51
|
He K, Huang Z, Chen C, Qiu C, Zhong YL, Zhang Q. Exploring the Roles of Single Atom in Hydrogen Peroxide Photosynthesis. NANO-MICRO LETTERS 2023; 16:23. [PMID: 37985523 PMCID: PMC10661544 DOI: 10.1007/s40820-023-01231-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 09/30/2023] [Indexed: 11/22/2023]
Abstract
This comprehensive review provides a deep exploration of the unique roles of single atom catalysts (SACs) in photocatalytic hydrogen peroxide (H2O2) production. SACs offer multiple benefits over traditional catalysts such as improved efficiency, selectivity, and flexibility due to their distinct electronic structure and unique properties. The review discusses the critical elements in the design of SACs, including the choice of metal atom, host material, and coordination environment, and how these elements impact the catalytic activity. The role of single atoms in photocatalytic H2O2 production is also analysed, focusing on enhancing light absorption and charge generation, improving the migration and separation of charge carriers, and lowering the energy barrier of adsorption and activation of reactants. Despite these advantages, several challenges, including H2O2 decomposition, stability of SACs, unclear mechanism, and low selectivity, need to be overcome. Looking towards the future, the review suggests promising research directions such as direct utilization of H2O2, high-throughput synthesis and screening, the creation of dual active sites, and employing density functional theory for investigating the mechanisms of SACs in H2O2 photosynthesis. This review provides valuable insights into the potential of single atom catalysts for advancing the field of photocatalytic H2O2 production.
Collapse
Affiliation(s)
- Kelin He
- International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, 518000, China
- Queensland Micro- and Nanotechnology Centre, School of Environment and Science, Griffith University, Nathan, QLD, 4222, Australia
| | - Zimo Huang
- Queensland Micro- and Nanotechnology Centre, School of Environment and Science, Griffith University, Nathan, QLD, 4222, Australia
- Institute for Sustainable Transformation, School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 51006, China
| | - Chao Chen
- International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, 518000, China
| | - Chuntian Qiu
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311215, China.
| | - Yu Lin Zhong
- Queensland Micro- and Nanotechnology Centre, School of Environment and Science, Griffith University, Nathan, QLD, 4222, Australia.
| | - Qitao Zhang
- International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, 518000, China.
| |
Collapse
|
52
|
Sharma VK, Ma X, Zboril R. Single atom catalyst-mediated generation of reactive species in water treatment. Chem Soc Rev 2023; 52:7673-7686. [PMID: 37855667 DOI: 10.1039/d3cs00627a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2023]
Abstract
Water is one of the most essential components in the sustainable development goals (SDGs) of the United Nations. With worsening global water scarcity, especially in some developing countries, water reuse is gaining increasing acceptance. A key challenge in water treatment by conventional treatment processes is the difficulty of treating low concentrations of pollutants (micromolar to nanomolar) in the presence of much higher levels of inorganic ions and natural organic matter (NOM) in water (or real water matrices). Advanced oxidation processes (AOPs) have emerged as an attractive treatment technology that generates reactive species with high redox potentials (E0) (e.g., hydroxyl radical (HO˙), singlet oxygen (1O2), sulfate radical (SO4˙-), and high-valent metals like iron(IV) (Fe(IV)), copper(III) (Cu(III)), and cobalt(IV) (Co(IV))). The use of single atom catalysts (SACs) in AOPs and water treatment technologies has appeared only recently. This review introduces the application of SACs in the activation of hydrogen peroxide and persulfate to produce reactive species in treatment processes. A significant part of the review is devoted to the mechanistic aspects of traditional AOPs and their comparison with those triggered by SACs. The radical species, SO4˙- and HO˙, which are produced in both traditional and SACs-activated AOPs, have higher redox potentials than non-radical species, 1O2 and high-valent metal species. However, SO4˙- and HO˙ radicals are non-selective and easily affected by components of water while non-radicals resist the impact of such constituents in water. Significantly, SACs with varying coordination environments and structures can be tuned to exclusively generate non-radical species to treat water with a complex matrix. Almost no influence of chloride, carbonate, phosphate, and NOM was observed on the performance of SACs in treating pollutants in water when nonradical species dominate. Therefore, the appropriately designed SACs represent game-changers in purifying water vs. AOPs with high efficiency and minimal interference from constituents of polluted water to meet the goals of water sustainability.
Collapse
Affiliation(s)
- Virender K Sharma
- Program for the Environment and Sustainability, Department of Environmental and Occupational Health, Texas A&M University, College Station, Texas 77843, USA.
| | - Xingmao Ma
- Department of Civil and Environmental Engineering, Texas A&M University, College Station, Texas, 77843, USA
| | - Radek Zboril
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute, Palacký University Olomouc, Šlechtitelů 241/27, Olomouc, 783 71, Czech Republic.
- Nanotechnology Centre, for Energy and Environmental Technologies, VŠB-Technical University of Ostrava, 17. listopadu 2172/15, Ostrava-Poruba, 708 00, Czech Republic
| |
Collapse
|
53
|
Zeng T, Meng X, Sun S, Ling M, Zhang C, Yuan W, Cao D, Niu M, Zhang LY, Li CM. Tensile-Strained Holey Pd Metallene toward Efficient and Stable Electrocatalysis. SMALL METHODS 2023; 7:e2300791. [PMID: 37555503 DOI: 10.1002/smtd.202300791] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/01/2023] [Indexed: 08/10/2023]
Abstract
Noble metal-based metallenes are attracting intensive attention in energy catalysis, but it is still very challenging to precisely control the surface structures of metallenes for higher catalytic properties on account of their intrinsic thermodynamic instability. Herein, the synthesis of tensile-strained holey Pd metallene by oxidative etching is reported using hydrogen peroxide, which exhibits highly enhanced catalytic activity and stability in comparison with normal Pd metallene toward both oxygen reduction reaction and formic acid oxidation. The pre-prepared Pd metallene functions as a catalyst to decompose hydrogen peroxide, and the Pd atoms in amorphous regions of Pd metallene are preferentially removed by the introduced hydrogen peroxide during the etching process. The greatly enhanced ORR activity is mainly determined by the strong electrostatic repulsion between intermediate O* and the dopant O, which balances the adsorption strength of O* on Pd sites, ultimately endowing a weakened adsorption energy of O* on TH-Pd metallene. This work creates a facile and economical strategy to precisely shape metallene-based nanoarchitectures with broad applications for energy systems and sensing devices.
Collapse
Affiliation(s)
- Tiantian Zeng
- Institute of Materials for Energy and Environment, Institute of Biochemical Engineering, College of Materials Science and Engineering, Qingdao University, Qingdao, 266071, P. R. China
| | - Xiaomin Meng
- Institute of Materials for Energy and Environment, Institute of Biochemical Engineering, College of Materials Science and Engineering, Qingdao University, Qingdao, 266071, P. R. China
| | - Shiwei Sun
- Institute of Materials for Energy and Environment, Institute of Biochemical Engineering, College of Materials Science and Engineering, Qingdao University, Qingdao, 266071, P. R. China
| | - Miao Ling
- Institute of Materials for Energy and Environment, Institute of Biochemical Engineering, College of Materials Science and Engineering, Qingdao University, Qingdao, 266071, P. R. China
| | - Chuanhui Zhang
- Institute of Materials for Energy and Environment, Institute of Biochemical Engineering, College of Materials Science and Engineering, Qingdao University, Qingdao, 266071, P. R. China
| | - Weiyong Yuan
- Chongqing Key Laboratory for Advanced Materials & Technologies of Clean Energies, Institute for Clean Energy and Advanced Materials, Southwest University, Chongqing, 400715, P. R. China
- Ningbo Research Institute, Zhejiang University, Ningbo, 315100, P. R. China
| | - Dapeng Cao
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Mang Niu
- Institute of Materials for Energy and Environment, Institute of Biochemical Engineering, College of Materials Science and Engineering, Qingdao University, Qingdao, 266071, P. R. China
| | - Lian Ying Zhang
- Institute of Materials for Energy and Environment, Institute of Biochemical Engineering, College of Materials Science and Engineering, Qingdao University, Qingdao, 266071, P. R. China
- Chongqing Key Laboratory for Advanced Materials & Technologies of Clean Energies, Institute for Clean Energy and Advanced Materials, Southwest University, Chongqing, 400715, P. R. China
| | - Chang Ming Li
- Institute for Materials Science and Devices, Suzhou University of Science and Technology, Suzhou, 215011, P. R. China
| |
Collapse
|
54
|
Di Liberto G, Pacchioni G. Modeling Single-Atom Catalysis. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2307150. [PMID: 37749881 DOI: 10.1002/adma.202307150] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/17/2023] [Indexed: 09/27/2023]
Abstract
Electronic structure calculations represent an essential complement of experiments to characterize single-atom catalysts (SACs), consisting of isolated metal atoms stabilized on a support, but also to predict new catalysts. However, simulating SACs with quantum chemistry approaches is not as simple as often assumed. In this work, the essential factors that characterize a reliable simulation of SACs activity are examined. The Perspective focuses on the importance of precise atomistic characterization of the active site, since even small changes in the metal atom's surroundings can result in large changes in reactivity. The dynamical behavior and stability of SACs under working conditions, as well as the importance of adopting appropriate methods to solve the Schrödinger equation for a quantitative evaluation of reaction energies are addressed. The Perspective also focuses on the relevance of the model adopted. For electrocatalysis this must include the effects of the solvent, the presence of electrolytes, the pH, and the external potential. Finally, it is discussed how the similarities between SACs and coordination compounds may result in reaction intermediates that usually are not observed on metal electrodes. When these aspects are not adequately considered, the predictive power of electronic structure calculations is quite limited.
Collapse
Affiliation(s)
- Giovanni Di Liberto
- Dipartimento di Scienza dei Materiali, Università degli studi di Milano Bicocca, Via R. Cozzi 55, Milano, 20125, Italy
| | - Gianfranco Pacchioni
- Dipartimento di Scienza dei Materiali, Università degli studi di Milano Bicocca, Via R. Cozzi 55, Milano, 20125, Italy
| |
Collapse
|
55
|
Lu L, Sun M, Wu T, Lu Q, Chen B, Chan CH, Wong HH, Huang B. Progress on Single-Atom Photocatalysts for H 2 Generation: Material Design, Catalytic Mechanism, and Perspectives. SMALL METHODS 2023; 7:e2300430. [PMID: 37653620 DOI: 10.1002/smtd.202300430] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 08/16/2023] [Indexed: 09/02/2023]
Abstract
Solar energy utilization is of great significance to current challenges of the energy crisis and environmental pollution, which benefit the development of the global community to achieve carbon neutrality goals. Hydrogen energy is also treated as a good candidate for future energy supply since its combustion not only supplies high-density energy but also shows no pollution gas. In particular, photocatalytic water splitting has attracted increasing research as a promising method for H2 production. Recently, single-atom (SA) photocatalysts have been proposed as a potential solution to improve catalytic efficiency and lower the costs of photocatalytic water splitting for H2 generation. Owing to the maximized atom utilization rate, abundant surface active sites, and tunable coordination environment, SA photocatalysts have achieved significant progress. This review reviews developments of advanced SA photocatalysts for H2 generation regarding the different support materials. The recent progress of titanium dioxide, metal-organic frameworks, two-dimensional carbon materials, and red phosphorus supported SA photocatalysts are carefully discussed. In particular, the material designs, reaction mechanisms, modulation strategies, and perspectives are highlighted for realizing improved solar-to-energy efficiency and H2 generation rate. This work will supply significant references for future design and synthesis of advanced SA photocatalysts.
Collapse
Affiliation(s)
- Lu Lu
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, 999077, China
| | - Mingzi Sun
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, 999077, China
| | - Tong Wu
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, 999077, China
| | - Qiuyang Lu
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, 999077, China
| | - Baian Chen
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, 999077, China
| | - Cheuk Hei Chan
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, 999077, China
| | - Hon Ho Wong
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, 999077, China
| | - Bolong Huang
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, 999077, China
- Research Centre for Carbon-Strategic Catalysis (RC-CSC), The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, 999077, China
| |
Collapse
|
56
|
Cheng L, Tang Y, Ostrikov KK, Xiang Q. Single-Atom Heterogeneous Catalysts: Human- and AI-Driven Platform for Augmented Designs, Analytics and Reality-Enabled Manufacturing. Angew Chem Int Ed Engl 2023:e202313599. [PMID: 37891153 DOI: 10.1002/anie.202313599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/27/2023] [Accepted: 10/27/2023] [Indexed: 10/29/2023]
Abstract
Heterogeneous catalysts with targeted functionality can be designed with atomic precision, but it is challenging to retain the structure and performance upon the scaled-up manufacturing. Particularly challenging is to ensure the "atomic economy", where every catalytic site is most gainfully utilized. Given the emerging synergistic integration of human- and artificial intelligence (AI)-driven augmented designs (AD), augmented analytics (AA), and augmented reality manufacturing (AM) platforms, this minireview focuses on single-atom heterogeneous catalysts (SAHCs) and examines the current status, challenges, and future perspectives of translating atomic-level structural precision and data-driven discovery to next-generation industrial manufacturing. We critically examine the atomistic insights into structure-driven SAHCs functionality and discuss the opportunities and challenges on the way towards the synergistic human-AI collaborative data-driven platform capable of monitoring, analyzing, manufacturing, and retaining the atomic-scale structure and functions. Enhanced by the atomic-level AD, AA, and AM, evolving from the current high-throughput capabilities and digital materials manufacturing acceleration, this synergistic human-AI platform is promising to enable atom-efficient and atomically precise heterogeneous catalyst production.
Collapse
Affiliation(s)
- Lei Cheng
- School of Chemistry and Materials Science, Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Nanjing Normal University, Nanjing, 210023, P. R. China
| | - Yawen Tang
- School of Chemistry and Materials Science, Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Nanjing Normal University, Nanjing, 210023, P. R. China
| | - Kostya Ken Ostrikov
- School of Chemistry and Physics and Centre for Materials Science, Queensland University of Technology (QUT), Brisbane, Queensland, 4000, Australia
| | - Quanjun Xiang
- School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, Sichuan, 611731, P. R. China
| |
Collapse
|
57
|
Jiang R, Qiao Z, Xu H, Cao D. Novel 2D carbon material T-graphene supported 3d transition metal single atoms as efficient oxygen reduction catalysts. NANOSCALE 2023; 15:16775-16783. [PMID: 37818611 DOI: 10.1039/d3nr03507g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2023]
Abstract
Carbon-based support anchored 3d transition metal (TM) single atom catalysts (SACs) have been widely considered as promising candidates for the oxygen reduction reaction (ORR), and their intrinsic activity is closely related to the geometric and electronic structures of the supports. T-graphene was predicted to have high conductivity and stability, so it may be also a promising support for loading SACs for electrocatalysis. Here, we systematically evaluate the ORR activity of T-graphene supported TM single atoms (TMN4-Tgra and TMC4-Tgra, TM = Sc-Zn) and their graphene supported counterparts (TMN4-Gra and TMC4-Gra). The TM(dxz)-O(px), TM(dyz)-O(py) and TM(dz2)-O(pz + s) orbital hybridizations between the active central metal and the *OH intermediate determine the ORR activity. Compared to graphene, T-graphene increases the d-band center (especially the β-spin state) of single atoms and reduces the *OH adsorption strength, which thus improves the ORR activity of the catalysts located in the left leg of the ORR activity volcano plot. Interestingly, we found that for the catalysts with different TMs anchored on the same support, the adsorption strength of oxygen intermediates increases with the increase of the d-band center of the active site, while for the catalysts with the same metal anchored on different supports, the adsorption strength of oxygen intermediates weakens with the increase of the d-band center of the active site, which can serve as a d-band center dependence law on supports and active sites for designing ORR catalysts.
Collapse
Affiliation(s)
- Run Jiang
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China.
| | - Zelong Qiao
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China.
| | - Haoxiang Xu
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China.
| | - Dapeng Cao
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China.
| |
Collapse
|
58
|
Chen Y, Zhu Y, Dou H, Gong H. Theoretical insights into the catalytic mechanism of propylene hydroformylation over Co-N-C materials. Phys Chem Chem Phys 2023; 25:28412-28427. [PMID: 37843831 DOI: 10.1039/d3cp03486k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2023]
Abstract
M-N-C was recently reported to be a high activity catalyst for hydroformylation compared with a metal nanocluster. However, the nature of M-N-C sites and the dominant path of propylene hydroformylation on M-N-C sites with different structures are poorly understood. In this work, five different Co-N-C models (Co-N3-C, Co-N4-C, 0N-bridged Co2-N6-C, 1N-bridged Co2-N7-C and 2N-bridged Co2-N6-C) were constructed to simulate the Co active sites with different coordination that may exist on the surface of MOF-derived Co-based carbon materials. DFT combined with kinetic Monte Carlo (kMC) methods were used to study the catalytic performance for hydroformylation of different Co-N-C models. The results of the DFT calculations show that the coordination number and mode of N atoms could regulate the electronic density of the Co sites. The electronic density of the Co sites further affects the catalytic activity. The higher the electronic density is, the lower the energy barrier for partial hydrogenation of propylene and CO insertion reactions. Besides, the catalytic activity is also affected by the strong interaction in closer neighboring Co atoms in some Co2-Nx-C models. The strong interaction affects the adsorption state and energy of species, which also reduces the overall reaction energy barrier. The kMC simulation results further showed that the dominant path of propylene hydroformylation was the n-butylaldehyde path for the 0N-bridged model, and the isobutylaldehyde path for Co-N3-C and 2N-bridged models.
Collapse
Affiliation(s)
- Yifei Chen
- Key Laboratory for Green Chemical Technology of Ministry of Education, R&D Center for Petrochemical Technology, Tianjin University, Tianjin 300072, China.
- Zhejiang Institute of Tianjin University, Ningbo, Zhejiang, 315201, China
- State Key Laboratory of Engines, Tianjin University, Tianjin 300072, China
| | - Yanan Zhu
- Key Laboratory for Green Chemical Technology of Ministry of Education, R&D Center for Petrochemical Technology, Tianjin University, Tianjin 300072, China.
- Zhejiang Institute of Tianjin University, Ningbo, Zhejiang, 315201, China
- State Key Laboratory of Engines, Tianjin University, Tianjin 300072, China
| | - Huaiqiang Dou
- Key Laboratory for Green Chemical Technology of Ministry of Education, R&D Center for Petrochemical Technology, Tianjin University, Tianjin 300072, China.
- Zhejiang Institute of Tianjin University, Ningbo, Zhejiang, 315201, China
- State Key Laboratory of Engines, Tianjin University, Tianjin 300072, China
| | - Hao Gong
- Key Laboratory for Green Chemical Technology of Ministry of Education, R&D Center for Petrochemical Technology, Tianjin University, Tianjin 300072, China.
- Zhejiang Institute of Tianjin University, Ningbo, Zhejiang, 315201, China
- State Key Laboratory of Engines, Tianjin University, Tianjin 300072, China
| |
Collapse
|
59
|
Modak A. Recent Progress and Opportunity of Metal Single-Atom Catalysts for Biomass Conversion Reactions. Chem Asian J 2023:e202300671. [PMID: 37874179 DOI: 10.1002/asia.202300671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 10/24/2023] [Accepted: 10/24/2023] [Indexed: 10/25/2023]
Abstract
The conversion of lignocellulosic biomass into platform chemicals and fuels by metal single atoms is a new domain in solid catalysis research. Unlike the conventional catalysis route, single-atom catalysts (SACs) proliferate maximum utilization efficiency, high catalytic activity, and good selectivity to the desired product with an ultralow loading of the active sites. More strikingly, SACs show a unique cost-effective pathway for the conversion of complex sugar molecules to value-added chemicals in high yield and selectivity, which may be hindered by conventional metal nanoparticles. Primarily, SACs having adjustable active sites could be easily modified using sophisticated synthetic techniques based on their intended reactions. This review covers current research on the use of SACs with a strong emphasis on the fundamentals of catalyst design, and their distinctive activities in each type of reaction (hydrogenation, hydrogenolysis, hydrodeoxygenation, oxidation, and dehydrogenation). Furthermore, the fundamental insights into the superior actions of SACs within the opportunity and prospects for the industrial-scale synthesis of value-added products from the lignocelluloses are covered.
Collapse
Affiliation(s)
- Arindam Modak
- Amity Institute of Applied Sciences (AIAS), Amity University-Noida, Amity Rd, Sector 125, Gautam Buddha, Nagar, Uttar Pradesh, 201301, India
| |
Collapse
|
60
|
Dey G, Jana R, Saifi S, Kumar R, Bhattacharyya D, Datta A, Sinha ASK, Aijaz A. Dual Single-Atomic Co-Mn Sites in Metal-Organic-Framework-Derived N-Doped Nanoporous Carbon for Electrochemical Oxygen Reduction. ACS NANO 2023; 17:19155-19167. [PMID: 37774140 DOI: 10.1021/acsnano.3c05379] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2023]
Abstract
Synthesizing dual single-atom catalysts (DSACs) with atomically isolated metal pairs is a challenging task but can be an effective way to enhance the performance for electrochemical oxygen reduction reaction (ORR). Herein, well-defined DSACs of Co-Mn, stabilized in N-doped porous carbon polyhedra (named CoMn/NC), are synthesized using high-temperature pyrolysis of a Co/Mn-doped zeolitic imidazolate framework. The atomically isolated Co-Mn site in CoMn/NC is recognized by combining microscopic as well as spectroscopic techniques. CoMn/NC exhibited excellent ORR activities in alkaline (E1/2 = 0.89 V) as well as in acidic (E1/2 = 0.82 V) electrolytes with long-term durability and enhanced methanol tolerance. Density functional theory (DFT) suggests that the Co-Mn site is efficiently activating the O-O bond via bridging adsorption, decisive for the 4e- oxygen reduction process. Though the Co-Mn sites favor O2 activation via the dissociative ORR mechanism, stronger adsorption of the intermediates in the dissociative path degrades the overall ORR activity. Our DFT studies conclude that the ORR on an Co-Mn site mainly occurs via bridging side-on O2 adsorption following thermodynamically and kinetically favorable associative mechanistic pathways with a lower overpotential and activation barrier. CoMn/NC performed excellently as a cathode in a proton exchange membrane (PEM) fuel cell and rechargeable Zn-air battery with high peak power densities of 970 and 176 mW cm-2, respectively. This work provides the guidelines for the rational design and synthesis of nonprecious DSACs for enhancing the ORR activity as well as the robustness of DSACs and suggests a design of multifunctional robust electrocatalysts for energy storage and conversion devices.
Collapse
Affiliation(s)
- Gargi Dey
- Department of Sciences & Humanities, Rajiv Gandhi Institute of Petroleum Technology (RGIPT) - Jais, Amethi, Uttar Pradesh 229304, India
| | - Rajkumar Jana
- School of Chemical Sciences, Indian Association for the Cultivation of Science (IACS), Kolkata 700032, India
| | - Shadab Saifi
- Department of Sciences & Humanities, Rajiv Gandhi Institute of Petroleum Technology (RGIPT) - Jais, Amethi, Uttar Pradesh 229304, India
| | - Ravi Kumar
- Atomic & Molecular Physics Division, Bhabha Atomic Research Centre, Mumbai 400094, India
| | - D Bhattacharyya
- Atomic & Molecular Physics Division, Bhabha Atomic Research Centre, Mumbai 400094, India
| | - Ayan Datta
- School of Chemical Sciences, Indian Association for the Cultivation of Science (IACS), Kolkata 700032, India
| | - A S K Sinha
- Department of Chemical & Biochemical Engineering, Rajiv Gandhi Institute of Petroleum Technology (RGIPT) - Jais, Amethi, Uttar Pradesh 229304, India
| | - Arshad Aijaz
- Department of Sciences & Humanities, Rajiv Gandhi Institute of Petroleum Technology (RGIPT) - Jais, Amethi, Uttar Pradesh 229304, India
| |
Collapse
|
61
|
Wang K, Liu S, Shu Z, Zheng Q, Zheng M, Dong Q. Single-atom site catalysis in Li-S batteries. Phys Chem Chem Phys 2023; 25:25942-25960. [PMID: 37746671 DOI: 10.1039/d3cp02857g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
With their high theoretical energy density, Li-S batteries are regarded as the ideal battery system for next generation electrochemical energy storage. In the last 15 years, Li-S batteries have made outstanding academic progress. Recently, research studies have placed more emphasis on their practical application aspects, which puts forward strict requirements for the loading of S cathodes and the amount of electrolytes. To meet the above requirements, electrode catalysis design is of crucial significance. Among all the catalysts, single-atom site catalysts (SASCs) are considered to be ideal catalyst materials for the commercialization of Li-S batteries due to their high activity and highest utilization of catalytic sites. This perspective introduces the kinetic mechanism of S cathodes, the basic concept and synthesis strategy of SASCs, and then systematically summarizes the research progress of SASCs for S cathodes and, the related functional interlayers/separators in recent years. Finally, the opportunities and challenges of SASCs in Li-S batteries are summarized and prospected.
Collapse
Affiliation(s)
- Kun Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (i-ChEM), Engineering Research Centre of Electrochemical Technologies of Ministry of Education, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, 361005, Xiamen, China
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen, China
| | - Sheng Liu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (i-ChEM), Engineering Research Centre of Electrochemical Technologies of Ministry of Education, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, 361005, Xiamen, China
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen, China
| | - Zhenghao Shu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (i-ChEM), Engineering Research Centre of Electrochemical Technologies of Ministry of Education, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, 361005, Xiamen, China
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen, China
| | - Qingyi Zheng
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (i-ChEM), Engineering Research Centre of Electrochemical Technologies of Ministry of Education, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, 361005, Xiamen, China
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen, China
| | - Mingsen Zheng
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (i-ChEM), Engineering Research Centre of Electrochemical Technologies of Ministry of Education, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, 361005, Xiamen, China
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen, China
| | - Quanfeng Dong
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (i-ChEM), Engineering Research Centre of Electrochemical Technologies of Ministry of Education, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, 361005, Xiamen, China
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen, China
| |
Collapse
|
62
|
Xie Y, Yang Z. Morphological and Coordination Modulations in Iridium Electrocatalyst for Robust and Stable Acidic OER Catalysis. CHEM REC 2023; 23:e202300129. [PMID: 37229769 DOI: 10.1002/tcr.202300129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/12/2023] [Indexed: 05/27/2023]
Abstract
Proton exchange membrane water splitting (PEMWS) technology has high-level current density, high operating pressure, small electrolyzer-size, integrity, flexibility, and has good adaptability to the volatility of wind power and photovoltaics, but the development of both active and high stability of the anode electrocatalyst in acidic environment is still a huge challenge, which seriously hinders the promotion and application of PEMWS. In recent years, researchers have made tremendous attempts in the development of high-quality active anode electrocatalyst, and we summarize some of the research progress made by our group in the design and synthesis of PEMWS anode electrocatalysts with different nanostructures, and makes full use of electrocatalytic activity points to increase the inherent activity of Iridium (Ir) sites, and provides optimization strategies for the long-term non-decay of catalysts under high anode potential in acidic environments. At this stage, these research advances are expected to facilitate the research and technological progress of PEMWS, and providing some research ideas and references for future research on efficient and inexpensive PEMWS anode electrocatalysts.
Collapse
Affiliation(s)
- Yuhua Xie
- Sustainable Energy Laboratory, Faculty of Materials Science and Chemistry, China, University of Geosciences Wuhan, 388 Lumo RD, Wuhan, 430074, P. R. China
| | - Zehui Yang
- Sustainable Energy Laboratory, Faculty of Materials Science and Chemistry, China, University of Geosciences Wuhan, 388 Lumo RD, Wuhan, 430074, P. R. China
- Zhejiang Institute, China University of Geosciences, Hangzhou, 311305, P. R. China
| |
Collapse
|
63
|
Shao Y, Yuan Q, Zhou J. Single-Atom Catalysts and Dual-Atom Catalysts for CO 2 Electroreduction: Competition or Cooperation? SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2303446. [PMID: 37267928 DOI: 10.1002/smll.202303446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/22/2023] [Indexed: 06/04/2023]
Abstract
Developing highly active and selective electrocatalysts for electrochemical reduction of CO2 can reduce environmental pollution and mitigation of greenhouse gas emission. Owing to maximal atomic utilization, the atomically dispersed catalysts are broadly adopted in CO2 reduction reaction (CO2 RR). Dual-atom catalysts (DACs), with more flexible active sites, distinct electronic structures, and synergetic interatomic interactions compared to single-atom catalysts (SACs), may have great potential to enhance catalytic performance. Nevertheless, most of the existing electrocatalysts have low activity and selectivity due to their high energy barrier. Herein, 15 electrocatalysts are explored with noble metallic (Cu, Ag, and Au) active sites embedded in metal-organic hybrids (MOHs) for high-performance CO2 RR and studied the relationship between SACs and DACs by first-principles calculation. The results indicated that the DACs have excellent electrocatalytic performance, and the moderate interaction between the single- and dual-atomic center can improve catalytic activity in CO2 RR. Four among the 15 catalysts, including (CuAu), (CuCu), Cu(CuCu), and Cu(CuAu) MOHs inherited a capability of suppressing the competitive hydrogen evolution reaction with favorable CO overpotential. This work not only reveals outstanding candidates for MOHs-based dual-atom CO2 RR electrocatalysts but also provides new theoretical insights into rationally designing 2D metallic electrocatalysts.
Collapse
Affiliation(s)
- Yueyue Shao
- State Key Lab of Urban Water Resource and Environment, School of Science, Harbin Institute of Technology, Shenzhen, 518055, China
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Qunhui Yuan
- School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen, 518055, China
| | - Jia Zhou
- State Key Lab of Urban Water Resource and Environment, School of Science, Harbin Institute of Technology, Shenzhen, 518055, China
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
| |
Collapse
|
64
|
Zhang S, Hou M, Zhai Y, Liu H, Zhai D, Zhu Y, Ma L, Wei B, Huang J. Dual-Active-Sites Single-Atom Catalysts for Advanced Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2302739. [PMID: 37322318 DOI: 10.1002/smll.202302739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/29/2023] [Indexed: 06/17/2023]
Abstract
Dual-Active-Sites Single-Atom catalysts (DASs SACs) are not only the improvement of SACs but also the expansion of dual-atom catalysts. The DASs SACs contains dual active sites, one of which is a single atomic active site, and the other active site can be a single atom or other type of active site, endowing DASs SACs with excellent catalytic performance and a wide range of applications. The DASs SACs are categorized into seven types, including the neighboring mono metallic DASs SACs, bonded DASs SACs, non-bonded DASs SACs, bridged DASs SACs, asymmetric DASs SACs, metal and nonmetal combined DASs SACs and space separated DASs SACs. Based on the above classification, the general methods for the preparation of DASs SACs are comprehensively described, especially their structural characteristics are discussed in detail. Meanwhile, the in-depth assessments of DASs SACs for variety applications including electrocatalysis, thermocatalysis and photocatalysis are provided, as well as their unique catalytic mechanism are addressed. Moreover, the prospects and challenges for DASs SACs and related applications are highlighted. The authors believe the great expectations for DASs SACs, and this review will provide novel conceptual and methodological perspectives and exciting opportunities for further development and application of DASs SACs.
Collapse
Affiliation(s)
- Shaolong Zhang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Minchen Hou
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Yanliang Zhai
- College of Chemistry and Chemical Engineering, Northeast Petroleum University, Daqing, 163318, P. R. China
| | - Hongjie Liu
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, P. R. China
| | - Dong Zhai
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao, 266237, P. R. China
| | - Youqi Zhu
- Research Center of Materials Science, Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications Institution, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Li Ma
- Key Laboratory of New Electric Functional Materials of Guangxi Colleges and Universities, Nanning Normal University, Nanning, 530023, P. R. China
| | - Bin Wei
- School of Materials, Sun Yat-sen University, Shenzhen, 518107, P. R. China
| | - Jing Huang
- Pharmaceutical College, Guangxi Medical University, Nanning, 530021, P. R. China
| |
Collapse
|
65
|
Li R, Zhang L, Wang Y, Bai J, Li X, Zhang C. Influence of coordination structure of Fe-585DV/N xC 4-x on the electrocatalytic performance of oxygen reduction reactions. RSC Adv 2023; 13:27705-27713. [PMID: 37731826 PMCID: PMC10507431 DOI: 10.1039/d3ra04270g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 09/05/2023] [Indexed: 09/22/2023] Open
Abstract
Fe-N-C material, known for its high efficiency, cost-effectiveness, and environmental friendliness, is a promising electrocatalyst in the field of the oxygen reduction reaction (ORR). However, the influence of defects and coordination structures on the catalytic performance of Fe-N-C has not been completely elucidated. In our present investigation, based on density functional theory, we take an Fe adsorbed graphene structure containing a 5-8-5 divacancy (585DV) defect as a research model and investigate the influence of the coordination number of N atoms around Fe (Fe-NxC(4-x)) on the ORR electrocatalyst behavior in alkaline conditions. We find that the Fe-N4 structure exhibits superior ORR catalytic performance than other N coordination structures Fe-NxC4-x (x = 0-3). We explore the reasons for the improved catalytic performance through electronic structure analysis and find that as the N coordination number in the Fe-NxC(4-x) structure increases, the magnetic moment of the Fe single atom decreases. This reduction is conducive to the ORR catalytic performance, indicating that a lower magnetic moment is more favorable for the catalytic process of the ORR within the Fe-NxC(4-x) structure. This study is of great significance for a deeper understanding of the structure-performance relationship in catalysis, as well as for the development of efficient ORR catalysts.
Collapse
Affiliation(s)
- Ren Li
- State Key Laboratory of Photoelectric Technology and Functional Materials, International Collaborative Center on Photoelectric Technology and Nano Functional Materials, Institute of Photonics & Photon-Technology, Northwest University Xi'an 710069 China
| | - Lei Zhang
- State Energy Key Lab of Clean Coal Grading Conversion, Shaanxi Coal and Chemical Technology Institute Co., Ltd Xi'an 710070 China
| | - Yi Wang
- State Key Laboratory of Photoelectric Technology and Functional Materials, International Collaborative Center on Photoelectric Technology and Nano Functional Materials, Institute of Photonics & Photon-Technology, Northwest University Xi'an 710069 China
| | - Jinbo Bai
- Université Paris-Saclay, CentraleSupélec, ENS Paris-Saclay, CNRS, LMPS-Laboratoire de Mécanique Paris-Saclay 8-10 Rue Joliot-Curie Gif-sur-Yvette 91190 France
| | - Xiaolin Li
- Institute of Intelligent Manufacturing Technology, Shenzhen Polytechnic University Shenzhen 518055 China
| | - Chunmei Zhang
- School of Physics, Northwest University Xi'an 710069 China
| |
Collapse
|
66
|
He Y, Huang D. Single-Atom Platinum Catalyst for Efficient CO 2 Conversion via Reverse Water Gas Shift Reaction. Molecules 2023; 28:6630. [PMID: 37764406 PMCID: PMC10534439 DOI: 10.3390/molecules28186630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/11/2023] [Accepted: 09/13/2023] [Indexed: 09/29/2023] Open
Abstract
The need to tackle CO2 emissions arising from the continuously rising combustion of fossil fuels has sparked considerable interest in investigating the reverse water gas shift (RWGS) reaction. This reaction holds great promise as an alternative technique for the conversion and utilization of CO2. In this study, a scalable method was employed to synthesize a single-atom Pt catalyst, uniformly dispersed on SiC, where up to 6.4 wt% Pt1 was loaded onto a support based on ligand modification and UV photoreduction. This Pt1/SiC catalyst exhibited a high selectivity (100%) towards the RWGS reaction; 54% CO2 conversion was observed at 900 °C with a H2/CO2 feed-in ratio of 1:1, significantly higher than the conventional Pt nanoparticle counterparts. Moreover, Pt1/SiC displayed a robust stability during the long-term test. The activation energy with as-synthesized Pt1/SiC was further calculated to be 61.6 ± 6.4 kJ/mol, which is much lower than the 91.6 ± 15.9 kJ/mol of the Pt nanoparticle counterpart and other Pt-based catalysts reported so far. This work offers new insights into the utilization of diverse single-atom catalysts for the RWGS reaction and other crucial catalytic processes, paving the way for the further exploration and application of SACs in various industrial endeavors.
Collapse
Affiliation(s)
- Yulian He
- University of Michigan and Shanghai Jiao Tong University Joint Institute, Shanghai Jiao Tong University, Shanghai 200240, China;
| | - Dahong Huang
- Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
67
|
Giulimondi V, Ruiz-Ferrando A, Giannakakis G, Surin I, Agrachev M, Jeschke G, Krumeich F, López N, Clark AH, Pérez-Ramírez J. Evidence of bifunctionality of carbons and metal atoms in catalyzed acetylene hydrochlorination. Nat Commun 2023; 14:5557. [PMID: 37689779 PMCID: PMC10492806 DOI: 10.1038/s41467-023-41344-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 08/28/2023] [Indexed: 09/11/2023] Open
Abstract
Carbon supports are ubiquitous components of heterogeneous catalysts for acetylene hydrochlorination to vinyl chloride, from commercial mercury-based systems to more sustainable metal single-atom alternatives. Their potential co-catalytic role has long been postulated but never unequivocally demonstrated. Herein, we evidence the bifunctionality of carbons and metal sites in the acetylene hydrochlorination catalytic cycle. Combining operando X-ray absorption spectroscopy with other spectroscopic and kinetic analyses, we monitor the structure of single metal atoms (Pt, Au, Ru) and carbon supports (activated, non-activated, and nitrogen-doped) from catalyst synthesis, using various procedures, to operation at different conditions. Metal atoms exclusively activate hydrogen chloride, while metal-neighboring sites in the support bind acetylene. Resolving the coordination environment of working metal atoms guides theoretical simulations in proposing potential binding sites for acetylene in the support and a viable reaction profile. Expanding from single-atom to ensemble catalysis, these results reinforce the importance of optimizing both metal and support components to leverage the distinct functions of each for advancing catalyst design.
Collapse
Affiliation(s)
- Vera Giulimondi
- Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 1, 8093, Zurich, Switzerland
| | - Andrea Ruiz-Ferrando
- Institute of Chemical Research of Catalonia (ICIQ-CERCA), Av. Països Catalans 16, 43007, Tarragona, Spain
- Department of Physical and Inorganic Chemistry, Universitat Rovira i Virgili, Marcel·lí Domingo s/n, 43007, Tarragona, Spain
| | - Georgios Giannakakis
- Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 1, 8093, Zurich, Switzerland
| | - Ivan Surin
- Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 1, 8093, Zurich, Switzerland
| | - Mikhail Agrachev
- Laboratory of Physical Chemistry, Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 1, 8093, Zurich, Switzerland
| | - Gunnar Jeschke
- Laboratory of Physical Chemistry, Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 1, 8093, Zurich, Switzerland
| | - Frank Krumeich
- Laboratory of Inorganic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 1, 8093, Zurich, Switzerland
| | - Núria López
- Institute of Chemical Research of Catalonia (ICIQ-CERCA), Av. Països Catalans 16, 43007, Tarragona, Spain
| | - Adam H Clark
- Paul Scherrer Institute, 5232, Villigen, Switzerland
| | - Javier Pérez-Ramírez
- Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 1, 8093, Zurich, Switzerland.
| |
Collapse
|
68
|
Zhao Y, Shen Z, Huo J, Cao X, Ou P, Qu J, Nie X, Zhang J, Wu M, Wang G, Liu H. Epoxy-rich Fe Single Atom Sites Boost Oxygen Reduction Electrocatalysis. Angew Chem Int Ed Engl 2023; 62:e202308349. [PMID: 37452696 DOI: 10.1002/anie.202308349] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/13/2023] [Accepted: 07/14/2023] [Indexed: 07/18/2023]
Abstract
Electrocatalysts for highly efficient oxygen reduction reaction (ORR) are crucial for energy conversion and storage devices. Single-atom catalysts with maximized metal utilization and altered electronic structure are the most promising alternatives to replace current benchmark precious metals. However, the atomic level understanding of the functional role for each species at the anchoring sites is still unclear and poorly elucidated. Herein, we report Fe single atom catalysts with the sulfur and oxygen functional groups near the atomically dispersed metal centers (Fe1/NSOC) for highly efficient ORR. The Fe1/NSOC delivers a half-wave potential of 0.92 V vs. RHE, which is much better than those of commercial Pt/C (0.88 V), Fe single atoms on N-doped carbon (Fe1/NC, 0.89 V) and most reported nonprecious metal catalysts. The spectroscopic measurements reveal that the presence of sulfur group induces the formation of epoxy groups near the FeN4S2 centers, which not only modulate the electronic structure of Fe single atoms but also participate the catalytic process to improve the kinetics. The density functional theory calculations demonstrate the existence of sulfur and epoxy group engineer the charges of Fe reactive center and facilitate the reductive release of OH* (rate-limiting step), thus boosting the overall oxygen reduction efficiency.
Collapse
Affiliation(s)
- Yufei Zhao
- Joint International Laboratory on Environmental and Energy Frontier Materials, School of Environmental and Chemical Engineering, Shanghai University, China
| | - Ziyan Shen
- Joint International Laboratory on Environmental and Energy Frontier Materials, School of Environmental and Chemical Engineering, Shanghai University, China
| | - Juanjuan Huo
- Joint International Laboratory on Environmental and Energy Frontier Materials, School of Environmental and Chemical Engineering, Shanghai University, China
| | - Xianjun Cao
- Joint International Laboratory on Environmental and Energy Frontier Materials, School of Environmental and Chemical Engineering, Shanghai University, China
| | - Pengfei Ou
- Department of Electrical and Computer Engineering, University of Toronto, 35 St George Street, Toronto, Ontario, M5S 1A4, Canada
| | - Junpeng Qu
- Joint International Laboratory on Environmental and Energy Frontier Materials, School of Environmental and Chemical Engineering, Shanghai University, China
| | - Xinming Nie
- School of Physics and Electronic Engineering, Jiangsu Normal University, Xuzhou, Jiangsu, 221116, China
| | - Jinqiang Zhang
- Department of Electrical and Computer Engineering, University of Toronto, 35 St George Street, Toronto, Ontario, M5S 1A4, Canada
- Centre for Clean Energy Technology, University of Technology Sydney, Broadway, Sydney, NSW-2007, Australia
| | - Minghong Wu
- Joint International Laboratory on Environmental and Energy Frontier Materials, School of Environmental and Chemical Engineering, Shanghai University, China
| | - Guoxiu Wang
- Centre for Clean Energy Technology, University of Technology Sydney, Broadway, Sydney, NSW-2007, Australia
| | - Hao Liu
- Centre for Clean Energy Technology, University of Technology Sydney, Broadway, Sydney, NSW-2007, Australia
| |
Collapse
|
69
|
Saptal VB, Ruta V, Bajada MA, Vilé G. Single-Atom Catalysis in Organic Synthesis. Angew Chem Int Ed Engl 2023; 62:e202219306. [PMID: 36918356 DOI: 10.1002/anie.202219306] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 03/10/2023] [Accepted: 03/14/2023] [Indexed: 03/16/2023]
Abstract
Single-atom catalysts hold the potential to significantly impact the chemical sector, pushing the boundaries of catalysis in new, uncharted directions. These materials, featuring isolated metal species ligated on solid supports, can exist in many coordination environments, all of which have shown important functions in specific transformations. Their emergence has also provided exciting opportunities for mimicking metalloenzymes and bridging the gap between homogeneous and heterogeneous catalysis. This Review outlines the impressive progress made in recent years regarding the use of single-atom catalysts in organic synthesis. We also illustrate potential knowledge gaps in the search for more sustainable, earth-abundant single-atom catalysts for synthetic applications.
Collapse
Affiliation(s)
- Vitthal B Saptal
- Department of Chemistry, Materials, and Chemical Engineering "Giulio Natta", Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133, Milano, Italy
| | - Vincenzo Ruta
- Department of Chemistry, Materials, and Chemical Engineering "Giulio Natta", Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133, Milano, Italy
| | - Mark A Bajada
- Department of Chemistry, Materials, and Chemical Engineering "Giulio Natta", Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133, Milano, Italy
| | - Gianvito Vilé
- Department of Chemistry, Materials, and Chemical Engineering "Giulio Natta", Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133, Milano, Italy
| |
Collapse
|
70
|
Hu H, Zhao Y, Zhang Y, Xi J, Xiao J, Cao S. Performance Regulation of Single-Atom Catalyst by Modulating the Microenvironment of Metal Sites. Top Curr Chem (Cham) 2023; 381:24. [PMID: 37480375 DOI: 10.1007/s41061-023-00434-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 07/01/2023] [Indexed: 07/24/2023]
Abstract
Metal-based catalysts, encompassing both homogeneous and heterogeneous types, play a vital role in the modern chemical industry. Heterogeneous metal-based catalysts usually possess more varied catalytically active centers than homogeneous catalysts, making it challenging to regulate their catalytic performance. In contrast, homogeneous catalysts have defined active-site structures, and their performance can be easily adjusted by modifying the ligand. These characteristics lead to remarkable conceptual and technical differences between homogeneous and heterogeneous catalysts. As a recently emerging class of catalytic material, single-atom catalysts (SACs) have become one of the most active new frontiers in the catalysis field and show great potential to bridge homogeneous and heterogeneous catalytic processes. This review documents a brief introduction to SACs and their role in a range of reactions involving single-atom catalysis. To fully understand process-structure-property relationships of single-atom catalysis in chemical reactions, active sites or coordination structure and performance regulation strategies (e.g., tuning chemical and physical environment of single atoms) of SACs are comprehensively summarized. Furthermore, we discuss the application limitations, development trends and future challenges of single-atom catalysis and present a perspective on further constructing a highly efficient (e.g., activity, selectivity and stability), single-atom catalytic system for a broader scope of reactions.
Collapse
Affiliation(s)
- Hanyu Hu
- School of Chemistry and Environmental Engineering, Key Laboratory of Green Chemical Engineering Process of Ministry of Education, Engineering Research Center of Phosphorus Resources Development and Utilization of Ministry of Education, Key Laboratory of Novel Biomass-Based Environmental and Energy Materials in Petroleum and Chemical Industry, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Wuhan Institute of Technology, Wuhan, 430073, People's Republic of China
| | - Yanyan Zhao
- Rowland Institute at Harvard, Cambridge, MA, 02142, USA
| | - Yue Zhang
- School of Chemistry and Environmental Engineering, Key Laboratory of Green Chemical Engineering Process of Ministry of Education, Engineering Research Center of Phosphorus Resources Development and Utilization of Ministry of Education, Key Laboratory of Novel Biomass-Based Environmental and Energy Materials in Petroleum and Chemical Industry, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Wuhan Institute of Technology, Wuhan, 430073, People's Republic of China
| | - Jiangbo Xi
- School of Chemistry and Environmental Engineering, Key Laboratory of Green Chemical Engineering Process of Ministry of Education, Engineering Research Center of Phosphorus Resources Development and Utilization of Ministry of Education, Key Laboratory of Novel Biomass-Based Environmental and Energy Materials in Petroleum and Chemical Industry, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Wuhan Institute of Technology, Wuhan, 430073, People's Republic of China.
| | - Jian Xiao
- School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan, 430205, People's Republic of China.
| | - Sufeng Cao
- Aramco Boston Research Center, Cambridge, MA, 02139, USA.
| |
Collapse
|
71
|
Pérez Mayoral E, Godino Ojer M, Ventura M, Matos I. New Insights into N-Doped Porous Carbons as Both Heterogeneous Catalysts and Catalyst Supports: Opportunities for the Catalytic Synthesis of Valuable Compounds. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2013. [PMID: 37446528 DOI: 10.3390/nano13132013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/30/2023] [Accepted: 07/03/2023] [Indexed: 07/15/2023]
Abstract
Among the vast class of porous carbon materials, N-doped porous carbons have emerged as promising materials in catalysis due to their unique properties. The introduction of nitrogen into the carbonaceous matrix can lead to the creation of new sites on the carbon surface, often associated with pyridinic or pyrrolic nitrogen functionalities, which can facilitate various catalytic reactions with increased selectivity. Furthermore, the presence of N dopants exerts a significant influence on the properties of the supported metal or metal oxide nanoparticles, including the metal dispersion, interactions between the metal and support, and stability of the metal nanoparticles. These effects play a crucial role in enhancing the catalytic performance of the N-doped carbon-supported catalysts. Thus, N-doped carbons and metals supported on N-doped carbons have been revealed to be interesting heterogeneous catalysts for relevant synthesis processes of valuable compounds. This review presents a concise overview of various methods employed to produce N-doped porous carbons with distinct structures, starting from diverse precursors, and showcases their potential in various catalytic processes, particularly in fine chemical synthesis.
Collapse
Affiliation(s)
- Elena Pérez Mayoral
- Departamento de Química Inorgánica y Química Técnica, Facultad de Ciencias, Universidad Nacional de Educación a Distancia (UNED), Urbanización Monte Rozas, Avda. Esparta s/n Ctra. de Las Rozas al Escorial Km 5, Las Rozas, 28232 Madrid, Spain
| | - Marina Godino Ojer
- Facultad de Ciencias Experimentales, Universidad Francisco de Vitoria (UFV), Ctra. Pozuelo-Majadahonda Km 1.800, Pozuelo de Alarcón, 28223 Madrid, Spain
| | - Márcia Ventura
- LAQV/REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| | - Ines Matos
- LAQV/REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| |
Collapse
|
72
|
Li X, Lin S, Yan T, Wang Z, Cai Q, Zhao J. Machine-learning-accelerated screening of single metal atoms anchored on MnPS 3 monolayers as promising bifunctional oxygen electrocatalysts. NANOSCALE 2023. [PMID: 37377102 DOI: 10.1039/d3nr02130k] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/29/2023]
Abstract
Searching for bifunctional oxygen electrocatalysts with good catalytic performance to promote the oxygen evolution/reduction reactions (OER/ORR) is of great significance to the development of sustainable and renewable clean energy. Herein, we performed density functional theory (DFT) and machine-learning (DFT-ML) hybrid computations to investigate the potential of a series of single transition metal atoms anchored on the experimentally available MnPS3 monolayer (TM/MnPS3) as the bifunctional electrocatalysts for the ORR/OER. The results revealed that the interactions of these metal atoms with MnPS3 are rather strong, thus guaranteeing their high stability for practical applications. Remarkably, the highly efficient ORR/OER can be achieved on Rh/MnPS3 and Ni/MnPS3 with lower overpotentials than those of metal benchmarks, which can be further rationalized by establishing the volcano and contour plots. Furthermore, the ML results showed that the bond length of TM atoms with the adsorbed O species (dTM-O), the number of d electrons (Ne), the d-center (εd), the radius (rTM) and the first ionization energy (Im) of the TM atoms are the primary descriptors featuring the adsorption behavior. Our findings not only suggest novel highly efficient bifunctional oxygen electrocatalysts, but also provide cost-effective opportunities for the design of single-atom catalysts using the DFT-ML hybrid method.
Collapse
Affiliation(s)
- Xinyi Li
- College of Chemistry and Chemical Engineering, and Key Laboratory of Photonic and Electronic Bandgap Materials, Ministry of Education, Harbin Normal University, Harbin, 150025, China.
- State Key Laboratory of Automotive Simulation and Control, School of Materials Science and Engineering, Key Laboratory of Automobile Materials of MOE, Jilin University, Changchun 130012, China
| | - Shiru Lin
- Division of Chemistry and Biochemistry, Texas Woman's University, Denton, Texas 76204, USA.
| | - Tingyu Yan
- College of Chemistry and Chemical Engineering, and Key Laboratory of Photonic and Electronic Bandgap Materials, Ministry of Education, Harbin Normal University, Harbin, 150025, China.
| | - Zhongxu Wang
- College of Chemistry and Chemical Engineering, and Key Laboratory of Photonic and Electronic Bandgap Materials, Ministry of Education, Harbin Normal University, Harbin, 150025, China.
| | - Qinghai Cai
- College of Chemistry and Chemical Engineering, and Key Laboratory of Photonic and Electronic Bandgap Materials, Ministry of Education, Harbin Normal University, Harbin, 150025, China.
- Heilongjiang Province Collaborative Innovation Center of Cold Region Ecological Safety, Harbin 150025, China
| | - Jingxiang Zhao
- College of Chemistry and Chemical Engineering, and Key Laboratory of Photonic and Electronic Bandgap Materials, Ministry of Education, Harbin Normal University, Harbin, 150025, China.
| |
Collapse
|
73
|
Smith PT, Ye Z, Pietryga J, Huang J, Wahl CB, Hedlund Orbeck JK, Mirkin CA. Molecular Thin Films Enable the Synthesis and Screening of Nanoparticle Megalibraries Containing Millions of Catalysts. J Am Chem Soc 2023. [PMID: 37311072 DOI: 10.1021/jacs.3c03910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Megalibraries are centimeter-scale chips containing millions of materials synthesized in parallel using scanning probe lithography. As such, they stand to accelerate how materials are discovered for applications spanning catalysis, optics, and more. However, a long-standing challenge is the availability of substrates compatible with megalibrary synthesis, which limits the structural and functional design space that can be explored. To address this challenge, thermally removable polystyrene films were developed as universal substrate coatings that decouple lithography-enabled nanoparticle synthesis from the underlying substrate chemistry, thus providing consistent lithography parameters on diverse substrates. Multi-spray inking of the scanning probe arrays with polymer solutions containing metal salts allows patterning of >56 million nanoreactors designed to vary in composition and size. These are subsequently converted to inorganic nanoparticles via reductive thermal annealing, which also removes the polystyrene to deposit the megalibrary. Megalibraries with mono-, bi-, and trimetallic materials were synthesized, and nanoparticle size was controlled between 5 and 35 nm by modulating the lithography speed. Importantly, the polystyrene coating can be used on conventional substrates like Si/SiOx, as well as substrates typically more difficult to pattern on, such as glassy carbon, diamond, TiO2, BN, W, or SiC. Finally, high-throughput materials discovery is performed in the context of photocatalytic degradation of organic pollutants using Au-Pd-Cu nanoparticle megalibraries on TiO2 substrates with 2,250,000 unique composition/size combinations. The megalibrary was screened within 1 h by developing fluorescent thin-film coatings on top of the megalibrary as proxies for catalytic turnover, revealing Au0.53Pd0.38Cu0.09-TiO2 as the most active photocatalyst composition.
Collapse
Affiliation(s)
- Peter T Smith
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
- International Institute for Nanotechnology, Evanston, Illinois 60208, United States
| | - Zihao Ye
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
- International Institute for Nanotechnology, Evanston, Illinois 60208, United States
| | - Jacob Pietryga
- International Institute for Nanotechnology, Evanston, Illinois 60208, United States
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Jin Huang
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
- International Institute for Nanotechnology, Evanston, Illinois 60208, United States
| | - Carolin B Wahl
- International Institute for Nanotechnology, Evanston, Illinois 60208, United States
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Jenny K Hedlund Orbeck
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
- International Institute for Nanotechnology, Evanston, Illinois 60208, United States
| | - Chad A Mirkin
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
- International Institute for Nanotechnology, Evanston, Illinois 60208, United States
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
74
|
Stonkus O, Kibis L, Slavinskaya E, Zadesenets A, Garkul I, Kardash T, Stadnichenko A, Korenev S, Podyacheva O, Boronin A. Pd-Ceria/CNMs Composites as Catalysts for CO and CH 4 Oxidation. MATERIALS (BASEL, SWITZERLAND) 2023; 16:4257. [PMID: 37374441 DOI: 10.3390/ma16124257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/01/2023] [Accepted: 06/02/2023] [Indexed: 06/29/2023]
Abstract
The application of composite materials as catalysts for the oxidation of CO and other toxic compounds is a promising approach for air purification. In this work, the composites comprising palladium and ceria components supported on multiwall carbon nanotubes, carbon nanofibers and Sibunit were studied in the reactions of CO and CH4 oxidation. The instrumental methods showed that the defective sites of carbon nanomaterials (CNMs) successfully stabilize the deposited components in a highly-dispersed state: PdO and CeO2 nanoparticles, subnanosized PdOx and PdxCe1-xO2-δ clusters with an amorphous structure, as well as single Pd and Ce atoms, are formed. It was shown that the reactant activation process occurs on palladium species with the participation of oxygen from the ceria lattice. The presence of interblock contacts between PdO and CeO2 nanoparticles has an important effect on oxygen transfer, which consequently affects the catalytic activity. The morphological features of the CNMs, as well as the defect structure, have a strong influence on the particle size and mutual stabilization of the deposited PdO and CeO2 components. The optimal combination of highly dispersed PdOx and PdxCe1-xO2-δ species, as well as PdO nanoparticles in the CNTs-based catalyst, makes it highly effective in both studied oxidation reactions.
Collapse
Affiliation(s)
- Olga Stonkus
- Boreskov Institute of Catalysis, Pr. Lavrentieva 5, 630090 Novosibirsk, Russia
| | - Lidiya Kibis
- Boreskov Institute of Catalysis, Pr. Lavrentieva 5, 630090 Novosibirsk, Russia
| | - Elena Slavinskaya
- Boreskov Institute of Catalysis, Pr. Lavrentieva 5, 630090 Novosibirsk, Russia
| | - Andrey Zadesenets
- Nikolaev Institute of Inorganic Chemistry, Pr. Lavrentieva 3, 630090 Novosibirsk, Russia
| | - Ilia Garkul
- Nikolaev Institute of Inorganic Chemistry, Pr. Lavrentieva 3, 630090 Novosibirsk, Russia
| | - Tatyana Kardash
- Boreskov Institute of Catalysis, Pr. Lavrentieva 5, 630090 Novosibirsk, Russia
| | - Andrey Stadnichenko
- Boreskov Institute of Catalysis, Pr. Lavrentieva 5, 630090 Novosibirsk, Russia
| | - Sergey Korenev
- Nikolaev Institute of Inorganic Chemistry, Pr. Lavrentieva 3, 630090 Novosibirsk, Russia
| | - Olga Podyacheva
- Boreskov Institute of Catalysis, Pr. Lavrentieva 5, 630090 Novosibirsk, Russia
| | - Andrei Boronin
- Boreskov Institute of Catalysis, Pr. Lavrentieva 5, 630090 Novosibirsk, Russia
| |
Collapse
|
75
|
Bates JS, Johnson MR, Khamespanah F, Root TW, Stahl SS. Heterogeneous M-N-C Catalysts for Aerobic Oxidation Reactions: Lessons from Oxygen Reduction Electrocatalysts. Chem Rev 2023; 123:6233-6256. [PMID: 36198176 PMCID: PMC10073352 DOI: 10.1021/acs.chemrev.2c00424] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Nonprecious metal heterogeneous catalysts composed of first-row transition metals incorporated into nitrogen-doped carbon matrices (M-N-Cs) have been studied for decades as leading alternatives to Pt for the electrocatalytic O2 reduction reaction (ORR). More recently, similar M-N-C catalysts have been shown to catalyze the aerobic oxidation of organic molecules. This Focus Review highlights mechanistic similarities and distinctions between these two reaction classes and then surveys the aerobic oxidation reactions catalyzed by M-N-Cs. As the active-site structures and kinetic properties of M-N-C aerobic oxidation catalysts have not been extensively studied, the array of tools and methods used to characterize ORR catalysts are presented with the goal of supporting further advances in the field of aerobic oxidation.
Collapse
Affiliation(s)
- Jason S. Bates
- Department of Chemistry, University of Wisconsin–Madison, Madison, WI 53706, USA
| | - Mathew R. Johnson
- Department of Chemistry, University of Wisconsin–Madison, Madison, WI 53706, USA
| | - Fatemeh Khamespanah
- Department of Chemistry, University of Wisconsin–Madison, Madison, WI 53706, USA
| | - Thatcher W. Root
- Department of Chemical and Biological Engineering, University of Wisconsin–Madison, Madison, WI 53706, USA
| | - Shannon S. Stahl
- Department of Chemistry, University of Wisconsin–Madison, Madison, WI 53706, USA
| |
Collapse
|
76
|
Zhao Y, Jiang Y, Mo Y, Zhai Y, Liu J, Strzelecki AC, Guo X, Shan C. Boosting Electrochemical Catalysis and Nonenzymatic Sensing Toward Glucose by Single-Atom Pt Supported on Cu@CuO Core-Shell Nanowires. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2207240. [PMID: 36703531 DOI: 10.1002/smll.202207240] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 01/15/2023] [Indexed: 05/04/2023]
Abstract
It is critical to develop high-performance electrocatalyst for electrochemical nonenzymatic glucose sensing. In this work, a single-atom Pt supported on Cu@CuO core-shell nanowires (Pt1 /Cu@CuO NWs) for electrochemical nonenzymatic glucose sensor is designed. Pt1 /Cu@CuO NWs exhibit excellent electrocatalytic oxidation toward glucose with 70 mV lower onset potential (0.131 V) and 2.4 times higher response current than Cu NWs. Sensors fabricated using Pt1 /Cu@CuO NWs also show high sensitivity (852.163 µA mM-1 cm-2 ), low detection limit (3.6 µM), wide linear range (0.01-5.18 µM), excellent selectivity, and great long-term stability. The outstanding sensing performance of Pt1 /Cu@CuO NWs, investigated by experiments and density functional theory (DFT) calculations, is attributed to the synergistic effect between Pt single atoms and Cu@CuO core-shell nanowires that generates strong binding energy of glucose on the nanowires. The work provides a new pathway for exploring highly active SACs for electrochemical nonenzymatic glucose sensor.
Collapse
Affiliation(s)
- Yuanmeng Zhao
- Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan, 430062, P. R. China
| | - Yunhao Jiang
- Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan, 430062, P. R. China
| | - Yan Mo
- Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan, 430062, P. R. China
| | - Yueming Zhai
- The Institute for Advanced Studies (IAS), Wuhan University, Wuhan, 430072, P. R. China
| | - Juejing Liu
- Department of Chemistry and Material Science and Engineering Program, Washington State University, Pullman, WA, 99164, USA
| | - Andrew C Strzelecki
- Department of Chemistry and Material Science and Engineering Program, Washington State University, Pullman, WA, 99164, USA
| | - Xiaofeng Guo
- Department of Chemistry and Material Science and Engineering Program, Washington State University, Pullman, WA, 99164, USA
| | - Changsheng Shan
- Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan, 430062, P. R. China
| |
Collapse
|
77
|
Dynamics of palladium single-atoms on graphitic carbon nitride during ethylene hydrogenation. J Catal 2023. [DOI: 10.1016/j.jcat.2023.03.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
|
78
|
Yan H, Lai C, Liu S, Wang D, Zhou X, Zhang M, Li L, Li X, Xu F, Nie J. Metal-carbon hybrid materials induced persulfate activation: Application, mechanism, and tunable reaction pathways. WATER RESEARCH 2023; 234:119808. [PMID: 36889085 DOI: 10.1016/j.watres.2023.119808] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 02/07/2023] [Accepted: 02/24/2023] [Indexed: 06/18/2023]
Abstract
Proper wastewater treatment has always been the focus of human society, and many researchers have been working to find efficient and stable wastewater treatment technologies. Persulfate-based advanced oxidation processes (PS-AOPs) mainly rely on persulfate activation to form reactive species for pollutants degradation and are considered to be one of the most effective wastewater treatment technologies. Recently, metal-carbon hybrid materials have been diffusely used for PS activation because of their high stability, abundant active sites, and easy applicability. Metal-carbon hybrid materials can successfully overcome the shortcomings of onefold metal catalysts and carbon catalysts by combing the complementary advantages of the two components. This article reviews recent studies about metal-carbon hybrid materials-mediated PS-AOPs for wastewater decontamination. The interactions of metal and carbon materials, as well as the active sites of metal-carbon hybrid materials, are introduced first. Then, the application and mechanism of metal-carbon hybrid materials-mediated PS activation are presented in detail. Lastly, the modulation methods of metal-carbon hybrid materials and their tunable reaction pathways were discussed. The prospect of future development directions and challenges is proposed to facilitate metal-carbon hybrid materials-mediated PS-AOPs to take a step further for practical application.
Collapse
Affiliation(s)
- Huchuan Yan
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, 410082, China
| | - Cui Lai
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, 410082, China.
| | - Shiyu Liu
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, 410082, China
| | - Dongbo Wang
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, 410082, China.
| | - Xuerong Zhou
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, 410082, China
| | - Mingming Zhang
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, 410082, China
| | - Ling Li
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, 410082, China
| | - Xiaopei Li
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, 410082, China
| | - Fuhang Xu
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, 410082, China
| | - Jinxin Nie
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, 410082, China
| |
Collapse
|
79
|
Wang S, Wang M, Zhang Y, Wang H, Fei H, Liu R, Kong H, Gao R, Zhao S, Liu T, Wang Y, Ni M, Ciucci F, Wang J. Metal Oxide-Supported Metal Catalysts for Electrocatalytic Oxygen Reduction Reaction: Characterization Methods, Modulation Strategies, and Recent Progress. SMALL METHODS 2023:e2201714. [PMID: 37029582 DOI: 10.1002/smtd.202201714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/25/2023] [Indexed: 06/19/2023]
Abstract
The sluggish kinetics of the oxygen reduction reaction (ORR) with complex multielectron transfer steps significantly limits the large-scale application of electrochemical energy devices, including metal-air batteries and fuel cells. Recent years witnessed the development of metal oxide-supported metal catalysts (MOSMCs), covering single atoms, clusters, and nanoparticles. As alternatives to conventional carbon-dispersed metal catalysts, MOSMCs are gaining increasing interest due to their unique electronic configuration and potentially high corrosion resistance. By engineering the metal oxide substrate, supported metal, and their interactions, MOSMCs can be facilely modulated. Significant progress has been made in advancing MOSMCs for ORR, and their further development warrants advanced characterization methods to better understand MOSMCs and precise modulation strategies to boost their functionalities. In this regard, a comprehensive review of MOSMCs for ORR is still lacking despite this fast-developing field. To eliminate this gap, advanced characterization methods are introduced for clarifying MOSMCs experimentally and theoretically, discuss critical methods of boosting their intrinsic activities and number of active sites, and systematically overview the status of MOSMCs based on different metal oxide substrates for ORR. By conveying methods, research status, critical challenges, and perspectives, this review will rationally promote the design of MOSMCs for electrochemical energy devices.
Collapse
Affiliation(s)
- Siyuan Wang
- School of Energy and Environment, City University of Hong Kong, Kowloon, Hong Kong SAR, 999077, P. R. China
| | - Miao Wang
- School of Energy and Environment, City University of Hong Kong, Kowloon, Hong Kong SAR, 999077, P. R. China
| | - Yunze Zhang
- School of Energy and Environment, City University of Hong Kong, Kowloon, Hong Kong SAR, 999077, P. R. China
| | - Hongsheng Wang
- School of Energy and Environment, City University of Hong Kong, Kowloon, Hong Kong SAR, 999077, P. R. China
| | - Hao Fei
- School of Energy and Environment, City University of Hong Kong, Kowloon, Hong Kong SAR, 999077, P. R. China
- School of Materials Science and Engineering, Central South University, Changsha, 410083, P. R. China
| | - Ruoqi Liu
- School of Energy and Environment, City University of Hong Kong, Kowloon, Hong Kong SAR, 999077, P. R. China
- School of Materials Science and Engineering, Central South University, Changsha, 410083, P. R. China
| | - Hui Kong
- School of Mechanical Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Ruijie Gao
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, China University of Geosciences, Wuhan, 430074, P. R. China
| | - Siyuan Zhao
- Department of Building and Real Estate, Research Institute for Sustainable Urban Development (RISUD) & Research Institute for Smart Energy (RISE), The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, 999077, P. R. China
| | - Tong Liu
- Department of Building and Real Estate, Research Institute for Sustainable Urban Development (RISUD) & Research Institute for Smart Energy (RISE), The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, 999077, P. R. China
| | - Yuhao Wang
- Department of Mechanical and Aerospace Engineering, HKUST, New Territories, Hong Kong SAR, 999077, P. R. China
| | - Meng Ni
- Department of Building and Real Estate, Research Institute for Sustainable Urban Development (RISUD) & Research Institute for Smart Energy (RISE), The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, 999077, P. R. China
| | - Francesco Ciucci
- Department of Mechanical and Aerospace Engineering, HKUST, New Territories, Hong Kong SAR, 999077, P. R. China
- HKUST Shenzhen-Hong Kong Collaborative Innovation Research Institute, Futian, Shenzhen, 518048, P. R. China
| | - Jian Wang
- School of Energy and Environment, City University of Hong Kong, Kowloon, Hong Kong SAR, 999077, P. R. China
| |
Collapse
|
80
|
Lyu Z, Ding S, Fang L, Li X, Li T, Xu M, Pan X, Zhu W, Zhou Y, Du D, Lin Y. Two-Dimensional Fe-N-C Single-Atomic-Site Catalysts with Boosted Peroxidase-Like Activity for a Sensitive Immunoassay. Anal Chem 2023; 95:4521-4528. [PMID: 36843270 DOI: 10.1021/acs.analchem.2c05633] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2023]
Abstract
Single-atomic-site catalysts (SASCs) with peroxidase (POD)-like activities have been widely used in various sensing platforms, like the enzyme-linked immunosorbent assay (ELISA). Herein, a two-dimensional Fe-N-C-based SASC (2D Fe-SASC) is successfully synthesized with excellent POD-like activity (specific activity = 90.11 U/mg) and is used to design the ELISA for herbicide detection. The 2D structure of Fe-SASC enables the exposure of numerous single atomic active sites on the surface as well as boosts the POD-like activity, thereby enhancing the sensing performance. 2D Fe-SASC is assembled into competitive ELISA kit, which achieves an excellent detection performance for 2,4-dichlorophenoxyacetic acid (2,4-D). Fe-SASC has great potential in replacing high-cost natural enzymes and working on various advanced sensing platforms with high sensitivity for the detection of various target biomarkers.
Collapse
Affiliation(s)
- Zhaoyuan Lyu
- School of Mechanical and Materials Engineering, Washington State University, Pullman, Washington 99164, United States
| | - Shichao Ding
- School of Mechanical and Materials Engineering, Washington State University, Pullman, Washington 99164, United States
| | - Lingzhe Fang
- Department of Chemistry and Biochemistry, Northern Illinois University, DeKalb, Illinois 60115, United States
| | - Xin Li
- School of Mechanical and Materials Engineering, Washington State University, Pullman, Washington 99164, United States
| | - Tao Li
- Department of Chemistry and Biochemistry, Northern Illinois University, DeKalb, Illinois 60115, United States.,X-ray Science Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Mingjie Xu
- Irvine Materials Research Institute (IMRI), University of California, Irvine, California 92697, United States
| | - Xiaoqing Pan
- Irvine Materials Research Institute (IMRI), University of California, Irvine, California 92697, United States
| | - Wenlei Zhu
- School of Mechanical and Materials Engineering, Washington State University, Pullman, Washington 99164, United States
| | - Yang Zhou
- School of Mechanical and Materials Engineering, Washington State University, Pullman, Washington 99164, United States
| | - Dan Du
- DL ADV-Tech, Pullman, Washington 99163, United States
| | - Yuehe Lin
- School of Mechanical and Materials Engineering, Washington State University, Pullman, Washington 99164, United States
| |
Collapse
|
81
|
Yang D, Hu Y, Hong P, Shen G, Li Y, He J, Zhang K, Wu Z, Xie C, Liu J, Kong L. Preassembly strategy to anchor single atoms on carbon nitride layers achieving versatile Fenton-like catalysis. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2022.122955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
82
|
Functional carbon-supported nanocatalysts for biomass conversion. MOLECULAR CATALYSIS 2023. [DOI: 10.1016/j.mcat.2023.113003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
|
83
|
Huang Y, Hu Z, Huang LA, Wang Z, Lin Z, Shen S, Zhong W, Pan J. Phosphorus-modified cobalt single-atom catalysts loaded on crosslinked carbon nanosheets for efficient alkaline hydrogen evolution reaction. NANOSCALE 2023; 15:3550-3559. [PMID: 36723134 DOI: 10.1039/d2nr07066a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Efficient and low-cost transition metal single-atom catalysts (TMSACs) for hydrogen evolution reaction (HER) have been recognized as research hotspots recently with advances in delivering good catalytic activity without noble metals. However, the high-cost complex preparation of TMSACs and insufficient stability limited their practical applications. Herein, a simple top-down pyrolysis approach to obtain P-modified Co SACs loaded on the crosslinked defect-rich carbon nanosheets was introduced for alkaline hydrogen evolution, where Co atoms are locally confined before pyrolysis to prevent aggregation. Thereby, the abundant defects and the unsaturated coordination formed during the pyrolysis significantly improved the stability of the monatomic structure and reduced the reaction barrier. Furthermore, the synergy between cobalt atoms and phosphorus atoms was established to optimize the decomposition process of water molecules, which delivers the key to promoting the slow reaction kinetics of alkaline HER. As the result, the cobalt SAC exhibited excellent catalytic activity and stability for alkaline HER, with overpotentials of 70 mV and 192 mV at current densities of -10 mA cm-2 and -100 mA cm-2, respectively.
Collapse
Affiliation(s)
- Yucong Huang
- School of Materials Science and Engineering, Taizhou University, 318000, Zhejiang, China.
- Key Laboratory of Optical Field Manipulation of Zhejiang Province, and Key Laboratory of ATMMT Ministry of Education, Department of Physics, Zhejiang Sci-Tech University, 310000, Zhejiang, China.
| | - Zhiyun Hu
- School of Materials Science and Engineering, Taizhou University, 318000, Zhejiang, China.
| | - Liang-Ai Huang
- School of Materials Science and Engineering, Taizhou University, 318000, Zhejiang, China.
| | - Zongpeng Wang
- School of Materials Science and Engineering, Taizhou University, 318000, Zhejiang, China.
| | - Zhiping Lin
- School of Materials Science and Engineering, Taizhou University, 318000, Zhejiang, China.
| | - Shijie Shen
- School of Materials Science and Engineering, Taizhou University, 318000, Zhejiang, China.
| | - Wenwu Zhong
- School of Materials Science and Engineering, Taizhou University, 318000, Zhejiang, China.
| | - Jiaqi Pan
- Key Laboratory of Optical Field Manipulation of Zhejiang Province, and Key Laboratory of ATMMT Ministry of Education, Department of Physics, Zhejiang Sci-Tech University, 310000, Zhejiang, China.
| |
Collapse
|
84
|
Liu H, Liu C, Zong X, Wang Y, Hu Z, Zhang Z. Role of the Support Effects in Single-Atom Catalysts. Chem Asian J 2023; 18:e202201161. [PMID: 36635222 DOI: 10.1002/asia.202201161] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 01/10/2023] [Accepted: 01/12/2023] [Indexed: 01/14/2023]
Abstract
In recent years, single-atom catalysts (SACs) have received a significant amount of attention due to their high atomic utilization, low cost, high reaction activity, and selectivity for multiple catalytic reactions. Unfortunately, the high surface free energy of single atoms leads them easily migrated and aggregated. Therefore, support materials play an important role in the preparation and catalytic performance of SACs. Aiming at understanding the relationship between support materials and the catalytic performance of SACs, the support effects in SACs are introduced and reviewed herein. Moreover, special emphasis is placed on exploring the influence of the type and structure of supports on SAC catalytic performance through advanced characterization and theoretical research. Future research directions for support materials are also proposed, providing some insight into the design of SACs with high efficiency and high loading.
Collapse
Affiliation(s)
- Huimin Liu
- Key Laboratory for Functional Material, School of Chemical Engineering, University of Science and Technology Liaoning, 185 Qianshan Zhong Road, Anshan, 114051, P. R. China
| | - Chang Liu
- Key Laboratory for Functional Material, School of Chemical Engineering, University of Science and Technology Liaoning, 185 Qianshan Zhong Road, Anshan, 114051, P. R. China
| | - Xing Zong
- School of Materials and Metallurgy, University of Science and Technology Liaoning Anshan, Liaoning, 114051, P. R. China
| | - Yongfei Wang
- Key Laboratory for Functional Material, School of Chemical Engineering, University of Science and Technology Liaoning, 185 Qianshan Zhong Road, Anshan, 114051, P. R. China.,School of Materials and Metallurgy, University of Science and Technology Liaoning Anshan, Liaoning, 114051, P. R. China
| | - Zhizhi Hu
- Key Laboratory for Functional Material, School of Chemical Engineering, University of Science and Technology Liaoning, 185 Qianshan Zhong Road, Anshan, 114051, P. R. China
| | - Zhiqiang Zhang
- Key Laboratory for Functional Material, School of Chemical Engineering, University of Science and Technology Liaoning, 185 Qianshan Zhong Road, Anshan, 114051, P. R. China
| |
Collapse
|
85
|
Denisov N, Qin S, Will J, Vasiljevic BN, Skorodumova NV, Pašti IA, Sarma BB, Osuagwu B, Yokosawa T, Voss J, Wirth J, Spiecker E, Schmuki P. Light-Induced Agglomeration of Single-Atom Platinum in Photocatalysis. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2206569. [PMID: 36373557 DOI: 10.1002/adma.202206569] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 10/28/2022] [Indexed: 06/16/2023]
Abstract
With recent advances in the field of single-atoms (SAs) used in photocatalysis, an unprecedented performance of atomically dispersed co-catalysts has been achieved. However, the stability and agglomeration of SA co-catalysts on the semiconductor surface may represent a critical issue in potential applications. Here, the photoinduced destabilization of Pt SAs on the benchmark photocatalyst, TiO2 , is described. In aqueous solutions within illumination timescales ranging from few minutes to several hours, light-induced agglomeration of Pt SAs to ensembles (dimers, multimers) and finally nanoparticles takes place. The kinetics critically depends on the presence of sacrificial hole scavengers and the used light intensity. Density-functional theory calculations attribute the light induced destabilization of the SA Pt species to binding of surface-coordinated Pt with solution-hydrogen (adsorbed H atoms), which consequently weakens the Pt SA bonding to the TiO2 surface. Despite the gradual aggregation of Pt SAs into surface clusters and their overall reduction to metallic state, which involves >90% of Pt SAs, the overall photocatalytic H2 evolution remains virtually unaffected.
Collapse
Affiliation(s)
- Nikita Denisov
- Department of Materials Science and Engineering, Chair for Surface Science and Corrosion (WW4-LKO), Friedrich-Alexander-Universität Erlangen-Nürnberg, Martensstrasse 7, 91058, Erlangen, Germany
| | - Shanshan Qin
- Department of Materials Science and Engineering, Chair for Surface Science and Corrosion (WW4-LKO), Friedrich-Alexander-Universität Erlangen-Nürnberg, Martensstrasse 7, 91058, Erlangen, Germany
| | - Johannes Will
- Institute of Micro- and Nanostructure Research & Center for Nanoanalysis and Electron Microscopy (CENEM), IZNF, Friedrich-Alexander-Universität Erlangen-Nürnberg, Cauerstraße 3, 91058, Erlangen, Germany
| | - Bojana Nedić Vasiljevic
- Faculty of Physical Chemistry, University of Belgrade, Studentski trg 12-16, Belgrade, 11000, Serbia
| | - Natalia V Skorodumova
- Department of Materials Science and Engineering, School of Industrial Engineering and Management, KTH-Royal Institute of Technology, Brinellvägen 23, Stockholm, 10044, Sweden
| | - Igor A Pašti
- Faculty of Physical Chemistry, University of Belgrade, Studentski trg 12-16, Belgrade, 11000, Serbia
- Department of Materials Science and Engineering, School of Industrial Engineering and Management, KTH-Royal Institute of Technology, Brinellvägen 23, Stockholm, 10044, Sweden
| | - Bidyut Bikash Sarma
- Institute of Catalysis Research and Technology and Institute for Chemical Technology and Polymer Chemistry, Karlsruhe Institute of Technology, 76131, Karlsruhe, Germany
| | - Benedict Osuagwu
- Department of Materials Science and Engineering, Chair for Surface Science and Corrosion (WW4-LKO), Friedrich-Alexander-Universität Erlangen-Nürnberg, Martensstrasse 7, 91058, Erlangen, Germany
| | - Tadahiro Yokosawa
- Institute of Micro- and Nanostructure Research & Center for Nanoanalysis and Electron Microscopy (CENEM), IZNF, Friedrich-Alexander-Universität Erlangen-Nürnberg, Cauerstraße 3, 91058, Erlangen, Germany
| | - Johannes Voss
- Institute of Micro- and Nanostructure Research & Center for Nanoanalysis and Electron Microscopy (CENEM), IZNF, Friedrich-Alexander-Universität Erlangen-Nürnberg, Cauerstraße 3, 91058, Erlangen, Germany
| | - Janis Wirth
- Institute of Micro- and Nanostructure Research & Center for Nanoanalysis and Electron Microscopy (CENEM), IZNF, Friedrich-Alexander-Universität Erlangen-Nürnberg, Cauerstraße 3, 91058, Erlangen, Germany
| | - Erdmann Spiecker
- Institute of Micro- and Nanostructure Research & Center for Nanoanalysis and Electron Microscopy (CENEM), IZNF, Friedrich-Alexander-Universität Erlangen-Nürnberg, Cauerstraße 3, 91058, Erlangen, Germany
| | - Patrik Schmuki
- Department of Materials Science and Engineering, Chair for Surface Science and Corrosion (WW4-LKO), Friedrich-Alexander-Universität Erlangen-Nürnberg, Martensstrasse 7, 91058, Erlangen, Germany
- Regional Centre of Advanced Technologies and Materials, Šlechtitelů 27, Olomouc, 78371, Czech Republic
- Department of Chemistry, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah, 21569, Saudi Arabia
| |
Collapse
|
86
|
Fu X, Zhao X, Lu TB, Yuan M, Wang M. Graphdiyne-Based Single-Atom Catalysts with Different Coordination Environments. Angew Chem Int Ed Engl 2023; 62:e202219242. [PMID: 36723492 DOI: 10.1002/anie.202219242] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/31/2023] [Accepted: 02/01/2023] [Indexed: 02/02/2023]
Abstract
As a special carbon material, graphdiyne (GDY) features the superiorities of incomplete charge transfer effect on the atomic level, tunable electronic structure and anchoring metal atoms directly with organometallic coordination bonds M (metal)-C (alkynyl carbon in GDY), providing it an ideal platform to construct single-atom catalysts (ACs). The coordination environment of single atoms anchored on GDY plays a key role in their catalytic performance. The mini-review highlights state-of-the-art progress in the rational design of GDY-based ACs and their applications, and mainly reveals the relationship between the coordination engineering of the GDY-based ACs and corresponding catalytic performance. Finally, some prospects concerning the future development of GDY-based ACs in energy conversion are also discussed.
Collapse
Affiliation(s)
- Xinliang Fu
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Center (RECAST), College of Chemistry, Nankai University, No. 94 Weijin Road, Nankai District, Tianjin, 300071, P. R. China
| | - Xin Zhao
- School of Materials Science and Engineering, Institute for New Energy Materials & Low Carbon Technologies, Tianjin University of Technology, No. 391 Bin Shui Xi Dao Road, Xiqing District, Tianjin, 300384, P. R. China
| | - Tong-Bu Lu
- School of Materials Science and Engineering, Institute for New Energy Materials & Low Carbon Technologies, Tianjin University of Technology, No. 391 Bin Shui Xi Dao Road, Xiqing District, Tianjin, 300384, P. R. China
| | - Mingjian Yuan
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Center (RECAST), College of Chemistry, Nankai University, No. 94 Weijin Road, Nankai District, Tianjin, 300071, P. R. China
| | - Mei Wang
- School of Materials Science and Engineering, Institute for New Energy Materials & Low Carbon Technologies, Tianjin University of Technology, No. 391 Bin Shui Xi Dao Road, Xiqing District, Tianjin, 300384, P. R. China
| |
Collapse
|
87
|
Xue W, Li J, Huang H, Zhang W, Mei D. Theoretical Screening of CO 2 Electroreduction over MOF-808-Supported Self-Adaptive Dual-Metal-Site Pairs. Inorg Chem 2023; 62:930-941. [PMID: 36607142 DOI: 10.1021/acs.inorgchem.2c03734] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Electrochemical CO2 reduction to transportation fuels and valuable platform chemicals provides a sustainable avenue for renewable energy storage and realizes an artificially closed carbon loop. However, the rational design of highly active and selective CO2 reduction electrocatalysts remains a challenging task. Herein, a series of metal-organic framework (MOF)-supported flexible, self-adaptive dual-metal-site pairs (DMSPs) including 21 pairwise combinations of six transition metal single sites (MOF-808-EDTA-M1M2, M1/M2 = Fe, Cu, Ni, Pd, Pt, Au) for the CO2 reduction reaction (CO2RR) were theoretically screened using density functional theory calculations. Against the competitive hydrogen evolution reaction, MOF-808-EDTA-FeFe and MOF-808-EDTA-FePt were identified as the promising CO2RR electrocatalysts toward C1 and C2 products. The calculated limiting potential for CO2 electroreduction to C2H6 and C2H5OH over MOF-808-EDTA-FeFe is -0.87 V. Compared with an applied potential of -0.56 eV toward CH4 production over MOF-808-EDTA-FeFe, MOF-808-EDTA-FePt exhibits an even better activity for CO2 reduction to C1 products at a limiting potential of -0.35 V. The present work not only identifies promising candidates for highly selective CO2RR electrocatalysts leading to C1 and C2 products but also provides mechanistic insights into the dynamic nature of DMSPs for stabilizing various reaction intermediates in the CO2RR process.
Collapse
Affiliation(s)
- Wenjuan Xue
- School of Chemical Engineering and Technology, Tiangong University, Tianjin300387, China.,State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, Tianjin300387, China
| | - Jian Li
- School of Chemical Engineering and Technology, Tiangong University, Tianjin300387, China.,State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, Tianjin300387, China
| | - Hongliang Huang
- School of Chemical Engineering and Technology, Tiangong University, Tianjin300387, China.,State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, Tianjin300387, China
| | - Weiwei Zhang
- School of Chemical Engineering and Technology, Tiangong University, Tianjin300387, China.,State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, Tianjin300387, China
| | - Donghai Mei
- School of Chemical Engineering and Technology, Tiangong University, Tianjin300387, China.,School of Environmental Science and Engineering, Tiangong University, Tianjin300387, China.,State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, Tianjin300387, China
| |
Collapse
|
88
|
Sarma BB, Maurer F, Doronkin DE, Grunwaldt JD. Design of Single-Atom Catalysts and Tracking Their Fate Using Operando and Advanced X-ray Spectroscopic Tools. Chem Rev 2023; 123:379-444. [PMID: 36418229 PMCID: PMC9837826 DOI: 10.1021/acs.chemrev.2c00495] [Citation(s) in RCA: 56] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Indexed: 11/25/2022]
Abstract
The potential of operando X-ray techniques for following the structure, fate, and active site of single-atom catalysts (SACs) is highlighted with emphasis on a synergetic approach of both topics. X-ray absorption spectroscopy (XAS) and related X-ray techniques have become fascinating tools to characterize solids and they can be applied to almost all the transition metals deriving information about the symmetry, oxidation state, local coordination, and many more structural and electronic properties. SACs, a newly coined concept, recently gained much attention in the field of heterogeneous catalysis. In this way, one can achieve a minimum use of the metal, theoretically highest efficiency, and the design of only one active site-so-called single site catalysts. While single sites are not easy to characterize especially under operating conditions, XAS as local probe together with complementary methods (infrared spectroscopy, electron microscopy) is ideal in this research area to prove the structure of these sites and the dynamic changes during reaction. In this review, starting from their fundamentals, various techniques related to conventional XAS and X-ray photon in/out techniques applied to single sites are discussed with detailed mechanistic and in situ/operando studies. We systematically summarize the design strategies of SACs and outline their exploration with XAS supported by density functional theory (DFT) calculations and recent machine learning tools.
Collapse
Affiliation(s)
- Bidyut Bikash Sarma
- Institute
for Chemical Technology and Polymer Chemistry, Karlsruhe Institute of Technology, Engesserstraße 20, 76131 Karlsruhe, Germany
- Institute
of Catalysis Research and Technology, Karlsruhe
Institute of Technology, Hermann-von-Helmholtz Platz 1, Eggenstein-Leopoldshafen, 76344 Karlsruhe, Germany
| | - Florian Maurer
- Institute
for Chemical Technology and Polymer Chemistry, Karlsruhe Institute of Technology, Engesserstraße 20, 76131 Karlsruhe, Germany
| | - Dmitry E. Doronkin
- Institute
for Chemical Technology and Polymer Chemistry, Karlsruhe Institute of Technology, Engesserstraße 20, 76131 Karlsruhe, Germany
- Institute
of Catalysis Research and Technology, Karlsruhe
Institute of Technology, Hermann-von-Helmholtz Platz 1, Eggenstein-Leopoldshafen, 76344 Karlsruhe, Germany
| | - Jan-Dierk Grunwaldt
- Institute
for Chemical Technology and Polymer Chemistry, Karlsruhe Institute of Technology, Engesserstraße 20, 76131 Karlsruhe, Germany
- Institute
of Catalysis Research and Technology, Karlsruhe
Institute of Technology, Hermann-von-Helmholtz Platz 1, Eggenstein-Leopoldshafen, 76344 Karlsruhe, Germany
| |
Collapse
|
89
|
Zeng Y, Almatrafi E, Xia W, Song B, Xiong W, Cheng M, Wang Z, Liang Y, Zeng G, Zhou C. Nitrogen-doped carbon-based single-atom Fe catalysts: Synthesis, properties, and applications in advanced oxidation processes. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
90
|
Jing W, Shen H, Qin R, Wu Q, Liu K, Zheng N. Surface and Interface Coordination Chemistry Learned from Model Heterogeneous Metal Nanocatalysts: From Atomically Dispersed Catalysts to Atomically Precise Clusters. Chem Rev 2022; 123:5948-6002. [PMID: 36574336 DOI: 10.1021/acs.chemrev.2c00569] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The surface and interface coordination structures of heterogeneous metal catalysts are crucial to their catalytic performance. However, the complicated surface and interface structures of heterogeneous catalysts make it challenging to identify the molecular-level structure of their active sites and thus precisely control their performance. To address this challenge, atomically dispersed metal catalysts (ADMCs) and ligand-protected atomically precise metal clusters (APMCs) have been emerging as two important classes of model heterogeneous catalysts in recent years, helping to build bridge between homogeneous and heterogeneous catalysis. This review illustrates how the surface and interface coordination chemistry of these two types of model catalysts determines the catalytic performance from multiple dimensions. The section of ADMCs starts with the local coordination structure of metal sites at the metal-support interface, and then focuses on the effects of coordinating atoms, including their basicity and hardness/softness. Studies are also summarized to discuss the cooperativity achieved by dual metal sites and remote effects. In the section of APMCs, the roles of surface ligands and supports in determining the catalytic activity, selectivity, and stability of APMCs are illustrated. Finally, some personal perspectives on the further development of surface coordination and interface chemistry for model heterogeneous metal catalysts are presented.
Collapse
Affiliation(s)
- Wentong Jing
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, and National & Local Joint Engineering Research Center for Preparation Technology of Nanomaterials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Hui Shen
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, and National & Local Joint Engineering Research Center for Preparation Technology of Nanomaterials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Ruixuan Qin
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, and National & Local Joint Engineering Research Center for Preparation Technology of Nanomaterials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Qingyuan Wu
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, and National & Local Joint Engineering Research Center for Preparation Technology of Nanomaterials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen 361102, China
| | - Kunlong Liu
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, and National & Local Joint Engineering Research Center for Preparation Technology of Nanomaterials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Nanfeng Zheng
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, and National & Local Joint Engineering Research Center for Preparation Technology of Nanomaterials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen 361102, China
| |
Collapse
|
91
|
Průcha R, Hrubý V, Zaoralová D, Otyepková E, Šedajová V, Kolařík J, Zbořil R, Medved’ M, Otyepka M. Coordination effects on the binding of late 3d single metal species to cyanographene. Phys Chem Chem Phys 2022; 25:286-296. [PMID: 36475541 PMCID: PMC9913128 DOI: 10.1039/d2cp04076j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Anchoring single metal atoms on suitable substrates is a convenient route towards materials with unique electronic and magnetic properties exploitable in a wide range of applications including sensors, data storage, and single atom catalysis (SAC). Among a large portfolio of available substrates, carbon-based materials derived from graphene and its derivatives have received growing concern due to their high affinity to metals combined with biocompatibility, low toxicity, and accessibility. Cyanographene (GCN) as highly functionalized graphene containing homogeneously distributed nitrile groups perpendicular to the surface offers exceptionally favourable arrangement for anchoring metal atoms enabling efficient charge exchange between the metal and the substrate. However, the binding characteristics of metal species can be significantly affected by the coordination effects. Here we employed density functional theory (DFT) calculations to analyse the role of coordination in the binding of late 3d cations (Fe2+, Fe3+, Co2+, Ni2+, Cu2+, Cu+, and Zn2+) to GCN in aqueous solutions. The inspection of several plausible coordination types revealed the most favourable arrangements. Among the studied species, copper cations were found to be the most tightly bonded to GCN, which was also confirmed by the X-ray photoelectron spectroscopy (XPS), atomic absorption spectroscopy (AAS), and isothermal titration calorimetry (ITC) measurements. In general, the inclusion of coordination effects significantly reduced the binding affinities predicted by implicit solvation models. Clearly, to build-up reliable models of SAC architectures in the environments enabling the formation of a coordination sphere, such effects need to be properly taken into account.
Collapse
Affiliation(s)
- Róbert Průcha
- Department of Chemistry, Faculty of Natural Sciences, Matej Bel University, Tajovského 40, 974 01 Banská Bystrica, Slovak Republic.
| | - Vítězslav Hrubý
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute, Palacky University Olomouc, Křížkovského 511/8, 77900 Olomouc, Czech Republic. .,Department of Physical Chemistry, Faculty of Science, Palacký University Olomouc, 17. listopadu 12, 711 46 Olomouc, Czech Republic
| | - Dagmar Zaoralová
- IT4Innovations, VŠB—Technical University of Ostrava17. listopadu 2172/15708 00 Ostrava-PorubaCzech Republic
| | - Eva Otyepková
- Department of Physical Chemistry, Faculty of Science, Palacký University Olomouc17. listopadu 12711 46 OlomoucCzech Republic
| | - Veronika Šedajová
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute, Palacky University Olomouc, Křížkovského 511/8, 77900 Olomouc, Czech Republic. .,Department of Physical Chemistry, Faculty of Science, Palacký University Olomouc, 17. listopadu 12, 711 46 Olomouc, Czech Republic
| | - Jan Kolařík
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute, Palacky University Olomouc, Křížkovského 511/8, 77900 Olomouc, Czech Republic.
| | - Radek Zbořil
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute, Palacky University Olomouc, Křížkovského 511/8, 77900 Olomouc, Czech Republic. .,Nanotechnology Centre, VŠB - Technical University of Ostrava, 17. listopadu 2172/15, 708 00 Ostrava-Poruba, Czech Republic
| | - Miroslav Medved’
- Department of Chemistry, Faculty of Natural Sciences, Matej Bel UniversityTajovského 40974 01 Banská BystricaSlovak Republic,Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute, Palacky University OlomoucKřížkovského 511/877900 OlomoucCzech Republic
| | - Michal Otyepka
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute, Palacky University Olomouc, Křížkovského 511/8, 77900 Olomouc, Czech Republic. .,IT4Innovations, VŠB-Technical University of Ostrava, 17. listopadu 2172/15, 708 00 Ostrava-Poruba, Czech Republic
| |
Collapse
|
92
|
Interface Engineering of SRu-mC3N4 Heterostructures for Enhanced Electrochemical Hydrazine Oxidation Reactions. Catalysts 2022. [DOI: 10.3390/catal12121560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Hydrazine oxidation in single-atom catalysts (SACs) could exploit the efficiency of metal atom utilization, which is a substitution for noble metal-based electrolysers that results in reduced overall cost. A well-established ruthenium single atom over mesoporous carbon nitride (SRu-mC3N4) catalyst is explored for the electro-oxidation of hydrazine as one of the model reactions for direct fuel cell reactions. The electrochemical activity observed with linear sweep voltammetry (LSV) confirmed that SRu-mC3N4 shows an ultra-low onset potential of 0.88 V vs. RHE, and with a current density of 10 mA/cm2 the observed potential was 1.19 V vs. RHE, compared with mesoporous carbon nitride (mC3N4) (1.77 V vs. RHE). Electrochemical impedance spectroscopy (EIS) and chronoamperometry (i-t) studies on SRu-mC3N4 show a smaller charge-transfer resistance (RCt) of 2950 Ω and long-term potential, as well as current stability of 50 h and 20 mA/cm2, respectively. Herein, an efficient and enhanced activity toward HzOR was demonstrated on SRu-mC3N4 from its synergistic platform over highly porous C3N4, possessing large and independent active sites, and improving the subsequent large-scale reaction.
Collapse
|
93
|
Ding J, Yang H, Zhang S, Liu Q, Cao H, Luo J, Liu X. Advances in the Electrocatalytic Hydrogen Evolution Reaction by Metal Nanoclusters-based Materials. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2204524. [PMID: 36287086 DOI: 10.1002/smll.202204524] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 09/27/2022] [Indexed: 05/27/2023]
Abstract
With the development of renewable energy systems, clean hydrogen is burgeoning as an optimal alternative to fossil fuels, in which its application is promising to retarding the global energy and environmental crisis. The hydrogen evolution reaction (HER), capable of producing high-purity hydrogen rapidly in electrocatalytic water splitting, has received much attention. Abundant research about HER has been done, focusing on advanced electrocatalyst design with high efficiency and robust stability. As potential HER catalysts, metal nanoclusters (MNCs) have been studied extensively. They are composed of several to a hundred metal atoms, with sizes being comparable to the Fermi wavelength of electrons, that is, < 2.0 nm. Different from metal atoms/nanoparticles, they exhibit unique catalytic properties due to their quantum size effect and low-coordination environment. In this review, the activity-enhancing approaches of MNCs applied in HER electrocatalysis are mainly summarized. Furthermore, recent progress in MNCs classified with different stabilization strategies, that is, the freestanding MNCs, MNCs with organic, metal and carbon supports, are introduced. Finally, the current challenges and deficiencies of these MNCs for HER are prospected.
Collapse
Affiliation(s)
- Junyang Ding
- Center for Electron Microscopy and Tianjin Key Lab of Advanced Functional Porous Materials, Institute for New Energy Materials & Low-Carbon Technologies, School of Materials, Tianjin University of Technology, Tianjin, 300384, China
| | - Hui Yang
- Key Laboratory of Display Materials and Photoelectric Devices (Ministry of Education), Tianjin Key Laboratory for Photoelectric Materials and Devices, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin, 300384, China
| | - Shusheng Zhang
- College of Chemistry, Zhengzhou University, Zhengzhou, 450000, China
| | - Qian Liu
- Institute for Advanced Study, Chengdu University, Chengdu, Sichuan, 610106, China
| | - Huanqi Cao
- Key Laboratory of Display Materials and Photoelectric Devices (Ministry of Education), Tianjin Key Laboratory for Photoelectric Materials and Devices, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin, 300384, China
| | - Jun Luo
- Center for Electron Microscopy and Tianjin Key Lab of Advanced Functional Porous Materials, Institute for New Energy Materials & Low-Carbon Technologies, School of Materials, Tianjin University of Technology, Tianjin, 300384, China
| | - Xijun Liu
- MOE Key Laboratory of New Processing Technology for Non-Ferrous Metals and Materials, and Guangxi Key Laboratory of Processing for Non-Ferrous Metals and Featured Materials, School of Resource, Environments and Materials, Guangxi University, Nanning, 530004, China
| |
Collapse
|
94
|
Butburee T, Ponchai J, Meeporn K, Phawa C, Chakthranont P, Khemthong P, Mano P, Namuangruk S, Chinsirikul W, Faungnawakij K, Zhao X, Pennycook S. New Folding 2D-Layered Nitro-Oxygenated Carbon Containing Ultra High-Loading Copper Single Atoms. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2204767. [PMID: 36328759 DOI: 10.1002/smll.202204767] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 09/23/2022] [Indexed: 06/16/2023]
Abstract
The discoveries of 2D nanomaterials have made huge impacts on the scientific community. Their unique properties unlock new technologies and bring significant advances to diverse applications. Herein, an unprecedented 2D-stacked material consisting of copper (Cu) on nitro-oxygenated carbon is disclosed. Unlike any known 2D stacked structures that are usually constructed by stacking of separate 2D layers, this material forms a continuously folded 2D-stacked structure. Interestingly, advanced characterizations indicate that Cu atoms inside the structure are in an atomically-dispersed form with extraordinarily high Cu loading up to 15.9 ± 1.2 wt.%, which is among the highest reported metal loading for single-atom catalysts on 2D supports. Facile exfoliation results in thin 2D nanosheets that maximize the exposure of the unique active sites (two neighboring Cu single atoms), leading to impressive catalytic performance, as demonstrated in the electrochemical oxygen reduction reaction.
Collapse
Affiliation(s)
- Teera Butburee
- National Nanotechnology Center, National Science and Technology Development Agency, 111 Thailand Science Park, Pathum Thani, 12120, Thailand
| | - Jitprabhat Ponchai
- National Nanotechnology Center, National Science and Technology Development Agency, 111 Thailand Science Park, Pathum Thani, 12120, Thailand
| | - Keerati Meeporn
- National Nanotechnology Center, National Science and Technology Development Agency, 111 Thailand Science Park, Pathum Thani, 12120, Thailand
| | - Chaiyasit Phawa
- National Nanotechnology Center, National Science and Technology Development Agency, 111 Thailand Science Park, Pathum Thani, 12120, Thailand
| | - Pongkarn Chakthranont
- National Nanotechnology Center, National Science and Technology Development Agency, 111 Thailand Science Park, Pathum Thani, 12120, Thailand
| | - Pongtanawat Khemthong
- National Nanotechnology Center, National Science and Technology Development Agency, 111 Thailand Science Park, Pathum Thani, 12120, Thailand
| | - Poobodin Mano
- National Nanotechnology Center, National Science and Technology Development Agency, 111 Thailand Science Park, Pathum Thani, 12120, Thailand
| | - Supawadee Namuangruk
- National Nanotechnology Center, National Science and Technology Development Agency, 111 Thailand Science Park, Pathum Thani, 12120, Thailand
| | - Wannee Chinsirikul
- National Nanotechnology Center, National Science and Technology Development Agency, 111 Thailand Science Park, Pathum Thani, 12120, Thailand
| | - Kajornsak Faungnawakij
- National Nanotechnology Center, National Science and Technology Development Agency, 111 Thailand Science Park, Pathum Thani, 12120, Thailand
| | - Xiaoxu Zhao
- School of Materials Science and Engineering, Peking University, Beijing, 100871, China
| | - Stephen Pennycook
- Department of Materials Science and Engineering, University of Tennessee, Knoxville, TN, 37916, USA
- School of Physical Sciences and CAS Key Laboratory of Vacuum Sciences, University of Chinese Academy of Sciences, Beijing, 100864, China
| |
Collapse
|
95
|
Regulating electron configuration of single Cu sites via unsaturated N,O-coordination for selective oxidation of benzene. Nat Commun 2022; 13:6996. [DOI: 10.1038/s41467-022-34852-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 11/09/2022] [Indexed: 11/17/2022] Open
Abstract
AbstractDeveloping highly efficient catalyst for selective oxidation of benzene to phenol (SOBP) with low H2O2 consumption is highly desirable for practical application, but challenge remains. Herein, we report unique single-atom Cu1-N1O2 coordination-structure on N/C material (Cu-N1O2 SA/CN), prepared by water molecule-mediated pre-assembly-pyrolysis method, can efficiently boost SOBP reaction at a 2:1 of low H2O2/benzene molar ratio, showing 83.7% of high benzene conversion with 98.1% of phenol selectivity. The Cu1-N1O2 sites can provide a preponderant reaction pathway for SOBP reaction with less steps and lower energy barrier. As a result, it shows an unexpectedly higher turnover frequency (435 h−1) than that of Cu1-N2 (190 h−1), Cu1-N3 (90 h−1) and Cu nanoparticle (58 h−1) catalysts, respectively. This work provides a facile and efficient method for regulating the electron configuration of single-atom catalyst and generates a highly active and selective non-precious metal catalyst for industrial production of phenol through selective oxidation of benzene.
Collapse
|
96
|
Zhao S, Liang H, Hu X, Li S, Daasbjerg K. Challenges and Prospects in the Catalytic Conversion of Carbon Dioxide to Formaldehyde. Angew Chem Int Ed Engl 2022; 61:e202204008. [PMID: 36066469 PMCID: PMC9827866 DOI: 10.1002/anie.202204008] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Indexed: 01/12/2023]
Abstract
Formaldehyde (HCHO) is a crucial C1 building block for daily-life commodities in a wide range of industrial processes. Industrial production of HCHO today is based on energy- and cost-intensive gas-phase catalytic oxidation of methanol, which calls for exploring other and more sustainable ways of carrying out this process. Utilization of carbon dioxide (CO2 ) as precursor presents a promising strategy to simultaneously mitigate the carbon footprint and alleviate environmental issues. This Minireview summarizes recent progress in CO2 -to-HCHO conversion using hydrogenation, hydroboration/hydrosilylation as well as photochemical, electrochemical, photoelectrochemical, and enzymatic approaches. The active species, reaction intermediates, and mechanistic pathways are discussed to deepen the understanding of HCHO selectivity issues. Finally, shortcomings and prospects of the various strategies for sustainable reduction of CO2 to HCHO are discussed.
Collapse
Affiliation(s)
- Siqi Zhao
- Novo Nordisk Foundation (NNF) CO2 Research CenterDepartment of Chemistry/Interdisciplinary Nanoscience Center (iNANO)Aarhus UniversityLangelandsgade 1408000Aarhus CDenmark
| | - Hong‐Qing Liang
- Leibniz-Institut für KatalyseAlbert-Einstein-Strasse 29a18059RostockGermany
| | - Xin‐Ming Hu
- Environment Research InstituteShandong UniversityBinhai Road 72Qingdao266237China
| | - Simin Li
- School of Metallurgy and EnvironmentCentral South UniversityChangsha410083P.R. China
| | - Kim Daasbjerg
- Novo Nordisk Foundation (NNF) CO2 Research CenterDepartment of Chemistry/Interdisciplinary Nanoscience Center (iNANO)Aarhus UniversityLangelandsgade 1408000Aarhus CDenmark
| |
Collapse
|
97
|
Swain S, Altaee A, Saxena M, Samal AK. A comprehensive study on heterogeneous single atom catalysis: Current progress, and challenges☆. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214710] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
98
|
Cobalt nanoparticle adorned on boron- and nitrogen-doped 2D-carbon material for Sonogashira cross-coupling reactions: Greener and efficient synthesis of anti-cancer drug, Ponatinib. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2022.112701] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
99
|
Zhang X, Truong-Phuoc L, Asset T, Pronkin S, Pham-Huu C. Are Fe–N–C Electrocatalysts an Alternative to Pt-Based Electrocatalysts for the Next Generation of Proton Exchange Membrane Fuel Cells? ACS Catal 2022. [DOI: 10.1021/acscatal.2c02146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Xiong Zhang
- Institute of Chemistry and Processes for Energy, Environment and Health (ICPEES), UMR 7515 CNRS-Université de Strasbourg, 25 rue Becquerel, 67087 Strasbourg Cedex
02, France
| | - Lai Truong-Phuoc
- Institute of Chemistry and Processes for Energy, Environment and Health (ICPEES), UMR 7515 CNRS-Université de Strasbourg, 25 rue Becquerel, 67087 Strasbourg Cedex
02, France
| | - Tristan Asset
- Institute of Chemistry and Processes for Energy, Environment and Health (ICPEES), UMR 7515 CNRS-Université de Strasbourg, 25 rue Becquerel, 67087 Strasbourg Cedex
02, France
| | - Sergey Pronkin
- Institute of Chemistry and Processes for Energy, Environment and Health (ICPEES), UMR 7515 CNRS-Université de Strasbourg, 25 rue Becquerel, 67087 Strasbourg Cedex
02, France
| | - Cuong Pham-Huu
- Institute of Chemistry and Processes for Energy, Environment and Health (ICPEES), UMR 7515 CNRS-Université de Strasbourg, 25 rue Becquerel, 67087 Strasbourg Cedex
02, France
| |
Collapse
|
100
|
Rana R, Vila FD, Kulkarni AR, Bare SR. Bridging the Gap between the X-ray Absorption Spectroscopy and the Computational Catalysis Communities in Heterogeneous Catalysis: A Perspective on the Current and Future Research Directions. ACS Catal 2022. [DOI: 10.1021/acscatal.2c03863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Rachita Rana
- Department of Chemical Engineering, University of California, Davis, California95616, United States
| | - Fernando D. Vila
- Department of Physics, University of Washington, Seattle, Washington98195, United States
| | - Ambarish R. Kulkarni
- Department of Chemical Engineering, University of California, Davis, California95616, United States
| | - Simon R. Bare
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, California94025, United States
| |
Collapse
|