse
Affiliation(s)
- Ping Wang
- Institute for Quantitative Health Science and Engineering, Michigan State University, 775 Woodlot Drive, Room #1118, East Lansing, MI 488824, USA. and Precision Health Program, Michigan State University, East Lansing, MI 488824, USA
| | - Taeho Kim
- Institute for Quantitative Health Science and Engineering, Michigan State University, 775 Woodlot Drive, Room #1118, East Lansing, MI 488824, USA. and Department of Biomedical Engineering, Michigan State University, East Lansing, MI 488824, USA
| | - Masako Harada
- Institute for Quantitative Health Science and Engineering, Michigan State University, 775 Woodlot Drive, Room #1118, East Lansing, MI 488824, USA. and Department of Biomedical Engineering, Michigan State University, East Lansing, MI 488824, USA
| | - Christopher Contag
- Institute for Quantitative Health Science and Engineering, Michigan State University, 775 Woodlot Drive, Room #1118, East Lansing, MI 488824, USA. and Precision Health Program, Michigan State University, East Lansing, MI 488824, USA and Department of Biomedical Engineering, Michigan State University, East Lansing, MI 488824, USA and Department of Microbiology & Molecular Genetics, Michigan State University, East Lansing, MI 488824, USA
| | - Xuefei Huang
- Institute for Quantitative Health Science and Engineering, Michigan State University, 775 Woodlot Drive, Room #1118, East Lansing, MI 488824, USA. and Department of Biomedical Engineering, Michigan State University, East Lansing, MI 488824, USA and Department of Chemistry, Michigan State University, East Lansing, MI 488824, USA
| | - Bryan Ronain Smith
- Institute for Quantitative Health Science and Engineering, Michigan State University, 775 Woodlot Drive, Room #1118, East Lansing, MI 488824, USA. and Department of Biomedical Engineering, Michigan State University, East Lansing, MI 488824, USA and Department of Radiology, Stanford University, Stanford, CA 94306, USA
| |
Collapse
|
73
|
Antonelli A, Szwargulski P, Scarpa ES, Thieben F, Cordula G, Ambrosi G, Guidi L, Ludewig P, Knopp T, Magnani M. Development of long circulating magnetic particle imaging tracers: use of novel magnetic nanoparticles and entrapment into human erythrocytes. Nanomedicine (Lond) 2020; 15:739-753. [PMID: 32207374 DOI: 10.2217/nnm-2019-0449] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Aim: Magnetic particle imaging (MPI) is highly promising for biomedical applications, but optimal tracers for MPI, namely superparamagnetic iron oxide-based contrast agents, are still lacking. Materials & methods: The encapsulation of commercially available nanoparticles, specifically synomag®-D and perimag®, into human red blood cells (RBCs) was performed by a hypotonic dialysis and isotonic resealing procedure. The amounts of superparamagnetic iron oxide incorporated into RBCs were determined by Fe quantification using nuclear magnetic resonance and magnetic particle spectroscopy. Results: Perimag-COOH nanoparticles were identified as the best nanomaterial for encapsulation in RBCs. Perimag-COOH-loaded RBCs proved to be viable cells showing a good magnetic particle spectroscopy performance, while the magnetic signal of synomag-D-COOH-loaded RBCs dropped sharply. Conclusion: Perimag-COOH-loaded RBCs could be a potential tool for MPI diagnostic applications.
Collapse
Affiliation(s)
- Antonella Antonelli
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Via Saffi 2, 61029, Urbino (PU), Italy
| | - Patryk Szwargulski
- Section for Biomedical Imaging, University Medical Center Hamburg-Eppendorf, Lottestr. 55, 22529, Hamburg, Germany.,Institute for Biomedical Imaging, Hamburg University of Technology, Am Schwarzenberg-Campus 3, 21073, Hamburg, Germany
| | - Emanuele-Salvatore Scarpa
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Via Saffi 2, 61029, Urbino (PU), Italy
| | - Florian Thieben
- Section for Biomedical Imaging, University Medical Center Hamburg-Eppendorf, Lottestr. 55, 22529, Hamburg, Germany.,Institute for Biomedical Imaging, Hamburg University of Technology, Am Schwarzenberg-Campus 3, 21073, Hamburg, Germany
| | - Grüttner Cordula
- Micromod Partikeltechnologie GmbH, Friedrich-Barnewitz-Str. 4 D-18119, Rostock, Germany
| | - Gianluca Ambrosi
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Via Saffi 2, 61029, Urbino (PU), Italy
| | - Loretta Guidi
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Via Saffi 2, 61029, Urbino (PU), Italy
| | - Peter Ludewig
- Department of Neurology, University Medical Center Hamburg-Eppendorf, 20251, Hamburg, Germany
| | - Tobias Knopp
- Section for Biomedical Imaging, University Medical Center Hamburg-Eppendorf, Lottestr. 55, 22529, Hamburg, Germany.,Institute for Biomedical Imaging, Hamburg University of Technology, Am Schwarzenberg-Campus 3, 21073, Hamburg, Germany
| | - Mauro Magnani
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Via Saffi 2, 61029, Urbino (PU), Italy
| |
Collapse
|
74
|
Shi Y, Lei G, Li Y, Zhang X, Peng R, Hu J, Yuan Z, Liu Y, Shen X, Sun N, Wang M, He Y, Wang J, Du J, Zhou L, Zhu X. In situ preparation of non-viral gene vectors with folate/magnetism dual targeting by hyperbranched polymers. Eur Polym J 2020. [DOI: 10.1016/j.eurpolymj.2020.109584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
75
|
Chandrasekharan P, Tay ZW, Hensley D, Zhou XY, Fung BKL, Colson C, Lu Y, Fellows BD, Huynh Q, Saayujya C, Yu E, Orendorff R, Zheng B, Goodwill P, Rinaldi C, Conolly S. Using magnetic particle imaging systems to localize and guide magnetic hyperthermia treatment: tracers, hardware, and future medical applications. Am J Cancer Res 2020; 10:2965-2981. [PMID: 32194849 PMCID: PMC7053197 DOI: 10.7150/thno.40858] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 01/27/2020] [Indexed: 01/07/2023] Open
Abstract
Magnetic fluid hyperthermia (MFH) treatment makes use of a suspension of superparamagnetic iron oxide nanoparticles, administered systemically or locally, in combination with an externally applied alternating magnetic field, to ablate target tissue by generating heat through a process called induction. The heat generated above the mammalian euthermic temperature of 37°C induces apoptotic cell death and/or enhances the susceptibility of the target tissue to other therapies such as radiation and chemotherapy. While most hyperthermia techniques currently in development are targeted towards cancer treatment, hyperthermia is also used to treat restenosis, to remove plaques, to ablate nerves and to alleviate pain by increasing regional blood flow. While RF hyperthermia can be directed invasively towards the site of treatment, non-invasive localization of heat through induction is challenging. In this review, we discuss recent progress in the field of RF magnetic fluid hyperthermia and introduce a new diagnostic imaging modality called magnetic particle imaging that allows for a focused theranostic approach encompassing treatment planning, treatment monitoring and spatially localized inductive heating.
Collapse
Affiliation(s)
- Prashant Chandrasekharan
- University of California Berkeley, Department of Bioengineering, Berkeley, CA 94720, United States,✉ Corresponding author: E-mail: ; Phone: +1 (510) 642 3420
| | - Zhi Wei Tay
- University of California Berkeley, Department of Bioengineering, Berkeley, CA 94720, United States
| | - Daniel Hensley
- Magnetic Insight, Inc., Alameda, CA 94501, United States
| | - Xinyi Y Zhou
- University of California Berkeley, Department of Bioengineering, Berkeley, CA 94720, United States
| | - Barry KL Fung
- University of California Berkeley, Department of Bioengineering, Berkeley, CA 94720, United States
| | - Caylin Colson
- University of California Berkeley, Department of Bioengineering, Berkeley, CA 94720, United States
| | - Yao Lu
- University of California Berkeley, Department of Bioengineering, Berkeley, CA 94720, United States
| | - Benjamin D Fellows
- University of California Berkeley, Department of Bioengineering, Berkeley, CA 94720, United States
| | - Quincy Huynh
- Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, CA 94720, United States
| | - Chinmoy Saayujya
- Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, CA 94720, United States
| | - Elaine Yu
- Magnetic Insight, Inc., Alameda, CA 94501, United States
| | - Ryan Orendorff
- Magnetic Insight, Inc., Alameda, CA 94501, United States
| | - Bo Zheng
- University of California Berkeley, Department of Bioengineering, Berkeley, CA 94720, United States
| | | | - Carlos Rinaldi
- University of Florida, J. Crayton Pruitt Family Department of Biomedical Engineering and Department of Chemical Engineering, FL, 32611 United States
| | - Steven Conolly
- University of California Berkeley, Department of Bioengineering, Berkeley, CA 94720, United States,Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, CA 94720, United States
| |
Collapse
|