51
|
Čarný T, Rocaboy R, Clemenceau A, Baudoin O. Synthesis of Amides and Esters by Palladium(0)‐Catalyzed Carbonylative C(sp
3
)−H Activation. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202007922] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Tomáš Čarný
- Slovak University of Technology Department of Organic Chemistry Radlinského 9 81237 Bratislava Slovakia
| | - Ronan Rocaboy
- University of Basel Department of Chemistry St. Johanns-Ring 19 4056 Basel Switzerland
| | - Antonin Clemenceau
- University of Basel Department of Chemistry St. Johanns-Ring 19 4056 Basel Switzerland
| | - Olivier Baudoin
- University of Basel Department of Chemistry St. Johanns-Ring 19 4056 Basel Switzerland
| |
Collapse
|
52
|
Čarný T, Rocaboy R, Clemenceau A, Baudoin O. Synthesis of Amides and Esters by Palladium(0)‐Catalyzed Carbonylative C(sp
3
)−H Activation. Angew Chem Int Ed Engl 2020; 59:18980-18984. [DOI: 10.1002/anie.202007922] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 07/08/2020] [Indexed: 01/02/2023]
Affiliation(s)
- Tomáš Čarný
- Slovak University of Technology Department of Organic Chemistry Radlinského 9 81237 Bratislava Slovakia
| | - Ronan Rocaboy
- University of Basel Department of Chemistry St. Johanns-Ring 19 4056 Basel Switzerland
| | - Antonin Clemenceau
- University of Basel Department of Chemistry St. Johanns-Ring 19 4056 Basel Switzerland
| | - Olivier Baudoin
- University of Basel Department of Chemistry St. Johanns-Ring 19 4056 Basel Switzerland
| |
Collapse
|
53
|
Bisht N, Babu SA, Tomar R. Pd(II)‐Catalyzed, Bidentate Directing Group‐aided Alkylation of sp
3
γ‐C−H Bonds: Access to 3‐Alkylated Thiophene/Furan and Benzothiophene/Benzofuran Motifs. ASIAN J ORG CHEM 2020. [DOI: 10.1002/ajoc.202000284] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Narendra Bisht
- Department of Chemical SciencesIndian Institute of Science Education and Research (IISER) Mohali Knowledge City, Sector 81, SAS Nagar, Mohali, Manauli P.O. Punjab 140306 India
| | - Srinivasarao Arulananda Babu
- Department of Chemical SciencesIndian Institute of Science Education and Research (IISER) Mohali Knowledge City, Sector 81, SAS Nagar, Mohali, Manauli P.O. Punjab 140306 India
| | - Radha Tomar
- Department of Chemical SciencesIndian Institute of Science Education and Research (IISER) Mohali Knowledge City, Sector 81, SAS Nagar, Mohali, Manauli P.O. Punjab 140306 India
| |
Collapse
|
54
|
Zhuang Z, Yu JQ. Pd(II)-Catalyzed Enantioselective γ-C(sp 3)-H Functionalizations of Free Cyclopropylmethylamines. J Am Chem Soc 2020; 142:12015-12019. [PMID: 32605367 PMCID: PMC7654567 DOI: 10.1021/jacs.0c04801] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Prized for their ability to reliably forge stereocenters with precise regiocontrol from simple and abundant starting materials, substrate-directable enantioselective reactions are widely used in modern organic synthesis. As such, enantioselective C(sp3)-H functionalization reactions directed by innate functional groups could provide new routes to introduce molecular complexity within the inert hydrocarbon moiety, but to date this approach has been met with little success. While free primary aliphatic amines are common, versatile intermediates in synthesis, they are traditionally unreactive in C(sp3)-H activation reactions. Herein we report the Pd-catalyzed enantioselective C(sp3)-H functionalization of free aliphatic amines (cyclopropylmethylamines) enabled by a chiral bidentate thioether ligand. This ligand's privileged bidentate coordination mode and thioether motif favor the generation of the requisite mono(amine)-Pd(II) intermediate, thus enabling the enantioselective C-H activation of free amines. The resulting C-Pd(II) species could engage in either Pd(II)/Pd(IV) or Pd(II)/Pd(0) catalytic cycles, enabling access to a diverse range of products through (hetero)arylation, carbonylation, and olefination reactions. Consequently, this versatile reactivity offers medicinal chemists a general strategy to rapidly prepare and functionalize biologically relevant amines.
Collapse
Affiliation(s)
- Zhe Zhuang
- Department of Chemistry, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, California 92037, United States
| | - Jin-Quan Yu
- Department of Chemistry, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, California 92037, United States
| |
Collapse
|
55
|
Xu D, Yang S, Gao A, Yang Z. NaClO2-mediated preparation of pyridine-2-sulfonyl chlorides and synthesis of chiral sulfonamides. J Sulphur Chem 2020. [DOI: 10.1080/17415993.2020.1775834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Dong Xu
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry and College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, People’s Republic of China
| | - Shiyi Yang
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry and College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, People’s Republic of China
| | - Aijun Gao
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry and College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, People’s Republic of China
| | - Zhanhui Yang
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry and College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, People’s Republic of China
| |
Collapse
|
56
|
Affiliation(s)
- Zhiping Yin
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, P. R. China
| | - Jian-Xing Xu
- Leibniz-Institut für Katalyse e.V. an der Universität Rostock, Albert-Einstein-Straße 29a, 18059 Rostock, Germany
| | - Xiao-Feng Wu
- Leibniz-Institut für Katalyse e.V. an der Universität Rostock, Albert-Einstein-Straße 29a, 18059 Rostock, Germany
- Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou 310018, People’s Republic of China
| |
Collapse
|
57
|
Trowbridge A, Walton SM, Gaunt MJ. New Strategies for the Transition-Metal Catalyzed Synthesis of Aliphatic Amines. Chem Rev 2020; 120:2613-2692. [DOI: 10.1021/acs.chemrev.9b00462] [Citation(s) in RCA: 310] [Impact Index Per Article: 77.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Aaron Trowbridge
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Scarlett M. Walton
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
- Oncology
- IMED Biotech Unit, AstraZeneca, Darwin Building, Unit 310, Cambridge Science Park, Milton Road, Cambridge CB4 0WG, United Kingdom
| | - Matthew J. Gaunt
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| |
Collapse
|
58
|
Cendón B, Font M, Mascareñas JL, Gulı́as M. Palladium-Catalyzed Formal (4+2) Cycloaddition between Alkyl Amides and Dienes Initiated by the Activation of C(sp3)–H Bonds. ACS Catal 2020. [DOI: 10.1021/acscatal.0c00664] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Borja Cendón
- Centro Singular de Investigación en Quı́mica Biolóxica e Materiais Moleculares (CIQUS) and Departamento de Quı́mica Orgánica, Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - Marc Font
- Centro Singular de Investigación en Quı́mica Biolóxica e Materiais Moleculares (CIQUS) and Departamento de Quı́mica Orgánica, Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - José L. Mascareñas
- Centro Singular de Investigación en Quı́mica Biolóxica e Materiais Moleculares (CIQUS) and Departamento de Quı́mica Orgánica, Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - Moisés Gulı́as
- Centro Singular de Investigación en Quı́mica Biolóxica e Materiais Moleculares (CIQUS) and Departamento de Quı́mica Orgánica, Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain
| |
Collapse
|
59
|
Liu L, Liu YH, Shi BF. Synthesis of amino acids and peptides with bulky side chains via ligand-enabled carboxylate-directed γ-C(sp 3)-H arylation. Chem Sci 2020; 11:290-294. [PMID: 32153751 PMCID: PMC7021191 DOI: 10.1039/c9sc04482e] [Citation(s) in RCA: 92] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 11/09/2019] [Indexed: 01/05/2023] Open
Abstract
Amino acids and peptides with bulky side chains are of significant importance in organic synthesis and modern medicinal chemistry. The efficient synthesis of these molecules with full enantiocontrol and high diversity remains challenging. Herein we report a Pd-catalyzed ligand-enabled γ-C(sp3)-H arylation of tert-leucine and its derived peptides without using an external directing group (DG) via a less favored six-membered palladacycle. Structurally diverse bulky side chain amino acids and peptides were accessed in a step-economic fashion and the reaction could be conducted on a gram scale with retention of chirality. The resulting amino acids can be used as chiral ligands in Co(iii)-catalyzed enantioselective C(sp3)-H amidation. It is worth noting that the weakly coordinating carboxylate DG outcompetes the strongly coordinating bidentate DG of the peptide backbone, providing the products of γ-C(sp3)-H arylation of Tle residue exclusively. This protocol represents the first example of late stage C(sp3)-H functionalization of peptides using a weakly coordinating directing group.
Collapse
Affiliation(s)
- Lei Liu
- Department of Chemistry , Zhejiang University , Hangzhou 310027 , China .
| | - Yan-Hua Liu
- Department of Chemistry , Zhejiang University , Hangzhou 310027 , China .
| | - Bing-Feng Shi
- Department of Chemistry , Zhejiang University , Hangzhou 310027 , China .
| |
Collapse
|
60
|
Rej S, Ano Y, Chatani N. Bidentate Directing Groups: An Efficient Tool in C-H Bond Functionalization Chemistry for the Expedient Construction of C-C Bonds. Chem Rev 2020; 120:1788-1887. [PMID: 31904219 DOI: 10.1021/acs.chemrev.9b00495] [Citation(s) in RCA: 587] [Impact Index Per Article: 146.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
During the past decades, synthetic organic chemistry discovered that directing group assisted C-H activation is a key tool for the expedient and siteselective construction of C-C bonds. Among the various directing group strategies, bidentate directing groups are now recognized as one of the most efficient devices for the selective functionalization of certain positions due to fact that its metal center permits fine, tunable, and reversible coordination. The family of bidentate directing groups permit various types of assistance to be achieved, such as N,N-dentate, N,O-dentate, and N,S-dentate auxiliaries, which are categorized based on the coordination site. In this review, we broadly discuss various C-H bond functionalization reactions for the formation of C-C bonds with the aid of bidentate directing groups.
Collapse
Affiliation(s)
- Supriya Rej
- Department of Applied Chemistry, Faculty of Engineering , Osaka University , Suita , Osaka 560-0871 , Japan
| | - Yusuke Ano
- Department of Applied Chemistry, Faculty of Engineering , Osaka University , Suita , Osaka 560-0871 , Japan
| | - Naoto Chatani
- Department of Applied Chemistry, Faculty of Engineering , Osaka University , Suita , Osaka 560-0871 , Japan
| |
Collapse
|
61
|
Chen Z, Wang LC, Wu XF. Carbonylative synthesis of heterocycles involving diverse CO surrogates. Chem Commun (Camb) 2020; 56:6016-6030. [DOI: 10.1039/d0cc01504k] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Recent advances in the carbonylative synthesis of heterocycles by using diverse CO surrogates as sources of CO are summarized and discussed.
Collapse
Affiliation(s)
- Zhengkai Chen
- Department of Chemistry
- Zhejiang Sci-Tech University
- Hangzhou 310018
- People's Republic of China
| | - Le-Cheng Wang
- Department of Chemistry
- Zhejiang Sci-Tech University
- Hangzhou 310018
- People's Republic of China
| | - Xiao-Feng Wu
- Department of Chemistry
- Zhejiang Sci-Tech University
- Hangzhou 310018
- People's Republic of China
- Leibniz-Institut für Katalyse e. V. an der Universität Rostock
| |
Collapse
|
62
|
Zhan BB, Jiang MX, Shi BF. Late-stage functionalization of peptides via a palladium-catalyzed C(sp3)–H activation strategy. Chem Commun (Camb) 2020; 56:13950-13958. [DOI: 10.1039/d0cc06133f] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Recent advances in the late-stage modification of peptides via palladium-catalyzed C(sp3)–H functionalization are summarized.
Collapse
Affiliation(s)
- Bei-Bei Zhan
- Department of Chemistry
- Zhejiang University
- Hangzhou
- China
| | - Meng-Xue Jiang
- School of Biotechnology and Health Sciences
- Wuyi University
- Jiangmen
- Guangdong 529020
- China
| | - Bing-Feng Shi
- Department of Chemistry
- Zhejiang University
- Hangzhou
- China
- College of Chemistry and Molecular Engineering
| |
Collapse
|
63
|
Yuan F, Hou ZL, Pramanick PK, Yao B. Site-Selective Modification of α-Amino Acids and Oligopeptides via Native Amine-Directed γ-C(sp3)-H Arylation. Org Lett 2019; 21:9381-9385. [DOI: 10.1021/acs.orglett.9b03607] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Feipeng Yuan
- MOE Key Laboratory of Cluster Science, Beijing Key Laboratory of Photoelectronic-Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, P. R. China
| | - Zhen-Lin Hou
- MOE Key Laboratory of Cluster Science, Beijing Key Laboratory of Photoelectronic-Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, P. R. China
| | - Pranab K. Pramanick
- MOE Key Laboratory of Cluster Science, Beijing Key Laboratory of Photoelectronic-Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, P. R. China
| | - Bo Yao
- MOE Key Laboratory of Cluster Science, Beijing Key Laboratory of Photoelectronic-Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, P. R. China
| |
Collapse
|
64
|
Zhang M, Wang Q, Peng Y, Chen Z, Wan C, Chen J, Zhao Y, Zhang R, Zhang AQ. Transition metal-catalyzed sp 3 C-H activation and intramolecular C-N coupling to construct nitrogen heterocyclic scaffolds. Chem Commun (Camb) 2019; 55:13048-13065. [PMID: 31621700 DOI: 10.1039/c9cc06609h] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Nitrogen heterocycles are of great medicinal importance, and the construction of nitrogen heterocyclic scaffolds has been one of the focuses in synthetic organic chemistry. Recently, the strategy of transition metal-catalyzed sp3 C-H activation and intramolecular C-N coupling to construct nitrogen heterocyclic scaffolds has been well developed. Palladium, copper, silver, nickel, cobalt, ruthenium and rhodium catalysis were successfully used for the construction of nitrogen heterocyclic scaffolds, aziridines, azetidines, pyrrolidines, pyrrolidine-2,5-diones, indolines, isoindolines, isoindolinones, tetrahydropyridines, oxazolidinones, oxazinanones, β-lactams, γ-lactams etc., which have been synthesized by the sp3 C-H activation strategy. Here, we summarize the progress of transition metal-catalyzed sp3 C-H activation/intramolecular C-N bond formation, and introduce both the reaction development and mechanisms in numerous synthetically useful intramolecular sp3 C-H catalytic aminations/amidations.
Collapse
Affiliation(s)
- Ming Zhang
- College of Chemistry and Chemical Engineering and Key Laboratory of Functional Small Organic Molecules, Ministry of Education, Jiangxi Normal University (Yaohu campus), 99 Ziyangdadao Avenue, Nanchang, Jiangxi 330022, China.
| | - Qiuhong Wang
- College of Chemistry and Chemical Engineering and Key Laboratory of Functional Small Organic Molecules, Ministry of Education, Jiangxi Normal University (Yaohu campus), 99 Ziyangdadao Avenue, Nanchang, Jiangxi 330022, China.
| | - Yiyuan Peng
- College of Chemistry and Chemical Engineering and Key Laboratory of Functional Small Organic Molecules, Ministry of Education, Jiangxi Normal University (Yaohu campus), 99 Ziyangdadao Avenue, Nanchang, Jiangxi 330022, China.
| | - Zhiyuan Chen
- College of Chemistry and Chemical Engineering and Key Laboratory of Functional Small Organic Molecules, Ministry of Education, Jiangxi Normal University (Yaohu campus), 99 Ziyangdadao Avenue, Nanchang, Jiangxi 330022, China.
| | - Changfeng Wan
- College of Chemistry and Chemical Engineering and Key Laboratory of Functional Small Organic Molecules, Ministry of Education, Jiangxi Normal University (Yaohu campus), 99 Ziyangdadao Avenue, Nanchang, Jiangxi 330022, China.
| | - Junmin Chen
- College of Chemistry and Chemical Engineering and Key Laboratory of Functional Small Organic Molecules, Ministry of Education, Jiangxi Normal University (Yaohu campus), 99 Ziyangdadao Avenue, Nanchang, Jiangxi 330022, China.
| | - Yongli Zhao
- College of Chemistry and Chemical Engineering and Key Laboratory of Functional Small Organic Molecules, Ministry of Education, Jiangxi Normal University (Yaohu campus), 99 Ziyangdadao Avenue, Nanchang, Jiangxi 330022, China.
| | - Rongli Zhang
- College of Chemistry and Chemical Engineering and Key Laboratory of Functional Small Organic Molecules, Ministry of Education, Jiangxi Normal University (Yaohu campus), 99 Ziyangdadao Avenue, Nanchang, Jiangxi 330022, China.
| | - Ai Qin Zhang
- Department of Environmental and Chemical Engineering, Nanchang Hangkong University, Nanchang, Jiangxi 330063, China
| |
Collapse
|
65
|
Cai SL, Li Y, Yang C, Sheng J, Wang XS. NHC Ligand-Enabled, Palladium-Catalyzed Non-Directed C(sp3)–H Carbonylation To Access Indanone Cores. ACS Catal 2019. [DOI: 10.1021/acscatal.9b03426] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Shou-Le Cai
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry, Center for Excellence in Molecular Synthesis of CAS, University of Science and Technology of China, 96 Jinzhai Road, Hefei 230026, China
| | - Yan Li
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry, Center for Excellence in Molecular Synthesis of CAS, University of Science and Technology of China, 96 Jinzhai Road, Hefei 230026, China
| | - Chi Yang
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry, Center for Excellence in Molecular Synthesis of CAS, University of Science and Technology of China, 96 Jinzhai Road, Hefei 230026, China
| | - Jie Sheng
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry, Center for Excellence in Molecular Synthesis of CAS, University of Science and Technology of China, 96 Jinzhai Road, Hefei 230026, China
| | - Xi-Sheng Wang
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry, Center for Excellence in Molecular Synthesis of CAS, University of Science and Technology of China, 96 Jinzhai Road, Hefei 230026, China
| |
Collapse
|
66
|
Tanaka K, Ewing WR, Yu JQ. Hemilabile Benzyl Ether Enables γ-C(sp 3)-H Carbonylation and Olefination of Alcohols. J Am Chem Soc 2019; 141:15494-15497. [PMID: 31519108 DOI: 10.1021/jacs.9b08238] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Pd-catalyzed C(sp3)-H activation of alcohol typically shows β-selectivity due to the required distance between the chelating atom in the attached directing group and the targeted C-H bonds. Herein we report the design of a hemilabile directing group which exploits the chelation of a readily removable benzyl ether moiety to direct γ- or δ-C-H carbonylation and olefination of alcohols. The utility of this approach is also demonstrated in the late-stage C-H functionalization of β-estradiol to rapidly prepare desired analogues that required multi-step syntheses with classical methods.
Collapse
Affiliation(s)
- Keita Tanaka
- Department of Chemistry , The Scripps Research Institute , 10550 North Torrey Pines Road , La Jolla , California 92037 , United States
| | - William R Ewing
- Discovery Chemistry , Bristol-Myers Squibb , P.O. Box 4000, Princeton , New Jersey 08543 , United States
| | - Jin-Quan Yu
- Department of Chemistry , The Scripps Research Institute , 10550 North Torrey Pines Road , La Jolla , California 92037 , United States
| |
Collapse
|
67
|
Song L, Tian G, Blanpain A, Van Meervelt L, Van der Eycken EV. Diversification of Peptidomimetics and Oligopeptides through Microwave‐Assisted Rhodium(III)‐Catalyzed Intramolecular Annulation. Adv Synth Catal 2019. [DOI: 10.1002/adsc.201900550] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Liangliang Song
- Laboratory for Organic & Microwave-Assisted Chemistry (LOMAC), Department of ChemistryKU Leuven Celestijnenlaan 200F 3001 Leuven Belgium
| | - Guilong Tian
- Laboratory for Organic & Microwave-Assisted Chemistry (LOMAC), Department of ChemistryKU Leuven Celestijnenlaan 200F 3001 Leuven Belgium
| | - Anna Blanpain
- Laboratory for Organic & Microwave-Assisted Chemistry (LOMAC), Department of ChemistryKU Leuven Celestijnenlaan 200F 3001 Leuven Belgium
| | - Luc Van Meervelt
- Biomolecular Architecture, Department of ChemistryKU Leuven Celestijnenlaan 200F 3001 Leuven Belgium
| | - Erik V. Van der Eycken
- Laboratory for Organic & Microwave-Assisted Chemistry (LOMAC), Department of ChemistryKU Leuven Celestijnenlaan 200F 3001 Leuven Belgium
- Peoples' Friendship University of Russia (RUDN University) Miklukho-Maklaya Street 6 Moscow Russia
| |
Collapse
|
68
|
Farshadfar K, Chipman A, Hosseini M, Yates BF, Ariafard A. A Modified Cationic Mechanism for PdCl2-Catalyzed Transformation of a Homoallylic Alcohol to an Allyl Ether. Organometallics 2019. [DOI: 10.1021/acs.organomet.9b00276] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Kaveh Farshadfar
- Department of Chemistry, Islamic Azad University, Central Tehran Branch, Poonak, Tehran 1469669191, Iran
| | - Antony Chipman
- School of Natural Sciences (Chemistry), University of Tasmania, Private Bag 75, Hobart, TAS 7001, Australia
| | - Mahdieh Hosseini
- Department of Chemistry, Islamic Azad University, Central Tehran Branch, Poonak, Tehran 1469669191, Iran
| | - Brian F. Yates
- School of Natural Sciences (Chemistry), University of Tasmania, Private Bag 75, Hobart, TAS 7001, Australia
| | - Alireza Ariafard
- Department of Chemistry, Islamic Azad University, Central Tehran Branch, Poonak, Tehran 1469669191, Iran
- School of Natural Sciences (Chemistry), University of Tasmania, Private Bag 75, Hobart, TAS 7001, Australia
| |
Collapse
|
69
|
Perrone S, Troisi L, Salomone A. Heterocycle Synthesis through Pd-Catalyzed Carbonylative Coupling. European J Org Chem 2019. [DOI: 10.1002/ejoc.201900439] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Serena Perrone
- Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali; Università del Salento; Campus Ecotekne, Prov.le Lecce-Monteroni 73100 Lecce Italy
| | - Luigino Troisi
- Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali; Università del Salento; Campus Ecotekne, Prov.le Lecce-Monteroni 73100 Lecce Italy
| | - Antonio Salomone
- Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali; Università del Salento; Campus Ecotekne, Prov.le Lecce-Monteroni 73100 Lecce Italy
| |
Collapse
|
70
|
Mondal K, Halder P, Gopalan G, Sasikumar P, Radhakrishnan KV, Das P. Chloroform as a CO surrogate: applications and recent developments. Org Biomol Chem 2019; 17:5212-5222. [PMID: 31080990 DOI: 10.1039/c9ob00886a] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The carbonyl moiety is one of the indispensable sub-units in organic synthesis with significant applications in medicinal as well as materials chemistry. Hence the insertion of a carbonyl group via simple and highly efficient routes has been one of the most challenging tasks for organic chemists. Though the direct utilisation of CO gas in carbonylation is the fundamental procedure for the construction of carbonyl compounds, it has certain drawbacks due to its toxic and explosive nature. As a result, the need for cheap and efficient CO surrogates has gained much attention nowadays by which CO gas can be easily generated in situ or ex situ. In this review we discuss the advantages of chloroform as CO surrogate and have surveyed recent carbonylation reactions where chloroform has been used as CO source.
Collapse
Affiliation(s)
- Krishanu Mondal
- Department of Applied Chemistry, IIT(ISM) Dhanbad, Dhanbad 826004, India.
| | | | | | | | | | | |
Collapse
|
71
|
Martínez-Mingo M, Rodríguez N, Gómez Arrayás R, Carretero JC. Access to Benzazepinones by Pd-Catalyzed Remote C–H Carbonylation of γ-Arylpropylamine Derivatives. Org Lett 2019; 21:4345-4349. [DOI: 10.1021/acs.orglett.9b01523] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Mario Martínez-Mingo
- Departamento de Química Orgánica, Facultad de Ciencias, Universidad Autónoma de Madrid (UAM), Cantoblanco, 28049 Madrid, Spain
| | - Nuria Rodríguez
- Departamento de Química Orgánica, Facultad de Ciencias, Universidad Autónoma de Madrid (UAM), Cantoblanco, 28049 Madrid, Spain
- Institute for Advanced Research in Chemical Sciences (IAdChem), UAM, Cantoblanco, 28049 Madrid, Spain
| | - Ramón Gómez Arrayás
- Departamento de Química Orgánica, Facultad de Ciencias, Universidad Autónoma de Madrid (UAM), Cantoblanco, 28049 Madrid, Spain
- Institute for Advanced Research in Chemical Sciences (IAdChem), UAM, Cantoblanco, 28049 Madrid, Spain
| | - Juan C. Carretero
- Departamento de Química Orgánica, Facultad de Ciencias, Universidad Autónoma de Madrid (UAM), Cantoblanco, 28049 Madrid, Spain
- Institute for Advanced Research in Chemical Sciences (IAdChem), UAM, Cantoblanco, 28049 Madrid, Spain
| |
Collapse
|
72
|
|
73
|
Zheng Y, Song W. Pd-Catalyzed Site-Selective C(sp2)–H Olefination and Alkynylation of Phenylalanine Residues in Peptides. Org Lett 2019; 21:3257-3260. [DOI: 10.1021/acs.orglett.9b00987] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Yong Zheng
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai 201203, China
| | - Weibin Song
- Jiangsu Key Laboratory for Functional Substances of Chinese Medicine, Stake Key Laboratory Cultivation Base for TCM Quality and Efficacy, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| |
Collapse
|
74
|
Pramanick PK, Zhou Z, Hou ZL, Yao B. Free Amino Group-Directed γ-C(sp3)–H Arylation of α-Amino Esters with Diaryliodonium Triflates by Palladium Catalysis. J Org Chem 2019; 84:5684-5694. [DOI: 10.1021/acs.joc.9b00605] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Pranab K. Pramanick
- MOE Key Laboratory of Cluster Science, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, P. R. China
| | - Zhibing Zhou
- MOE Key Laboratory of Cluster Science, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, P. R. China
| | - Zhen-Lin Hou
- MOE Key Laboratory of Cluster Science, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, P. R. China
| | - Bo Yao
- MOE Key Laboratory of Cluster Science, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, P. R. China
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| |
Collapse
|
75
|
Assembling of medium/long chain-based β-arylated unnatural amino acid derivatives via the Pd(II)-catalyzed sp3 β-C-H arylation and a short route for rolipram-type derivatives. Tetrahedron 2019. [DOI: 10.1016/j.tet.2019.03.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
76
|
Sun N, Sun Q, Zhao W, Jin L, Hu B, Shen Z, Hu X. Ligand‐free Palladium‐Catalyzed Carbonylative Suzuki Coupling of Aryl Iodides in Aqueous CH
3
CN with Sub‐stoichiometric Amount of Mo(CO)
6
as CO Source. Adv Synth Catal 2019. [DOI: 10.1002/adsc.201900011] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Nan Sun
- College of Chemical EngineeringZhejiang University of Technology Hangzhou 310014 People's Republic of China
| | - Qingxia Sun
- College of Chemical EngineeringZhejiang University of Technology Hangzhou 310014 People's Republic of China
| | - Wei Zhao
- College of Chemical EngineeringZhejiang University of Technology Hangzhou 310014 People's Republic of China
| | - Liqun Jin
- College of Chemical EngineeringZhejiang University of Technology Hangzhou 310014 People's Republic of China
| | - Baoxiang Hu
- College of Chemical EngineeringZhejiang University of Technology Hangzhou 310014 People's Republic of China
| | - Zhenlu Shen
- College of Chemical EngineeringZhejiang University of Technology Hangzhou 310014 People's Republic of China
| | - Xinquan Hu
- College of Chemical EngineeringZhejiang University of Technology Hangzhou 310014 People's Republic of China
| |
Collapse
|
77
|
Fan X, Jiang YY, Zhu L, Zhang Q, Bi S. Mechanism and Origin of Stereoselectivity of Pd-Catalyzed Cascade Annulation of Aryl Halide, Alkene, and Carbon Monoxide via C–H Activation. J Org Chem 2019; 84:4353-4362. [DOI: 10.1021/acs.joc.9b00348] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Xia Fan
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, People’s Republic of China
| | - Yuan-Ye Jiang
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, People’s Republic of China
| | - Ling Zhu
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, People’s Republic of China
| | - Qi Zhang
- Institute of Industry & Equipment Technology, Hefei University of Technology, Hefei 230009, People’s Republic of China
| | - Siwei Bi
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, People’s Republic of China
| |
Collapse
|
78
|
Zhan BB, Fan J, Jin L, Shi BF. Divergent Synthesis of Silicon-Containing Peptides via Pd-Catalyzed Post-Assembly γ-C(sp3)–H Silylation. ACS Catal 2019. [DOI: 10.1021/acscatal.9b00544] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Bei-Bei Zhan
- Department of Chemistry, Zhejiang University, Hangzhou, 310027, China
| | - Jun Fan
- Department of Chemistry, Zhejiang University, Hangzhou, 310027, China
| | - Liang Jin
- Department of Chemistry, Zhejiang University, Hangzhou, 310027, China
| | - Bing-Feng Shi
- Department of Chemistry, Zhejiang University, Hangzhou, 310027, China
| |
Collapse
|
79
|
Tan J, Wu J, Liu S, Yao H, Wang H. Macrocyclization of peptidoarylacetamides with self-assembly properties through late-stage palladium-catalyzed C(sp 2)▬H olefination. SCIENCE ADVANCES 2019; 5:eaaw0323. [PMID: 30873434 PMCID: PMC6408153 DOI: 10.1126/sciadv.aaw0323] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 01/28/2019] [Indexed: 05/04/2023]
Abstract
Peptide macrocycles often display diverse bioactivities and self-assembly properties, which lead to a variety of applications in medicinal and material sciences. Transition metal-catalyzed C▬H activations are emerging strategies for site-selective functionalization of amino acids and peptides, as well as the construction of cyclic peptides. Here, we report the development of a peptide-directed method for the macrocyclization of peptidoarylacetamides by Pd(II)-catalyzed late-stage C(sp2)▬H olefination. In this protocol, peptide backbones act as internal directing groups and enable facile preparation of diverse cyclic peptides that are difficult to synthesize by conventional macrolactamization. Furthermore, we show that the incorporation of aryl-alkene cross-link in the backbone constrains cyclic peptides into conformations for self-assembly.
Collapse
Affiliation(s)
- Jiantao Tan
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, No. 163 Xianlin Avenue, Nanjing 210093, P.R. China
| | - Jie Wu
- State Key Laboratory of Natural Medicines, Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, P.R. China
| | - Shu Liu
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, No. 163 Xianlin Avenue, Nanjing 210093, P.R. China
| | - Hequan Yao
- State Key Laboratory of Natural Medicines, Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, P.R. China
| | - Huan Wang
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, No. 163 Xianlin Avenue, Nanjing 210093, P.R. China
- Corresponding author.
| |
Collapse
|
80
|
Karmakar U, Samanta R. Pd(II)-Catalyzed Direct Sulfonylation of Benzylamines Using Sodium Sulfinates. J Org Chem 2019; 84:2850-2861. [DOI: 10.1021/acs.joc.8b03098] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Ujjwal Karmakar
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Rajarshi Samanta
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| |
Collapse
|
81
|
Dayan S, Özdemir N, Özpozan NK. Enhanced Performance of Organic/Inorganic Hybrid Nanomaterials bearing Impregnated [PdL
2
] Complexes as Counter‐Electrode Catalyst for Dye‐Sensitized Solar Cells. Appl Organomet Chem 2018. [DOI: 10.1002/aoc.4710] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Serkan Dayan
- Department of Chemistry, Faculty of ScienceErciyes University 38039 Kayseri Turkey
| | - Namık Özdemir
- Department of Mathematics and Science Education, Faculty of EducationOndokuz Mayıs University 55139 Samsun Turkey
| | | |
Collapse
|
82
|
Chen HX, Li Y, He X, Zhang Y, He W, Liang H, Zhang Y, Jiang X, Chen X, Cao R, Liu GF, Qiu L. Unexpected Brønsted Acid-Catalyzed Domino Reaction of 3-Hydroxyisoindolin-1-ones and N
-tert
-Butyl Hydrazones for the Synthesis of 3-(Hydrazono)isoindolin-1-ones. European J Org Chem 2018. [DOI: 10.1002/ejoc.201801293] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Hui-Xuan Chen
- School of Chemistry; The Key Laboratory of Low-Carbon Chemistry & Energy Conservation of Guangdong Province; South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center; Guangdong Engineering Research Center of Chiral Drugs; Sun Yat-Sen University; Guangzhou People's Republic of China
| | - Yongsu Li
- School of Chemistry; The Key Laboratory of Low-Carbon Chemistry & Energy Conservation of Guangdong Province; South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center; Guangdong Engineering Research Center of Chiral Drugs; Sun Yat-Sen University; Guangzhou People's Republic of China
| | - Xuefeng He
- School of Chemistry; The Key Laboratory of Low-Carbon Chemistry & Energy Conservation of Guangdong Province; South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center; Guangdong Engineering Research Center of Chiral Drugs; Sun Yat-Sen University; Guangzhou People's Republic of China
| | - Yaqi Zhang
- School of Chemistry; The Key Laboratory of Low-Carbon Chemistry & Energy Conservation of Guangdong Province; South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center; Guangdong Engineering Research Center of Chiral Drugs; Sun Yat-Sen University; Guangzhou People's Republic of China
| | - Wenhuan He
- School of Chemistry; The Key Laboratory of Low-Carbon Chemistry & Energy Conservation of Guangdong Province; South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center; Guangdong Engineering Research Center of Chiral Drugs; Sun Yat-Sen University; Guangzhou People's Republic of China
| | - Hao Liang
- School of Chemistry; The Key Laboratory of Low-Carbon Chemistry & Energy Conservation of Guangdong Province; South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center; Guangdong Engineering Research Center of Chiral Drugs; Sun Yat-Sen University; Guangzhou People's Republic of China
| | - Yuyang Zhang
- School of Chemistry; The Key Laboratory of Low-Carbon Chemistry & Energy Conservation of Guangdong Province; South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center; Guangdong Engineering Research Center of Chiral Drugs; Sun Yat-Sen University; Guangzhou People's Republic of China
| | - Xiaoding Jiang
- School of Chemistry; The Key Laboratory of Low-Carbon Chemistry & Energy Conservation of Guangdong Province; South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center; Guangdong Engineering Research Center of Chiral Drugs; Sun Yat-Sen University; Guangzhou People's Republic of China
| | - Xiangmeng Chen
- School of Chemistry; The Key Laboratory of Low-Carbon Chemistry & Energy Conservation of Guangdong Province; South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center; Guangdong Engineering Research Center of Chiral Drugs; Sun Yat-Sen University; Guangzhou People's Republic of China
| | - Rihui Cao
- School of Chemistry; The Key Laboratory of Low-Carbon Chemistry & Energy Conservation of Guangdong Province; South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center; Guangdong Engineering Research Center of Chiral Drugs; Sun Yat-Sen University; Guangzhou People's Republic of China
| | - Gao-Feng Liu
- School of Chemistry; The Key Laboratory of Low-Carbon Chemistry & Energy Conservation of Guangdong Province; South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center; Guangdong Engineering Research Center of Chiral Drugs; Sun Yat-Sen University; Guangzhou People's Republic of China
| | - Liqin Qiu
- School of Chemistry; The Key Laboratory of Low-Carbon Chemistry & Energy Conservation of Guangdong Province; South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center; Guangdong Engineering Research Center of Chiral Drugs; Sun Yat-Sen University; Guangzhou People's Republic of China
| |
Collapse
|
83
|
Bai Z, Cai C, Yu Z, Wang H. Backbone‐Enabled Directional Peptide Macrocyclization through Late‐Stage Palladium‐Catalyzed δ‐C(sp
2
)−H Olefination. Angew Chem Int Ed Engl 2018; 57:13912-13916. [DOI: 10.1002/anie.201807953] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Indexed: 11/10/2022]
Affiliation(s)
- Zengbing Bai
- State Key Laboratory of Coordination ChemistryJiangsu Key Laboratory of Advanced Organic MaterialsSchool of Chemistry and Chemical EngineeringNanjing University No. 163 Xianlin Ave Nanjing 210093 China
| | - Chuangxu Cai
- State Key Laboratory of Coordination ChemistryJiangsu Key Laboratory of Advanced Organic MaterialsSchool of Chemistry and Chemical EngineeringNanjing University No. 163 Xianlin Ave Nanjing 210093 China
| | - Zonglun Yu
- State Key Laboratory of Coordination ChemistryJiangsu Key Laboratory of Advanced Organic MaterialsSchool of Chemistry and Chemical EngineeringNanjing University No. 163 Xianlin Ave Nanjing 210093 China
| | - Huan Wang
- State Key Laboratory of Coordination ChemistryJiangsu Key Laboratory of Advanced Organic MaterialsSchool of Chemistry and Chemical EngineeringNanjing University No. 163 Xianlin Ave Nanjing 210093 China
| |
Collapse
|
84
|
Bai Z, Cai C, Yu Z, Wang H. Backbone‐Enabled Directional Peptide Macrocyclization through Late‐Stage Palladium‐Catalyzed δ‐C(sp
2
)−H Olefination. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201807953] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Zengbing Bai
- State Key Laboratory of Coordination ChemistryJiangsu Key Laboratory of Advanced Organic MaterialsSchool of Chemistry and Chemical EngineeringNanjing University No. 163 Xianlin Ave Nanjing 210093 China
| | - Chuangxu Cai
- State Key Laboratory of Coordination ChemistryJiangsu Key Laboratory of Advanced Organic MaterialsSchool of Chemistry and Chemical EngineeringNanjing University No. 163 Xianlin Ave Nanjing 210093 China
| | - Zonglun Yu
- State Key Laboratory of Coordination ChemistryJiangsu Key Laboratory of Advanced Organic MaterialsSchool of Chemistry and Chemical EngineeringNanjing University No. 163 Xianlin Ave Nanjing 210093 China
| | - Huan Wang
- State Key Laboratory of Coordination ChemistryJiangsu Key Laboratory of Advanced Organic MaterialsSchool of Chemistry and Chemical EngineeringNanjing University No. 163 Xianlin Ave Nanjing 210093 China
| |
Collapse
|
85
|
Wang W, Lorion MM, Martinazzoli O, Ackermann L. BODIPY Peptide Labeling by Late‐Stage C(sp
3
)−H Activation. Angew Chem Int Ed Engl 2018; 57:10554-10558. [DOI: 10.1002/anie.201804654] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2018] [Revised: 05/31/2018] [Indexed: 12/30/2022]
Affiliation(s)
- Wei Wang
- Institut für Organische und Biomolekulare ChemieGeorg-August-Universität Tammanstraße 2 37077 Göttingen Germany
| | - Mélanie M. Lorion
- Institut für Organische und Biomolekulare ChemieGeorg-August-Universität Tammanstraße 2 37077 Göttingen Germany
| | - Oscar Martinazzoli
- Institut für Organische und Biomolekulare ChemieGeorg-August-Universität Tammanstraße 2 37077 Göttingen Germany
| | - Lutz Ackermann
- Institut für Organische und Biomolekulare ChemieGeorg-August-Universität Tammanstraße 2 37077 Göttingen Germany
- DZHK (German Centre for Cardiovascular Research) Germany
| |
Collapse
|
86
|
Wang W, Lorion MM, Martinazzoli O, Ackermann L. BODIPY Peptide Labeling by Late‐Stage C(sp
3
)−H Activation. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201804654] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Wei Wang
- Institut für Organische und Biomolekulare ChemieGeorg-August-Universität Tammanstraße 2 37077 Göttingen Germany
| | - Mélanie M. Lorion
- Institut für Organische und Biomolekulare ChemieGeorg-August-Universität Tammanstraße 2 37077 Göttingen Germany
| | - Oscar Martinazzoli
- Institut für Organische und Biomolekulare ChemieGeorg-August-Universität Tammanstraße 2 37077 Göttingen Germany
| | - Lutz Ackermann
- Institut für Organische und Biomolekulare ChemieGeorg-August-Universität Tammanstraße 2 37077 Göttingen Germany
- DZHK (German Centre for Cardiovascular Research) Germany
| |
Collapse
|
87
|
Png ZM, Cabrera-Pardo JR, Peiró Cadahía J, Gaunt MJ. Diastereoselective C-H carbonylative annulation of aliphatic amines: a rapid route to functionalized γ-lactams. Chem Sci 2018; 9:7628-7633. [PMID: 30393523 PMCID: PMC6182607 DOI: 10.1039/c8sc02855a] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 07/20/2018] [Indexed: 11/21/2022] Open
Abstract
A palladium(ii)-catalysed C(sp3)–H carbonylation of free(NH) secondary aliphatic amines to 2-pyrrolidinones is described.
A palladium(ii)-catalysed C(sp3)–H carbonylation of free(NH) secondary aliphatic amines to 2-pyrrolidinones is described. A correlation between the nature of the carboxylate ligand and the diastereoselectivity and yield of the process was observed. As such, under these optimal conditions a range of aliphatic amines were converted to the corresponding trans-4,5-disubstituted 2-pyrrolidines with good d.r. and yield.
Collapse
Affiliation(s)
- Zhuang Mao Png
- Department of Chemistry , University of Cambridge , Lensfield Road , Cambridge , UK .
| | - Jaime R Cabrera-Pardo
- Department of Chemistry , University of Cambridge , Lensfield Road , Cambridge , UK .
| | - Jorge Peiró Cadahía
- Department of Chemistry , University of Cambridge , Lensfield Road , Cambridge , UK .
| | - Matthew J Gaunt
- Department of Chemistry , University of Cambridge , Lensfield Road , Cambridge , UK .
| |
Collapse
|
88
|
Probst N, Grelier G, Dahaoui S, Alami M, Gandon V, Messaoudi S. Palladium(II)-Catalyzed Diastereoselective 2,3-Trans C(sp3)–H Arylation of Glycosides. ACS Catal 2018. [DOI: 10.1021/acscatal.8b01617] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Nicolas Probst
- BioCIS, Université Paris-Sud, CNRS, University Paris-Saclay, Châtenay-Malabry 92290, France
| | - Gwendal Grelier
- Institut de Chimie des Substances Naturelles, CNRS UPR 2301, Université Paris-Sud, Université Paris-Saclay, 1 av. de la Terrasse, Gif-sur-Yvette 91198, France
| | - Slimane Dahaoui
- Cristallographie, Résonance Magnétique et Modélisations (CRM2), UMR UL-CNRS 7036, Faculté des Sciences et Technologies, Université de Lorraine, BP 70239, Boulevard des Aiguillettes, Vandœuvre-lès-Nancy 54506 Cedex, France
| | - Mouâd Alami
- BioCIS, Université Paris-Sud, CNRS, University Paris-Saclay, Châtenay-Malabry 92290, France
| | - Vincent Gandon
- Laboratoire de Chimie Moléculaire (LCM), CNRS UMR 9168, Ecole Polytechnique, Université Paris-Saclay, route de Saclay, Palaiseau 91128 Cedex, France
- Institut de Chimie Moléculaire et des Matériaux d’Orsay, CNRS UMR 8182, Université Paris-Sud, Université Paris-Saclay, Orsay 91405, France
| | - Samir Messaoudi
- BioCIS, Université Paris-Sud, CNRS, University Paris-Saclay, Châtenay-Malabry 92290, France
| |
Collapse
|
89
|
Legarda PD, García-Rubia A, Arrayás RG, Carretero JC. Palladium-catalyzed ortho-olefination of 2-arylpyrrolidines: A tool for increasing structural complexity in nitrogen heterocycles. Tetrahedron 2018. [DOI: 10.1016/j.tet.2018.05.076] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
90
|
Lu X, He SJ, Cheng WM, Shi J. Transition-metal-catalyzed C H functionalization for late-stage modification of peptides and proteins. CHINESE CHEM LETT 2018. [DOI: 10.1016/j.cclet.2018.05.011] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
91
|
Cabrera PJ, Lee M, Sanford MS. Second-Generation Palladium Catalyst System for Transannular C-H Functionalization of Azabicycloalkanes. J Am Chem Soc 2018; 140:5599-5606. [PMID: 29652497 PMCID: PMC5956530 DOI: 10.1021/jacs.8b02142] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
This article describes the development of a second-generation catalyst system for the transannular C-H functionalization of alicyclic amines. Pyridine- and quinoline-carboxylate ligands are shown to be highly effective for increasing the reaction rate, yield, and scope of Pd-catalyzed transannular C-H arylation reactions of azabicyclo[3.1.0]hexane, azabicyclo[3.1.1]heptane, azabicyclo[3.2.1]octane, and piperidine derivatives. Mechanistic studies reveal that the pyridine/quinoline-carboxylates play a role in impeding both reversible and irreversible catalyst decomposition pathways. These ligands enable the first reported examples of the transannular C-H arylation of the ubiquitous tropane, 7-azanorbornane, and homotropane cores. Finally, the pyridine/quinoline-carboxylates are shown to promote both transannular C-H arylation and transannular C-H dehydrogenation on a homotropane substrate.
Collapse
|
92
|
Zhang C, Ding Y, Gao Y, Li S, Li G. Palladium-Catalyzed Direct C–H Carbonylation of Free Primary Benzylamines: A Synthesis of Benzolactams. Org Lett 2018; 20:2595-2598. [DOI: 10.1021/acs.orglett.8b00786] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Chunhui Zhang
- College of Chemistry, Fuzhou University, Fuzhou, Fujian 350002, China
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
| | - Yongzheng Ding
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
| | - Yuzhen Gao
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
| | - Shangda Li
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
| | - Gang Li
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
| |
Collapse
|
93
|
Zhan BB, Li Y, Xu JW, Nie XL, Fan J, Jin L, Shi BF. Site-Selective δ-C(sp3
)−H Alkylation of Amino Acids and Peptides with Maleimides via a Six-Membered Palladacycle. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201801445] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Bei-Bei Zhan
- Department of Chemistry; Zhejiang University; Hangzhou 310027 China
| | - Ya Li
- Department of Chemistry; Zhejiang University; Hangzhou 310027 China
| | - Jing-Wen Xu
- Department of Chemistry; Zhejiang University; Hangzhou 310027 China
| | - Xing-Liang Nie
- Department of Chemistry; Zhejiang University; Hangzhou 310027 China
| | - Jun Fan
- Department of Chemistry; Zhejiang University; Hangzhou 310027 China
| | - Liang Jin
- Department of Chemistry; Zhejiang University; Hangzhou 310027 China
| | - Bing-Feng Shi
- Department of Chemistry; Zhejiang University; Hangzhou 310027 China
- State Key Laboratory of Elemento-organic Chemistry; Nankai University; Tianjin 300071 China
| |
Collapse
|
94
|
Zhan BB, Li Y, Xu JW, Nie XL, Fan J, Jin L, Shi BF. Site-Selective δ-C(sp3
)−H Alkylation of Amino Acids and Peptides with Maleimides via a Six-Membered Palladacycle. Angew Chem Int Ed Engl 2018; 57:5858-5862. [DOI: 10.1002/anie.201801445] [Citation(s) in RCA: 125] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 03/11/2018] [Indexed: 12/25/2022]
Affiliation(s)
- Bei-Bei Zhan
- Department of Chemistry; Zhejiang University; Hangzhou 310027 China
| | - Ya Li
- Department of Chemistry; Zhejiang University; Hangzhou 310027 China
| | - Jing-Wen Xu
- Department of Chemistry; Zhejiang University; Hangzhou 310027 China
| | - Xing-Liang Nie
- Department of Chemistry; Zhejiang University; Hangzhou 310027 China
| | - Jun Fan
- Department of Chemistry; Zhejiang University; Hangzhou 310027 China
| | - Liang Jin
- Department of Chemistry; Zhejiang University; Hangzhou 310027 China
| | - Bing-Feng Shi
- Department of Chemistry; Zhejiang University; Hangzhou 310027 China
- State Key Laboratory of Elemento-organic Chemistry; Nankai University; Tianjin 300071 China
| |
Collapse
|
95
|
Zheng Y, Song W, Zhu Y, Wei B, Xuan L. Pd-Catalyzed Acetoxylation of γ-C(sp3)–H Bonds of Amines Directed by a Removable Bts-Protecting Group. J Org Chem 2018; 83:2448-2454. [DOI: 10.1021/acs.joc.7b02995] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yong Zheng
- State Key Laboratory of Drug Research,
Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai 201203, China
| | - Weibin Song
- State Key Laboratory of Drug Research,
Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai 201203, China
| | - Yefu Zhu
- State Key Laboratory of Drug Research,
Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai 201203, China
| | - Bole Wei
- State Key Laboratory of Drug Research,
Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai 201203, China
| | - Lijiang Xuan
- State Key Laboratory of Drug Research,
Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai 201203, China
| |
Collapse
|
96
|
Maslivetc V, Barrett C, Aksenov NA, Rubina M, Rubin M. Intramolecular nucleophilic addition of carbanions generated from N-benzylamides to cyclopropenes. Org Biomol Chem 2018; 16:285-294. [PMID: 29242861 PMCID: PMC5755969 DOI: 10.1039/c7ob02068f] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
An unusual reaction is described, involving a formal intramolecular nucleophilic substitution of bromocyclopropanes with nitrogen ylides generated in situ from N-benzyl carboxamides. It is shown that this reaction involves cyclopropene intermediates and allows for the facile and expeditious preparation of 3-azabicyclo[3.1.0]hexan-2-one scaffolds.
Collapse
Affiliation(s)
- Vladimir Maslivetc
- Department of Chemistry, University of Kansas, 1251 Wescoe Hall Dr., Lawrence, KS 66045-7582, USA.
| | | | | | | | | |
Collapse
|
97
|
Ling F, Ai C, Lv Y, Zhong W. Traceless Directing Group Assisted Cobalt-Catalyzed C−H Carbonylation of Benzylamines. Adv Synth Catal 2017. [DOI: 10.1002/adsc.201700780] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Fei Ling
- Key Laboratory of Pharmaceutical Engineering of Ministry of Education, College of Pharmaceutical Science; Zhejiang University of Technology; Hangzhou 310014 People's Republic of China
| | - Chongren Ai
- Key Laboratory of Pharmaceutical Engineering of Ministry of Education, College of Pharmaceutical Science; Zhejiang University of Technology; Hangzhou 310014 People's Republic of China
| | - Yaping Lv
- Key Laboratory of Pharmaceutical Engineering of Ministry of Education, College of Pharmaceutical Science; Zhejiang University of Technology; Hangzhou 310014 People's Republic of China
| | - Weihui Zhong
- Key Laboratory of Pharmaceutical Engineering of Ministry of Education, College of Pharmaceutical Science; Zhejiang University of Technology; Hangzhou 310014 People's Republic of China
| |
Collapse
|
98
|
Probst N, Grelier G, Ghermani N, Gandon V, Alami M, Messaoudi S. Intramolecular Pd-Catalyzed Anomeric C(sp3)–H Activation of Glycosyl Carboxamides. Org Lett 2017; 19:5038-5041. [DOI: 10.1021/acs.orglett.7b02170] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Nicolas Probst
- BioCIS, Univ Paris-Sud, CNRS, University Paris-Saclay, Châtenay-Malabry, France
| | - Gwendal Grelier
- Institut
de Chimie des Substances Naturelles, CNRS UPR 2301, Univ Paris-Sud, Université Paris-Saclay, 1, av de la Terrasse, 91198 Gif-sur-Yvette, France
| | - NourEddine Ghermani
- Institut
Galien, Univ-Sud, CNRS, University Paris-Saclay, Châtenay-Malabry 92296, France
| | - Vincent Gandon
- Institut
de Chimie des Substances Naturelles, CNRS UPR 2301, Univ Paris-Sud, Université Paris-Saclay, 1, av de la Terrasse, 91198 Gif-sur-Yvette, France
- Institut
de Chimie Moléculaire et des Matériaux d’Orsay, CNRS UMR 8182, Univ Paris-Sud, Université Paris-Saclay, 91405 Orsay, France
| | - Mouâd Alami
- BioCIS, Univ Paris-Sud, CNRS, University Paris-Saclay, Châtenay-Malabry, France
| | - Samir Messaoudi
- BioCIS, Univ Paris-Sud, CNRS, University Paris-Saclay, Châtenay-Malabry, France
| |
Collapse
|
99
|
Parella R, Babu SA. Pd(II)-Catalyzed Arylation and Intramolecular Amidation of γ-C(sp3)–H Bonds: En Route to Arylheteroarylmethane and Pyrrolidone Ring Annulated Furan/Thiophene Scaffolds. J Org Chem 2017; 82:7123-7150. [DOI: 10.1021/acs.joc.7b00582] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Ramarao Parella
- Department Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Knowledge
City, Sector 81, SAS Nagar, Manauli P.O., Mohali, Punjab 140306, India
| | - Srinivasarao Arulananda Babu
- Department Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Knowledge
City, Sector 81, SAS Nagar, Manauli P.O., Mohali, Punjab 140306, India
| |
Collapse
|
100
|
|