51
|
Markova K, Kunka A, Chmelova K, Havlasek M, Babkova P, Marques SM, Vasina M, Planas-Iglesias J, Chaloupkova R, Bednar D, Prokop Z, Damborsky J, Marek M. Computational Enzyme Stabilization Can Affect Folding Energy Landscapes and Lead to Catalytically Enhanced Domain-Swapped Dimers. ACS Catal 2021. [DOI: 10.1021/acscatal.1c03343] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Klara Markova
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
- International Clinical Research Center, St. Anne’s University Hospital Brno, Pekarska 53, 656 91 Brno, Czech Republic
| | - Antonin Kunka
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
- International Clinical Research Center, St. Anne’s University Hospital Brno, Pekarska 53, 656 91 Brno, Czech Republic
| | - Klaudia Chmelova
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Martin Havlasek
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Petra Babkova
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Sérgio M. Marques
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
- International Clinical Research Center, St. Anne’s University Hospital Brno, Pekarska 53, 656 91 Brno, Czech Republic
| | - Michal Vasina
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
- International Clinical Research Center, St. Anne’s University Hospital Brno, Pekarska 53, 656 91 Brno, Czech Republic
| | - Joan Planas-Iglesias
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Radka Chaloupkova
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
- Enantis Ltd., Kamenice 771/34, 625 00 Brno, Czech Republic
| | - David Bednar
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
- International Clinical Research Center, St. Anne’s University Hospital Brno, Pekarska 53, 656 91 Brno, Czech Republic
| | - Zbynek Prokop
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
- International Clinical Research Center, St. Anne’s University Hospital Brno, Pekarska 53, 656 91 Brno, Czech Republic
| | - Jiri Damborsky
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
- International Clinical Research Center, St. Anne’s University Hospital Brno, Pekarska 53, 656 91 Brno, Czech Republic
| | - Martin Marek
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
- International Clinical Research Center, St. Anne’s University Hospital Brno, Pekarska 53, 656 91 Brno, Czech Republic
| |
Collapse
|
52
|
Kozuka K, Nakano S, Asano Y, Ito S. Partial Consensus Design and Enhancement of Protein Function by Secondary-Structure-Guided Consensus Mutations. Biochemistry 2021; 60:2309-2319. [PMID: 34254784 DOI: 10.1021/acs.biochem.1c00309] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Consensus design (CD) is a representative sequence-based protein design method that enables the design of highly functional proteins by analyzing vast amounts of protein sequence data. This study proposes a partial consensus design (PCD) of a protein as a derivative approach of CD. The method replaces the target protein sequence with a consensus sequence in a secondary-structure-dependent manner (i.e., regionally dependent and divided into α-helix, β-sheet, and loop regions). In this study, we generated several artificial partial consensus l-threonine 3-dehydrogenases (PcTDHs) by PCD using the TDH from Cupriavidus necator (CnTDH) as a target protein. Structural and functional analysis of PcTDHs suggested that thermostability would be independently improved when consensus mutations are introduced into the loop region of TDHs. On the other hand, enzyme kinetic parameters (kcat/Km) and average productivity would be synergistically enhanced by changing the combination of the mutations-replacement of one region of CnTDH with a consensus sequence provided only negative effects, but the negative effects were nullified when the two regions were replaced simultaneously. Taken together, we propose the hypothesis that there are protein regions that encode individual protein properties, such as thermostability and activity, and that the introduction of consensus mutations into these regions could additively or synergistically modify their functions.
Collapse
Affiliation(s)
- Kohei Kozuka
- Graduate School of Integrated Pharmaceutical and Nutritional Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, 422-8526, Japan
| | - Shogo Nakano
- Graduate School of Integrated Pharmaceutical and Nutritional Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, 422-8526, Japan.,PREST, Japan Science and Technology Agency, Kawaguchi, Saitama 332-0012, Japan
| | - Yasuhisa Asano
- Biotechnology Research Center and Department of Biotechnology, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan
| | - Sohei Ito
- Graduate School of Integrated Pharmaceutical and Nutritional Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, 422-8526, Japan
| |
Collapse
|
53
|
Xu Y, Wu Y, Lv X, Sun G, Zhang H, Chen T, Du G, Li J, Liu L. Design and construction of novel biocatalyst for bioprocessing: Recent advances and future outlook. BIORESOURCE TECHNOLOGY 2021; 332:125071. [PMID: 33826982 DOI: 10.1016/j.biortech.2021.125071] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 03/19/2021] [Accepted: 03/23/2021] [Indexed: 06/12/2023]
Abstract
Bioprocess, a biocatalysis-based technology, is becoming popular in many research fields and widely applied in industrial manufacturing. However, low bioconversion, low productivity, and high costs during industrial processes are usually the limitation in bioprocess. Therefore, many biocatalyst strategies have been developed to meet these challenges in recent years. In this review, we firstly discuss protein engineering strategies, which are emerged for improving the biocatalysis activity of biocatalysts. Then, we summarize metabolic engineering strategies that are promoting the development of microbial cell factories. Next, we illustrate the necessity of using the combining strategy of protein engineering and metabolic engineering for efficient biocatalysts. Lastly, future perspectives about the development and application of novel biocatalyst strategies are discussed. This review provides theoretical guidance for the development of efficient, sustainable, and economical bioprocesses mediated by novel biocatalysts.
Collapse
Affiliation(s)
- Yameng Xu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, PR China; Science Center for Future Foods, Jiangnan University, Wuxi 214122, PR China
| | - Yaokang Wu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, PR China; Science Center for Future Foods, Jiangnan University, Wuxi 214122, PR China
| | - Xueqin Lv
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, PR China; Science Center for Future Foods, Jiangnan University, Wuxi 214122, PR China
| | - Guoyun Sun
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, PR China; Science Center for Future Foods, Jiangnan University, Wuxi 214122, PR China
| | - Hongzhi Zhang
- Shandong Runde Biotechnology Co., Ltd., Tai'an 271000, PR China
| | - Taichi Chen
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, PR China; Science Center for Future Foods, Jiangnan University, Wuxi 214122, PR China
| | - Guocheng Du
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, PR China; Science Center for Future Foods, Jiangnan University, Wuxi 214122, PR China
| | - Jianghua Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, PR China; Science Center for Future Foods, Jiangnan University, Wuxi 214122, PR China
| | - Long Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, PR China; Science Center for Future Foods, Jiangnan University, Wuxi 214122, PR China.
| |
Collapse
|
54
|
Louis BBV, Abriata LA. Reviewing Challenges of Predicting Protein Melting Temperature Change Upon Mutation Through the Full Analysis of a Highly Detailed Dataset with High-Resolution Structures. Mol Biotechnol 2021; 63:863-884. [PMID: 34101125 PMCID: PMC8443528 DOI: 10.1007/s12033-021-00349-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 06/01/2021] [Indexed: 11/26/2022]
Abstract
Predicting the effects of mutations on protein stability is a key problem in fundamental and applied biology, still unsolved even for the relatively simple case of small, soluble, globular, monomeric, two-state-folder proteins. Many articles discuss the limitations of prediction methods and of the datasets used to train them, which result in low reliability for actual applications despite globally capturing trends. Here, we review these and other issues by analyzing one of the most detailed, carefully curated datasets of melting temperature change (ΔTm) upon mutation for proteins with high-resolution structures. After examining the composition of this dataset to discuss imbalances and biases, we inspect several of its entries assisted by an online app for data navigation and structure display and aided by a neural network that predicts ΔTm with accuracy close to that of programs available to this end. We pose that the ΔTm predictions of our network, and also likely those of other programs, account only for a baseline-like general effect of each type of amino acid substitution which then requires substantial corrections to reproduce the actual stability changes. The corrections are very different for each specific case and arise from fine structural details which are not well represented in the dataset and which, despite appearing reasonable upon visual inspection of the structures, are hard to encode and parametrize. Based on these observations, additional analyses, and a review of recent literature, we propose recommendations for developers of stability prediction methods and for efforts aimed at improving the datasets used for training. We leave our interactive interface for analysis available online at http://lucianoabriata.altervista.org/papersdata/proteinstability2021/s1626navigation.html so that users can further explore the dataset and baseline predictions, possibly serving as a tool useful in the context of structural biology and protein biotechnology research and as material for education in protein biophysics.
Collapse
Affiliation(s)
- Benjamin B V Louis
- Master of Life Sciences Engineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne, CH-1015, Lausanne, Switzerland
| | - Luciano A Abriata
- Laboratory for Biomolecular Modeling, School of Life Sciences, École Polytechnique Fédérale de Lausanne, and Swiss Institute of Bioinformatics, CH-1015, Lausanne, Switzerland.
- Protein Production and Structure Core Facility, School of Life Sciences, École Polytechnique Fédérale de Lausanne, CH-1015, Lausanne, Switzerland.
| |
Collapse
|
55
|
Sequeiros-Borja CE, Surpeta B, Brezovsky J. Recent advances in user-friendly computational tools to engineer protein function. Brief Bioinform 2021; 22:bbaa150. [PMID: 32743637 PMCID: PMC8138880 DOI: 10.1093/bib/bbaa150] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 06/03/2020] [Accepted: 06/16/2020] [Indexed: 12/14/2022] Open
Abstract
Progress in technology and algorithms throughout the past decade has transformed the field of protein design and engineering. Computational approaches have become well-engrained in the processes of tailoring proteins for various biotechnological applications. Many tools and methods are developed and upgraded each year to satisfy the increasing demands and challenges of protein engineering. To help protein engineers and bioinformaticians navigate this emerging wave of dedicated software, we have critically evaluated recent additions to the toolbox regarding their application for semi-rational and rational protein engineering. These newly developed tools identify and prioritize hotspots and analyze the effects of mutations for a variety of properties, comprising ligand binding, protein-protein and protein-nucleic acid interactions, and electrostatic potential. We also discuss notable progress to target elusive protein dynamics and associated properties like ligand-transport processes and allosteric communication. Finally, we discuss several challenges these tools face and provide our perspectives on the further development of readily applicable methods to guide protein engineering efforts.
Collapse
Affiliation(s)
- Carlos Eduardo Sequeiros-Borja
- Laboratory of Biomolecular Interactions and Transport, Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University and the International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland
| | - Bartłomiej Surpeta
- Laboratory of Biomolecular Interactions and Transport, Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University and the International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland
| | - Jan Brezovsky
- Laboratory of Biomolecular Interactions and Transport, Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University and the International Institute of Molecular and Cell Biology in Warsaw
| |
Collapse
|
56
|
Corrigan RA, Qi G, Thiel AC, Lynn JR, Walker BD, Casavant TL, Lagardere L, Piquemal JP, Ponder JW, Ren P, Schnieders MJ. Implicit Solvents for the Polarizable Atomic Multipole AMOEBA Force Field. J Chem Theory Comput 2021; 17:2323-2341. [PMID: 33769814 DOI: 10.1021/acs.jctc.0c01286] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Computational protein design, ab initio protein/RNA folding, and protein-ligand screening can be too computationally demanding for explicit treatment of solvent. For these applications, implicit solvent offers a compelling alternative, which we describe here for the polarizable atomic multipole AMOEBA force field based on three treatments of continuum electrostatics: numerical solutions to the nonlinear and linearized versions of the Poisson-Boltzmann equation (PBE), the domain-decomposition conductor-like screening model (ddCOSMO) approximation to the PBE, and the analytic generalized Kirkwood (GK) approximation. The continuum electrostatics models are combined with a nonpolar estimator based on novel cavitation and dispersion terms. Electrostatic model parameters are numerically optimized using a least-squares style target function based on a library of 103 small-molecule solvation free energy differences. Mean signed errors for the adaptive Poisson-Boltzmann solver (APBS), ddCOSMO, and GK models are 0.05, 0.00, and 0.00 kcal/mol, respectively, while the mean unsigned errors are 0.70, 0.63, and 0.58 kcal/mol, respectively. Validation of the electrostatic response of the resulting implicit solvents, which are available in the Tinker (or Tinker-HP), OpenMM, and Force Field X software packages, is based on comparisons to explicit solvent simulations for a series of proteins and nucleic acids. Overall, the emergence of performative implicit solvent models for polarizable force fields opens the door to their use for folding and design applications.
Collapse
Affiliation(s)
- Rae A Corrigan
- Roy J Carver Department of Biomedical Engineering, University of Iowa, Iowa City, Iowa 52242, United States
| | - Guowei Qi
- Department of Biochemistry, University of Iowa, Iowa City, Iowa 52242, United States
| | - Andrew C Thiel
- Roy J Carver Department of Biomedical Engineering, University of Iowa, Iowa City, Iowa 52242, United States
| | - Jack R Lynn
- Roy J Carver Department of Biomedical Engineering, University of Iowa, Iowa City, Iowa 52242, United States
| | - Brandon D Walker
- Department of Biomedical Engineering, University of Texas in Austin, Austin, Texas 78712, United States
| | - Thomas L Casavant
- Roy J Carver Department of Biomedical Engineering, University of Iowa, Iowa City, Iowa 52242, United States
| | - Louis Lagardere
- Department of Chemistry, Sorbonne Université, F-75005 Paris, France
| | | | - Jay W Ponder
- Department of Chemistry, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| | - Pengyu Ren
- Department of Biomedical Engineering, University of Texas in Austin, Austin, Texas 78712, United States
| | - Michael J Schnieders
- Roy J Carver Department of Biomedical Engineering, University of Iowa, Iowa City, Iowa 52242, United States.,Department of Biochemistry, University of Iowa, Iowa City, Iowa 52242, United States
| |
Collapse
|
57
|
Doble MV, Obrecht L, Joosten HJ, Lee M, Rozeboom HJ, Branigan E, Naismith JH, Janssen DB, Jarvis AG, Kamer PCJ. Engineering Thermostability in Artificial Metalloenzymes to Increase Catalytic Activity. ACS Catal 2021. [DOI: 10.1021/acscatal.0c05413] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Megan V. Doble
- School of Chemistry, University of St Andrews, KY16 9ST St Andrews, U.K
| | - Lorenz Obrecht
- School of Chemistry, University of St Andrews, KY16 9ST St Andrews, U.K
| | - Henk-Jan Joosten
- Bio-Prodict, Nieuwe Marktstraat 54E, 6511 AA Nijmegen, The Netherlands
| | - Misun Lee
- Biotransformation and Biocatalysis, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Henriette J. Rozeboom
- Biotransformation and Biocatalysis, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Emma Branigan
- School of Chemistry, University of St Andrews, KY16 9ST St Andrews, U.K
| | - James. H. Naismith
- School of Chemistry, University of St Andrews, KY16 9ST St Andrews, U.K
- Rosalind Franklin Institute, Harwell Campus, OX11 0FA Didcot, U.K
| | - Dick B. Janssen
- Biotransformation and Biocatalysis, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Amanda G. Jarvis
- School of Chemistry, University of St Andrews, KY16 9ST St Andrews, U.K
- School of Chemistry, University of Edinburgh, Joseph Black Building, David Brewster Rd, Kings Buildings, EH9 3FJ Edinburgh, U.K
| | - Paul C. J. Kamer
- School of Chemistry, University of St Andrews, KY16 9ST St Andrews, U.K
- Bioinspired Homo- & Heterogeneous Catalysis, Leibniz Institute for Catalysis, Albert-Einstein-Straße 29 a, Rostock 18059, Germany
| |
Collapse
|
58
|
Marques SM, Planas-Iglesias J, Damborsky J. Web-based tools for computational enzyme design. Curr Opin Struct Biol 2021; 69:19-34. [PMID: 33667757 DOI: 10.1016/j.sbi.2021.01.010] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 01/14/2021] [Accepted: 01/27/2021] [Indexed: 12/30/2022]
Abstract
Enzymes are in high demand for very diverse biotechnological applications. However, natural biocatalysts often need to be engineered for fine-tuning their properties towards the end applications, such as the activity, selectivity, stability to temperature or co-solvents, and solubility. Computational methods are increasingly used in this task, providing predictions that narrow down the space of possible mutations significantly and can enormously reduce the experimental burden. Many computational tools are available as web-based platforms, making them accessible to non-expert users. These platforms are typically user-friendly, contain walk-throughs, and do not require deep expertise and installations. Here we describe some of the most recent outstanding web-tools for enzyme engineering and formulate future perspectives in this field.
Collapse
Affiliation(s)
- Sérgio M Marques
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of Science, Masaryk University, Kamenice 5/C13, 625 00 Brno, Czech Republic; International Centre for Clinical Research, St. Anne's University Hospital Brno, Pekarska 53, 656 91 Brno, Czech Republic
| | - Joan Planas-Iglesias
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of Science, Masaryk University, Kamenice 5/C13, 625 00 Brno, Czech Republic; International Centre for Clinical Research, St. Anne's University Hospital Brno, Pekarska 53, 656 91 Brno, Czech Republic
| | - Jiri Damborsky
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of Science, Masaryk University, Kamenice 5/C13, 625 00 Brno, Czech Republic; International Centre for Clinical Research, St. Anne's University Hospital Brno, Pekarska 53, 656 91 Brno, Czech Republic.
| |
Collapse
|
59
|
Xu J, Zhou H, Yu H, Deng T, Wang Z, Zhang H, Wu J, Yang L. Computational design of highly stable and soluble alcohol dehydrogenase for NADPH regeneration. BIORESOUR BIOPROCESS 2021; 8:12. [PMID: 38650213 PMCID: PMC10992930 DOI: 10.1186/s40643-021-00362-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 01/19/2021] [Indexed: 11/10/2022] Open
Abstract
Nicotinamide adenine dinucleotide phosphate (NADPH), as a well-known cofactor, is widely used in the most of enzymatic redox reactions, playing an important role in industrial catalysis. However, the absence of a comparable method for efficient NADP+ to NADPH cofactor regeneration radically impairs efficient green chemical synthesis. Alcohol dehydrogenase (ADH) enzymes, allowing the in situ regeneration of the redox cofactor NADPH with high specific activity and easy by-product separation process, are provided with great industrial application potential and research attention. Accordingly, herein a NADP+-specific ADH from Clostridium beijerinckii was selected to be engineered for cofactor recycle, using an automated algorithm named Protein Repair One-stop Shop (PROSS). The mutant CbADH-6M (S24P/G182A/G196A/H222D/S250E/S254R) exhibited a favorable soluble and highly active expression with an activity of 46.3 U/mL, which was 16 times higher than the wild type (2.9 U/mL), and a more stable protein conformation with an enhanced thermal stability: Δ T 1 / 2 60 min = + 3.6 °C (temperature of 50% inactivation after incubation for 60 min). Furthermore, the activity of CbADH-6M was up-graded to 2401.8 U/mL by high cell density fermentation strategy using recombinant Escherichia coli, demonstrating its industrial potential. Finally, the superb efficiency for NADPH regeneration of the mutant enzyme was testified in the synthesis of some fine chiral aromatic alcohols coupling with another ADH from Lactobacillus kefir (LkADH).
Collapse
Affiliation(s)
- Jinling Xu
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Haisheng Zhou
- Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 310027, China.
| | - Haoran Yu
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
- Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 310027, China
| | - Tong Deng
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Ziyuan Wang
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Hongyu Zhang
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
- Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 310027, China
| | - Jianping Wu
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
- Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 310027, China
| | - Lirong Yang
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China.
- Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 310027, China.
| |
Collapse
|
60
|
|
61
|
Winkler C, Schrittwieser JH, Kroutil W. Power of Biocatalysis for Organic Synthesis. ACS CENTRAL SCIENCE 2021; 7:55-71. [PMID: 33532569 PMCID: PMC7844857 DOI: 10.1021/acscentsci.0c01496] [Citation(s) in RCA: 139] [Impact Index Per Article: 46.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Indexed: 05/05/2023]
Abstract
Biocatalysis, using defined enzymes for organic transformations, has become a common tool in organic synthesis, which is also frequently applied in industry. The generally high activity and outstanding stereo-, regio-, and chemoselectivity observed in many biotransformations are the result of a precise control of the reaction in the active site of the biocatalyst. This control is achieved by exact positioning of the reagents relative to each other in a fine-tuned 3D environment, by specific activating interactions between reagents and the protein, and by subtle movements of the catalyst. Enzyme engineering enables one to adapt the catalyst to the desired reaction and process. A well-filled biocatalytic toolbox is ready to be used for various reactions. Providing nonnatural reagents and conditions and evolving biocatalysts enables one to play with the myriad of options for creating novel transformations and thereby opening new, short pathways to desired target molecules. Combining several biocatalysts in one pot to perform several reactions concurrently increases the efficiency of biocatalysis even further.
Collapse
Affiliation(s)
- Christoph
K. Winkler
- Institute
of Chemistry, University of Graz, NAWI Graz, Heinrichstraße
28, 8010 Graz, Austria
| | - Joerg H. Schrittwieser
- Institute
of Chemistry, University of Graz, NAWI Graz, Heinrichstraße
28, 8010 Graz, Austria
| | - Wolfgang Kroutil
- Institute
of Chemistry, University of Graz, NAWI Graz, Heinrichstraße
28, 8010 Graz, Austria
- Field
of Excellence BioHealth − University of Graz, 8010 Graz, Austria
- BioTechMed
Graz, 8010 Graz, Austria
| |
Collapse
|
62
|
Stourac J, Dubrava J, Musil M, Horackova J, Damborsky J, Mazurenko S, Bednar D. FireProtDB: database of manually curated protein stability data. Nucleic Acids Res 2021; 49:D319-D324. [PMID: 33166383 PMCID: PMC7778887 DOI: 10.1093/nar/gkaa981] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 09/18/2020] [Accepted: 10/12/2020] [Indexed: 01/13/2023] Open
Abstract
The majority of naturally occurring proteins have evolved to function under mild conditions inside the living organisms. One of the critical obstacles for the use of proteins in biotechnological applications is their insufficient stability at elevated temperatures or in the presence of salts. Since experimental screening for stabilizing mutations is typically laborious and expensive, in silico predictors are often used for narrowing down the mutational landscape. The recent advances in machine learning and artificial intelligence further facilitate the development of such computational tools. However, the accuracy of these predictors strongly depends on the quality and amount of data used for training and testing, which have often been reported as the current bottleneck of the approach. To address this problem, we present a novel database of experimental thermostability data for single-point mutants FireProtDB. The database combines the published datasets, data extracted manually from the recent literature, and the data collected in our laboratory. Its user interface is designed to facilitate both types of the expected use: (i) the interactive explorations of individual entries on the level of a protein or mutation and (ii) the construction of highly customized and machine learning-friendly datasets using advanced searching and filtering. The database is freely available at https://loschmidt.chemi.muni.cz/fireprotdb.
Collapse
Affiliation(s)
- Jan Stourac
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Masaryk University, Brno, Czech Republic.,International Clinical Research Center, St. Anne's University Hospital Brno, Brno, Czech Republic
| | - Juraj Dubrava
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Masaryk University, Brno, Czech Republic.,Department of Information Systems, Faculty of Information Technology, Brno University of Technology, Brno, Czech Republic
| | - Milos Musil
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Masaryk University, Brno, Czech Republic.,International Clinical Research Center, St. Anne's University Hospital Brno, Brno, Czech Republic.,Department of Information Systems, Faculty of Information Technology, Brno University of Technology, Brno, Czech Republic
| | - Jana Horackova
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Masaryk University, Brno, Czech Republic
| | - Jiri Damborsky
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Masaryk University, Brno, Czech Republic.,International Clinical Research Center, St. Anne's University Hospital Brno, Brno, Czech Republic
| | - Stanislav Mazurenko
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Masaryk University, Brno, Czech Republic
| | - David Bednar
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Masaryk University, Brno, Czech Republic.,International Clinical Research Center, St. Anne's University Hospital Brno, Brno, Czech Republic
| |
Collapse
|
63
|
Cui Y, Chen Y, Liu X, Dong S, Tian Y, Qiao Y, Mitra R, Han J, Li C, Han X, Liu W, Chen Q, Wei W, Wang X, Du W, Tang S, Xiang H, Liu H, Liang Y, Houk KN, Wu B. Computational Redesign of a PETase for Plastic Biodegradation under Ambient Condition by the GRAPE Strategy. ACS Catal 2021. [DOI: 10.1021/acscatal.0c05126] [Citation(s) in RCA: 97] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Yinglu Cui
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101,China
| | - Yanchun Chen
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101,China
- University of Chinese Academy of Sciences, Beijing 100049,China
| | - Xinyue Liu
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101,China
- School of Life Sciences, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230052,China
| | - Saijun Dong
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101,China
| | - Yu’e Tian
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101,China
| | - Yuxin Qiao
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101,China
| | - Ruchira Mitra
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101,China
- University of Chinese Academy of Sciences, Beijing 100049,China
| | - Jing Han
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101,China
| | - Chunli Li
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101,China
| | - Xu Han
- Industrial Enzymes National Engineering Laboratory, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308,China
| | - Weidong Liu
- Industrial Enzymes National Engineering Laboratory, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308,China
| | - Quan Chen
- School of Life Sciences, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230052,China
| | - Wangqing Wei
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023,China
| | - Xin Wang
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023,China
| | - Wenbin Du
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101,China
| | - Shuangyan Tang
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101,China
| | - Hua Xiang
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101,China
| | - Haiyan Liu
- School of Life Sciences, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230052,China
| | - Yong Liang
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023,China
| | - Kendall N. Houk
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles 90095, California, United States
| | - Bian Wu
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101,China
| |
Collapse
|
64
|
Hon J, Marusiak M, Martinek T, Kunka A, Zendulka J, Bednar D, Damborsky J. SoluProt: Prediction of Soluble Protein Expression in Escherichia coli. Bioinformatics 2021; 37:23-28. [PMID: 33416864 PMCID: PMC8034534 DOI: 10.1093/bioinformatics/btaa1102] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 12/05/2020] [Accepted: 12/28/2020] [Indexed: 12/17/2022] Open
Abstract
Motivation Poor protein solubility hinders the production of many therapeutic and industrially useful proteins. Experimental efforts to increase solubility are plagued by low success rates and often reduce biological activity. Computational prediction of protein expressibility and solubility in Escherichia coli using only sequence information could reduce the cost of experimental studies by enabling prioritization of highly soluble proteins. Results A new tool for sequence-based prediction of soluble protein expression in E.coli, SoluProt, was created using the gradient boosting machine technique with the TargetTrack database as a training set. When evaluated against a balanced independent test set derived from the NESG database, SoluProt’s accuracy of 58.5% and AUC of 0.62 exceeded those of a suite of alternative solubility prediction tools. There is also evidence that it could significantly increase the success rate of experimental protein studies. SoluProt is freely available as a standalone program and a user-friendly webserver at https://loschmidt.chemi.muni.cz/soluprot/. Availability and implementation https://loschmidt.chemi.muni.cz/soluprot/. Supplementary information Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Jiri Hon
- Loschmidt Laboratories, Centre for Toxic Compounds in the Environment RECETOX and Department of Experimental Biology, Faculty of Science, Masaryk University, 625 00 Brno, Czech Republic.,International Clinical Research Center, St. Anne's University Hospital Brno, 656 91 Brno, Czech Republic.,IT4Innovations Centre of Excellence, Faculty of Information Technology, Brno University of Technology, 612 66 Brno, Czech Republic
| | - Martin Marusiak
- IT4Innovations Centre of Excellence, Faculty of Information Technology, Brno University of Technology, 612 66 Brno, Czech Republic
| | - Tomas Martinek
- IT4Innovations Centre of Excellence, Faculty of Information Technology, Brno University of Technology, 612 66 Brno, Czech Republic
| | - Antonin Kunka
- Loschmidt Laboratories, Centre for Toxic Compounds in the Environment RECETOX and Department of Experimental Biology, Faculty of Science, Masaryk University, 625 00 Brno, Czech Republic.,International Clinical Research Center, St. Anne's University Hospital Brno, 656 91 Brno, Czech Republic
| | - Jaroslav Zendulka
- IT4Innovations Centre of Excellence, Faculty of Information Technology, Brno University of Technology, 612 66 Brno, Czech Republic
| | - David Bednar
- Loschmidt Laboratories, Centre for Toxic Compounds in the Environment RECETOX and Department of Experimental Biology, Faculty of Science, Masaryk University, 625 00 Brno, Czech Republic.,International Clinical Research Center, St. Anne's University Hospital Brno, 656 91 Brno, Czech Republic
| | - Jiri Damborsky
- Loschmidt Laboratories, Centre for Toxic Compounds in the Environment RECETOX and Department of Experimental Biology, Faculty of Science, Masaryk University, 625 00 Brno, Czech Republic.,International Clinical Research Center, St. Anne's University Hospital Brno, 656 91 Brno, Czech Republic
| |
Collapse
|
65
|
Bi J, Jing X, Wu L, Zhou X, Gu J, Nie Y, Xu Y. Computational design of noncanonical amino acid-based thioether staples at N/C-terminal domains of multi-modular pullulanase for thermostabilization in enzyme catalysis. Comput Struct Biotechnol J 2021; 19:577-585. [PMID: 33510863 PMCID: PMC7811066 DOI: 10.1016/j.csbj.2020.12.043] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 12/31/2020] [Accepted: 12/31/2020] [Indexed: 12/14/2022] Open
Abstract
Enzyme thermostabilization is considered a critical and often obligatory step in biosynthesis, because thermostability is a significant property of enzymes that can be used to evaluate their feasibility for industrial applications. However, conventional strategies for thermostabilizing enzymes generally introduce non-covalent interactions and/or natural covalent bonds caused by natural amino acid substitutions, and the trade-off between the activity and stability of enzymes remains a challenge. Here, we developed a computationally guided strategy for constructing thioether staples by incorporating noncanonical amino acid (ncAA) into the more flexible N/C-terminal domains of the multi-modular pullulanase from Bacillus thermoleovorans (BtPul) to enhance its thermostability. First, potential thioether staples located in the N/C-terminal domains of BtPul were predicted using RosettaMatch. Next, eight variants involving stable thioether staples were precisely predicted using FoldX and Rosetta ddg_monomer. Six positive variants were obtained, of which T73(O2beY)-171C had a 157% longer half-life at 70 °C and an increase of 7.0 °C in T m, when compared with the wild-type (WT). T73(O2beY)-171C/T126F/A72R exhibited an even more improved thermostability, with a 211% increase in half-life at 70 °C and a 44% enhancement in enzyme activity compared with the WT, which was attributed to further optimization of the local interaction network. This work introduces and validates an efficient strategy for enhancing the thermostability and activity of multi-modular enzymes.
Collapse
Affiliation(s)
- Jiahua Bi
- School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Xiaoran Jing
- School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Lunjie Wu
- School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Xia Zhou
- School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Jie Gu
- School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Yao Nie
- School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
- Suqian Industrial Technology Research Institute of Jiangnan University, Suqian 223814, China
| | - Yan Xu
- School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
66
|
Musil M, Khan RT, Beier A, Stourac J, Konegger H, Damborsky J, Bednar D. FireProtASR: A Web Server for Fully Automated Ancestral Sequence Reconstruction. Brief Bioinform 2020; 22:6042664. [PMID: 33346815 PMCID: PMC8294521 DOI: 10.1093/bib/bbaa337] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 10/12/2020] [Indexed: 12/13/2022] Open
Abstract
There is a great interest in increasing proteins’ stability to widen their usability in numerous biomedical and biotechnological applications. However, native proteins cannot usually withstand the harsh industrial environment, since they are evolved to function under mild conditions. Ancestral sequence reconstruction is a well-established method for deducing the evolutionary history of genes. Besides its applicability to discover the most probable evolutionary ancestors of the modern proteins, ancestral sequence reconstruction has proven to be a useful approach for the design of highly stable proteins. Recently, several computational tools were developed, which make the ancestral reconstruction algorithms accessible to the community, while leaving the most crucial steps of the preparation of the input data on users’ side. FireProtASR aims to overcome this obstacle by constructing a fully automated workflow, allowing even the unexperienced users to obtain ancestral sequences based on a sequence query as the only input. FireProtASR is complemented with an interactive, easy-to-use web interface and is freely available at https://loschmidt.chemi.muni.cz/fireprotasr/.
Collapse
Affiliation(s)
| | | | - Andy Beier
- Loschmidt Laboratories, Masaryk University
| | | | | | - Jiri Damborsky
- International Clinical Research Center at St. Ann's Teaching Hospital
| | | |
Collapse
|
67
|
Hon J, Borko S, Stourac J, Prokop Z, Zendulka J, Bednar D, Martinek T, Damborsky J. EnzymeMiner: automated mining of soluble enzymes with diverse structures, catalytic properties and stabilities. Nucleic Acids Res 2020; 48:W104-W109. [PMID: 32392342 PMCID: PMC7319543 DOI: 10.1093/nar/gkaa372] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Revised: 04/13/2020] [Accepted: 04/29/2020] [Indexed: 01/10/2023] Open
Abstract
Millions of protein sequences are being discovered at an incredible pace, representing an inexhaustible source of biocatalysts. Despite genomic databases growing exponentially, classical biochemical characterization techniques are time-demanding, cost-ineffective and low-throughput. Therefore, computational methods are being developed to explore the unmapped sequence space efficiently. Selection of putative enzymes for biochemical characterization based on rational and robust analysis of all available sequences remains an unsolved problem. To address this challenge, we have developed EnzymeMiner—a web server for automated screening and annotation of diverse family members that enables selection of hits for wet-lab experiments. EnzymeMiner prioritizes sequences that are more likely to preserve the catalytic activity and are heterologously expressible in a soluble form in Escherichia coli. The solubility prediction employs the in-house SoluProt predictor developed using machine learning. EnzymeMiner reduces the time devoted to data gathering, multi-step analysis, sequence prioritization and selection from days to hours. The successful use case for the haloalkane dehalogenase family is described in a comprehensive tutorial available on the EnzymeMiner web page. EnzymeMiner is a universal tool applicable to any enzyme family that provides an interactive and easy-to-use web interface freely available at https://loschmidt.chemi.muni.cz/enzymeminer/.
Collapse
Affiliation(s)
- Jiri Hon
- Loschmidt Laboratories, Department of Experimental Biology and Research Center for Toxic Compounds in the Environment RECETOX, Faculty of Science, Masaryk University, Brno, Czech Republic.,IT4Innovations Centre of Excellence, Faculty of Information Technology, Brno University of Technology, Bozetechova 2, Brno, Czech Republic.,International Clinical Research Center, St. Anne's University Hospital Brno, Brno, Czech Republic
| | - Simeon Borko
- Loschmidt Laboratories, Department of Experimental Biology and Research Center for Toxic Compounds in the Environment RECETOX, Faculty of Science, Masaryk University, Brno, Czech Republic.,IT4Innovations Centre of Excellence, Faculty of Information Technology, Brno University of Technology, Bozetechova 2, Brno, Czech Republic
| | - Jan Stourac
- Loschmidt Laboratories, Department of Experimental Biology and Research Center for Toxic Compounds in the Environment RECETOX, Faculty of Science, Masaryk University, Brno, Czech Republic.,International Clinical Research Center, St. Anne's University Hospital Brno, Brno, Czech Republic
| | - Zbynek Prokop
- Loschmidt Laboratories, Department of Experimental Biology and Research Center for Toxic Compounds in the Environment RECETOX, Faculty of Science, Masaryk University, Brno, Czech Republic.,International Clinical Research Center, St. Anne's University Hospital Brno, Brno, Czech Republic
| | - Jaroslav Zendulka
- IT4Innovations Centre of Excellence, Faculty of Information Technology, Brno University of Technology, Bozetechova 2, Brno, Czech Republic
| | - David Bednar
- Loschmidt Laboratories, Department of Experimental Biology and Research Center for Toxic Compounds in the Environment RECETOX, Faculty of Science, Masaryk University, Brno, Czech Republic.,International Clinical Research Center, St. Anne's University Hospital Brno, Brno, Czech Republic
| | - Tomas Martinek
- IT4Innovations Centre of Excellence, Faculty of Information Technology, Brno University of Technology, Bozetechova 2, Brno, Czech Republic
| | - Jiri Damborsky
- Loschmidt Laboratories, Department of Experimental Biology and Research Center for Toxic Compounds in the Environment RECETOX, Faculty of Science, Masaryk University, Brno, Czech Republic.,International Clinical Research Center, St. Anne's University Hospital Brno, Brno, Czech Republic
| |
Collapse
|
68
|
Markova K, Chmelova K, Marques SM, Carpentier P, Bednar D, Damborsky J, Marek M. Decoding the intricate network of molecular interactions of a hyperstable engineered biocatalyst. Chem Sci 2020; 11:11162-11178. [PMID: 34094357 PMCID: PMC8162949 DOI: 10.1039/d0sc03367g] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 09/10/2020] [Indexed: 12/01/2022] Open
Abstract
Computational design of protein catalysts with enhanced stabilities for use in research and enzyme technologies is a challenging task. Using force-field calculations and phylogenetic analysis, we previously designed the haloalkane dehalogenase DhaA115 which contains 11 mutations that confer upon it outstanding thermostability (T m = 73.5 °C; ΔT m > 23 °C). An understanding of the structural basis of this hyperstabilization is required in order to develop computer algorithms and predictive tools. Here, we report X-ray structures of DhaA115 at 1.55 Å and 1.6 Å resolutions and their molecular dynamics trajectories, which unravel the intricate network of interactions that reinforce the αβα-sandwich architecture. Unexpectedly, mutations toward bulky aromatic amino acids at the protein surface triggered long-distance (∼27 Å) backbone changes due to cooperative effects. These cooperative interactions produced an unprecedented double-lock system that: (i) induced backbone changes, (ii) closed the molecular gates to the active site, (iii) reduced the volumes of the main and slot access tunnels, and (iv) occluded the active site. Despite these spatial restrictions, experimental tracing of the access tunnels using krypton derivative crystals demonstrates that transport of ligands is still effective. Our findings highlight key thermostabilization effects and provide a structural basis for designing new thermostable protein catalysts.
Collapse
Affiliation(s)
- Klara Markova
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of Science, Masaryk University Kamenice 5 625 00 Brno Czech Republic
- International Clinical Research Center, St. Anne's University Hospital Brno Pekarska 53 656 91 Brno Czech Republic
| | - Klaudia Chmelova
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of Science, Masaryk University Kamenice 5 625 00 Brno Czech Republic
- International Clinical Research Center, St. Anne's University Hospital Brno Pekarska 53 656 91 Brno Czech Republic
| | - Sérgio M Marques
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of Science, Masaryk University Kamenice 5 625 00 Brno Czech Republic
- International Clinical Research Center, St. Anne's University Hospital Brno Pekarska 53 656 91 Brno Czech Republic
| | - Philippe Carpentier
- Université Grenoble Alpes, CNRS, CEA, Interdisciplinary Research Institute of Grenoble (IRIG), Laboratoire Chimie et Biologie des Métaux (LCBM) 17 Avenue des Martyrs 38054 Grenoble France
- European Synchrotron Radiation Facility (ESRF) 71 Avenue des Martyrs 38043 Grenoble France
| | - David Bednar
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of Science, Masaryk University Kamenice 5 625 00 Brno Czech Republic
- International Clinical Research Center, St. Anne's University Hospital Brno Pekarska 53 656 91 Brno Czech Republic
| | - Jiri Damborsky
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of Science, Masaryk University Kamenice 5 625 00 Brno Czech Republic
- International Clinical Research Center, St. Anne's University Hospital Brno Pekarska 53 656 91 Brno Czech Republic
| | - Martin Marek
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of Science, Masaryk University Kamenice 5 625 00 Brno Czech Republic
- International Clinical Research Center, St. Anne's University Hospital Brno Pekarska 53 656 91 Brno Czech Republic
| |
Collapse
|
69
|
Mazurenko S. Predicting protein stability and solubility changes upon mutations: data perspective. ChemCatChem 2020. [DOI: 10.1002/cctc.202000933] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Stanislav Mazurenko
- Loschmidt Laboratories Department of Experimental Biology and RECETOX Faculty of Science Masaryk University Zerotinovo nam. 617/9 601 77 Brno Czech Republic
| |
Collapse
|
70
|
Hettiaratchi MH, O’Meara MJ, O’Meara TR, Pickering AJ, Letko-Khait N, Shoichet MS. Reengineering biocatalysts: Computational redesign of chondroitinase ABC improves efficacy and stability. SCIENCE ADVANCES 2020; 6:eabc6378. [PMID: 32875119 PMCID: PMC7438101 DOI: 10.1126/sciadv.abc6378] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 07/08/2020] [Indexed: 05/24/2023]
Abstract
Maintaining biocatalyst stability and activity is a critical challenge. Chondroitinase ABC (ChABC) has shown promise in central nervous system (CNS) regeneration, yet its therapeutic utility is severely limited by instability. We computationally reengineered ChABC by introducing 37, 55, and 92 amino acid changes using consensus design and forcefield-based optimization. All mutants were more stable than wild-type ChABC with increased aggregation temperatures between 4° and 8°C. Only ChABC with 37 mutations (ChABC-37) was more active and had a 6.5 times greater half-life than wild-type ChABC, increasing to 106 hours (4.4 days) from only 16.8 hours. ChABC-37, expressed as a fusion protein with Src homology 3 (ChABC-37-SH3), was active for 7 days when released from a hydrogel modified with SH3-binding peptides. This study demonstrates the broad opportunity to improve biocatalysts through computational engineering and sets the stage for future testing of this substantially improved protein in the treatment of debilitating CNS injuries.
Collapse
Affiliation(s)
- Marian H. Hettiaratchi
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, ON M5S 3E5, Canada
| | - Matthew J. O’Meara
- Department of Computational Medicine and Bioinformatics, University of Michigan, 100 Washtenaw Ave. #2017, Ann Arbor, MI 48109, USA
| | - Teresa R. O’Meara
- Department of Microbiology and Immunology, University of Michigan, 1150 W. Medical Center Dr., Ann Arbor, MI 48109 USA
| | - Andrew J. Pickering
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, ON M5S 3E5, Canada
| | - Nitzan Letko-Khait
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, ON M5S 3E5, Canada
| | - Molly S. Shoichet
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, ON M5S 3E5, Canada
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, 164 College St., Toronto, ON M5S 3G9, Canada
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON M5S 3H6, Canada
| |
Collapse
|
71
|
|
72
|
One Pot Use of Combilipases for Full Modification of Oils and Fats: Multifunctional and Heterogeneous Substrates. Catalysts 2020. [DOI: 10.3390/catal10060605] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Lipases are among the most utilized enzymes in biocatalysis. In many instances, the main reason for their use is their high specificity or selectivity. However, when full modification of a multifunctional and heterogeneous substrate is pursued, enzyme selectivity and specificity become a problem. This is the case of hydrolysis of oils and fats to produce free fatty acids or their alcoholysis to produce biodiesel, which can be considered cascade reactions. In these cases, to the original heterogeneity of the substrate, the presence of intermediate products, such as diglycerides or monoglycerides, can be an additional drawback. Using these heterogeneous substrates, enzyme specificity can promote that some substrates (initial substrates or intermediate products) may not be recognized as such (in the worst case scenario they may be acting as inhibitors) by the enzyme, causing yields and reaction rates to drop. To solve this situation, a mixture of lipases with different specificity, selectivity and differently affected by the reaction conditions can offer much better results than the use of a single lipase exhibiting a very high initial activity or even the best global reaction course. This mixture of lipases from different sources has been called “combilipases” and is becoming increasingly popular. They include the use of liquid lipase formulations or immobilized lipases. In some instances, the lipases have been coimmobilized. Some discussion is offered regarding the problems that this coimmobilization may give rise to, and some strategies to solve some of these problems are proposed. The use of combilipases in the future may be extended to other processes and enzymes.
Collapse
|
73
|
Huang P, Chu SKS, Frizzo HN, Connolly MP, Caster RW, Siegel JB. Evaluating Protein Engineering Thermostability Prediction Tools Using an Independently Generated Dataset. ACS OMEGA 2020; 5:6487-6493. [PMID: 32258884 PMCID: PMC7114132 DOI: 10.1021/acsomega.9b04105] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 03/06/2020] [Indexed: 05/04/2023]
Abstract
Engineering proteins to enhance thermal stability is a widely utilized approach for creating industrially relevant biocatalysts. The development of new experimental datasets and computational tools to guide these engineering efforts remains an active area of research. Thus, to complement the previously reported measures of T 50 and kinetic constants, we are reporting an expansion of our previously published dataset of mutants for β-glucosidase to include both measures of T M and ΔΔG. For a set of 51 mutants, we found that T 50 and T M are moderately correlated, with a Pearson correlation coefficient and Spearman's rank coefficient of 0.58 and 0.47, respectively, indicating that the two methods capture different physical features. The performance of predicted stability using nine computational tools was also evaluated on the dataset of 51 mutants, none of which are found to be strong predictors of the observed changes in T 50, T M, or ΔΔG. Furthermore, the ability of the nine algorithms to predict the production of isolatable soluble protein was examined, which revealed that Rosetta ΔΔG, FoldX, DeepDDG, PoPMuSiC, and SDM were capable of predicting if a mutant could be produced and isolated as a soluble protein. These results further highlight the need for new algorithms for predicting modest, yet important, changes in thermal stability as well as a new utility for current algorithms for prescreening designs for the production of mutants that maintain fold and soluble production properties.
Collapse
Affiliation(s)
- Peishan Huang
- Biophysics
Graduate Group, University of California, Davis 95616, California, United States
| | - Simon K. S. Chu
- Biophysics
Graduate Group, University of California, Davis 95616, California, United States
| | - Henrique N. Frizzo
- Genome
Center, University of California, Davis 95616, California, United States
| | - Morgan P. Connolly
- Microbiology
Graduate Group, University of California, Davis 95616, California, United States
| | - Ryan W. Caster
- Genome
Center, University of California, Davis 95616, California, United States
| | - Justin B. Siegel
- Genome
Center, University of California, Davis 95616, California, United States
- Department
of Biochemistry & Molecular Medicine, University of California, Davis 95616, California, United States
- Department
of Chemistry, University of California, Davis 95616, California, United States
| |
Collapse
|
74
|
Meng Q, Capra N, Palacio CM, Lanfranchi E, Otzen M, van Schie LZ, Rozeboom HJ, Thunnissen AMWH, Wijma HJ, Janssen DB. Robust ω-Transaminases by Computational Stabilization of the Subunit Interface. ACS Catal 2020; 10:2915-2928. [PMID: 32953233 PMCID: PMC7493286 DOI: 10.1021/acscatal.9b05223] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 01/31/2020] [Indexed: 12/25/2022]
Abstract
Transaminases are attractive catalysts for the production of enantiopure amines. However, the poor stability of these enzymes often limits their application in biocatalysis. Here, we used a framework for enzyme stability engineering by computational library design (FRESCO) to stabilize the homodimeric PLP fold type I ω-transaminase from Pseudomonas jessenii. A large number of surface-located point mutations and mutations predicted to stabilize the subunit interface were examined. Experimental screening revealed that 10 surface mutations out of 172 tested were indeed stabilizing (6% success), whereas testing 34 interface mutations gave 19 hits (56% success). Both the extent of stabilization and the spatial distribution of stabilizing mutations showed that the subunit interface was critical for stability. After mutations were combined, 2 very stable variants with 4 and 6 mutations were obtained, which in comparison to wild type (T m app = 62 °C) displayed T m app values of 80 and 85 °C, respectively. These two variants were also 5-fold more active at their optimum temperatures and tolerated high concentrations of isopropylamine and cosolvents. This allowed conversion of 100 mM acetophenone to (S)-1-phenylethylamine (>99% enantiomeric excess) with high yield (92%, in comparison to 24% with the wild-type transaminase). Crystal structures mostly confirmed the expected structural changes and revealed that the most stabilizing mutation, I154V, featured a rarely described stabilization mechanism: namely, removal of steric strain. The results show that computational interface redesign can be a rapid and powerful strategy for transaminase stabilization.
Collapse
Affiliation(s)
- Qinglong Meng
- Biotransformation and Biocatalysis, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Nikolas Capra
- Biotransformation and Biocatalysis, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Cyntia M. Palacio
- Biotransformation and Biocatalysis, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Elisa Lanfranchi
- Biotransformation and Biocatalysis, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Marleen Otzen
- Biotransformation and Biocatalysis, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Luc Z. van Schie
- Biotransformation and Biocatalysis, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Henriëtte J. Rozeboom
- Biotransformation and Biocatalysis, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Andy-Mark W. H. Thunnissen
- Biotransformation and Biocatalysis, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Hein J. Wijma
- Biotransformation and Biocatalysis, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Dick B. Janssen
- Biotransformation and Biocatalysis, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| |
Collapse
|
75
|
Stepwise optimization of recombinant protein production in Escherichia coli utilizing computational and experimental approaches. Appl Microbiol Biotechnol 2020; 104:3253-3266. [DOI: 10.1007/s00253-020-10454-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 01/28/2020] [Accepted: 02/07/2020] [Indexed: 12/14/2022]
|
76
|
Zhang Y, Aryee ANA, Simpson BK. Current role of in silico approaches for food enzymes. Curr Opin Food Sci 2020. [DOI: 10.1016/j.cofs.2019.11.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
77
|
Affiliation(s)
- Stanislav Mazurenko
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of Science, Masaryk University, 625 00 Brno, Czech Republic
| | - Zbynek Prokop
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of Science, Masaryk University, 625 00 Brno, Czech Republic
- International Centre for Clinical Research, St. Ann’s Hospital, 602 00 Brno, Czech Republic
| | - Jiri Damborsky
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of Science, Masaryk University, 625 00 Brno, Czech Republic
- International Centre for Clinical Research, St. Ann’s Hospital, 602 00 Brno, Czech Republic
| |
Collapse
|
78
|
Chen Q, Xiao Y, Zhang W, Mu W. Current methods and applications in computational protein design for food industry. Crit Rev Food Sci Nutr 2019; 60:3259-3270. [DOI: 10.1080/10408398.2019.1682513] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Qiuming Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Yaqin Xiao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Wenli Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Wanmeng Mu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, China
| |
Collapse
|
79
|
Pongpamorn P, Watthaisong P, Pimviriyakul P, Jaruwat A, Lawan N, Chitnumsub P, Chaiyen P. Identification of a Hotspot Residue for Improving the Thermostability of a Flavin‐Dependent Monooxygenase. Chembiochem 2019; 20:3020-3031. [DOI: 10.1002/cbic.201900413] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Indexed: 12/11/2022]
Affiliation(s)
- Pornkanok Pongpamorn
- School of Biomolecular Science and EngineeringVidyasirimedhi Institute of Science and Technology (VISTEC) Wangchan Valley Rayong 21210 Thailand
| | - Pratchaya Watthaisong
- School of Biomolecular Science and EngineeringVidyasirimedhi Institute of Science and Technology (VISTEC) Wangchan Valley Rayong 21210 Thailand
| | - Panu Pimviriyakul
- Department of BiotechnologyFaculty of Engineering and Industrial TechnologySilpakorn University 6 Rajamankha Nai Road Nakornpathom 73000 Thailand
| | - Aritsara Jaruwat
- National Center for Genetic Engineering and Biotechnology 113 Thailand Science Park Paholyothin Road Klong 1 Klong Luang Pathumthani 12120 Thailand
| | - Narin Lawan
- Department of ChemistryFaculty of ScienceChiang Mai University Chiang Mai 50200 Thailand
| | - Penchit Chitnumsub
- National Center for Genetic Engineering and Biotechnology 113 Thailand Science Park Paholyothin Road Klong 1 Klong Luang Pathumthani 12120 Thailand
| | - Pimchai Chaiyen
- School of Biomolecular Science and EngineeringVidyasirimedhi Institute of Science and Technology (VISTEC) Wangchan Valley Rayong 21210 Thailand
| |
Collapse
|
80
|
Navarro S, Ventura S. Computational re-design of protein structures to improve solubility. Expert Opin Drug Discov 2019; 14:1077-1088. [DOI: 10.1080/17460441.2019.1637413] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Susanna Navarro
- Institut de Biotecnologia i de Biomedicina, Parc de Recerca UAB, Mòdul B, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Salvador Ventura
- Institut de Biotecnologia i de Biomedicina, Parc de Recerca UAB, Mòdul B, Universitat Autònoma de Barcelona, Barcelona, Spain
| |
Collapse
|
81
|
Beier A, Damborsky J, Prokop Z. Transhalogenation Catalysed by Haloalkane Dehalogenases Engineered to Stop Natural Pathway at Intermediate. Adv Synth Catal 2019. [DOI: 10.1002/adsc.201900132] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Andy Beier
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of ScienceMasaryk University Kamenice 5 A 625 00 Brno Czech Republic
- International Clinical Research CenterSt. Anne's University Hospital Pekarska 53 656 91 Brno Czech Republic
| | - Jiri Damborsky
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of ScienceMasaryk University Kamenice 5 A 625 00 Brno Czech Republic
- International Clinical Research CenterSt. Anne's University Hospital Pekarska 53 656 91 Brno Czech Republic
| | - Zbynek Prokop
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of ScienceMasaryk University Kamenice 5 A 625 00 Brno Czech Republic
- International Clinical Research CenterSt. Anne's University Hospital Pekarska 53 656 91 Brno Czech Republic
| |
Collapse
|