51
|
Cui XF, Huang GS. Rhodium-catalyzed tandem acylmethylation/annulation of N-nitrosoanilines with sulfoxonium ylides for the synthesis of substituted indazole N-oxides. Org Biomol Chem 2020; 18:4014-4018. [DOI: 10.1039/d0ob00723d] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
An atom-economical protocol for synthesizing indazole N-oxides from readily available N-nitrosoanilines and sulfoxonium ylides through the rhodium(iii)-catalyzed C–H activation and cyclization reaction is described here.
Collapse
Affiliation(s)
- Xin-Feng Cui
- State Key Laboratory of Applied Organic Chemistry
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province
- Department of Chemistry
- Lanzhou University
- Lanzhou 730000
| | - Guo-Sheng Huang
- State Key Laboratory of Applied Organic Chemistry
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province
- Department of Chemistry
- Lanzhou University
- Lanzhou 730000
| |
Collapse
|
52
|
Shu B, Wang XT, Shen ZX, Che T, Zhong M, Song JL, Kang HJ, Xie H, Zhang L, Zhang SS. Iridium-catalyzed arylation of sulfoxonium ylides and arylboronic acids: a straightforward preparation of α-aryl ketones. Org Chem Front 2020. [DOI: 10.1039/d0qo00543f] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
A highly efficient iridium(iii)-catalyzed arylation coupling of sulfoxonium ylides with arylboronic acids to generate α-aryl ketones has been established for the first time.
Collapse
Affiliation(s)
- Bing Shu
- Center for Drug Research and Development
- Guangdong Pharmaceutical University
- Guangzhou
- China
- School of Pharmacy
| | - Xiao-Tong Wang
- Center for Drug Research and Development
- Guangdong Pharmaceutical University
- Guangzhou
- China
- School of Pharmacy
| | - Zi-Xuan Shen
- School of Pharmacy
- Guangdong Pharmaceutical University
- Guangzhou
- PR China
| | - Tong Che
- Center for Drug Research and Development
- Guangdong Pharmaceutical University
- Guangzhou
- China
| | - Mei Zhong
- School of Pharmacy
- Guangdong Pharmaceutical University
- Guangzhou
- PR China
| | - Jia-Lin Song
- School of Pharmacy
- Guangdong Pharmaceutical University
- Guangzhou
- PR China
| | - Hua-Jie Kang
- School of Pharmacy
- Guangdong Pharmaceutical University
- Guangzhou
- PR China
| | - Hui Xie
- Center for Drug Research and Development
- Guangdong Pharmaceutical University
- Guangzhou
- China
| | - Luyong Zhang
- Center for Drug Research and Development
- Guangdong Pharmaceutical University
- Guangzhou
- China
- Jiangsu Key Laboratory of Drug Screening
| | - Shang-Shi Zhang
- Center for Drug Research and Development
- Guangdong Pharmaceutical University
- Guangzhou
- China
- Guangzhou Key Laboratory of Construction and Application of New Drug Screening Model Systems
| |
Collapse
|
53
|
Karishma P, Agarwal DS, Laha B, Mandal SK, Sakhuja R. Ruthenium Catalyzed C-H Acylmethylation of N-Arylphthalazine-1,4-diones with α-Carbonyl Sulfoxonium Ylides: Highway to Diversely Functionalized Phthalazino-fused Cinnolines. Chem Asian J 2019; 14:4274-4288. [PMID: 31613428 DOI: 10.1002/asia.201901250] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 10/11/2019] [Indexed: 12/15/2022]
Abstract
A direct ortho-Csp2 -H acylmethylation of 2-aryl-2,3-dihydrophthalazine-1,4-diones with α-carbonyl sulfoxonium ylides is achieved through a RuII -catalyzed C-H bond activation process. The protocol featured high functional group tolerance on the two substrates, including aryl-, heteroaryl-, and alkyl-substituted α-carbonyl sulfoxonium ylides. Thereafter, 2-(ortho-acylmethylaryl)-2,3-dihydrophthalazine-1,4-diones were used as potential starting materials for the expeditious synthesis of 6-arylphthalazino[2,3-a]cinnoline-8,13-diones and 5-acyl-5,6-dihydrophthalazino[2,3-a]cinnoline-8,13-diones under Lawesson's reagent and BF3 ⋅OEt2 mediated conditions, respectively. Of these, the BF3 ⋅OEt2 -mediated cyclization proceeded in DMSO as a solvent and a methylene source via dual C-C and C-N bond formations.
Collapse
Affiliation(s)
- Pidiyara Karishma
- Department of Chemistry, Birla Institute of Technology and Science, Pilani, Rajasthan, 333031, India
| | - Devesh S Agarwal
- Department of Chemistry, Birla Institute of Technology and Science, Pilani, Rajasthan, 333031, India
| | - Biswajit Laha
- Department of Chemical Sciences, Indian Institute of Science Education and Research Mohali, Sector 81, SAS Nagar, Manuali P.O., Mohali, Punjab, 140306, India
| | - Sanjay K Mandal
- Department of Chemical Sciences, Indian Institute of Science Education and Research Mohali, Sector 81, SAS Nagar, Manuali P.O., Mohali, Punjab, 140306, India
| | - Rajeev Sakhuja
- Department of Chemistry, Birla Institute of Technology and Science, Pilani, Rajasthan, 333031, India
| |
Collapse
|
54
|
Herndon JW. The chemistry of the carbon-transition metal double and triple bond: Annual survey covering the year 2018. Coord Chem Rev 2019. [DOI: 10.1016/j.ccr.2019.213051] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
55
|
Lou J, Wang Q, Zhou YG, Yu Z. Rhodium(III)-Catalyzed Annulative Coupling of Sulfoxonium Ylides and Allenoates: An Arene C–H Activation/Cyclopropanation Cascade. Org Lett 2019; 21:9217-9222. [DOI: 10.1021/acs.orglett.9b03589] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Jiang Lou
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Quannan Wang
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Yong-Gui Zhou
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
| | - Zhengkun Yu
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, P. R. China
| |
Collapse
|
56
|
Li J, He H, Huang M, Chen Y, Luo Y, Yan K, Wang Q, Wu Y. Iridium-Catalyzed B–H Bond Insertion Reactions Using Sulfoxonium Ylides as Carbene Precursors toward α-Boryl Carbonyls. Org Lett 2019; 21:9005-9008. [PMID: 31689110 DOI: 10.1021/acs.orglett.9b03410] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Jianglian Li
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, P. R. China
| | - Hua He
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, P. R. China
| | - Mengyi Huang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, P. R. China
| | - Yuncan Chen
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, P. R. China
| | - Yi Luo
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, P. R. China
| | - Kaichuan Yan
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, P. R. China
| | - Qiantao Wang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, P. R. China
| | - Yong Wu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, P. R. China
| |
Collapse
|
57
|
Clare D, Dobson BC, Inglesby PA, Aïssa C. Chemospecific Cyclizations of α-Carbonyl Sulfoxonium Ylides on Aryls and Heteroaryls. Angew Chem Int Ed Engl 2019; 58:16198-16202. [PMID: 31507055 PMCID: PMC6856693 DOI: 10.1002/anie.201910821] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 09/10/2019] [Indexed: 11/07/2022]
Abstract
The functionalization of aryl and heteroaryls using α-carbonyl sulfoxonium ylides without the help of a directing group has remained so far a neglected area, despite the advantageous safety profile of sulfoxonium ylides. Described herein are the cyclizations of α-carbonyl sulfoxonium ylides onto benzenes, benzofurans and N-p-toluenesulfonyl indoles in the presence of a base in HFIP, whereas pyrroles and N-methyl indoles undergo cyclization in the presence of an iridium catalyst. Significantly, these two sets of conditions are chemospecific for each groups of substrates.
Collapse
Affiliation(s)
- Daniel Clare
- Department of ChemistryUniversity of LiverpoolCrown StreetLiverpoolL69 7ZDUK
| | - Benjamin C. Dobson
- Pharmaceutical Technology and DevelopmentAstraZeneca Macclesfield CampusCheshireSK10 2NAUK
| | - Phillip A. Inglesby
- Pharmaceutical Technology and DevelopmentAstraZeneca Macclesfield CampusCheshireSK10 2NAUK
| | - Christophe Aïssa
- Department of ChemistryUniversity of LiverpoolCrown StreetLiverpoolL69 7ZDUK
| |
Collapse
|
58
|
Wen S, Lv W, Ba D, Liu J, Cheng G. Ruthenium(ii)-catalyzed chemoselective deacylative annulation of 1,3-diones with sulfoxonium ylides via C-C bond activation. Chem Sci 2019; 10:9104-9108. [PMID: 31827753 PMCID: PMC6889838 DOI: 10.1039/c9sc03245b] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 08/09/2019] [Indexed: 12/11/2022] Open
Abstract
The first successful example of deacylative annulation of 1,3-diones with sulfoxonium ylides was achieved through Ru(ii)-catalyzed C-C bond activation. The excellent chemoselectivity and broad substrate scope render this method a practical and versatile approach for the preparation of (hetero)aryl and alkenyl substituted furans, which are valuable units in many biologically active compounds and functional materials. A preliminary mechanistic study reveals that this process involves a deacylative α-ruthenation to generate key alkyl Ru(ii) intermediates with the release of a benzoic acid fragment.
Collapse
Affiliation(s)
- Si Wen
- College of Materials Science & Engineering , Huaqiao University , Xiamen 361021 , China .
| | - Weiwei Lv
- College of Materials Science & Engineering , Huaqiao University , Xiamen 361021 , China .
| | - Dan Ba
- College of Materials Science & Engineering , Huaqiao University , Xiamen 361021 , China .
| | - Jing Liu
- College of Materials Science & Engineering , Huaqiao University , Xiamen 361021 , China .
| | - Guolin Cheng
- College of Materials Science & Engineering , Huaqiao University , Xiamen 361021 , China .
| |
Collapse
|
59
|
Clare D, Dobson BC, Inglesby PA, Aïssa C. Chemospecific Cyclizations of α‐Carbonyl Sulfoxonium Ylides on Aryls and Heteroaryls. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201910821] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Daniel Clare
- Department of ChemistryUniversity of Liverpool Crown Street Liverpool L69 7ZD UK
| | - Benjamin C. Dobson
- Pharmaceutical Technology and DevelopmentAstraZeneca Macclesfield Campus Cheshire SK10 2NA UK
| | - Phillip A. Inglesby
- Pharmaceutical Technology and DevelopmentAstraZeneca Macclesfield Campus Cheshire SK10 2NA UK
| | - Christophe Aïssa
- Department of ChemistryUniversity of Liverpool Crown Street Liverpool L69 7ZD UK
| |
Collapse
|
60
|
Cheng K, Chen J, Jin L, Zhou J, Jiang X, Yu C. Rhodium(III)-catalyzed one-pot synthesis of flavonoids from salicylaldehydes and sulfoxonium ylides. JOURNAL OF CHEMICAL RESEARCH 2019. [DOI: 10.1177/1747519819867230] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Rh(III)-catalyzed C–H activation of salicylaldehyde followed by an insertion reaction with sulfoxonium ylides and cyclization is applied to the synthesis of flavonoids. This one-pot strategy exhibits good functional group tolerance and gives flavones in moderate-to-good yields.
Collapse
Affiliation(s)
| | | | | | | | | | - Chuanming Yu
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, P.R. China
| |
Collapse
|
61
|
Yu J, Wen S, Ba D, Lv W, Chen Y, Cheng G. Rhodium(III)-Catalyzed Regioselective C3-H Acylmethylation of [2,2'-Bipyridine]-6-carboxamides with Sulfoxonium Ylides. Org Lett 2019; 21:6366-6369. [PMID: 31361496 DOI: 10.1021/acs.orglett.9b02253] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
A rhodium(III)-catalyzed C-H acylmethylation of tridentate [2,2'-bipyridine]-6-carboxamides was developed. A variety of [2,2'-bipyridine]-6-carboxamides could be monoalkylated exclusively at the C3 position with sulfoxonium ylides as carbene precursors, giving 3-alkylated products in high yields. This protocol proceeds through a rollover cyclometalation pathway, has a broad range scope of substrates, and exhibits excellent functional group tolerance.
Collapse
Affiliation(s)
- Jia Yu
- School of Medicine, College of Materials Science & Engineering , Huaqiao University , Xiamen 361021 , China
| | - Si Wen
- School of Medicine, College of Materials Science & Engineering , Huaqiao University , Xiamen 361021 , China
| | - Dan Ba
- School of Medicine, College of Materials Science & Engineering , Huaqiao University , Xiamen 361021 , China
| | - Weiwei Lv
- School of Medicine, College of Materials Science & Engineering , Huaqiao University , Xiamen 361021 , China
| | - Yanhui Chen
- School of Medicine, College of Materials Science & Engineering , Huaqiao University , Xiamen 361021 , China
| | - Guolin Cheng
- School of Medicine, College of Materials Science & Engineering , Huaqiao University , Xiamen 361021 , China
| |
Collapse
|
62
|
Li H, Wu C, Liu H, Wang J. Ruthenium(II)-Catalyzed C–H Acylmethylation between (Hetero)arenes and α-Cl Ketones/Sulfoxonium Ylides. J Org Chem 2019; 84:13262-13275. [DOI: 10.1021/acs.joc.9b01013] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Huihui Li
- Nano Science and Technology Institute, University of Science and Technology of China, 166 Ren Ai Road, Suzhou 215123, P. R. China
- State Key Laboratory of Drug Research and CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, P. R. China
| | - Chenglin Wu
- State Key Laboratory of Drug Research and CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, P. R. China
| | - Hong Liu
- State Key Laboratory of Drug Research and CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, P. R. China
| | - Jiang Wang
- State Key Laboratory of Drug Research and CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, P. R. China
| |
Collapse
|
63
|
Tang Z, Zhou Y, Song Q. Synthesis of Furoxans and Isoxazoles via Divergent [2 + 1 + 1 + 1] Annulations of Sulfoxonium Ylides and tBuONO. Org Lett 2019; 21:5273-5276. [DOI: 10.1021/acs.orglett.9b01876] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Zhonghe Tang
- Institute of Next Generation Matter Transformation, College of Material Sciences Engineering at Huaqiao University, 668 Jimei Boulevard, Xiamen, Fujian 361021, China
| | - Yao Zhou
- Institute of Next Generation Matter Transformation, College of Material Sciences Engineering at Huaqiao University, 668 Jimei Boulevard, Xiamen, Fujian 361021, China
| | - Qiuling Song
- Institute of Next Generation Matter Transformation, College of Material Sciences Engineering at Huaqiao University, 668 Jimei Boulevard, Xiamen, Fujian 361021, China
- Key Laboratory of Molecule Synthesis and Function Discovery, Fujian Province University, College of Chemistry at Fuzhou University, Fuzhou, Fujian 350108, China
- State Key Laboratroy of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
64
|
Suleman M, Li Z, Lu P, Wang Y. Copper-Catalyzed Dimerization of Sulfoxonium Ylides with 3-Diazoindolin-2-imines: A Practical and Efficient Approach to Spiro[cyclopropane-1,3′-indolin]-2′-imines. European J Org Chem 2019. [DOI: 10.1002/ejoc.201900675] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Muhammad Suleman
- Department of Chemistry; Zhejiang University; 310027 Hangzhou P. R. China
| | - Zhenmin Li
- Department of Chemistry; Zhejiang University; 310027 Hangzhou P. R. China
| | - Ping Lu
- Department of Chemistry; Zhejiang University; 310027 Hangzhou P. R. China
| | - Yanguang Wang
- Department of Chemistry; Zhejiang University; 310027 Hangzhou P. R. China
| |
Collapse
|
65
|
Chen P, Nan J, Hu Y, Ma Q, Ma Y. RuII-Catalyzed/NH2-Assisted Selective Alkenyl C–H [5 + 1] Annulation of Alkenylanilines with Sulfoxonium Ylides to Quinolines. Org Lett 2019; 21:4812-4815. [DOI: 10.1021/acs.orglett.9b01702] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Pu Chen
- Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi’an 710021, China
| | - Jiang Nan
- Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi’an 710021, China
| | - Yan Hu
- Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi’an 710021, China
| | - Qiong Ma
- Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi’an 710021, China
| | - Yangmin Ma
- Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi’an 710021, China
| |
Collapse
|
66
|
Xu G, Huang KL, Huang Z. Rh(III)‐Catalyzed Aldehydic C−H Functionalization Reaction between Salicylaldehydes and Sulfoxonium Ylides. Adv Synth Catal 2019. [DOI: 10.1002/adsc.201900276] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Guo‐Dong Xu
- Department of ChemistryZhejiang University Hangzhou 310058 People's Republic of China
| | - Kenneth L. Huang
- School of Chemistry and BiochemistryGeorgia Institute of Technology Atlanta GA 30332 USA
| | - Zhi‐Zhen Huang
- Department of ChemistryZhejiang University Hangzhou 310058 People's Republic of China
| |
Collapse
|
67
|
Beyond Friedel and Crafts: Directed Alkylation of C−H Bonds in Arenes. Angew Chem Int Ed Engl 2019; 58:7202-7236. [DOI: 10.1002/anie.201806629] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 08/13/2018] [Indexed: 11/07/2022]
|
68
|
Song X, Han X, Zhang R, Liu H, Wang J. Rhodium(III)-Catalyzed [4+2] Annulation via C-H Activation: Synthesis of Multi-Substituted Naphthalenone Sulfoxonium Ylides. Molecules 2019; 24:molecules24101884. [PMID: 31100874 PMCID: PMC6572249 DOI: 10.3390/molecules24101884] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Revised: 05/14/2019] [Accepted: 05/14/2019] [Indexed: 11/16/2022] Open
Abstract
A convenient Rh(III)-catalyzed C-H activation and cascade [4+2] annulation for the synthesis of naphthalenone sulfoxonium ylides has been developed. This method features perfect regioselectivity, mild and redox-neutral reaction conditions, and broad substrate tolerance with good to excellent yields. Preliminary mechanistic experiments were conducted and a plausible reaction mechanism was proposed. The new type naphthalenone sulfoxonium ylides could be further transformed into multi-substituted naphthols, which demonstrates the practical utility of this methodology.
Collapse
Affiliation(s)
- Xiaohan Song
- State Key Laboratory of Drug Research and CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.
- University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing 100049, China.
| | - Xu Han
- State Key Laboratory of Drug Research and CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.
- University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing 100049, China.
| | - Rui Zhang
- State Key Laboratory of Drug Research and CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.
- University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing 100049, China.
| | - Hong Liu
- State Key Laboratory of Drug Research and CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.
- University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing 100049, China.
| | - Jiang Wang
- State Key Laboratory of Drug Research and CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.
- University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing 100049, China.
| |
Collapse
|
69
|
|
70
|
Zhang L, Chen J, Chen J, Jin L, Zheng X, Jiang X, Yu C. Synthesis of 2-substituted indoles by iridium (III)-catalyzed C H functionalization of N-phenylpyridin-2-amines. Tetrahedron Lett 2019. [DOI: 10.1016/j.tetlet.2019.03.027] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
71
|
Evano G, Theunissen C. Jenseits von Friedel und Crafts: dirigierte Alkylierung von C‐H‐Bindungen in Arenen. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201806629] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Gwilherm Evano
- Laboratoire de Chimie OrganiqueService de Chimie et Physico-Chimie OrganiquesUniversité libre de Bruxelles (ULB) Avenue F.D. Roosevelt 50, CP160/06 1050 Brüssel Belgien
| | - Cédric Theunissen
- Laboratoire de Chimie OrganiqueService de Chimie et Physico-Chimie OrganiquesUniversité libre de Bruxelles (ULB) Avenue F.D. Roosevelt 50, CP160/06 1050 Brüssel Belgien
| |
Collapse
|
72
|
Li C, Li M, Zhong W, Jin Y, Li J, Wu W, Jiang H. Palladium-Catalyzed Oxidative Allylation of Sulfoxonium Ylides: Regioselective Synthesis of Conjugated Dienones. Org Lett 2019; 21:872-875. [DOI: 10.1021/acs.orglett.8b03606] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Chunsheng Li
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, Guangdong Engineering Research Center for Green Fine Chemicals, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, P. R. China
| | - Meng Li
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, Guangdong Engineering Research Center for Green Fine Chemicals, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, P. R. China
| | - Wentao Zhong
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, Guangdong Engineering Research Center for Green Fine Chemicals, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, P. R. China
| | - Yangbin Jin
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, Guangdong Engineering Research Center for Green Fine Chemicals, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, P. R. China
| | - Jianxiao Li
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, Guangdong Engineering Research Center for Green Fine Chemicals, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, P. R. China
| | - Wanqing Wu
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, Guangdong Engineering Research Center for Green Fine Chemicals, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, P. R. China
| | - Huanfeng Jiang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, Guangdong Engineering Research Center for Green Fine Chemicals, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, P. R. China
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, P. R. China
| |
Collapse
|
73
|
Baek Y, Kim J, Hyunseok Kim, Jung SJ, Ryu H, Kim S, Son JY, Um K, Han SH, Seo HJ, Heo J, Lee K, Baik MH, Lee PH. Selective C-C bond formation from rhodium-catalyzed C-H activation reaction of 2-arylpyridines with 3-aryl-2 H-azirines. Chem Sci 2019; 10:2678-2686. [PMID: 30996984 PMCID: PMC6419924 DOI: 10.1039/c8sc05142a] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2018] [Accepted: 01/05/2019] [Indexed: 12/02/2022] Open
Abstract
A novel method for the synthesis of acylmethyl-substituted 2-arylpyridine derivatives using 3-aryl-2H-azirines was developed.
A novel method for the synthesis of acylmethyl-substituted 2-arylpyridine derivatives using 3-aryl-2H-azirines was developed by exploring a prototype reaction using DFT-calculations and carrying out targeted experiments guided by the calculated mechanism. 2H-Azirine was initially hypothesized to ring-open at the metal center to furnish familiar metal nitrene complexes that may undergo C–N coupling. Computational studies quickly revealed and prototype experimental work confirmed that neither the formation of the expected metal nitrene complexes nor the C–N coupling were viable. Instead, azirine ring-opening followed by C–C coupling was found to be much more favorable to give imines that readily underwent hydrolysis in aqueous conditions to form acylmethyl-substituted products. This new method was highly versatile and selective toward a wide range of substrates with high functional group tolerance. The utility of the new method is demonstrated by a convenient one-pot synthesis of biologically relevant heterocycles such as pyridoisoindole and pyridoisoqunolinone.
Collapse
Affiliation(s)
- Yonghyeon Baek
- National Creative Research Initiative Center for Catalytic Organic Reactions , Department of Chemistry , Kangwon National University , Chuncheon 24341 , Republic of Korea .
| | - Jinwoo Kim
- Department of Chemistry , Korea Advanced Institute of Science and Technology (KAIST) , Daejeon 34141 , Republic of Korea . .,Center for Catalytic Hydrocarbon Functionalizations , Institute for Basic Science (IBS) , Daejeon 34141 , Republic of Korea
| | - Hyunseok Kim
- National Creative Research Initiative Center for Catalytic Organic Reactions , Department of Chemistry , Kangwon National University , Chuncheon 24341 , Republic of Korea .
| | - Seung Jin Jung
- National Creative Research Initiative Center for Catalytic Organic Reactions , Department of Chemistry , Kangwon National University , Chuncheon 24341 , Republic of Korea .
| | - Ho Ryu
- Department of Chemistry , Korea Advanced Institute of Science and Technology (KAIST) , Daejeon 34141 , Republic of Korea . .,Center for Catalytic Hydrocarbon Functionalizations , Institute for Basic Science (IBS) , Daejeon 34141 , Republic of Korea
| | - Suyeon Kim
- Department of Chemistry , Korea Advanced Institute of Science and Technology (KAIST) , Daejeon 34141 , Republic of Korea . .,Center for Catalytic Hydrocarbon Functionalizations , Institute for Basic Science (IBS) , Daejeon 34141 , Republic of Korea
| | - Jeong-Yu Son
- National Creative Research Initiative Center for Catalytic Organic Reactions , Department of Chemistry , Kangwon National University , Chuncheon 24341 , Republic of Korea .
| | - Kyusik Um
- National Creative Research Initiative Center for Catalytic Organic Reactions , Department of Chemistry , Kangwon National University , Chuncheon 24341 , Republic of Korea .
| | - Sang Hoon Han
- National Creative Research Initiative Center for Catalytic Organic Reactions , Department of Chemistry , Kangwon National University , Chuncheon 24341 , Republic of Korea .
| | - Hyung Jin Seo
- National Creative Research Initiative Center for Catalytic Organic Reactions , Department of Chemistry , Kangwon National University , Chuncheon 24341 , Republic of Korea .
| | - Juyoung Heo
- National Creative Research Initiative Center for Catalytic Organic Reactions , Department of Chemistry , Kangwon National University , Chuncheon 24341 , Republic of Korea .
| | - Kooyeon Lee
- Department of Bio-Health Technology , Kangwon National University , Chuncheon 24341 , Republic of Korea
| | - Mu-Hyun Baik
- Department of Chemistry , Korea Advanced Institute of Science and Technology (KAIST) , Daejeon 34141 , Republic of Korea . .,Center for Catalytic Hydrocarbon Functionalizations , Institute for Basic Science (IBS) , Daejeon 34141 , Republic of Korea
| | - Phil Ho Lee
- National Creative Research Initiative Center for Catalytic Organic Reactions , Department of Chemistry , Kangwon National University , Chuncheon 24341 , Republic of Korea .
| |
Collapse
|
74
|
Wu C, Zhou J, He G, Li H, Yang Q, Wang R, Zhou Y, Liu H. Ruthenium(ii)-catalyzed selective C–H bond activation of imidamides and coupling with sulfoxonium ylides: an efficient approach for the synthesis of highly functional 3-ketoindoles. Org Chem Front 2019. [DOI: 10.1039/c9qo00048h] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Ruthenium-catalyzed selective C–H bond activation of imidamides and annulation of sulfoxonium ylides were achieved, which afforded a series of 3-ketoindole derivatives in good yields, with good functional group compatibility.
Collapse
Affiliation(s)
- Chenglin Wu
- School of Pharmacy
- China Pharmaceutical University
- Nanjing 210009
- China
- State Key Laboratory of Drug Research and CAS Key Laboratory of Receptor Research
| | - Jianhui Zhou
- State Key Laboratory of Drug Research and CAS Key Laboratory of Receptor Research
- Shanghai Institute of Materia Medica
- Chinese Academy of Sciences
- Shanghai 201203
- China
| | - Guoxue He
- State Key Laboratory of Drug Research and CAS Key Laboratory of Receptor Research
- Shanghai Institute of Materia Medica
- Chinese Academy of Sciences
- Shanghai 201203
- China
| | - Huihui Li
- State Key Laboratory of Drug Research and CAS Key Laboratory of Receptor Research
- Shanghai Institute of Materia Medica
- Chinese Academy of Sciences
- Shanghai 201203
- China
| | - Qiaolan Yang
- State Key Laboratory of Drug Research and CAS Key Laboratory of Receptor Research
- Shanghai Institute of Materia Medica
- Chinese Academy of Sciences
- Shanghai 201203
- China
| | - Run Wang
- State Key Laboratory of Drug Research and CAS Key Laboratory of Receptor Research
- Shanghai Institute of Materia Medica
- Chinese Academy of Sciences
- Shanghai 201203
- China
| | - Yu Zhou
- State Key Laboratory of Drug Research and CAS Key Laboratory of Receptor Research
- Shanghai Institute of Materia Medica
- Chinese Academy of Sciences
- Shanghai 201203
- China
| | - Hong Liu
- School of Pharmacy
- China Pharmaceutical University
- Nanjing 210009
- China
- State Key Laboratory of Drug Research and CAS Key Laboratory of Receptor Research
| |
Collapse
|
75
|
Nie R, Lai R, Lv S, Xu Y, Guo L, Wang Q, Wu Y. Water-mediated C–H activation of arenes with secure carbene precursors: the reaction and its application. Chem Commun (Camb) 2019; 55:11418-11421. [PMID: 31482875 DOI: 10.1039/c9cc05804d] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
A water-mediated C–H activation using sulfoxonium ylides is reported, providing a general, green and step-economic approach to construct a C–C bond and varieties of useful N-heterocycle scaffolds.
Collapse
Affiliation(s)
- Ruifang Nie
- Sichuan Engineering Laboratory for Plant-Sourced Drug and Research Center for Drug Industrial Technology
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry
- West China School of Pharmacy
- Sichuan University
- Chengdu
| | - Ruizhi Lai
- Sichuan Engineering Laboratory for Plant-Sourced Drug and Research Center for Drug Industrial Technology
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry
- West China School of Pharmacy
- Sichuan University
- Chengdu
| | - Songyang Lv
- Sichuan Engineering Laboratory for Plant-Sourced Drug and Research Center for Drug Industrial Technology
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry
- West China School of Pharmacy
- Sichuan University
- Chengdu
| | - Yingying Xu
- Sichuan Engineering Laboratory for Plant-Sourced Drug and Research Center for Drug Industrial Technology
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry
- West China School of Pharmacy
- Sichuan University
- Chengdu
| | - Li Guo
- Sichuan Engineering Laboratory for Plant-Sourced Drug and Research Center for Drug Industrial Technology
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry
- West China School of Pharmacy
- Sichuan University
- Chengdu
| | - Qiantao Wang
- Sichuan Engineering Laboratory for Plant-Sourced Drug and Research Center for Drug Industrial Technology
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry
- West China School of Pharmacy
- Sichuan University
- Chengdu
| | - Yong Wu
- Sichuan Engineering Laboratory for Plant-Sourced Drug and Research Center for Drug Industrial Technology
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry
- West China School of Pharmacy
- Sichuan University
- Chengdu
| |
Collapse
|
76
|
Xie W, Chen X, Shi J, Li J, Liu R. Synthesis of 1-aminoindole derivatives via Rh(iii)-catalyzed annulation reactions of hydrazines with sulfoxonium ylides. Org Chem Front 2019. [DOI: 10.1039/c9qo00524b] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Rhodium(iii)-catalyzed C–H functionalization followed by intramolecular annulation reactions between hydrazines and sulfoxonium ylides is described.
Collapse
Affiliation(s)
- Wucheng Xie
- Foshan City Engineering & Technology Research Center for Bioactive Natural Products & Functional Chemicals
- School of Environment and Chemical Engineering
- Foshan University
- Foshan 528000
- China
| | - Xin Chen
- Foshan City Engineering & Technology Research Center for Bioactive Natural Products & Functional Chemicals
- School of Environment and Chemical Engineering
- Foshan University
- Foshan 528000
- China
| | - Junjun Shi
- Foshan City Engineering & Technology Research Center for Bioactive Natural Products & Functional Chemicals
- School of Environment and Chemical Engineering
- Foshan University
- Foshan 528000
- China
| | - Jieshen Li
- Foshan City Engineering & Technology Research Center for Bioactive Natural Products & Functional Chemicals
- School of Environment and Chemical Engineering
- Foshan University
- Foshan 528000
- China
| | - Riyao Liu
- Foshan City Engineering & Technology Research Center for Bioactive Natural Products & Functional Chemicals
- School of Environment and Chemical Engineering
- Foshan University
- Foshan 528000
- China
| |
Collapse
|
77
|
Yu Y, Wu Q, Liu D, Yu L, Tan Z, Zhu G. Synthesis of 1-naphthols via Cp*Co(iii)-catalyzed C–H activation and cyclization of sulfoxonium ylides with alkynes. Org Chem Front 2019. [DOI: 10.1039/c9qo00994a] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A highly practical synthesis of 1-naphthols was developed via Cp*Co(iii)-catalyzed C–H activation and cyclization between sulfoxonium ylides and alkynes.
Collapse
Affiliation(s)
- Yongqi Yu
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Hunan University
- Changsha 410082
- P. R. China
| | - Qianlong Wu
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Hunan University
- Changsha 410082
- P. R. China
| | - Da Liu
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Hunan University
- Changsha 410082
- P. R. China
| | - Lin Yu
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Hunan University
- Changsha 410082
- P. R. China
| | - Ze Tan
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Hunan University
- Changsha 410082
- P. R. China
| | - Gangguo Zhu
- Department of Chemistry
- Zhejiang Normal University
- Jinhua 321004
- P. R. China
| |
Collapse
|
78
|
Janot C, Palamini P, Dobson BC, Muir J, Aïssa C. Palladium-Catalyzed Synthesis of Bis-Substituted Sulfoxonium Ylides. Org Lett 2018; 21:296-299. [DOI: 10.1021/acs.orglett.8b03744] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Christopher Janot
- Department of Chemistry, University of Liverpool, Crown Street, Liverpool L69 7ZD, United Kingdom
| | - Pierre Palamini
- Department of Chemistry, University of Liverpool, Crown Street, Liverpool L69 7ZD, United Kingdom
| | - Benjamin C. Dobson
- Pharmaceutical Technology and Development, AstraZeneca R&D, Silk Road Business Park, Charter Way, Macclesfield, Cheshire SK10 2NA, United Kingdom
| | - James Muir
- Pharmaceutical Technology and Development, AstraZeneca R&D, Silk Road Business Park, Charter Way, Macclesfield, Cheshire SK10 2NA, United Kingdom
| | - Christophe Aïssa
- Department of Chemistry, University of Liverpool, Crown Street, Liverpool L69 7ZD, United Kingdom
| |
Collapse
|
79
|
Li Q, Wang Y, Li B, Wang B. Cp*Co(III)-Catalyzed Regioselective Synthesis of Cyclopenta[b]carbazoles via Dual C(sp2)–H Functionalization of 1-(Pyridin-2-yl)-indoles with Diynes. Org Lett 2018; 20:7884-7887. [DOI: 10.1021/acs.orglett.8b03438] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
| | | | | | - Baiquan Wang
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, People’s Republic of China
| |
Collapse
|
80
|
Liang YF, Yang L, Rogge T, Ackermann L. Ruthenium(IV) Intermediates in C−H Activation/Annulation by Weak O
-Coordination. Chemistry 2018; 24:16548-16552. [DOI: 10.1002/chem.201804734] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Indexed: 11/08/2022]
Affiliation(s)
- Yu-Feng Liang
- Institut für Organische und Biomolekulare Chemie; Georg-August-Universität Göttingen; Tammannstraße 2 37077 Gottingen Germany
| | - Long Yang
- Institut für Organische und Biomolekulare Chemie; Georg-August-Universität Göttingen; Tammannstraße 2 37077 Gottingen Germany
| | - Torben Rogge
- Institut für Organische und Biomolekulare Chemie; Georg-August-Universität Göttingen; Tammannstraße 2 37077 Gottingen Germany
| | - Lutz Ackermann
- Institut für Organische und Biomolekulare Chemie; Georg-August-Universität Göttingen; Tammannstraße 2 37077 Gottingen Germany
| |
Collapse
|