51
|
Zhang X, Cheng L, Feng L, Peng Y, Zhou Z, Yin G, Li W, Zhang A. Thermoresponsive dendronized chitosan-based hydrogels as injectable stem cell carriers. Polym Chem 2019; 10:2305-2315. [DOI: 10.1039/c9py00256a] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
A combination of dendronization and Schiff-base chemistry endows injectable chitosan hydrogels with thermoresponsiveness, self-healing abilities and enhanced mechanical properties under physiological conditions.
Collapse
Affiliation(s)
- Xiacong Zhang
- Laboratory of Polymer Chemistry
- Department of Polymer Materials
- College of Materials Science and Engineering
- Shanghai University
- Shanghai 200444
| | - Lin Cheng
- Department of Orthopaedics
- The First Affiliated Hospital of Nanjing Medical University
- Nanjing 210029
- China
| | - Letian Feng
- Laboratory of Polymer Chemistry
- Department of Polymer Materials
- College of Materials Science and Engineering
- Shanghai University
- Shanghai 200444
| | - Yu Peng
- Laboratory of Polymer Chemistry
- Department of Polymer Materials
- College of Materials Science and Engineering
- Shanghai University
- Shanghai 200444
| | - Zhimin Zhou
- Department of Orthopaedics
- The First Affiliated Hospital of Nanjing Medical University
- Nanjing 210029
- China
| | - Guoyong Yin
- Department of Orthopaedics
- The First Affiliated Hospital of Nanjing Medical University
- Nanjing 210029
- China
| | - Wen Li
- Laboratory of Polymer Chemistry
- Department of Polymer Materials
- College of Materials Science and Engineering
- Shanghai University
- Shanghai 200444
| | - Afang Zhang
- Laboratory of Polymer Chemistry
- Department of Polymer Materials
- College of Materials Science and Engineering
- Shanghai University
- Shanghai 200444
| |
Collapse
|
52
|
Luan J, Zhang Z, Shen W, Chen Y, Yang X, Chen X, Yu L, Sun J, Ding J. Thermogel Loaded with Low-Dose Paclitaxel as a Facile Coating to Alleviate Periprosthetic Fibrous Capsule Formation. ACS APPLIED MATERIALS & INTERFACES 2018; 10:30235-30246. [PMID: 30102023 DOI: 10.1021/acsami.8b13548] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Medical-grade silicones as implants have been utilized for decades. However, the postoperative complications, such as capsular formation and contracture, have not yet been fully controlled and resolved. The aim of the present study is to elucidate whether the capsular formation can be alleviated by local and sustained delivery of low-dose paclitaxel (PTX) during the critical phase after the insertion of silicone implants. A biocompatible and thermogelling poly(lactic acid- co-glycolic acid)- b-poly(ethylene glycol)- b-poly(lactic acid- co-glycolic acid) triblock copolymer was synthesized by us. The micelles formed by the amphiphilic polymers in water could act as a reservoir for the solubilization of PTX, a very hydrophobic drug. The concentrated polymer aqueous solution containing PTX exhibited a sol-gel transition upon heating and formed a thermogel depot at body temperature. In vitro release tests demonstrated that the entrapped microgram-level PTX displayed a sustained release manner up to 57 days without a significant initial burst effect. Customized silicone implants coated with the PTX-loaded thermogels at various drug concentrations were inserted into the pockets of the subpanniculus carnosus plane of rats. The histological observations performed 1 month postoperation showed that the sustained release of PTX with an appropriate dose significantly reduced the peri-implant capsule thickness, production and deposition of collagen, and expression of contracture-mediating factors compared with bare silicone implants. More importantly, such an optimum dose had an excellent repeatability for the suppression of the capsular formation. Therefore, this study provides a strategic foothold regarding the sustained release of low-dose PTX to alleviate fibrotic capsule formation after implantation, and the microgram-level PTX-loaded thermogel holds great potential as an "all-purpose antifibrosis coating" for veiling the surfaces of various implantable medical devices.
Collapse
Affiliation(s)
- Jiabin Luan
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science , Fudan University , Shanghai 200438 , China
| | - Zheng Zhang
- Department of Breast Surgery, Obstetrics and Gynecology Hospital , Fudan University , Shanghai 200011 , China
| | - Wenjia Shen
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science , Fudan University , Shanghai 200438 , China
| | - Yipei Chen
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science , Fudan University , Shanghai 200438 , China
| | - Xiaowei Yang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science , Fudan University , Shanghai 200438 , China
| | - Xiaobin Chen
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science , Fudan University , Shanghai 200438 , China
| | - Lin Yu
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science , Fudan University , Shanghai 200438 , China
| | - Jian Sun
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science , Fudan University , Shanghai 200438 , China
- Department of Breast Surgery, Obstetrics and Gynecology Hospital , Fudan University , Shanghai 200011 , China
| | - Jiandong Ding
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science , Fudan University , Shanghai 200438 , China
| |
Collapse
|
53
|
Zhang Y, Zhang J, Xu W, Xiao G, Ding J, Chen X. Tumor microenvironment-labile polymer-doxorubicin conjugate thermogel combined with docetaxel for in situ synergistic chemotherapy of hepatoma. Acta Biomater 2018; 77:63-73. [PMID: 30006312 DOI: 10.1016/j.actbio.2018.07.021] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 07/01/2018] [Accepted: 07/09/2018] [Indexed: 12/23/2022]
Abstract
UNLABELLED Topical chemotherapy with complementary drugs is one of the most promising strategies to achieve an effective antitumor activity. Herein, a synergistic strategy for hepatoma therapy by the combination of tumor microenvironment-sensitive polymer-doxorubicin (DOX) conjugate thermogel, containing a DNA intercalator DOX, and docetaxel (DTX), a microtubule-interfering agent, was proposed. First, cis-aconitic anhydride-functionalized DOX (CAD) and succinic anhydride-modified DOX (SAD) were conjugated onto the terminal hydroxyl groups of poly(lactide-co-glycolide)-block-poly(ethylene glycol)-block-poly(lactide-co-glycolide) (PLGA-PEG-PLGA), yielding the acid-sensitive CAD-PLGA-PEG-PLGA-CAD and the insensitive SAD-PLGA-PEG-PLGA-SAD conjugates, respectively. The prodrug aqueous solution exhibited a thermoreversible sol-gel transition between room and physiological temperature. Meantime, appropriate mechanical property, biodegradability, as well as a sustained release profile were revealed in such prodrug thermogels. More importantly, the addition of DTX to the DOX-conjugated thermogels (i.e., Gel-CAD and Gel-SAD) was verified with enhanced curative effect against tumor, where the antitumor efficacy of Gel-CAD+DTX was obviously higher than the other groups. A reliable security in vivo was also showed in the Gel-CAD+DTX group. Taken together, such combination of tumor microenvironment-labile prodrug thermogel and a complementary drug exhibited fascinating prospect for local synergistic antineoplastic therapy. STATEMENT OF SIGNIFICANCE Multidrug chemotherapy with synergistic effect has been proposed recently for hepatoma treatment in the clinic. However, the quick release, fast elimination, and unselectivity of multidrugs in vivo always limit their further application. To solve this problem, a synergistic combination of tumor microenvironment-sensitive polymeric doxorubicin (DOX) prodrug thermogel for DNA intercalation and a microtubule-interfering agent docetaxel (DTX) is developed in the present study for the local chemotherapy of hepatoma. Interestingly, a pH-triggered sustained release behavior, an enhanced antitumor efficacy, and a favorable security in vivo are observed in the combined dual-drug delivery platform. Therefore, effectively combining tumor microenvironment-labile polymeric prodrug thermogel with a complementary drug provides an advanced system and a promising prospect for local synergistic hepatoma chemotherapy.
Collapse
Affiliation(s)
- Yanbo Zhang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China; Department of Orthopedics, China-Japan Union Hospital of Jilin University, Changchun 130033, PR China
| | - Jin Zhang
- College of Chemical Engineering, Fuzhou University, Fuzhou 350108, PR China
| | - Weiguo Xu
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China
| | - Gao Xiao
- College of Chemical Engineering, Fuzhou University, Fuzhou 350108, PR China; John A. Paulson School of Engineering and Applied Sciences, Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA 02115, USA
| | - Jianxun Ding
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China.
| | - Xuesi Chen
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China
| |
Collapse
|
54
|
Mei L, Sang W, Chen Z, Zheng L, Jin K, Lou C, Huang W, He D. Small molecule inhibitor RepSox prevented ovariectomy-induced osteoporosis by suppressing osteoclast differentiation and bone resorption. J Cell Physiol 2018; 233:9724-9738. [PMID: 30059597 DOI: 10.1002/jcp.26914] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2018] [Accepted: 06/12/2018] [Indexed: 12/30/2022]
Abstract
Osteoporosis (OP) is a serious metabolic disease that, due to the increased number or function of osteoclasts, results in increased bone brittleness and, therefore, fragile fracture. Some recent studies report the importance of the transforming growth factor β (TGFβ) pathway in bone homeostasis. RepSox is a small molecule inhibitor of TGFβRI that has a wide range of potential application in clinical medicine, except OP. The aim of our study is to evaluate the effects of RepSox on the differentiation and bone resorption of osteoclasts in vitro and in vivo in an ovariectomy (OVX)-induced OP model. An initial analysis showed TGFβRI messenger RNA expression in both bone samples and bone cells. In the in vitro study, RepSox inhibited the receptor activator of nuclear factor κB ligand (RANKL)-induced osteoclast differentiation and bone resorption activity. Real-time polymerase chain reaction (PCR) analysis showed that RepSox suppressed osteoclastic marker gene expression in both dose-dependent and time-dependent manners. In addition, RepSox did not affect osteoblast differentiation, migration or osteoblastic-specific gene expression in vitro. Furthermore, western blot analysis indicated the underlying mechanisms of the RepSox suppression of osteoclastogenesis via the Smad3 and c-Jun N-terminal kinase/activator protein-1 (JNK/AP-1) signaling pathways. Finally, our animal experiments revealed that RepSox prevented OVX-induced bone loss in vivo. Together, our data suggest that RepSox regulates osteoclast differentiation, bone resorption, and OVX-induced OP via the suppression of the Smad3 and JNK/AP-1 pathways.
Collapse
Affiliation(s)
- Liangwei Mei
- Department of Orthopaedic Surgery, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui Municipal Central Hospital, Lishui, Zhejiang, China
| | - Wenhua Sang
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Zhenzhong Chen
- Department of Orthopaedic Surgery, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui Municipal Central Hospital, Lishui, Zhejiang, China
| | - Lin Zheng
- Department of Orthopaedic Surgery, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui Municipal Central Hospital, Lishui, Zhejiang, China
| | - Kangtao Jin
- Department of Orthopaedic Surgery, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui Municipal Central Hospital, Lishui, Zhejiang, China
| | - Chao Lou
- Department of Orthopaedic Surgery, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui Municipal Central Hospital, Lishui, Zhejiang, China
| | - Wenjun Huang
- Department of Orthopaedic Surgery, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui Municipal Central Hospital, Lishui, Zhejiang, China
| | - Dengwei He
- Department of Orthopaedic Surgery, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui Municipal Central Hospital, Lishui, Zhejiang, China
| |
Collapse
|
55
|
Park J, Kim KY, Kim C, Lee JH, Kim JH, Lee SS, Choi Y, Jung JH. A crown-ether-based moldable supramolecular gel with unusual mechanical properties and controllable electrical conductivity prepared by cation-mediated cross-linking. Polym Chem 2018. [DOI: 10.1039/c8py00644j] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Supramolecular gels that possess high mechanical properties and unusual electrical conductivity were prepared by incorporating Cs+.
Collapse
Affiliation(s)
- Jaehyeon Park
- Department of Chemistry and Research Institute of Natural Sciences Gyeongsang National University
- Jinju
- Korea
| | - Ka Young Kim
- Department of Chemistry and Research Institute of Natural Sciences Gyeongsang National University
- Jinju
- Korea
| | - Chaelin Kim
- Department of Chemistry and Research Institute of Natural Sciences Gyeongsang National University
- Jinju
- Korea
| | - Ji Ha Lee
- Department of Chemistry and Biochemistry
- The University of Kitakushu
- Kitakyushu 808-0135
- Japan
| | - Ju Hyun Kim
- Department of Chemistry and Research Institute of Natural Sciences Gyeongsang National University
- Jinju
- Korea
| | - Shim Sung Lee
- Department of Chemistry and Research Institute of Natural Sciences Gyeongsang National University
- Jinju
- Korea
| | - Yeonweon Choi
- Department of Chemistry and Research Institute of Natural Sciences Gyeongsang National University
- Jinju
- Korea
| | - Jong Hwa Jung
- Department of Chemistry and Research Institute of Natural Sciences Gyeongsang National University
- Jinju
- Korea
| |
Collapse
|
56
|
Shen W, Chen X, Luan J, Wang D, Yu L, Ding J. Sustained Codelivery of Cisplatin and Paclitaxel via an Injectable Prodrug Hydrogel for Ovarian Cancer Treatment. ACS APPLIED MATERIALS & INTERFACES 2017; 9:40031-40046. [PMID: 29131563 DOI: 10.1021/acsami.7b11998] [Citation(s) in RCA: 96] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
The sustained release of both the hydrophilic drug and hydrophobic drug from one delivery system remains challenging in pharmaceutics and biomaterials science. The combination of hydrophilic cisplatin and hydrophobic paclitaxel (PTX) exhibits a clinical survival advantage compared with the individual drug therapy against various tumors such as ovarian cancer. In this study, a localized, long-term codelivery system of cisplatin and PTX was developed using an injectable and thermosensitive polymer-platinum(IV) conjugate hydrogel as the carrier. The thermosensitive Bi(mPEG-PLGA)-Pt(IV) (PtGel) conjugate was synthesized via covalently linking two mPEG-PLGA copolymers onto a Pt(IV) prodrug, and its concentrated aqueous solution exhibited a reversible sol-gel transition upon heating. Meanwhile, the core-corona micelles formed by the amphiphilic conjugates in water could serve as a reservoir for the solubilization of PTX, and thus an injectable binary drug-loaded hydrogel formulation was obtained. We also found that the introduction of PTX into the conjugate hydrogel decreased its sol-gel transition temperature and improved its gel strength. In vitro release experiments showed that both of the loaded drugs were released in a sustained manner for as long as 2.5 months, which was the longest combination delivery of these two drugs ever reported. In vitro cellular assays revealed that the dual-drug system exhibited a synergistic anticancer effect against ovarian cancer cells. Finally, using the SKOV-3 ovarian cancer xenograft mouse model, we demonstrated that a single injection of the PTX-loaded conjugate hydrogel system resulted in enhanced anticancer efficacy and significantly reduced the side effects, when compared with the multiple injections of the free drug combination.
Collapse
Affiliation(s)
- Wenjia Shen
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University , Shanghai 200433, China
| | - Xiaobin Chen
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University , Shanghai 200433, China
| | - Jiabin Luan
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University , Shanghai 200433, China
| | - Danni Wang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University , Shanghai 200433, China
| | - Lin Yu
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University , Shanghai 200433, China
| | - Jiandong Ding
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University , Shanghai 200433, China
| |
Collapse
|