51
|
Apostolides DE, Patrickios CS. Dynamic covalent polymer hydrogels and organogels crosslinked through acylhydrazone bonds: synthesis, characterization and applications. POLYM INT 2018. [DOI: 10.1002/pi.5554] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
52
|
Zhang T, Tang Y, Zhang W, Liu S, Zhao Y, Wang W, Wang J, Xu L, Liu K. Sustained drug release and cancer treatment by an injectable and biodegradable cyanoacrylate-based local drug delivery system. J Mater Chem B 2018; 6:1216-1225. [PMID: 32254182 DOI: 10.1039/c7tb03066e] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Sustained drug release at specific sites is clinically favorable for the treatment of many diseases. The discovery of new polymeric materials suitable for prolonging drug release, improving therapeutic efficiency, and decreasing systemic toxicity is always of great interest in local sustained-release drug delivery systems (LSRDDSs). In this study, a new cross-linked cyanoacrylate (CA)-based LSRDDS is developed, in which the drug depot consists of a formulation of methoxyethyl cyanoacrylate (MOE-CA) with the cross-linking agent CA-PEG-CA. The MOE-CA endowed the CA polymer with good degradability. The drug-release profile could be affected by the structure and composition ratio of the MOE-CA/CA-PEG-CA monomer. The liquid CA monomer could dissolve the drug without using other solvents, and could polymerize into a solid glue just in a few seconds after injection. An optimal formulation loaded with 5-fluorouracil (J-Fu-1.25) showed excellent anticancer activity both in vitro and in vivo, with 50% survival of the mice and no significant systemic toxicity detected during the experiment. The CA depot might affect the blood flow in microvessels of tumors, thus contributing to the synergetic anticancer effect of 5-fluorouracil. We believe that this work provides a practical, biodegradable, and biocompatible LSRDDS for chemotherapeutic drug delivery that can also be applied universally with various drugs for certain therapeutic aims.
Collapse
Affiliation(s)
- Tao Zhang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, 27 Taiping Road, Beijing, 100850, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
53
|
Ferreira N, Ferreira L, Cardoso V, Boni F, Souza A, Gremião M. Recent advances in smart hydrogels for biomedical applications: From self-assembly to functional approaches. Eur Polym J 2018. [DOI: 10.1016/j.eurpolymj.2017.12.004] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
54
|
Lee JH, Kim KY, Jin H, Baek YE, Choi Y, Jung SH, Lee SS, Bae J, Jung JH. Self-Assembled Coumarin Nanoparticle in Aqueous Solution as Selective Mitochondrial-Targeting Drug Delivery System. ACS APPLIED MATERIALS & INTERFACES 2018; 10:3380-3391. [PMID: 29302967 DOI: 10.1021/acsami.7b17711] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The development of specifically targeted nanoparticles for subcellular organelles modified with a low-molecular-weight organic compound as drug nanocarriers can bring about wide applications in cancer therapy. However, their utility has been hampered by low selectivity, poor biodistribution, and limited efficiency. Herein, we report the aggregation behavior of a triphenylphosphonium-appended coumarin probe (TPP-C) in an aqueous solution and its applications as a mitochondria-targeting probe, and drug delivery carrier, which is a rare example for a low molecular-weight organic compound. The TPP-C formed homogeneous nanoparticles with small diameters in water as well as in mixtures of organic solvents and water. In pure water, the homogeneous nanoparticles induced J-aggregation, whereas in mixed solvents, the homogeneous nanoparticles induced H-aggregation. The luminescence intensities of nanoparticles originated from the aggregation-induced emission (AIE) effect in pure water and also in mixtures of organic solvents and water. These findings indicate that the AIE effect of TPP-C was dependent on the solvent. More interestingly, the TPP-C nanoparticles selectively accumulated in mitochondria. The TPP-C nanoparticles alone exhibited noncytotoxicity toward cancer cells. However, with the encapsulation of the anticancer drug doxorubicin (DOX) into the TPP-C nanoparticles, the DOX was efficiently delivered to the mitochondria. These results indicated that the proposed system demonstrates promise as a platform for future clinical medication, particularly for specific suborganelle-targeted drug delivery systems for cancer therapy.
Collapse
Affiliation(s)
- Ji Ha Lee
- Department of Chemistry and Research Institute of Natural Sciences, Gyeongsang National University , Jinju 52828, Korea
| | - Ka Young Kim
- Department of Chemistry and Research Institute of Natural Sciences, Gyeongsang National University , Jinju 52828, Korea
| | - Hanyong Jin
- School of Pharmacy, Chung-Ang University , Seoul 06974, Korea
| | - Yeong Eun Baek
- Department of Chemistry and Research Institute of Natural Sciences, Gyeongsang National University , Jinju 52828, Korea
| | - Yeonweon Choi
- Department of Chemistry and Research Institute of Natural Sciences, Gyeongsang National University , Jinju 52828, Korea
| | - Sung Ho Jung
- Department of Chemistry and Research Institute of Natural Sciences, Gyeongsang National University , Jinju 52828, Korea
| | - Shim Sung Lee
- Department of Chemistry and Research Institute of Natural Sciences, Gyeongsang National University , Jinju 52828, Korea
| | - Jeehyeon Bae
- School of Pharmacy, Chung-Ang University , Seoul 06974, Korea
| | - Jong Hwa Jung
- Department of Chemistry and Research Institute of Natural Sciences, Gyeongsang National University , Jinju 52828, Korea
| |
Collapse
|
55
|
Huang J, Jiang X. Injectable and Degradable pH-Responsive Hydrogels via Spontaneous Amino-Yne Click Reaction. ACS APPLIED MATERIALS & INTERFACES 2018; 10:361-370. [PMID: 29235844 DOI: 10.1021/acsami.7b18141] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Injectable hydrogels have attracted increasing attention in tissue regeneration and local drug delivery applications. Current click reactions for preparing injectable hydrogels often require a photoinitiator or catalyst, which may be toxic and may involve complex synthesis of precursors. Here, we report a facile and inexpensive method to prepare injectable and degradable hydrogels via spontaneous amino-yne click reaction without using any initiator or catalyst under physiological conditions based on telechelic electron-deficient dipropiolate ester of polyethylene glycol and water-soluble commercially available carboxymethyl chitosan (CMC). The gelation time, mechanical property, and degradation rate of the hydrogels could be adjusted by varying CMC concentrations and stoichiometric ratios. The reversible pH-induced sol-gel transitions of the hydrogel are presented and the pH-controlled drug release behaviors are demonstrated, of which the mechanism is discussed. In vitro cytotoxicity assays and in vivo in situ injection study of the CMC-based hydrogels showed favorable gel formation, nontoxicity, and good tissue biocompatibility. Therefore, these biodegradable and injectable hydrogels prepared by spontaneous amino-yne click reaction hold potential for tissue engineering and other biomedical applications.
Collapse
Affiliation(s)
- Jiachang Huang
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University , Luojia Hill, Wuhan 430072, P. R. China
| | - Xulin Jiang
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University , Luojia Hill, Wuhan 430072, P. R. China
| |
Collapse
|
56
|
Ning P, Lü S, Bai X, Wu X, Gao C, Wen N, Liu M. High encapsulation and localized delivery of curcumin from an injectable hydrogel. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 83:121-129. [PMID: 29208269 DOI: 10.1016/j.msec.2017.11.022] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Revised: 10/01/2017] [Accepted: 11/21/2017] [Indexed: 12/15/2022]
Abstract
Most chemotherapy currently available for cancer treatment has limited potential to successful clinical cancer therapy, mainly due to low encapsulating capacity of drugs and unavailable pharmacologically beneficial concentrations at the tumor site. Herein, a novel yet simple strategy is developed to enhance drug encapsulating capacity and localized drug concentration using an injectable hydrogel based on thiolated chitosan (TCS) and poly(ethylene glycol) diacrylate (PEGDA). Almost 100% of encapsulating capacity is achieved when anti-cancer drug curcumin is encapsulated in the system. The interaction of curcumin with PEGDA is determined by fluorescence spectroscopy and the binding constant is calculated, followed by a simulation by a docking study using AutoDock. To improve the anti-tumor activity and achieve effective local concentrations, lysozyme is introduced into the system. Sustained curcumin release in a controlled lysozyme-responsive behaviour is observed, which enables the drug concentration to reach the therapeutic threshold promptly. The system displays efficient intracellular curcumin release to promote cancer cells apoptosis in vitro. In addition, the system effectively delays the tumor growth and reduces adverse effects in tumor-bearing nude mice. The strategy of localized, high encapsulation of drug by using an injectable hydrogel would be particularly beneficial with many insoluble anti-cancer drugs.
Collapse
Affiliation(s)
- Piao Ning
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province and Department of Chemistry, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Shaoyu Lü
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province and Department of Chemistry, Lanzhou University, Lanzhou 730000, People's Republic of China.
| | - Xiao Bai
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province and Department of Chemistry, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Xue Wu
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province and Department of Chemistry, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Chunmei Gao
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province and Department of Chemistry, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Na Wen
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province and Department of Chemistry, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Mingzhu Liu
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province and Department of Chemistry, Lanzhou University, Lanzhou 730000, People's Republic of China.
| |
Collapse
|
57
|
Antimicrobial colloidal hydrogels assembled by graphene oxide and thermo-sensitive nanogels for cell encapsulation. J Colloid Interface Sci 2017; 513:314-323. [PMID: 29161646 DOI: 10.1016/j.jcis.2017.11.018] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Revised: 11/07/2017] [Accepted: 11/07/2017] [Indexed: 01/18/2023]
Abstract
Hydrogels are promising 3D materials that have demonstrated increasing applications in the encapsulation and delivery of drugs and cells. Herein we report an injectable colloidal hydrogel that directly assembled by graphene oxide (GO) and thermo-sensitive nanogels (tNG). The pH dependent hydrogen bonding interactions between the carboxyl and oxethyl groups induce the reversible assembly of GO and nanogels. The hydrogel is mouldable and can be shaped into different macroscopic objects, and the mechanical strengths are tunable with pH and temperature adjustment. The hybrid hydrogel by its own possesses high antibacterial activity, and demonstrates responsive drug release behaviour and high viability of 3D encapsulated cells. We expect this hybrid colloidal hydrogel can serve as an interesting scaffold for active cargo delivery and cell culture.
Collapse
|
58
|
Facile fabrication of redox/pH dual stimuli responsive cellulose hydrogel. Carbohydr Polym 2017; 176:299-306. [DOI: 10.1016/j.carbpol.2017.08.085] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 08/16/2017] [Accepted: 08/18/2017] [Indexed: 11/23/2022]
|
59
|
Alginate hydrogel improves anti-angiogenic bevacizumab activity in cancer therapy. Eur J Pharm Biopharm 2017; 119:271-282. [DOI: 10.1016/j.ejpb.2017.06.028] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 04/09/2017] [Accepted: 06/28/2017] [Indexed: 01/30/2023]
|
60
|
Chen Y, Liu W, Zeng G, Liu Y. Microporous PDMAEMA-based stimuli-responsive hydrogel and its application in drug release. J Appl Polym Sci 2017. [DOI: 10.1002/app.45326] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Yi Chen
- Key Laboratory of Advanced Materials and Technology for Packaging, College of Packaging and Materials Engineering; Hunan University of Technology; Zhuzhou 412007 China
- College of Architecture and Urban Planning; Hunan University of Technology; Zhuzhou 412007 China
| | - Wenyong Liu
- Key Laboratory of Advanced Materials and Technology for Packaging, College of Packaging and Materials Engineering; Hunan University of Technology; Zhuzhou 412007 China
| | - Guangsheng Zeng
- Key Laboratory of Advanced Materials and Technology for Packaging, College of Packaging and Materials Engineering; Hunan University of Technology; Zhuzhou 412007 China
| | - YueJun Liu
- Key Laboratory of Advanced Materials and Technology for Packaging, College of Packaging and Materials Engineering; Hunan University of Technology; Zhuzhou 412007 China
| |
Collapse
|
61
|
Yang PP, Luo Q, Qi GB, Gao YJ, Li BN, Zhang JP, Wang L, Wang H. Host Materials Transformable in Tumor Microenvironment for Homing Theranostics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2017; 29:1605869. [PMID: 28195446 DOI: 10.1002/adma.201605869] [Citation(s) in RCA: 104] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 12/09/2016] [Indexed: 06/06/2023]
Abstract
A pathology-adaptive nanosystem, in which nest-like hosts are built based on nanofibers that are transformed from i.v. injected nanoparticles under the acidic tumor microenvironment. The solid tumor is artificially modified by nest-like hosts readily and firmly, resulting in highly efficient accumulation and stabilization of guest theranostics. This strategy shows great potential for the theranostics delivery to tumors.
Collapse
Affiliation(s)
- Pei-Pei Yang
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), No. 11 Beiyitiao, Zhongguancun, Beijing, 100190, China
| | - Qiang Luo
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), No. 11 Beiyitiao, Zhongguancun, Beijing, 100190, China
- Faculty of Chemistry, Northeast Normal University, Changchun, 130024, China
| | - Guo-Bin Qi
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), No. 11 Beiyitiao, Zhongguancun, Beijing, 100190, China
| | - Yu-Juan Gao
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), No. 11 Beiyitiao, Zhongguancun, Beijing, 100190, China
| | - Bing-Nan Li
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), No. 11 Beiyitiao, Zhongguancun, Beijing, 100190, China
- Faculty of Chemistry, Northeast Normal University, Changchun, 130024, China
| | - Jing-Ping Zhang
- Faculty of Chemistry, Northeast Normal University, Changchun, 130024, China
| | - Lei Wang
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), No. 11 Beiyitiao, Zhongguancun, Beijing, 100190, China
| | - Hao Wang
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), No. 11 Beiyitiao, Zhongguancun, Beijing, 100190, China
| |
Collapse
|
62
|
Qu F, Ma X, Zhu L, Chen F. Switchable electrode functionalized with an azobenzene-containing copolymer thin film using the Langmuir–Schaefer technique for a “smart” uric acid/air fuel cell. Electrochem commun 2017. [DOI: 10.1016/j.elecom.2017.01.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
|
63
|
Wang J, He H, Cooper R, Yang H. In Situ-Forming Polyamidoamine Dendrimer Hydrogels with Tunable Properties Prepared via Aza-Michael Addition Reaction. ACS APPLIED MATERIALS & INTERFACES 2017; 9:10494-10503. [PMID: 28263553 PMCID: PMC5818279 DOI: 10.1021/acsami.7b00221] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
In this work, we describe synthesis and characterization of novel in situ-forming polyamidoamine (PAMAM) dendrimer hydrogels (DHs) with tunable properties prepared via highly efficient aza-Michael addition reaction. PAMAM dendrimer G5 was chosen as the underlying core and functionalized with various degrees of acetylation using acetic anhydride. The nucleophilic amines on the dendrimer surface reacted with α, β-unsaturated ester in acrylate groups of polyethylene glycol diacrylate (PEG-DA, Mn = 575 g/mol) via aza-Michael addition reaction to form dendrimer hydrogels without the use of any catalyst. The solidification time, rheological behavior, network structure, swelling, and degradation properties of the hydrogel were tuned by adjusting the dendrimer surface acetylation degree and dendrimer concentration. The DHs were shown to be highly cytocompatible and support cell adhesion and proliferation. We also prepared an injectable dendrimer hydrogel formulation to deliver the anticancer drug 5-fluorouracil (5-FU) and demonstrated that the injectable formulation efficiently inhibited tumor growth following intratumoral injection. Taken together, this new class of dendrimer hydrogel prepared by aza-Michael addition reaction can serve as a safe tunable platform for drug delivery and tissue engineering.
Collapse
Affiliation(s)
- Juan Wang
- Department of Chemical and Life Science Engineering, Virginia Commonwealth University, Richmond, Virginia 23219, United States
| | - Hongliang He
- Department of Chemical and Life Science Engineering, Virginia Commonwealth University, Richmond, Virginia 23219, United States
| | - Remy Cooper
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, Virginia 23284, United States
| | - Hu Yang
- Department of Chemical and Life Science Engineering, Virginia Commonwealth University, Richmond, Virginia 23219, United States
- Department of Pharmaceutics, Virginia Commonwealth University, Richmond, Virginia 23298, United States
- Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia 23298, United States
| |
Collapse
|
64
|
Lu D, Zhang Y, Li Y, Luo C, Wang X, Guan X, Ma H, Zhao X, Wei Q, Lei Z. Preparation and properties of reversible hydrogels based on triblock poly(amino acid)s with tunable pH‐responsivity across a broad range. JOURNAL OF POLYMER SCIENCE PART A: POLYMER CHEMISTRY 2017; 55:207-212. [DOI: 10.1002/pola.28375] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Affiliation(s)
- Dedai Lu
- Key Laboratory of Eco‐environment‐related Polymer Materials Ministry of Education, Key Laboratory of Polymer Materials of Gansu Province, School of Chemistry and Chemical Engineering Northwest Normal University Lanzhou 730070 People's Republic of China
| | - Yongyong Zhang
- Key Laboratory of Eco‐environment‐related Polymer Materials Ministry of Education, Key Laboratory of Polymer Materials of Gansu Province, School of Chemistry and Chemical Engineering Northwest Normal University Lanzhou 730070 People's Republic of China
| | - Yunfei Li
- Key Laboratory of Eco‐environment‐related Polymer Materials Ministry of Education, Key Laboratory of Polymer Materials of Gansu Province, School of Chemistry and Chemical Engineering Northwest Normal University Lanzhou 730070 People's Republic of China
| | - Chen Luo
- Key Laboratory of Eco‐environment‐related Polymer Materials Ministry of Education, Key Laboratory of Polymer Materials of Gansu Province, School of Chemistry and Chemical Engineering Northwest Normal University Lanzhou 730070 People's Republic of China
| | - Xiangya Wang
- Key Laboratory of Eco‐environment‐related Polymer Materials Ministry of Education, Key Laboratory of Polymer Materials of Gansu Province, School of Chemistry and Chemical Engineering Northwest Normal University Lanzhou 730070 People's Republic of China
| | - Xiaolin Guan
- Key Laboratory of Eco‐environment‐related Polymer Materials Ministry of Education, Key Laboratory of Polymer Materials of Gansu Province, School of Chemistry and Chemical Engineering Northwest Normal University Lanzhou 730070 People's Republic of China
| | - Hengchang Ma
- Key Laboratory of Eco‐environment‐related Polymer Materials Ministry of Education, Key Laboratory of Polymer Materials of Gansu Province, School of Chemistry and Chemical Engineering Northwest Normal University Lanzhou 730070 People's Republic of China
| | - Xiaolong Zhao
- Key Laboratory of Eco‐environment‐related Polymer Materials Ministry of Education, Key Laboratory of Polymer Materials of Gansu Province, School of Chemistry and Chemical Engineering Northwest Normal University Lanzhou 730070 People's Republic of China
| | - Qiangbing Wei
- Key Laboratory of Eco‐environment‐related Polymer Materials Ministry of Education, Key Laboratory of Polymer Materials of Gansu Province, School of Chemistry and Chemical Engineering Northwest Normal University Lanzhou 730070 People's Republic of China
| | - Ziqiang Lei
- Key Laboratory of Eco‐environment‐related Polymer Materials Ministry of Education, Key Laboratory of Polymer Materials of Gansu Province, School of Chemistry and Chemical Engineering Northwest Normal University Lanzhou 730070 People's Republic of China
| |
Collapse
|
65
|
Singh Chandel AK, Kannan D, Nutan B, Singh S, Jewrajka SK. Dually crosslinked injectable hydrogels of poly(ethylene glycol) and poly[(2-dimethylamino)ethyl methacrylate]-b-poly(N-isopropyl acrylamide) as a wound healing promoter. J Mater Chem B 2017; 5:4955-4965. [DOI: 10.1039/c7tb00848a] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
PEG-based dually crosslinked injectable hydrogels have been developed through extremely simple chemistry which avoids use of small molecular weight crosslinker, formation of by-products and involved low heat change. The hydrogels are useful for wound healing and soft tissue regeneration.
Collapse
Affiliation(s)
- Arvind K. Singh Chandel
- Reverse Osmosis Membrane Division
- academy of Scientific and Innovative Research
- CSIR-Central Salt and Marine Chemicals Research Institute G. B. Marg
- Bhavnagar
- India
| | - Deepika Kannan
- Department of Life Science
- Shiv Nadar University
- India
- Special Centre for Molecular Medicine
- Jawaharlal Nehru University
| | - Bhingaradiya Nutan
- Reverse Osmosis Membrane Division
- academy of Scientific and Innovative Research
- CSIR-Central Salt and Marine Chemicals Research Institute G. B. Marg
- Bhavnagar
- India
| | - Shailja Singh
- Department of Life Science
- Shiv Nadar University
- India
- Special Centre for Molecular Medicine
- Jawaharlal Nehru University
| | - Suresh K. Jewrajka
- Reverse Osmosis Membrane Division
- academy of Scientific and Innovative Research
- CSIR-Central Salt and Marine Chemicals Research Institute G. B. Marg
- Bhavnagar
- India
| |
Collapse
|
66
|
Cheng M, Peng W, Hua P, Chen Z, Sheng J, Yang J, Wu Y. In situ formation of pH-responsive Prussian blue for photoacoustic imaging and photothermal therapy of cancer. RSC Adv 2017. [DOI: 10.1039/c7ra01879g] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Dual pH-responsive theranostic agent reduces the background signal in photoacoustic imaging and non-specific heating of normal tissues in photothermal therapy.
Collapse
Affiliation(s)
- Ming Cheng
- Department of General Surgery
- The Second Affiliated Hospital of Soochow University
- Suzhou 215007
- China
| | - Wei Peng
- Department of General Surgery
- The Second Affiliated Hospital of Soochow University
- Suzhou 215007
- China
| | - Peng Hua
- Department of General Surgery
- The Second Affiliated Hospital of Soochow University
- Suzhou 215007
- China
| | - Zhengrong Chen
- Department of General Surgery
- The Second Affiliated Hospital of Soochow University
- Suzhou 215007
- China
| | - Jia Sheng
- Department of General Surgery
- The Second Affiliated Hospital of Soochow University
- Suzhou 215007
- China
| | - Juan Yang
- Sanitation & Environment Technology Institute
- Soochow University
- Suzhou 215123
- China
| | - Yongyou Wu
- Department of General Surgery
- The Second Affiliated Hospital of Soochow University
- Suzhou 215007
- China
| |
Collapse
|
67
|
Injectable and responsively degradable hydrogel for personalized photothermal therapy. Biomaterials 2016; 104:129-37. [DOI: 10.1016/j.biomaterials.2016.07.013] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Revised: 06/17/2016] [Accepted: 07/10/2016] [Indexed: 11/22/2022]
|
68
|
Juriga D, Nagy K, Jedlovszky-Hajdú A, Perczel-Kovách K, Chen YM, Varga G, Zrínyi M. Biodegradation and Osteosarcoma Cell Cultivation on Poly(aspartic acid) Based Hydrogels. ACS APPLIED MATERIALS & INTERFACES 2016; 8:23463-23476. [PMID: 27541725 DOI: 10.1021/acsami.6b06489] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Development of novel biodegradable and biocompatible scaffold materials with optimal characteristics is important for both preclinical and clinical applications. The aim of the present study was to analyze the biodegradability of poly(aspartic acid)-based hydrogels, and to test their usability as scaffolds for MG-63 osteoblast-like cells. Poly(aspartic acid) was fabricated from poly(succinimide) and hydrogels were prepared using natural amines as cross-linkers (diaminobutane and cystamine). Disulfide bridges were cleaved to thiol groups and the polymer backbone was further modified with RGD sequence. Biodegradability of the hydrogels was evaluated by experiments on the base of enzymes and cell culture medium. Poly(aspartic acid) hydrogels possessing only disulfide bridges as cross-links proved to be degradable by collagenase I. The MG-63 cells showed healthy, fibroblast-like morphology on the double cross-linked and RGD modified hydrogels. Thiolated poly(aspartic acid) based hydrogels provide ideal conditions for adhesion, survival, proliferation, and migration of osteoblast-like cells. The highest viability was found on the thiolated PASP gels while the RGD motif had influence on compacted cluster formation of the cells. These biodegradable and biocompatible poly(aspartic acid)-based hydrogels are promising scaffolds for cell cultivation.
Collapse
Affiliation(s)
- Dávid Juriga
- Laboratory of Nanochemistry, Department of Biophysics and Radiation Biology, Semmelweis University , Nagyvárad tér 4., H-1089 Budapest, Hungary
| | - Krisztina Nagy
- Department of Oral Biology, Semmelweis University , Nagyvárad tér 4., H-1089 Budapest, Hungary
| | - Angéla Jedlovszky-Hajdú
- Laboratory of Nanochemistry, Department of Biophysics and Radiation Biology, Semmelweis University , Nagyvárad tér 4., H-1089 Budapest, Hungary
| | - Katalin Perczel-Kovách
- Department of Oral Biology, Semmelweis University , Nagyvárad tér 4., H-1089 Budapest, Hungary
- Department in Community Dentistry, Semmelweis University , Üllői út 26., H-1085 Budapest, Hungary
| | - Yong Mei Chen
- State Key Laboratory for Strength and Vibration of Mechanical Structures, International Center for Applied Mechanics and School of Aerospace, Xi'an Jiaotong University , Xi'an 710049, China
| | - Gábor Varga
- Department of Oral Biology, Semmelweis University , Nagyvárad tér 4., H-1089 Budapest, Hungary
| | - Miklós Zrínyi
- Laboratory of Nanochemistry, Department of Biophysics and Radiation Biology, Semmelweis University , Nagyvárad tér 4., H-1089 Budapest, Hungary
- MTA-SE Molecular Biophysics Research Group, Hungarian Academy of Sciences , Széchenyi István tér 9., 1051 Budapest, Hungary
| |
Collapse
|
69
|
Li H, Tian J, Wu A, Wang J, Ge C, Sun Z. Self-assembled silk fibroin nanoparticles loaded with binary drugs in the treatment of breast carcinoma. Int J Nanomedicine 2016; 11:4373-80. [PMID: 27621628 PMCID: PMC5015876 DOI: 10.2147/ijn.s108633] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Self-assembled nanoparticles of the natural polymer, silk fibroin (SF), are a very promising candidate in drug delivery due to their biocompatible and biodegradable properties. In this study, SF nanoparticles loaded with 5-fluorouracil (5-FU) and curcumin with size 217±0.4 nm and with a loading efficacy of 45% and 15% for 5-FU and curcumin, respectively, were prepared. The in vitro release effect of 5-FU and curcumin from nanoparticles was evaluated as ~100% and ~5%, respectively. It has been revealed that the application of such a nanodrug can increase the level of reactive oxygen species, which in turn induces apoptosis of cancer cells in vitro. Animal studies have shown that tumors could be noticeably reduced after being injected with the drug-entrapped nanoparticles. More apoptotic cells were found after 7 days of treatment with SF nanoparticles by a hematoxylin–eosin staining assay. These results demonstrate the future potential of nanoparticle-loaded binary drugs in the treatment of breast cancer.
Collapse
Affiliation(s)
- Hui Li
- School of Biological and Basic Medical Science
| | - Jian Tian
- School of Biological and Basic Medical Science; School of Radiological & Interdisciplinary Sciences, Soochow University
| | - Anqing Wu
- School of Radiological & Interdisciplinary Sciences, Soochow University
| | - Jiamin Wang
- School of Biological and Basic Medical Science
| | - Cuicui Ge
- School of Radiological & Interdisciplinary Sciences, Soochow University
| | - Ziling Sun
- School of Biological and Basic Medical Science; School of Radiological & Interdisciplinary Sciences, Soochow University; Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou, Jiangsu, People's Republic of China
| |
Collapse
|
70
|
pH-Triggered Sustained Drug Delivery from a Polymer Micelle having the β-Thiopropionate Linkage. Macromol Rapid Commun 2016; 37:1499-506. [DOI: 10.1002/marc.201600260] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Indexed: 12/30/2022]
|
71
|
In situ injection of phenylboronic acid based low molecular weight gels for efficient chemotherapy. Biomaterials 2016; 105:1-11. [PMID: 27497056 DOI: 10.1016/j.biomaterials.2016.07.025] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Revised: 07/16/2016] [Accepted: 07/19/2016] [Indexed: 12/18/2022]
Abstract
Injectable low molecular weight gels (LMWGs) based on the derivatives of phenylboronic acid were prepared and used as substrates for efficient in situ chemotherapy. The gelators as well as LMWGs were characterized by (1)H NMR, UV-vis, FTIR, MS and SEM. Anticancer drug doxorubicin hydrochloride (DOX) was encapsulated in the gels. The rheological properties and rapid recovery capability of both blank and drug-loaded gels were tested. The LMWGs were non-toxic to both 3T3 fibroblasts and 4T1 breast cancer cells. The gels were formed rapidly after injected in vivo. The in vivo anticancer activities of DOX-loaded LMWGs were investigated in breast cancer bearing mice. The intratumoral injection of DOX loaded LMWGs with dose of 30 mg/kg revealed that the gels could coat around the tumor tissues to release DOX sustainingly and maintain effective DOX concentration for chemotherapy. The systemic toxicity of DOX was reduced significantly with the in situ administration of LMWGs formulations. The injectable LMWGs exhibited excellent therapeutic efficacy and low side effects in local chemotherapy.
Collapse
|
72
|
Norouzi M, Nazari B, Miller DW. Injectable hydrogel-based drug delivery systems for local cancer therapy. Drug Discov Today 2016; 21:1835-1849. [PMID: 27423369 DOI: 10.1016/j.drudis.2016.07.006] [Citation(s) in RCA: 333] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Revised: 07/05/2016] [Accepted: 07/07/2016] [Indexed: 01/17/2023]
Abstract
Common chemotherapy is often associated with adverse effects in normal cells and tissues. As an alternative approach, localized chemotherapy can diminish the toxicity of systemic chemotherapy while providing a sustained release of the chemotherapeutics at the target tumor site. Therefore, injectable biodegradable hydrogels as drug delivery systems for chemotherapeutics have become a matter of importance. Here, we review the application of a variety of injectable hydrogel-based drug delivery systems, including thermosensitive, pH-sensitive, photosensitive, dual-sensitive, as well as active targeting hydrogels, for the treatment of different types of cancer. Generally, injectable hydrogel-based drug delivery systems are found to be more efficacious than the conventional systemic chemotherapy in terms of cancer treatment.
Collapse
Affiliation(s)
- Mohammad Norouzi
- Graduate Program of Biomedical Engineering, University of Manitoba, Winnipeg, MB, Canada; Department of Nanotechnology and Tissue Engineering, Stem Cell Technology Research Center, Tehran, Iran.
| | - Bahareh Nazari
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Donald W Miller
- Graduate Program of Biomedical Engineering, University of Manitoba, Winnipeg, MB, Canada; Department of Pharmacology and Therapeutics, University of Manitoba, Winnipeg, MB, Canada.
| |
Collapse
|
73
|
Wu H, Liu S, Xiao L, Dong X, Lu Q, Kaplan DL. Injectable and pH-Responsive Silk Nanofiber Hydrogels for Sustained Anticancer Drug Delivery. ACS APPLIED MATERIALS & INTERFACES 2016; 8:17118-26. [PMID: 27315327 DOI: 10.1021/acsami.6b04424] [Citation(s) in RCA: 134] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Silk is useful as a drug carrier due to its biocompatibility, tunable degradation, and outstanding capacity in maintaining the function of drugs. Injectable silk hydrogels could deliver doxorubicin (DOX) for localized chemotherapy for breast cancer. To improve hydrogel properties, thixotropic silk nanofiber hydrogels in an all-aqueous solution were prepared and used to locally deliver DOX. The silk hydrogels displayed thixotropic capacity, allowing for easy injectability followed by solidification in situ. The hydrogels were loaded with DOX and released the drug over eight weeks with pH- and concentration-dependent release kinetics. In vitro and in vivo studies demonstrated that DOX-loaded silk hydrogels had good antitumor response, outperforming the equivalent dose of free DOX administered intravenously. Thixotropic silk hydrogels provide improved injectability to support sustained release, suggesting promising applications for localized chemotherapy.
Collapse
Affiliation(s)
- Hongchun Wu
- Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University , Suzhou 215123, P.R. China
| | - Shanshan Liu
- Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University , Suzhou 215123, P.R. China
| | - Liying Xiao
- Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University , Suzhou 215123, P.R. China
- National Engineering Laboratory for Modern Silk, Soochow University , Suzhou 215123, P.R. China
| | - Xiaodan Dong
- Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University , Suzhou 215123, P.R. China
- National Engineering Laboratory for Modern Silk, Soochow University , Suzhou 215123, P.R. China
| | - Qiang Lu
- Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University , Suzhou 215123, P.R. China
- National Engineering Laboratory for Modern Silk, Soochow University , Suzhou 215123, P.R. China
| | - David L Kaplan
- Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University , Suzhou 215123, P.R. China
- Department of Biomedical Engineering, Tufts University , Medford, Massachusetts 02155, United States
| |
Collapse
|
74
|
Popescu MT, Liontos G, Avgeropoulos A, Voulgari E, Avgoustakis K, Tsitsilianis C. Injectable Hydrogel: Amplifying the pH Sensitivity of a Triblock Copolypeptide by Conjugating the N-Termini via Dynamic Covalent Bonding. ACS APPLIED MATERIALS & INTERFACES 2016; 8:17539-17548. [PMID: 27341446 DOI: 10.1021/acsami.6b03977] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
We explore the self-assembly behavior of aqueous solutions of an amphiphilic, pH-sensitive poly(l-alanine)-b-poly(l-glutamic acid)-b-poly(l-alanine), (A5E11A5) triblock copolypeptide, end-capped by benzaldehyde through Schiff base reaction. At elevated concentrations and under physiological pH (7.4) and ionic strength (0.15M), the bare copolypeptide aqueous solutions underwent a sol-gel transition after heating and slow cooling thermal treatment, forming opaque stiff gels due to a hierarchical self-assembly that led to the formation of β-sheet-based twisted super fibers (Popescu et al. Soft Matter 2015, 11, 331-342). The conjugation of the N-termini with benzaldehyde (Bz) through a Schiff base reaction amplifies the copolypeptide pH-sensitivity within a narrow pH window relevant for in vivo applications. Specifically, the dynamic character of the imine bond allowed coupling/decoupling of the Bz upon switching pH. The presence of Bz conjugates to the N-termini of the copolypeptide resulted in enhanced packing of the elementary superfibers into thick and short piles, which inhibited the ability of the system for gelation. However, partial cleavage of Bz upon lowering pH to 6.5 prompted recovery of the hydrogel. The sol-gel transition triggered by pH was reversible, due to the coupling/decoupling of the benzoic-imine dynamic covalent bonding, endowing thus the gelling system with injectability. Undesirably, the gelation temperature window was significantly reduced, which however can be regulated at physiological temperatures by using a suitable mixture of the bare and the Bz-conjugated coplypeptide. This triblock copolypeptide gelator was investigated as a scaffold for the encapsulation of polymersome nanocarriers, loaded with a hydrophilic model drug, calcein. The polymersome/polypeptide complex system showed prolonged probe release in pH 6.5, which is relevant to extracellular tumor environment, rendering the system potentially useful for sustained delivery of anticancer drugs locally in the tumor.
Collapse
Affiliation(s)
| | - George Liontos
- Department of Materials Science and Engineering, University of Ioannina , University Campus, 45110 Ioannina, Greece
| | - Apostolos Avgeropoulos
- Department of Materials Science and Engineering, University of Ioannina , University Campus, 45110 Ioannina, Greece
| | | | | | | |
Collapse
|
75
|
Chen Y, Liu WY, Zeng GS. Stimulus-responsive hydrogels reinforced by cellulose nanowhisker for controlled drug release. RSC Adv 2016. [DOI: 10.1039/c6ra14421g] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Hybrid hydrogels (W–C gels), composed of PDMAEMA, cellulose nanowhisker (CNW) and carboxymethyl chitosan (CMCS), were prepared for developing a stimuli-responsive drug-release system.
Collapse
Affiliation(s)
- Y. Chen
- Institute of Packaging and Materials Engineering
- Department of Polymer Materials and Engineering
- Hunan University of Technology
- Zhuzhou 412008
- China
| | - W. Y. Liu
- Institute of Packaging and Materials Engineering
- Department of Polymer Materials and Engineering
- Hunan University of Technology
- Zhuzhou 412008
- China
| | - G. S. Zeng
- Institute of Packaging and Materials Engineering
- Department of Polymer Materials and Engineering
- Hunan University of Technology
- Zhuzhou 412008
- China
| |
Collapse
|
76
|
Yang S, Zhu F, Wang Q, Liang F, Qu X, Gan Z, Yang Z. Nano-rods of doxorubicin with poly(l-glutamic acid) as a carrier-free formulation for intratumoral cancer treatment. J Mater Chem B 2016; 4:7283-7292. [DOI: 10.1039/c6tb02127a] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Nano-rods of doxorubicin (DOX) were prepared by co-assembly with poly(l-glutamic acid) (PGA) and demonstrated a desired release profile for intratumoral administration that significantly prolonged the survival time of tumor-bearing mice.
Collapse
Affiliation(s)
- Saina Yang
- State Key Laboratory of Polymer Physics and Chemistry
- Institute of Chemistry
- Chinese Academy of Sciences
- Beijing 100190
- China
| | - Feiyan Zhu
- College of Materials Science and Opto-Electronic Technology
- University of Chinese Academy of Sciences
- Beijing 100049
- China
| | - Qian Wang
- State Key Laboratory of Polymer Physics and Chemistry
- Institute of Chemistry
- Chinese Academy of Sciences
- Beijing 100190
- China
| | - Fuxin Liang
- State Key Laboratory of Polymer Physics and Chemistry
- Institute of Chemistry
- Chinese Academy of Sciences
- Beijing 100190
- China
| | - Xiaozhong Qu
- State Key Laboratory of Polymer Physics and Chemistry
- Institute of Chemistry
- Chinese Academy of Sciences
- Beijing 100190
- China
| | - Zhihua Gan
- College of Life Science and Technology
- Beijing University of Chemical Technology
- Beijing 100029
- China
| | - Zhenzhong Yang
- State Key Laboratory of Polymer Physics and Chemistry
- Institute of Chemistry
- Chinese Academy of Sciences
- Beijing 100190
- China
| |
Collapse
|
77
|
Che Y, Li D, Liu Y, Ma Q, Tan Y, Yue Q, Meng F. Physically cross-linked pH-responsive chitosan-based hydrogels with enhanced mechanical performance for controlled drug delivery. RSC Adv 2016. [DOI: 10.1039/c6ra16746b] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A novel physically cross-linked pH-responsive hydrogel with enhanced mechanical performance was prepared from chitosan, acrylic acid and (2-dimethylamino) ethyl methacrylate via in situ free radical polymerization for controlled drug delivery.
Collapse
Affiliation(s)
- YuJu Che
- Marine College
- Shandong University
- Weihai 264209
- PR China
| | - Dongping Li
- Marine College
- Shandong University
- Weihai 264209
- PR China
| | - Yulong Liu
- Marine College
- Shandong University
- Weihai 264209
- PR China
| | - Qinglin Ma
- Marine College
- Shandong University
- Weihai 264209
- PR China
| | - Yebang Tan
- School of Chemistry and Chemical Engineering
- Shandong University
- Jinan 250100
- PR China
| | - Qinyan Yue
- School of Environmental Science and Engineering
- Shandong University
- Jinan 250100
- PR China
| | - Fanjun Meng
- Marine College
- Shandong University
- Weihai 264209
- PR China
| |
Collapse
|
78
|
Deng J, Liu X, Ma L, Cheng C, Sun S, Zhao C. Switching biological functionalities of biointerfaces via dynamic covalent bonds. J Mater Chem B 2016; 4:694-703. [DOI: 10.1039/c5tb02072g] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
We construct a stimuli responsive biointerface via a dynamic covalent bond that could switch its surface biofunctionalities on demand. The switchability is achieved via reversible attaching/detaching of aldehyde end-functionalized biomacromolecules.
Collapse
Affiliation(s)
- Jie Deng
- College of Polymer Science and Engineering
- State Key Laboratory of Polymer Materials and Engineering
- Sichuan University
- Chengdu 610065
- China
| | - Xinyue Liu
- College of Polymer Science and Engineering
- State Key Laboratory of Polymer Materials and Engineering
- Sichuan University
- Chengdu 610065
- China
| | - Lang Ma
- College of Polymer Science and Engineering
- State Key Laboratory of Polymer Materials and Engineering
- Sichuan University
- Chengdu 610065
- China
| | - Chong Cheng
- College of Polymer Science and Engineering
- State Key Laboratory of Polymer Materials and Engineering
- Sichuan University
- Chengdu 610065
- China
| | - Shudong Sun
- College of Polymer Science and Engineering
- State Key Laboratory of Polymer Materials and Engineering
- Sichuan University
- Chengdu 610065
- China
| | - Changsheng Zhao
- College of Polymer Science and Engineering
- State Key Laboratory of Polymer Materials and Engineering
- Sichuan University
- Chengdu 610065
- China
| |
Collapse
|
79
|
Fakhari A, Anand Subramony J. Engineered in-situ depot-forming hydrogels for intratumoral drug delivery. J Control Release 2015; 220:465-475. [PMID: 26585504 DOI: 10.1016/j.jconrel.2015.11.014] [Citation(s) in RCA: 119] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Revised: 11/11/2015] [Accepted: 11/12/2015] [Indexed: 01/17/2023]
Abstract
Chemotherapy is the traditional treatment for intermediate and late stage cancers. The search for treatment options with minimal side effects has been ongoing for several years. Drug delivery technologies that result in minimal or no side effects with improved ease of use for the patients are receiving increased attention. Polymer drug conjugates and nanoparticles can potentially offset the volume of drug distribution while enhancing the accumulation of the active drug in tumors thereby reducing side effects. Additionally, development of localized drug delivery platforms is being investigated as another key approach to target tumors with minimal or no toxicity. Development of in-situ depot-forming gel systems for intratumoral delivery of immuno-oncology actives can enhance drug bioavailability to the tumor site and reduce systemic toxicity. This field of drug delivery is critical to develop given the advent of immunotherapy and the availability of novel biological molecules for treating solid tumors. This article reviews the advances in the field of engineered in-situ gelling platforms as a practical tool for local delivery of active oncolytic agents to tumor sites.
Collapse
Affiliation(s)
- Amir Fakhari
- Drug Delivery and Device Development, Medimmune LLC, United States
| | | |
Collapse
|
80
|
Qi X, Wei W, Li J, Liu Y, Hu X, Zhang J, Bi L, Dong W. Fabrication and Characterization of a Novel Anticancer Drug Delivery System: Salecan/Poly(methacrylic acid) Semi-interpenetrating Polymer Network Hydrogel. ACS Biomater Sci Eng 2015; 1:1287-1299. [PMID: 33429676 DOI: 10.1021/acsbiomaterials.5b00346] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Salecan is a novel linear extracellular polysaccharide with a linear backbone of 1-3-linked glucopyranosyl units. Salecan is suitable for preparing hydrogels for biomedical applications due to its prominent physicochemical and biological profiles. In this contribution, a variety of innovative semi-interpenetrating polymer network (semi-IPN) hydrogels consisting of Salecan and poly(methacrylic acid) (PMAA) were developed via free radical polymerization for controlled drug delivery. The successful fabrication of the semi-IPNs was verified by Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), and thermogravimetric (TGA) measurements. Scanning electron microscopy (SEM) and rheology analyses demonstrated that the morphological and mechanical behaviors of the resultant hydrogels were strongly affected by the contents of Salecan and cross-linker N,N'-methylenebis(acrylamide) (BIS). Moreover, the swelling properties of these hydrogels were systematically investigated, and the results indicated that they exhibited pH sensitivity. The drug delivery applications of such fabricated hydrogels were further evaluated from which doxorubicin (Dox) was chosen as a model drug for in vitro release and cell viability studies. It was found that the Dox release from the Dox-loaded hydrogels was significantly accelerated when the pH of the release media decreased from 7.4 to 5.0. Toxicity assays confirmed that the blank hydrogels had negligible toxicity to normal cells, whereas the Dox-loaded hydrogels remained high in cytotoxicity for A549 and HepG2 cancer cells. All of these attributes implied that the new proposed semi-IPNs serve as potential drug delivery platforms for cancer therapy.
Collapse
Affiliation(s)
- Xiaoliang Qi
- Center for Molecular Metabolism, Nanjing University of Science & Technology, Nanjing 210094, China
| | - Wei Wei
- Center for Molecular Metabolism, Nanjing University of Science & Technology, Nanjing 210094, China
| | - Junjian Li
- Center for Molecular Metabolism, Nanjing University of Science & Technology, Nanjing 210094, China
| | - Yucheng Liu
- Center for Molecular Metabolism, Nanjing University of Science & Technology, Nanjing 210094, China
| | - Xinyu Hu
- Center for Molecular Metabolism, Nanjing University of Science & Technology, Nanjing 210094, China
| | - Jianfa Zhang
- Center for Molecular Metabolism, Nanjing University of Science & Technology, Nanjing 210094, China
| | - Lirong Bi
- The First Bethune Hospital of Jilin University, ChangChun 130000, China
| | - Wei Dong
- Center for Molecular Metabolism, Nanjing University of Science & Technology, Nanjing 210094, China
| |
Collapse
|
81
|
Das D, Ghosh P, Ghosh A, Haldar C, Dhara S, Panda AB, Pal S. Stimulus-Responsive, Biodegradable, Biocompatible, Covalently Cross-Linked Hydrogel Based on Dextrin and Poly(N-isopropylacrylamide) for in Vitro/in Vivo Controlled Drug Release. ACS APPLIED MATERIALS & INTERFACES 2015; 7:14338-51. [PMID: 26069986 DOI: 10.1021/acsami.5b02975] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
A novel stimulus-sensitive covalently cross-linked hydrogel derived from dextrin, N-isopropylacrylamide, and N,N'-methylene bis(acrylamide) (c-Dxt/pNIPAm), has been synthesized via Michael type addition reaction for controlled drug release application. The chemical structure of c-Dxt/pNIPAm has been confirmed through Fourier transform infrared (FTIR) spectroscopy and (1)H and (13)C NMR spectral analyses. The surface morphology of the hydrogel has been studied by field emission scanning electron microscopic (FE-SEM) and environmental scanning electron microscopic (E-SEM) analyses. The stimulus responsiveness of the hydrogel was studied through equilibrium swelling in various pH media at 25 and 37 °C. Rheological study was performed to measure the gel strength and gelation time. Noncytotoxicity of c-Dxt/pNIPAm hydrogel has been studied using human mesenchymal stem cells (hMSCs). The biodegradability of c-Dxt/pNIPAm was confirmed using hen egg lysozyme. The in vitro and in vivo release studies of ornidazole and ciprofloxacin imply that c-Dxt/pNIPAm delivers both drugs in a controlled way and would be an excellent alternative for a dual drug carrier. The FTIR, powder X-ray diffraction (XRD), and UV-vis-near infrared (NIR) spectra along with the computational study predict that the drugs remain in the matrix through physical interaction. A stability study signifies that the drugs (ornidazole ∼97% and ciprofloxacin ∼98%) are stable in the tablet formulations for up to 3 months.
Collapse
Affiliation(s)
- Dipankar Das
- †Polymer Chemistry Laboratory, Department of Applied Chemistry, Indian School of Mines, Dhanbad 826004, India
| | | | - Animesh Ghosh
- §Departmental of Pharmaceutical Sciences, Birla Institutes of Technology, Mesra, Ranchi, Jharkhand 835215, India
| | - Chanchal Haldar
- †Polymer Chemistry Laboratory, Department of Applied Chemistry, Indian School of Mines, Dhanbad 826004, India
| | | | - Asit Baran Panda
- ∥Discipline of Inorganic Materials and Catalysis, Central Salt and Marine Chemicals Research Institute (CSIR), Bhavnagar, Gujarat 364002, India
| | - Sagar Pal
- †Polymer Chemistry Laboratory, Department of Applied Chemistry, Indian School of Mines, Dhanbad 826004, India
| |
Collapse
|