51
|
Zeng G, Chen Y. Surface modification of black phosphorus-based nanomaterials in biomedical applications: Strategies and recent advances. Acta Biomater 2020; 118:1-17. [PMID: 33038527 DOI: 10.1016/j.actbio.2020.10.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 09/20/2020] [Accepted: 10/05/2020] [Indexed: 12/20/2022]
Abstract
Black phosphorus-based nanomaterials (BPNMs), an emerging member of two-dimensional (2D) nanomaterials, possess excellent physicochemical properties and hold great potential for application in advanced nanomedicines. However, the bare BPNMs easily decrease their biomedical activities due to their degradability and in vivo interactions with biological macromolecules such as plasma proteins, largely restricting their biomedical application. A variety of surface modifications, via chemical, physical or biological approaches, have been developed for BPNMs to avoid these limitations and achieve stable, long-lasting and safe therapeutic effects, thus enlighten the development of the multifunctional BPNMs for more practical application in the field of biomedicine. The present review summarizes the recent advances in the surface modification of BPNMs and the resultant expansion of their biomedical applications. Focus is put on the strategy and method of modification while the effects incurred on the behavior and potential toxicity of BPNMs are also included. The future and challenge of the surface modification of the therapeutic BPNMs are finally discussed.
Collapse
Affiliation(s)
| | - Yuping Chen
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research; Institute of Pharmacy & Pharmacology, School of Pharmaceutical Science, University of South China, Hengyang, Hunan, 421001, China.
| |
Collapse
|
52
|
Silencing hTERT attenuates cancer stem cell-like characteristics and radioresistance in the radioresistant nasopharyngeal carcinoma cell line CNE-2R. Aging (Albany NY) 2020; 12:25599-25613. [PMID: 33234740 PMCID: PMC7803545 DOI: 10.18632/aging.104167] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 09/18/2020] [Indexed: 12/21/2022]
Abstract
Objective: This study aimed to explore the effect of silencing hTERT on the CSC-like characteristics and radioresistance of CNE-2R cells. Results: Silencing hTERT suppressed CNE-2R cell proliferation and increased the cell apoptosis rate and radiosensitivity in vitro. Moreover, it could also inhibit the growth of xenografts and increase the apoptosis index and radiosensitivity in vivo. Further study discovered that after silencing hTERT, telomerase activity in CNE-2R cells was markedly suppressed, along with remarkably down-regulated stem cell-related protein levels both in vitro and in vivo. Conclusion: Silencing hTERT can suppress the CSC-like characteristics of CNE-2R cells to enhance their radiosensitivity, revealing that hTERT may become a potential target for treating radioresistant NPC. Methods: An RNAi lentiviral vector specific to the hTERT gene was constructed to infect CNE-2R cells, the hTERT silencing effect was verified through qPCR and Western blot assays, and telomerase activity was detected by PCR-ELISA. Moreover, radiosensitivity in vitro was detected through colony formation assays, CCK-8 assays and flow cytometry. Tumor growth and radioresistance were also evaluated using xenograft models, while the apoptosis index in xenografts was measured through TUNEL assay. Levels of stem cell-related proteins were determined in vitro and in vivo.
Collapse
|
53
|
Lin Y, Huang Y, Yang Y, Jiang L, Xing C, Li J, Lu C, Yang H. Functional Self-Assembled DNA Nanohydrogels for Specific Telomerase Activity Imaging and Telomerase-Activated Antitumor Gene Therapy. Anal Chem 2020; 92:15179-15186. [PMID: 33112598 DOI: 10.1021/acs.analchem.0c03746] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Engineering a functional nanoplatform that integrates dynamic monitoring of endogenous biomarkers and a stimuli-activated therapeutic mode is promising for early diagnosis and treatment of cancers. In this study, we developed an intelligent DNA nanohydrogel with specific targeting capability that can be stimuli-activated for both in vitro telomerase detection and in vivo telomerase-triggered gene therapy. The DNA nanohydrogel was formed simply by the self-assembly of two Y-shaped DNA units and a double-stranded DNA linker labeled with fluorophores and loaded with therapeutic siRNA. When intracellular telomerase was overexpressed, the DNA nanohydrogel collapsed owing to the prolongation of the telomeric primer at the terminal sequence of one of the Y-shaped DNA units. As a result, the quenched fluorescence due to fluorescence resonance energy transfer (FRET) of the DNA nanohydrogel recovered and the trapped siRNA was released, enabling the accurate detection and imaging of intracellular telomerase activity as well as effective gene therapy of tumors. Benefiting from the great biocompatibility, specificity, and stimuli-responsive property, the developed DNA nanoplatform provides a new opportunity for precise cancer diagnosis and treatment as well as other biological applications.
Collapse
Affiliation(s)
- Yuhong Lin
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350116, People's Republic of China
| | - Yuqing Huang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350116, People's Republic of China
| | - Yuling Yang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350116, People's Republic of China
| | - Lili Jiang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350116, People's Republic of China
| | - Chao Xing
- Fujian Key Laboratory of Functional Marine Sensing Materials, Center for Advanced Marine Materials and Smart Sensors, Minjiang University, Fuzhou 350108, People's Republic of China
| | - Jingying Li
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350116, People's Republic of China
| | - Chunhua Lu
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350116, People's Republic of China
| | - Huanghao Yang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350116, People's Republic of China
| |
Collapse
|
54
|
Fan X, Zhao X, Su W, Tang X. Triton X-100-Modified Adenosine Triphosphate-Responsive siRNA Delivery Agent for Antitumor Therapy. Mol Pharm 2020; 17:3696-3708. [PMID: 32803981 DOI: 10.1021/acs.molpharmaceut.0c00291] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Modified polyethyleneimine (PEI) has been widely used as siRNA delivery agents. Here, a new Triton X-100-modified low-molecular-weight PEI siRNA delivery agent is developed together with the coupling of 4-carboxyphenylboronic acid (PBA) and dopamine grafted vitamin E (VEDA). Triton X-100, a nonionic detergent, greatly improves the cellular uptake of siRNA as well as the siRNA escape from endosome/lysosome because of its high transmembrane ability. In addition, the boronate bond between PBA and VEDA of the transfection agent can be triggered to release its entrapped siRNA because of the high level of adenosine triphosphate (ATP) in cancer cells. The transfection agent is successfully applied to deliver siRNAs targeting endogenous genes of epidermal growth factor receptor (EGFR) and kinesin-5 (Eg5) to cancer cells, showing good results on Eg5 and EGFR silencing ability and inhibition of cancer cell migration. Further in vivo study indicates that the Triton X-100-modified transfection agent is also efficient to deliver siRNA to cancer cells and shows significant tumor growth inhibition on mice tumor models. These results indicate that the Triton X-100-modified ATP-responsive transfection agent is a promising gene delivery vector for target gene silencing in vitro and in vivo.
Collapse
Affiliation(s)
- Xinli Fan
- State Key Laboratory of Natural and Biomimetic Drugs, Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery System, School of Pharmaceutical Sciences and Center for Noncoding RNA Medicine, Peking University, No. 38, Xueyuan Rd, Beijing 100191, China
| | - Xiaoran Zhao
- State Key Laboratory of Natural and Biomimetic Drugs, Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery System, School of Pharmaceutical Sciences and Center for Noncoding RNA Medicine, Peking University, No. 38, Xueyuan Rd, Beijing 100191, China
| | - Wenbo Su
- State Key Laboratory of Natural and Biomimetic Drugs, Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery System, School of Pharmaceutical Sciences and Center for Noncoding RNA Medicine, Peking University, No. 38, Xueyuan Rd, Beijing 100191, China
| | - Xinjing Tang
- State Key Laboratory of Natural and Biomimetic Drugs, Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery System, School of Pharmaceutical Sciences and Center for Noncoding RNA Medicine, Peking University, No. 38, Xueyuan Rd, Beijing 100191, China
| |
Collapse
|
55
|
Ding J, Qu G, Chu PK, Yu X. Black phosphorus: Versatile two‐dimensional materials in cancer therapies. VIEW 2020. [DOI: 10.1002/viw.20200043] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Affiliation(s)
- Jie Ding
- Materials and Interfaces Center, Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences Shenzhen China
- State Key Laboratory of Environmental Chemistry and Ecotoxicology Research Center for EcoEnvironmental Sciences Chinese Academy of Sciences Beijing China
| | - Guangbo Qu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology Research Center for EcoEnvironmental Sciences Chinese Academy of Sciences Beijing China
- Institute of Environment and Health Jianghan University Wuhan China
- Institute of Environment and Health Hangzhou Institute for Advanced Study University of Chinese Academy of Sciences Hangzhou China
| | - Paul K. Chu
- Department of Physics City University of Hong Kong Kowloon Hong Kong
- Department of Materials Science and Engineering City University of Hong Kong Kowloon Hong Kong
- Department of Biomedical Engineering City University of Hong Kong Kowloon Hong Kong
| | - Xue‐Feng Yu
- Materials and Interfaces Center, Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences Shenzhen China
- Institute of Environment and Health Jianghan University Wuhan China
| |
Collapse
|
56
|
Ouyang H, Zheng Z, Chen Y, Liu Y, Hong C, Zhu Y, Deng J, Ding X, Zhou W, Wang X. A magnetically modified black phosphorus nanosheet-based heparin delivery platform for preventing DVT accurately. J Mater Chem B 2020; 7:6099-6108. [PMID: 31549695 DOI: 10.1039/c9tb01459d] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
A new heparin targeting delivery platform was developed based on iron oxide (Fe3O4) nanoparticles and polyethyleneimine (PEI) functionalized black phosphorus nanosheets (BP NSs). Both in and ex vivo studies suggested that this drug delivery platform (PEI/Fe3O4@BP NSs) possessed high heparin loading capacity (≈450%), accurate magnetic enrichment capacity, and good biocompatibility. With the aid of near-infrared (NIR) laser irradiation, this BP NS based delivery platform could further enhance the photothermal thrombolysis effect. Most importantly, the experiments in vivo confirmed that the proposed PEI/Fe3O4@BP NSs could considerably prolong the effective drug concentration duration of heparin. By which means, accurate, long-acting, and effective thromboprophylaxis could be accomplished with limited drug dosage, which could radically reduce the perniciousness of drug overdose.
Collapse
Affiliation(s)
- Huan Ouyang
- Department of Vascular Surgery, The Second Affiliated Hospital of Nanchang University, No. 1 Minde Road, Donghu District, Nanchang, 330006, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
57
|
Black phosphorus nanosheets and docetaxel micelles co-incorporated thermoreversible hydrogel for combination chemo-photodynamic therapy. Drug Deliv Transl Res 2020; 11:1133-1143. [PMID: 32776211 DOI: 10.1007/s13346-020-00836-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The platform of the combination chemo-photodynamic therapy has received widespread attention for enhancing anticancer efficacy and inhibiting tumor growth, which supports thermosensitive and controlled drug release. Here, an injectable thermoreversible hydrogel (BPNSs/DTX-M-hydrogel) co-encapsulating black phosphorus nanosheets (BPNSs) and docetaxel (DTX) micelles was prepared to increase drug accumulation in tumor tissue and improve anticancer efficacy. BPNSs were prepared by liquid exfoliation method with a simple and rapid preparation, and DTX micelles were prepared by the thin film dispersion method. Hydrogel was prepared with F127 as hydrogel matrix for intratumoral injection. BPNSs, DTX micelles, and BPNSs/DTX-M-hydrogel were characterized by particle size, morphology, stability and degradation, phase transition feature, and photodynamic performance. And the in vivo anticancer efficacy was evaluated in 4T1 tumor-bearing Balb/c mice. The results showed that the particle size of DTX micelles and BPNSs were about 16 and 180 nm, respectively. The hydrogel with the transformation temperature at near body exhibited great photodynamic efficacy and good biodegradability. Moreover, BPNSs/DTX-M-hydrogel with the combination of chemotherapy and photodynamic therapy exhibited unique anticancer efficacy with low toxicity. In conclusion, the combination platform of chemo-photodynamic therapy based on BPNSs could be a prospective strategy in antitumor research. Graphical abstract.
Collapse
|
58
|
Qing Y, Li R, Li S, Li Y, Wang X, Qin Y. Advanced Black Phosphorus Nanomaterials for Bone Regeneration. Int J Nanomedicine 2020; 15:2045-2058. [PMID: 32273701 PMCID: PMC7104107 DOI: 10.2147/ijn.s246336] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 03/09/2020] [Indexed: 12/11/2022] Open
Abstract
Bone regeneration remains a great clinical challenge. Two-dimensional materials, especially graphene and its derivative graphene oxide, have been widely used for bone regeneration. Since its discovery in 2014, black phosphorus (BP) nanomaterials including BP nanosheets and BP quantum dots have attracted considerable scientific attention and are considered as prospective graphene substitutes. BP nanomaterials exhibit numerous advantages such as excellent optical and mechanical properties, electrical conductivity, excellent biocompatibility, and good biodegradation, all of which make them particularly attractive in biomedicine. In this review, we comprehensively summarize recent advances of BP-based nanomaterials in bone regeneration. The advantages are reviewed, the different synthesis methods of BP are summarized, and the applications to promote bone regeneration are highlighted. Finally, the existing challenges and perspectives of BP in bone regeneration are briefly discussed.
Collapse
Affiliation(s)
- Yun’an Qing
- Orthopaedic Medical Center, The Second Hospital of Jilin University, Changchun130041, People’s Republic of China
| | - Ruiyan Li
- Orthopaedic Medical Center, The Second Hospital of Jilin University, Changchun130041, People’s Republic of China
| | - Shihuai Li
- Orthopaedic Medical Center, The Second Hospital of Jilin University, Changchun130041, People’s Republic of China
| | - Yuehong Li
- Orthopaedic Medical Center, The Second Hospital of Jilin University, Changchun130041, People’s Republic of China
| | - Xingyue Wang
- Orthopaedic Medical Center, The Second Hospital of Jilin University, Changchun130041, People’s Republic of China
| | - Yanguo Qin
- Orthopaedic Medical Center, The Second Hospital of Jilin University, Changchun130041, People’s Republic of China
| |
Collapse
|
59
|
Chen K, Chen L, Li L, Qu S, Yu B, Sun Y, Wan F, Chen X, Liang R, Zhu X. A positive feedback loop between Wnt/β-catenin signaling and hTERT regulates the cancer stem cell-like traits in radioresistant nasopharyngeal carcinoma cells. J Cell Biochem 2020; 121:4612-4622. [PMID: 32065421 DOI: 10.1002/jcb.29681] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 01/27/2020] [Indexed: 02/06/2023]
Abstract
Radioresistance may be induced by cancer stem cells (CSCs), while the biological traits of CSCs need to be retained by telomerase. The telomerase activity mainly depends on the transcriptional regulation of human telomerase reverse transcriptase (hTERT). Moreover, Wnt/β-catenin signaling is also considered essential for maintaining the CSC phenotypes. In the previous study, we discovered that the radioresistant nasopharyngeal carcinoma cells CNE-2R displayed CSC-like traits, as well as high expression of hTERT and β-catenin, but whether hTERT and β-catenin were involved in regulating the CSC-like traits and radiosensitivity of CNE-2R cells remained unclear. In this study, our results suggested that hTERT could positively regulate the expression of CSC-related proteins, as well as the cytoplasm- and nucleus-β-catenin, but it could not markedly regulate the expression of total β-catenin in CNE-2R cells. Meanwhile, Wnt/β-catenin signaling had a positive regulatory effect on the expression of hTERT and CSC-related proteins. Moreover, there was a β-catenin/hTERT protein complex in CNE-2R cells, indicating that β-catenin could directly interact with hTERT protein. Our results also revealed that silencing hTERT or suppressing Wnt/β-catenin signaling could attenuate telomerase activity and radioresistance of CNE-2R cells; while suppressing Wnt/β-catenin signaling, the telomerase activity and radioresistance could be reversed through overexpressing hTERT. Taken together, we have outlined a positive feedback loop between Wnt/β-catenin signaling and hTERT in CNE-2R cells, which can regulate the telomerase activity and CSC-like traits, thus regulating the radiosensitivity. Therefore, blocking Wnt/β-catenin signaling transduction and interfering with hTERT expression may be a promising approach for targeting radioresistant nasopharyngeal carcinoma cells with CSC-like traits.
Collapse
Affiliation(s)
- Kaihua Chen
- Department of Radiation Oncology, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, China
| | - Li Chen
- Department of Radiation Oncology, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, China
| | - Ling Li
- Department of Radiation Oncology, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, China.,Key Laboratory of Early Prevention and Treatment for Regional High-Incidence-Tumor, Guangxi Medical University, Ministry of Education, Nanning, Guangxi, China.,Guangxi Key Laboratory of Early Prevention and Treatment for Regional High-Incidence-Tumor, Guangxi Medical University, Nanning, Guangxi, China
| | - Song Qu
- Department of Radiation Oncology, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, China.,Key Laboratory of Early Prevention and Treatment for Regional High-Incidence-Tumor, Guangxi Medical University, Ministry of Education, Nanning, Guangxi, China.,Guangxi Key Laboratory of Early Prevention and Treatment for Regional High-Incidence-Tumor, Guangxi Medical University, Nanning, Guangxi, China
| | - Binbin Yu
- Department of Radiation Oncology, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, China
| | - Yongchu Sun
- Department of Radiation Oncology, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, China
| | - Fangzhu Wan
- Department of Radiation Oncology, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, China
| | - Xishan Chen
- Department of Radiation Oncology, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, China
| | - Renba Liang
- Department of Radiation Oncology, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, China
| | - Xiaodong Zhu
- Department of Radiation Oncology, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, China.,Key Laboratory of Early Prevention and Treatment for Regional High-Incidence-Tumor, Guangxi Medical University, Ministry of Education, Nanning, Guangxi, China.,Guangxi Key Laboratory of Early Prevention and Treatment for Regional High-Incidence-Tumor, Guangxi Medical University, Nanning, Guangxi, China
| |
Collapse
|
60
|
Chen X, Ponraj JS, Fan D, Zhang H. An overview of the optical properties and applications of black phosphorus. NANOSCALE 2020; 12:3513-3534. [PMID: 31904052 DOI: 10.1039/c9nr09122j] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Since the year 2014, when scientists first obtained black phosphorus using a sticky tape to peel the layers off, it has attracted tremendous interest as a novel two-dimensional material. After it was successfully produced, its outstanding optical properties have been unveiled. Various applications based on these properties have been reported. This study mainly reviews the unique optical properties and potential applications of black phosphorus. The optical performances of black phosphorus mainly include linear optical properties and nonlinear optical properties. Some examples include the anisotropic optical response, saturable absorption effect and Kerr effect. The researchers found that the nonlinear saturable absorption coefficients of black phosphorus are better than that of MoS2 and WS2 from the visible region to the near-infrared region. Compared with graphene, black phosphorus has a better nonlinear saturable absorption performance. After passivation or surface modification, black phosphorus is stable when exposed to oxygen and water. Herein, black phosphorus has the potential to be used in detector/sensors, solar energy harvesting, photocatalysts, optical saturable absorbers in ultrafast lasers, all optical switches, optical modulation, nanomedicine and some others in the near future.
Collapse
Affiliation(s)
- Xing Chen
- Institute of Microscale Optoelectronics, Collaborative Innovation Centre for Optoelectronic Science & Technology, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen Key Laboratory of Micro-Nano Photonic Information Technology, Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ), Shenzhen University, Shenzhen 518060, P.R. China.
| | | | - Dianyuan Fan
- Institute of Microscale Optoelectronics, Collaborative Innovation Centre for Optoelectronic Science & Technology, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen Key Laboratory of Micro-Nano Photonic Information Technology, Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ), Shenzhen University, Shenzhen 518060, P.R. China.
| | - Han Zhang
- Institute of Microscale Optoelectronics, Collaborative Innovation Centre for Optoelectronic Science & Technology, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen Key Laboratory of Micro-Nano Photonic Information Technology, Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ), Shenzhen University, Shenzhen 518060, P.R. China.
| |
Collapse
|
61
|
Wu S, He F, Xie G, Bian Z, Ren Y, Liu X, Yang H, Guo D, Zhang L, Wen S, Luo J. Super-Slippery Degraded Black Phosphorus/Silicon Dioxide Interface. ACS APPLIED MATERIALS & INTERFACES 2020; 12:7717-7726. [PMID: 31944101 DOI: 10.1021/acsami.9b19570] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The interfaces between two-dimensional (2D) materials and the silicon dioxide (SiO2)/silicon (Si) substrate, generally considered as a solid-solid mechanical contact, have been especially emphasized for the structure design and the property optimization in microsystems and nanoengineering. The basic understanding of the interfacial structure and dynamics for 2D material-based systems still remains one of the inevitable challenges ahead. Here, an interfacial mobile water layer is indicated to insert into the interface of the degraded black phosphorus (BP) flake and the SiO2/Si substrate owing to the induced hydroxyl groups during the ambient degradation. A super-slippery degraded BP/SiO2 interface was observed with the interfacial shear stress (ISS) experimentally evaluated as low as 0.029 ± 0.004 MPa, being comparable to the ISS values of incommensurate rigid crystalline contacts. In-depth investigation of the interfacial structure through nuclear magnetic resonance spectroscopy and in situ X-ray photoelectron spectroscopy depth profiling revealed that the interfacial liquid water was responsible for the super-slippery BP/SiO2 interface with extremely low shear stress. This finding clarifies the strong interactions between degraded BP and water molecules, which supports the potential wider applications of the few-layer BP nanomaterial in biological lubrication.
Collapse
Affiliation(s)
- Shuai Wu
- State Key Laboratory of Tribology, Department of Mechanical Engineering , Tsinghua University , Beijing 100084 , China
| | - Feng He
- State Key Laboratory of Tribology, Department of Mechanical Engineering , Tsinghua University , Beijing 100084 , China
| | - Guoxin Xie
- State Key Laboratory of Tribology, Department of Mechanical Engineering , Tsinghua University , Beijing 100084 , China
| | - Zhengliang Bian
- Department of Engineering Mechanics , Tsinghua University , Beijing 100084 , China
| | - Yilong Ren
- State Key Laboratory of Tribology, Department of Mechanical Engineering , Tsinghua University , Beijing 100084 , China
| | - Xinyuan Liu
- State Key Laboratory of Tribology, Department of Mechanical Engineering , Tsinghua University , Beijing 100084 , China
| | - Haijun Yang
- Department of Chemistry , Tsinghua University , Beijing 100084 , China
| | - Dan Guo
- State Key Laboratory of Tribology, Department of Mechanical Engineering , Tsinghua University , Beijing 100084 , China
| | - Lin Zhang
- State Key Laboratory of Tribology, Department of Mechanical Engineering , Tsinghua University , Beijing 100084 , China
| | - Shizhu Wen
- State Key Laboratory of Tribology, Department of Mechanical Engineering , Tsinghua University , Beijing 100084 , China
| | - Jianbin Luo
- State Key Laboratory of Tribology, Department of Mechanical Engineering , Tsinghua University , Beijing 100084 , China
| |
Collapse
|
62
|
Functional black phosphorus nanosheets for cancer therapy. J Control Release 2020; 318:50-66. [DOI: 10.1016/j.jconrel.2019.12.013] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 12/09/2019] [Accepted: 12/10/2019] [Indexed: 01/10/2023]
|
63
|
Qu G, Xia T, Zhou W, Zhang X, Zhang H, Hu L, Shi J, Yu XF, Jiang G. Property-Activity Relationship of Black Phosphorus at the Nano-Bio Interface: From Molecules to Organisms. Chem Rev 2020; 120:2288-2346. [PMID: 31971371 DOI: 10.1021/acs.chemrev.9b00445] [Citation(s) in RCA: 120] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
As a novel member of the two-dimensional nanomaterial family, mono- or few-layer black phosphorus (BP) with direct bandgap and high charge carrier mobility is promising in many applications such as microelectronic devices, photoelectronic devices, energy technologies, and catalysis agents. Due to its benign elemental composition (phosphorus), large surface area, electronic/photonic performances, and chemical/biological activities, BP has also demonstrated a great potential in biomedical applications including biosensing, photothermal/photodynamic therapies, controlled drug releases, and antibacterial uses. The nature of the BP-bio interface is comprised of dynamic contacts between nanomaterials (NMs) and biological systems, where BP and the biological system interact. The physicochemical interactions at the nano-bio interface play a critical role in the biological effects of NMs. In this review, we discuss the interface in the context of BP as a nanomaterial and its unique physicochemical properties that may affect its biological effects. Herein, we comprehensively reviewed the recent studies on the interactions between BP and biomolecules, cells, and animals and summarized various cellular responses, inflammatory/immunological effects, as well as other biological outcomes of BP depending on its own physical properties, exposure routes, and biodistribution. In addition, we also discussed the environmental behaviors and potential risks on environmental organisms of BP. Based on accumulating knowledge on the BP-bio interfaces, this review also summarizes various safer-by-design strategies to change the physicochemical properties including chemical stability and nano-bio interactions, which are critical in tuning the biological behaviors of BP. The better understanding of the biological activity of BP at BP-bio interfaces and corresponding methods to overcome the challenges would promote its future exploration in terms of bringing this new nanomaterial to practical applications.
Collapse
Affiliation(s)
- Guangbo Qu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences , Chinese Academy of Sciences 100085 , Beijing , P.R. China.,Institute of Environment and Health , Jianghan University , Wuhan 430056 , China.,Institute of Environment and Health , Hangzhou Institute for Advanced Study, UCAS , Hangzhou 310000 , China.,University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Tian Xia
- Division of Nanomedicine, Department of Medicine , University of California Los Angeles California 90095 , United States
| | - Wenhua Zhou
- Materials Interfaces Center , Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences , Shenzhen 518055 , P.R. China
| | - Xue Zhang
- Materials Interfaces Center , Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences , Shenzhen 518055 , P.R. China
| | - Haiyan Zhang
- College of Environment , Zhejiang University of Technology , Hangzhou 310032 , China
| | - Ligang Hu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences , Chinese Academy of Sciences 100085 , Beijing , P.R. China.,Institute of Environment and Health , Jianghan University , Wuhan 430056 , China.,Institute of Environment and Health , Hangzhou Institute for Advanced Study, UCAS , Hangzhou 310000 , China.,University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Jianbo Shi
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences , Chinese Academy of Sciences 100085 , Beijing , P.R. China.,Institute of Environment and Health , Jianghan University , Wuhan 430056 , China.,Institute of Environment and Health , Hangzhou Institute for Advanced Study, UCAS , Hangzhou 310000 , China.,University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Xue-Feng Yu
- Materials Interfaces Center , Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences , Shenzhen 518055 , P.R. China
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences , Chinese Academy of Sciences 100085 , Beijing , P.R. China.,Institute of Environment and Health , Jianghan University , Wuhan 430056 , China.,Institute of Environment and Health , Hangzhou Institute for Advanced Study, UCAS , Hangzhou 310000 , China.,University of Chinese Academy of Sciences , Beijing 100049 , China
| |
Collapse
|
64
|
Kim NY, Blake S, De D, Ouyang J, Shi J, Kong N. Two-Dimensional Nanosheet-Based Photonic Nanomedicine for Combined Gene and Photothermal Therapy. Front Pharmacol 2020; 10:1573. [PMID: 32038249 PMCID: PMC6985776 DOI: 10.3389/fphar.2019.01573] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 12/04/2019] [Indexed: 01/09/2023] Open
Abstract
Two-dimensional (2D) nanosheets are characterized by their ultra-thin structure which sets them apart from their bulk materials. Due to this unique 2D structure, they have a high surface-to-volume ratio that can be beneficial for the delivery of various drugs including therapeutic DNAs and RNAs. In addition, various 2D materials exhibit excellent photothermal conversion efficiency when exposed to the near infrared (NIR) light. Therefore, this 2D nanosheet-based photonic nanomedicine has been gaining tremendous attention as both gene delivering vehicles and photothermal agents, which create synergistic effects in the treatment of different diseases. In this review, we briefly provide an overview of the following two parts regarding this type of photonic nanomedicine: (1) mechanism and advantages of nanosheets in gene delivery and photothermal therapy, respectively. (2) mechanism of synergistic effects in nanosheet-mediated combined gene and photothermal therapies and their examples in a few representative nanosheets (e.g., graphene oxide, black phosphorus, and translational metal dichalcogenide). We also expect to provide some deep insights into the possible opportunities associated with the emerging 2D nanosheets for synergistic nanomedicine research.
Collapse
Affiliation(s)
- Na Yoon Kim
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
- Department of Chemical Engineering, Northeastern University, Boston, MA, United States
| | - Sara Blake
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Diba De
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Jiang Ouyang
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Jinjun Shi
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Na Kong
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
65
|
Huang WQ, Wang F, Nie X, Zhang Z, Chen G, Xia L, Wang LH, Ding SG, Hao ZY, Zhang WJ, Hong CY, You YZ. Stable Black Phosphorus Nanosheets Exhibiting High Tumor-Accumulating and Mitochondria-Targeting for Efficient Photothermal Therapy via Double Functionalization. ACS APPLIED BIO MATERIALS 2019; 3:1176-1186. [DOI: 10.1021/acsabm.9b01052] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Wei-Qiang Huang
- Hefei National Laboratory for Physical Sciences at the Microscale, Hefei, Anhui 230026, China
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Fei Wang
- Neurosurgical Department, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230036, China
| | - Xuan Nie
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Ze Zhang
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Guang Chen
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Lei Xia
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Long-Hai Wang
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Shen-Gang Ding
- Anhui Med Univ, Affiliated Hosp, Dept Pediat, Hefei, Anhui 230022, People’s Republic of China
| | - Zong-Yao Hao
- Anhui Med Univ, Affiliated Hosp, Dept Urol, Hefei, Anhui 230026, People’s Republic of China
| | - Wen-Jian Zhang
- Hefei National Laboratory for Physical Sciences at the Microscale, Hefei, Anhui 230026, China
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Chun-Yan Hong
- Hefei National Laboratory for Physical Sciences at the Microscale, Hefei, Anhui 230026, China
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Ye-Zi You
- Hefei National Laboratory for Physical Sciences at the Microscale, Hefei, Anhui 230026, China
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
66
|
Mei X, Hu T, Wang Y, Weng X, Liang R, Wei M. Recent advancements in two‐dimensional nanomaterials for drug delivery. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2019; 12:e1596. [DOI: 10.1002/wnan.1596] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 09/16/2019] [Accepted: 09/19/2019] [Indexed: 12/15/2022]
Affiliation(s)
- Xuan Mei
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering Beijing University of Chemical Technology Beijing P.R. China
| | - Tingting Hu
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering Beijing University of Chemical Technology Beijing P.R. China
| | - Yingjie Wang
- Department of Orthopaedics, Peking Union Medical College Hospital Peking Union Medical College & Chinese Academy of Medical Sciences Beijing P.R. China
| | - Xisheng Weng
- Department of Orthopaedics, Peking Union Medical College Hospital Peking Union Medical College & Chinese Academy of Medical Sciences Beijing P.R. China
| | - Ruizheng Liang
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering Beijing University of Chemical Technology Beijing P.R. China
| | - Min Wei
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering Beijing University of Chemical Technology Beijing P.R. China
| |
Collapse
|
67
|
Urbanová V, Pumera M. Biomedical and bioimaging applications of 2D pnictogens and transition metal dichalcogenides. NANOSCALE 2019; 11:15770-15782. [PMID: 31424462 DOI: 10.1039/c9nr04658e] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Multifunctional platforms will play a key role and gain more prominence in the field of personalized healthcare worldwide in the near future due to the ever-increasing number of patients suffering from cancer. Along with the development of efficient techniques for cancer treatment, a considerable effort should be devoted toward the exploration of an emerging class of materials with unique properties that might be beneficial in this context. Currently, 2D post-carbon materials, such as pnictogens (phosphorene, antimonene), transition metal dichalcogenides, and boron nitride, have become popular due to their efficient photothermal behavior, drug-loading capability, and low toxicity. This review underlines the recent progresses made in the abovementioned 2D materials for photothermal/photodynamic cancer therapies and their applicability in bioimaging applications.
Collapse
Affiliation(s)
- Veronika Urbanová
- Department of Inorganic Chemistry, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague 6, Czech Republic.
| | | |
Collapse
|
68
|
Nguyen HT, Byeon JH, Phung CD, Pham LM, Ku SK, Yong CS, Kim JO. Method for the Instant In-Flight Manufacture of Black Phosphorus to Assemble Core@Shell Nanocomposites for Targeted Photoimmunotherapy. ACS APPLIED MATERIALS & INTERFACES 2019; 11:24959-24970. [PMID: 31265222 DOI: 10.1021/acsami.9b04632] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Inorganic nanomaterial (INM)-based combination cancer therapies have been extensively employed over the past two decades because of their benefits over traditional chemo- and radiotherapies. However, issues regarding the toxicity and accumulation of INMs in the body have arisen. This problem may be improved through the use of biodegradable or disintegrable nanosystems such as black phosphorus (BP). Challenges to the manufacture of fully nanodimensional BP remain. In addition, improvements in recently developed cancer immunotherapies require their incorporation with drugs, targeting agents, and delivery vehicles. With these needs in mind, this study develops a method for instant in-flight manufacture of nanodimensional BP using plug-and-play devices for subsequent assembly of photoimmunotherapeutic core@shell composites containing mutated B-raf inhibitors (dabrafenib), immune checkpoint inhibitors (PD-L1), and cancer-targeting antibodies (CXCR4). The resulting nanocomposites exhibited cancer targetability and regulatability of PD-L1 expression both in vitro and in vivo. These activities were further increased upon near-infrared irradiation due to the incorporation of a phototherapeutic component. These results suggest that these nanocomposites are promising as a new class of advanced cancer therapeutic agents.
Collapse
Affiliation(s)
| | | | | | | | - Sae Kwang Ku
- College of Korean Medicine , Daegu Haany University , Gyeongsan 38610 , Republic of Korea
| | | | | |
Collapse
|
69
|
Zhou J, Wang Q, Geng S, Lou R, Yin Q, Ye W. Construction and evaluation of tumor nucleus-targeting nanocomposite for cancer dual-mode imaging - Guiding photodynamic therapy/photothermal therapy. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 102:541-551. [PMID: 31147026 DOI: 10.1016/j.msec.2019.04.088] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 04/15/2019] [Accepted: 04/28/2019] [Indexed: 01/08/2023]
Abstract
To tackle the barrier of the insufficient intra-cellular delivery of reactive oxygen species (ROS) and heat, we designed a multifunctional nanoplatform to release ROS and heat directly in the cell nucleus for enhancing combined photodynamic therapy (PDT) and photothermal therapy (PTT) of tumors. As a photothermal agent, WS2 nanoparticles were adsorbed photosensitive Au25(Captopril)18- (Au25) nanoclusters via electrostatic interaction. And Dexamethasone (Dex), a glucocorticoid with nucleus targeting capability, played a key role in the intra-nuclear process of heat and ROS. PTT can increase intra-tumoral blood flow to promote Au25 produce more ROS for PDT. Under near infrared (NIR) laser irradiation at a single 808 nm, these nucleus targeting WS2 nanoplatforms showed a significant decreased cell viability of 18.2 ± 1.7% and a high DNA damage degree of 59.6 ± 8.3%. Furthermore, the WS2 nanoplatform could be further used for X-ray computed tomography (CT) images. Taken together, our study provided a new prospect for effectively diagnostic and enhancing PTT/PDT efficacy.
Collapse
Affiliation(s)
- Jie Zhou
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, Zhengzhou 450001, China.
| | - Qiaolei Wang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Shizhen Geng
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Rui Lou
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Qianwen Yin
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Weiran Ye
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
70
|
Sun H, Hong M, Yang Q, Li C, Zhang G, Yue Q, Ma Y, Li X, Li CZ. Visualizing the down-regulation of hTERT mRNA expression using gold-nanoflare probes and verifying the correlation with cancer cell apoptosis. Analyst 2019; 144:2994-3004. [PMID: 30892312 DOI: 10.1039/c9an00204a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The human telomerase reverse transcriptase catalytic subunit (hTERT) is the rate-limiting subunit of the telomerase holoenzyme. Down-regulating the expression of hTERT mRNA by antisense oligonucleotides would reduce the expression of hTERT, inhibit telomerase activity, and impair the growth of cancer cells in vitro. In this work, we propose a locked nucleic acid-functionalized gold nanoparticle flare probe (AuNP-probe). After transferring these probes into cells by endocytosis of the gold nanoparticles, the binding process of the antisense locked nucleic acid with hTERT mRNA along with gene regulation can be visualized by fluorescence recovery of flare-sequences. A significant decline in hTERT mRNA levels and the hTERT content occurred in cancer cells after treatment with the AuNP-probes, and only approximately 25% of the original level of hTERT mRNA remained after 72 h. AuNP-probe treated cancer cells were arrested in the G1 phase of the cell cycle and underwent apoptosis; cell viability decreased obviously compared with that of telomerase-negative normal cells.
Collapse
Affiliation(s)
- Hongxiao Sun
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, P. R. China.
| | - Min Hong
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, P. R. China.
| | - Qiangqiang Yang
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, P. R. China.
| | - Chuan Li
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, P. R. China.
| | - Guangzhi Zhang
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, P. R. China.
| | - Qiaoli Yue
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, P. R. China.
| | - Yanhua Ma
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, P. R. China.
| | - Xia Li
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, P. R. China.
| | - Chen-Zhong Li
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, P. R. China. and Nanobioengineering/Bioelectronics Laboratory, Department of Biomedical Engineering, Florida International University, Miami, 33174, USA.
| |
Collapse
|