51
|
Wang HF, Ran R, Liu Y, Hui Y, Zeng B, Chen D, Weitz DA, Zhao CX. Tumor-Vasculature-on-a-Chip for Investigating Nanoparticle Extravasation and Tumor Accumulation. ACS NANO 2018; 12:11600-11609. [PMID: 30380832 DOI: 10.1021/acsnano.8b06846] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Nanoparticle tumor accumulation relies on a key mechanism, the enhanced permeability and retention (EPR) effect, but it remains challenging to decipher the exact impact of the EPR effect. Animal models in combination with imaging modalities are useful, but it is impossible to delineate the roles of multiple biological barriers involved in nanoparticle tumor accumulation. Here we report a microfluidic tumor-vasculature-on-a-chip (TVOC) mimicking two key biological barriers, namely, tumor leaky vasculature and 3D tumor tissue with dense extracellular matrix (ECM), to study nanoparticle extravasation through leaky vasculature and the following accumulation in tumor tissues. Intact 3D tumor vasculature was developed with selective permeability of small molecules (20 kDa) but not large ones (70 kDa). The permeability was further tuned by cytokine stimulation, demonstrating the independent control of the leaky tumor vasculature. Combined with tumor spheroids in dense ECM, our TVOC model is capable of predicting nanoparticles' in vivo tumor accumulation, thus providing a powerful platform for nanoparticle evaluation.
Collapse
Affiliation(s)
- Hao-Fei Wang
- Australian Institute for Bioengineering and Nanotechnology , The University of Queensland , St Lucia , QLD 4072 , Australia
| | - Rui Ran
- Australian Institute for Bioengineering and Nanotechnology , The University of Queensland , St Lucia , QLD 4072 , Australia
| | - Yun Liu
- Australian Institute for Bioengineering and Nanotechnology , The University of Queensland , St Lucia , QLD 4072 , Australia
| | - Yue Hui
- Australian Institute for Bioengineering and Nanotechnology , The University of Queensland , St Lucia , QLD 4072 , Australia
| | - Bijun Zeng
- Diamantina Institute , The University of Queensland , St Lucia , QLD 4072 , Australia
| | - Dong Chen
- State Key Laboratory of Fluid Power and Mechatronic Systems , Zhejiang University , Zheda Road, No. 38 , Hangzhou , 310027 , People's Republic of China
- Institute of Process Equipment, College of Energy Engineering , Zhejiang University , Zheda Road, No. 38 , Hangzhou , 310027 , People's Republic of China
| | - David A Weitz
- John A. Paulson School of Engineering and Applied Sciences and Department of Physics , Harvard University , Cambridge , Massachusetts 02138 , United States
| | - Chun-Xia Zhao
- Australian Institute for Bioengineering and Nanotechnology , The University of Queensland , St Lucia , QLD 4072 , Australia
| |
Collapse
|
52
|
Niu X, Chen J, Gao J. Nanocarriers as a powerful vehicle to overcome blood-brain barrier in treating neurodegenerative diseases: Focus on recent advances. Asian J Pharm Sci 2018; 14:480-496. [PMID: 32104476 PMCID: PMC7032222 DOI: 10.1016/j.ajps.2018.09.005] [Citation(s) in RCA: 98] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 08/26/2018] [Accepted: 09/01/2018] [Indexed: 02/08/2023] Open
Abstract
Neurodegenerative diseases including Alzheimer's disease, Parkinson's disease, Huntington disease and amyotrophic lateral sclerosis throw a heavy burden on families and society. Related scientific researches make tardy progress. One reason is that the known pathogeny is just the tip of the iceberg. Another reason is that various physiological barriers, especially blood-brain barrier (BBB), hamper effective therapeutic substances from reaching site of action. Drugs in clinical treatment of neurodegenerative diseases are basically administered orally. And generally speaking, the brain targeting efficiency is pretty low. Nano-delivery technology brings hope for neurodegenerative diseases. The use of nanocarriers encapsulating molecules such as peptides and genomic medicine may enhance drug transport through the BBB in neurodegenerative disease and target relevant regions in the brain for regenerative processes. In this review, we discuss BBB composition and applications of nanocarriers -liposomes, nanoparticles, nanomicelles and new emerging exosomes in neurodegenerative diseases. Furthermore, the disadvantages and the potential neurotoxicity of nanocarriers according pharmacokinetics theory are also discussed.
Collapse
Affiliation(s)
- Xiaoqian Niu
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jiejian Chen
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China.,Key Laboratory of Cancer Prevention and Intervention, the Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Jianqing Gao
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
53
|
Ji J, Thwaite R, Roher N. Oral Intubation of Adult Zebrafish: A Model for Evaluating Intestinal Uptake of Bioactive Compounds. J Vis Exp 2018. [PMID: 30320745 DOI: 10.3791/58366] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Most pathogens invade organisms through their mucosa. This is particularly true in fish as they are continuously exposed to a microbial-rich water environment. Developing effective methods for oral delivery of immunostimulants or vaccines, which activate the immune system against infectious diseases, is highly desirable. In devising prophylactic tools, good experimental models are needed to test their performance. Here, we show a method for oral intubation of adult zebrafish and a set of procedures to dissect and prepare the intestine for cytometry, confocal microscopy and quantitative polymerase chain reaction (qPCR) analysis. With this protocol, we can precisely administer volumes up to 50 µL to fish weighing approximately 1 g simply and quickly, without harming the animals. This method allows us to explore the direct in vivo uptake of fluorescently labelled compounds by the intestinal mucosa and the immunomodulatory capacity of such biologics at the local site after intubation. By combining downstream methods such as flow cytometry, histology, qPCR and confocal microscopy of the intestinal tissue, we can understand how immunostimulants or vaccines are able to cross the intestinal mucosal barriers, pass through the lamina propria, and reach the muscle, exerting an effect on the intestinal mucosal immune system. The model could be used to test candidate oral prophylactics and delivery systems or the local effect of any orally administered bioactive compound.
Collapse
Affiliation(s)
- Jie Ji
- Institute of Biotechnology and Biomedicine (IBB-UAB), Universitat Autònoma de Barcelona; Department of Cell Biology, Animal Physiology and Immunology, Universitat Autònoma de Barcelona
| | - Rosemary Thwaite
- Institute of Biotechnology and Biomedicine (IBB-UAB), Universitat Autònoma de Barcelona; Department of Cell Biology, Animal Physiology and Immunology, Universitat Autònoma de Barcelona
| | - Nerea Roher
- Institute of Biotechnology and Biomedicine (IBB-UAB), Universitat Autònoma de Barcelona; Department of Cell Biology, Animal Physiology and Immunology, Universitat Autònoma de Barcelona;
| |
Collapse
|
54
|
Hahn L, Lübtow MM, Lorson T, Schmitt F, Appelt-Menzel A, Schobert R, Luxenhofer R. Investigating the Influence of Aromatic Moieties on the Formulation of Hydrophobic Natural Products and Drugs in Poly(2-oxazoline)-Based Amphiphiles. Biomacromolecules 2018; 19:3119-3128. [DOI: 10.1021/acs.biomac.8b00708] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Lukas Hahn
- Functional Polymer Materials, Chair for Advanced Materials Synthesis, Department of Chemistry and Pharmacy, Julius-Maximilians-Universität Würzburg, Röntgenring 11, 97070 Würzburg, Germany
| | - Michael M. Lübtow
- Functional Polymer Materials, Chair for Advanced Materials Synthesis, Department of Chemistry and Pharmacy, Julius-Maximilians-Universität Würzburg, Röntgenring 11, 97070 Würzburg, Germany
| | - Thomas Lorson
- Functional Polymer Materials, Chair for Advanced Materials Synthesis, Department of Chemistry and Pharmacy, Julius-Maximilians-Universität Würzburg, Röntgenring 11, 97070 Würzburg, Germany
| | - Frederik Schmitt
- Functional Polymer Materials, Chair for Advanced Materials Synthesis, Department of Chemistry and Pharmacy, Julius-Maximilians-Universität Würzburg, Röntgenring 11, 97070 Würzburg, Germany
- Lehrstuhl Tissue Engineering und Regenerative Medizin and Fraunhofer-Institut für Silicatforschung ISC, Universitätklinikum Würzburg, Röntgenring 11, 97070 Würzburg, Germany
| | - Antje Appelt-Menzel
- Lehrstuhl Tissue Engineering und Regenerative Medizin and Fraunhofer-Institut für Silicatforschung ISC, Universitätklinikum Würzburg, Röntgenring 11, 97070 Würzburg, Germany
| | - Rainer Schobert
- Organic Chemistry Laboratory, Universität Bayreuth, Universitätsstrasse 30, 95447 Bayreuth, Germany
| | - Robert Luxenhofer
- Functional Polymer Materials, Chair for Advanced Materials Synthesis, Department of Chemistry and Pharmacy, Julius-Maximilians-Universität Würzburg, Röntgenring 11, 97070 Würzburg, Germany
| |
Collapse
|
55
|
Li X, Jiang X. Microfluidics for producing poly (lactic-co-glycolic acid)-based pharmaceutical nanoparticles. Adv Drug Deliv Rev 2018; 128:101-114. [PMID: 29277543 DOI: 10.1016/j.addr.2017.12.015] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 12/17/2017] [Accepted: 12/20/2017] [Indexed: 12/13/2022]
Abstract
Microfluidic chips allow the rapid production of a library of nanoparticles (NPs) with distinct properties by changing the precursors and the flow rates, significantly decreasing the time for screening optimal formulation as carriers for drug delivery compared to conventional methods. The batch-to-batch reproducibility which is essential for clinical translation is achieved by precisely controlling the precursors and the flow rate, regardless of operators. Poly (lactic-co-glycolic acid) (PLGA) is the most widely used Food and Drug Administration (FDA)-approved biodegradable polymers. Researchers often combine PLGA with lipids or amphiphilic molecules to assemble into a core/shell structure to exploit the potential of PLGA-based NPs as powerful carriers for cancer-related drug delivery. In this review, we discuss the advantages associated with microfluidic chips for producing PLGA-based functional nanocomplexes for drug delivery. These laboratory-based methods can readily scale up to provide sufficient amount of PLGA-based NPs in microfluidic chips for clinical studies and industrial-scale production.
Collapse
|
56
|
Li Y, Song X, Yi X, Wang R, Lee SMY, Wang X, Zheng Y. Zebrafish: A Visual Model To Evaluate the Biofate of Transferrin Receptor-Targeted 7Peptide-Decorated Coumarin 6 Micelles. ACS APPLIED MATERIALS & INTERFACES 2017; 9:39048-39058. [PMID: 29039926 DOI: 10.1021/acsami.7b12809] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
In the present study, the zebrafish was explored as an in vivo model to assess the biofate of transferrin receptor (TfR)-targeted coumarin 6 (C6) micelles across various biological barriers. Three 7peptide (7pep)-decorated poly(ethylene glycol)-block-poly(ε-caprolactone) micelles loaded with fluorescence coumarin 6 (7pep-M-C6) with different ligand densities were constructed with particle sizes between 30 and 40 nm. Whole-mount immunostaining revealed that the expression level of TfR in the retina, brain, and intestine increased along with development stage. Compared to unmodified micelles, 7pep-M-C6 demonstrated higher uptake efficiency in the larval zebrafish. Preinhibition of TfR with 7pep implicated the TfR-mediated endocytosis pathway in the uptake of 7pep-M-C6. Confocal images of the larval zebrafish eye and brain showed the efficient delivery of C6 across the retinal pigment epithelial to the ganglion cell layer and the significant accumulation of C6 in all brain tissues, respectively, which plateaued when the ligand density was 10%. To investigate the intestinal distribution of C6, micelles were administered to adult zebrafish via gavaging. Notably, 7pep-M-C6 enhanced the transport of C6 across the villi and increased its aggregation into the basolateral membrane of the intestine. After the oral administration of 7pep-M-C6, C6 accumulated in the eye and brain. Förster resonance energy transfer analysis suggested that intact 7pep-modified micelles could enter the epithelial cells of the intestine, brain, and eye after oral administration in adult zebrafish. In conclusion, zebrafish could be used as a model for in vivo visual assessment of the biofate of TfR-targeted drug delivery systems.
Collapse
Affiliation(s)
- Ye Li
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau , Macau, China
| | - Xiaoning Song
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University , Beijing 100191, China
| | - Xiang Yi
- Division of Molecular Pharmaceutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill , Chapel Hill, North Carolina 27599, United States
| | - Ruibing Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau , Macau, China
| | - Simon Ming-Yuen Lee
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau , Macau, China
| | - Xueqing Wang
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University , Beijing 100191, China
| | - Ying Zheng
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau , Macau, China
| |
Collapse
|
57
|
Li Y, Chen T, Miao X, Yi X, Wang X, Zhao H, Lee SMY, Zheng Y. Zebrafish: A promising in vivo model for assessing the delivery of natural products, fluorescence dyes and drugs across the blood-brain barrier. Pharmacol Res 2017; 125:246-257. [PMID: 28867638 DOI: 10.1016/j.phrs.2017.08.017] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Revised: 07/17/2017] [Accepted: 08/30/2017] [Indexed: 12/12/2022]
Abstract
The blood brain barrier (BBB) is the network of capillaries that controls the passage of substances from the blood into the brain and other parts of the central nervous system (CNS). As this barrier is the major obstacle for drug delivery into CNS, a credible BBB model is very necessary to assess the BBB permeability of novel neuroactive compounds including thousands of bioactive compounds which have been extracted from medicinal plants and have the potential for the treatment of CNS diseases. Increasing reports indicated that zebrafish has emerged as a timely, reproducible model for BBB permeability assessment. In this review, the development and functions of the BBB in zebrafish, such as its anatomical morphology, tight junctions, drug transporters and enzyme expression, are compared with those in mammals. The studies outlined in this review describe the utilization of the zebrafish as a BBB model to investigate the permeability and distribution of fluorescent dyes and drugs. Particularly, this review focuses on the use of zebrafish to evaluate the delivery of natural products and nanosized drug delivery systems across the BBB. Due to the highly conserved nature of both the structure and function of the BBB between zebrafish and mammals, zebrafish has the potential to be developed as a model for assessing and predicting the permeability of BBB to novel compounds.
Collapse
Affiliation(s)
- Ye Li
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Tongkai Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Xiaoqing Miao
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Xiang Yi
- Division of Molecular Pharmaceutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, NC, USA
| | - Xueqing Wang
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Haitao Zhao
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Simon Ming-Yuen Lee
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Ying Zheng
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China.
| |
Collapse
|
58
|
Chen T, Li Y, Li C, Yi X, Wang R, Lee SMY, Zheng Y. Pluronic P85/F68 Micelles of Baicalein Could Interfere with Mitochondria to Overcome MRP2-Mediated Efflux and Offer Improved Anti-Parkinsonian Activity. Mol Pharm 2017; 14:3331-3342. [DOI: 10.1021/acs.molpharmaceut.7b00374] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Tongkai Chen
- State
Key Laboratory of Quality Research in Chinese Medicine, Institute
of Chinese Medical Sciences, University of Macau, Macau, China
- Institute
of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou 510000, China
| | - Ye Li
- State
Key Laboratory of Quality Research in Chinese Medicine, Institute
of Chinese Medical Sciences, University of Macau, Macau, China
| | - Chuwen Li
- State
Key Laboratory of Quality Research in Chinese Medicine, Institute
of Chinese Medical Sciences, University of Macau, Macau, China
| | - Xiang Yi
- Division
of Molecular Pharmaceutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Ruibing Wang
- State
Key Laboratory of Quality Research in Chinese Medicine, Institute
of Chinese Medical Sciences, University of Macau, Macau, China
| | - Simon Ming-Yuen Lee
- State
Key Laboratory of Quality Research in Chinese Medicine, Institute
of Chinese Medical Sciences, University of Macau, Macau, China
| | - Ying Zheng
- State
Key Laboratory of Quality Research in Chinese Medicine, Institute
of Chinese Medical Sciences, University of Macau, Macau, China
| |
Collapse
|