51
|
Steck V, Carminati DM, Johnson NR, Fasan R. Enantioselective Synthesis of Chiral Amines via Biocatalytic Carbene N-H Insertion. ACS Catal 2020; 10:10967-10977. [PMID: 34484852 DOI: 10.1021/acscatal.0c02794] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Optically active amines represent highly valuable building blocks for the synthesis of advanced pharmaceutical intermediates, drug molecules, and biologically active natural products. Hemoproteins have recently emerged as promising biocatalysts for the formation of C-N bonds via carbene transfer, but asymmetric N-H carbene insertion reactions using these or other enzymes have so far been elusive. Here, we report the successful development of a biocatalytic strategy for the asymmetric N-H carbene insertion of aromatic amines with 2-diazopropanoate esters using engineered variants of myoglobin. High activity and stereoinduction in this reaction could be achieved by tuning the chiral environment around the heme cofactor in the metalloprotein in combination with catalyst-matching and tailoring of the diazo reagent. Using this approach, an efficient biocatalytic protocol for the synthesis of a broad range of substituted aryl amines with up to 82% ee was obtained. In addition, a stereocomplementary catalyst useful for accessing the mirror-image form of the N-H insertion products was identified. This work paves the way to asymmetric amine synthesis via biocatalytic carbene transfer, and the present strategy based on the synergistic combination of protein and diazo reagent engineering is expected to prove useful in the context of these as well as other challenging asymmetric carbene transfer reactions.
Collapse
Affiliation(s)
- Viktoria Steck
- Department of Chemistry, University of Rochester, 14627 Rochester, New York United States
| | - Daniela M. Carminati
- Department of Chemistry, University of Rochester, 14627 Rochester, New York United States
| | - Nathan R. Johnson
- Department of Chemistry, University of Rochester, 14627 Rochester, New York United States
| | - Rudi Fasan
- Department of Chemistry, University of Rochester, 14627 Rochester, New York United States
| |
Collapse
|
52
|
Suzuki K, Shisaka Y, Stanfield JK, Watanabe Y, Shoji O. Enhanced cis- and enantioselective cyclopropanation of styrene catalysed by cytochrome P450BM3 using decoy molecules. Chem Commun (Camb) 2020; 56:11026-11029. [PMID: 32895681 DOI: 10.1039/d0cc04883f] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report the enhanced cis- and enantioselective cyclopropanation of styrene catalysed by cytochrome P450BM3 in the presence of dummy substrates, i.e. decoy molecules. With the aid of the decoy molecule R-Ibu-Phe, diastereoselectivity for the cis diastereomers reached 91%, and the enantiomeric ratio for the (1S,2R) isomer reached 94%. Molecular dynamics simulations underpin the experimental data, revealing the mechanism of how enantioselectivity is controlled by the addition of decoy molecules.
Collapse
Affiliation(s)
- Kazuto Suzuki
- Department of Chemistry, School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-0802, Japan.
| | - Yuma Shisaka
- Department of Chemistry, School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-0802, Japan.
| | - Joshua Kyle Stanfield
- Department of Chemistry, School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-0802, Japan.
| | - Yoshihito Watanabe
- Department of Chemistry, School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-0802, Japan.
| | - Osami Shoji
- Department of Chemistry, School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-0802, Japan. and Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency, 5 Sanban-cho, Chiyoda-ku, Tokyo, 102-0075, Japan
| |
Collapse
|
53
|
Yang ZJ, Gong QT, Wang Y, Yu Y, Liu YH, Wang N, Yu XQ. Biocatalytic tandem multicomponent reactions for one-pot synthesis of 2-Amino-4H-Pyran library and in vitro biological evaluation. MOLECULAR CATALYSIS 2020. [DOI: 10.1016/j.mcat.2020.110983] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
54
|
Mao Y, Ma Y, Chen T, Ma X, Xu Y, Bu J, Li Q, Jin B, Wang Y, Li Y, Cui G, Zhao Y, Tang J, Shen Y, Lai C, Zeng W, Chen M, Guo J, Huang L. Functional Integration of Two CYP450 Genes Involved in Biosynthesis of Tanshinones for Improved Diterpenoid Production by Synthetic Biology. ACS Synth Biol 2020; 9:1763-1770. [PMID: 32551504 DOI: 10.1021/acssynbio.0c00136] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Cytochrome P450s (CYPs) are important enzymes in the secondary metabolism of plants and have been recognized as key players in bioengineering and synthetic biology. Previously reported CYP76AH1 and CYP76AH3, having greater than 80% sequence homology, played a continuous catalytic role in the biosynthesis of tanshinones in Salvia miltiorrhiza. Homology modeling indicates that four sites might be responsible for differences in catalytic activity between the two enzymes. A series of modeling-based mutational variants of CYP76AH1 were designed to integrate the functions of the two CYPs. The mutant CYP76AH1D301E,V479F, which integrated the functions of CYP76AH1 and CYP76AH3, was found to efficiently catalyze C11 and C12 hydroxylation and C7 oxidation of miltiradiene substrates. Integration and utilization of CYP76AH1D301E,V479F by synthetic biology methods allowed the robust production of 11-hydroxy ferruginol, sugiol, and 11-hydroxy sugiol in yeast. The functionally integrated CYP gene after active site modifications improves catalytic efficiency by reducing the transfer of intermediate metabolites between component proteins. This provides a synthetic biology reference for improving the catalytic efficiencies of systems that produce plant natural products in microorganisms.
Collapse
Affiliation(s)
- Yaping Mao
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Ying Ma
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Tong Chen
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Xiaohui Ma
- Yunnan University of Traditional Chinese Medicine, Kunming 650500, China
| | - Yanqin Xu
- College of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang, 330004, China
| | - Junling Bu
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Qishuang Li
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
- School of Pharmacy, Jiangsu University, Zhenjiang, 212013,China
| | - Baolong Jin
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Yanan Wang
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Yong Li
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
- Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Guanghong Cui
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Yujun Zhao
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Jinfu Tang
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Ye Shen
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Changjiangsheng Lai
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Wen Zeng
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Min Chen
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Juan Guo
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Luqi Huang
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| |
Collapse
|
55
|
Stroscio GD, Srnec M, Hadt RG. Multireference Ground and Excited State Electronic Structures of Free- versus Iron Porphyrin-Carbenes. Inorg Chem 2020; 59:8707-8715. [PMID: 32510941 DOI: 10.1021/acs.inorgchem.0c00249] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Iron porphyrin carbenes (IPCs) are important reaction intermediates in engineered carbene transferase enzymes and homogeneous catalysis. However, discrepancies between theory and experiment complicate the understanding of IPC electronic structure. In the literature, this has been framed as whether the ground state is an open- vs closed-shell singlet (OSS vs CSS). Here we investigate the structurally dependent ground and excited spin-state energetics of a free carbene and its IPC analogs with variable trans axial ligands. In particular, for IPCs, multireference ab initio wave function methods are more consistent with experiment and predict a mixed singlet ground state that is dominated by the CSS (Fe(II) ← {:C(X)Y}0) configuration (i.e., electrophilic carbene) but that also has a small, non-negligible contribution from an Fe(III)-{C(X)Y}-• configuration (hole in d(xz), i.e., radical carbene). In the multireference approach, the "OSS-like" excited states are metal-to-ligand charge transfer (MLCT) in nature and are energetically well above the CSS-dominated ground state. The first, lowest energy of these "OSS-like" excited states is predicted to be heavily weighted toward the Fe(III)-{C(X)Y}-• (hole in d(yz)) configuration. As expected from exchange considerations, this state falls energetically above a triplet of the same configuration. Furthermore, potential energy surfaces (PESs) along the IPC Fe-C(carbene) bond elongation exhibit increasingly strong mixings between CSS/OSS characters, with the Fe(III)-{C(X)Y}-• configuration (hole in d(xz)) growing in weight in the ground state during bond elongation. The relative degree of electrophilic/radical carbene character along this structurally relevant PES can potentially play a role in reactivity and selectivity patterns in catalysis. Future studies on IPC reaction coordinates should evaluate contributions from ground and excited state multireference character.
Collapse
Affiliation(s)
- Gautam D Stroscio
- Division of Chemistry and Chemical Engineering, Arthur Amos Noyes Laboratory of Chemical Physics, California Institute of Technology, Pasadena, California 91125, United States
| | - Martin Srnec
- J. Heyrovský Institute of Physical Chemistry, Czech Academy of Sciences, Prague 8, 18223 Czech Republic
| | - Ryan G Hadt
- Division of Chemistry and Chemical Engineering, Arthur Amos Noyes Laboratory of Chemical Physics, California Institute of Technology, Pasadena, California 91125, United States
| |
Collapse
|
56
|
Wittmann BJ, Knight AM, Hofstra JL, Reisman SE, Jennifer Kan SB, Arnold FH. Diversity-Oriented Enzymatic Synthesis of Cyclopropane Building Blocks. ACS Catal 2020; 10:7112-7116. [PMID: 33282460 DOI: 10.1021/acscatal.0c01888] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
While biocatalysis is increasingly incorporated into drug development pipelines, it is less commonly used in the early stages of drug discovery. By engineering a protein to produce a chiral motif with a derivatizable functional handle, biocatalysts can be used to help generate diverse building blocks for drug discovery. Here we show the engineering of two variants of Rhodothermus marinus nitric oxide dioxygenase (RmaNOD) to catalyze the formation of cis- and tran- diastereomers of a pinacolboronate-substituted cyclopropane which can be readily derivatized to generate diverse stereopure cyclopropane building blocks.
Collapse
|
57
|
Zetzsche LE, Narayan ARH. Broadening the scope of biocatalytic C-C bond formation. Nat Rev Chem 2020; 4:334-346. [PMID: 34430708 PMCID: PMC8382263 DOI: 10.1038/s41570-020-0191-2] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/28/2020] [Indexed: 12/18/2022]
Abstract
The impeccable control over chemo-, site-, and stereoselectivity possible in enzymatic reactions has led to a surge in the development of new biocatalytic methods. Despite carbon-carbon (C-C) bonds providing the central framework for organic molecules, development of biocatalytic methods for their formation has been largely confined to the use of a select few lyases over the last several decades, limiting the types of C-C bond-forming transformations possible through biocatalytic methods. This Review provides an update on the suite of enzymes available for highly selective biocatalytic C-C bond formation. Examples will be discussed in reference to the (1) native activity of enzymes, (2) alteration of activity through protein or substrate engineering for broader applicability, and (3) utility of the biocatalyst for abiotic synthesis.
Collapse
Affiliation(s)
- Lara E. Zetzsche
- Program in Chemical Biology, University of Michigan, Ann Arbor, MI 48109, USA
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Alison R. H. Narayan
- Program in Chemical Biology, University of Michigan, Ann Arbor, MI 48109, USA
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
58
|
Stenner R, Anderson JLR. Chemoselective N−H insertion catalyzed by ade novocarbene transferase. Biotechnol Appl Biochem 2020; 67:527-535. [DOI: 10.1002/bab.1924] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 03/18/2020] [Indexed: 12/31/2022]
Affiliation(s)
- Richard Stenner
- School of Biochemistry University of Bristol Bristol UK
- Bristol Centre for Functional Nanomaterials HH Wills Physics Laboratory, University of Bristol Bristol UK
| | - John Leslie Ross Anderson
- School of Biochemistry University of Bristol Bristol UK
- BrisSynBio Synthetic Biology Research Centre University of Bristol Bristol UK
| |
Collapse
|
59
|
Zhou AZ, Chen K, Arnold FH. Enzymatic Lactone-Carbene C–H Insertion to Build Contiguous Chiral Centers. ACS Catal 2020. [DOI: 10.1021/acscatal.0c01349] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Andrew Z. Zhou
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Kai Chen
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Frances H. Arnold
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| |
Collapse
|
60
|
Ren Y, Forté J, Cheaib K, Vanthuyne N, Fensterbank L, Vezin H, Orio M, Blanchard S, Desage-El Murr M. Optimizing Group Transfer Catalysis by Copper Complex with Redox-Active Ligand in an Entatic State. iScience 2020; 23:100955. [PMID: 32199288 PMCID: PMC7083792 DOI: 10.1016/j.isci.2020.100955] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 01/14/2020] [Accepted: 02/25/2020] [Indexed: 01/07/2023] Open
Abstract
Metalloenzymes use earth-abundant non-noble metals to perform high-fidelity transformations in the biological world. To ensure chemical efficiency, metalloenzymes have acquired evolutionary reactivity-enhancing tools. Among these, the entatic state model states that a strongly distorted geometry induced by ligands around a metal center gives rise to an energized structure called entatic state, strongly improving the reactivity. However, the original definition refers both to the transfer of electrons or chemical groups, whereas the chemical application of this concept in synthetic systems has mostly focused on electron transfer, therefore eluding chemical transformations. Here we report that a highly strained redox-active ligand enables a copper complex to perform catalytic nitrogen- and carbon-group transfer in as fast as 2 min, thus exhibiting a strong increase in reactivity compared with its unstrained analogue. This report combines two reactivity-enhancing features from metalloenzymes, entasis and redox cofactors, applied to group-transfer catalysis. We design a catalyst interfacing two reactivity-enhancing tools from metalloenzymes This work merges redox-active cofactors and entatic state reactivity The modifications in the coordination sphere lead to enhanced catalytic behavior These results open perspectives in bioinspired catalysis and group-transfer reactions
Collapse
Affiliation(s)
- Yufeng Ren
- Sorbonne Université, Institut Parisien de Chimie Moléculaire, UMR CNRS 8232, 75005 Paris, France
| | - Jeremy Forté
- Sorbonne Université, Institut Parisien de Chimie Moléculaire, UMR CNRS 8232, 75005 Paris, France
| | - Khaled Cheaib
- Sorbonne Université, Institut Parisien de Chimie Moléculaire, UMR CNRS 8232, 75005 Paris, France
| | - Nicolas Vanthuyne
- Aix Marseille Université, CNRS, Centrale Marseille, iSm2, UMR CNRS 7313, 13397 Marseille, France
| | - Louis Fensterbank
- Sorbonne Université, Institut Parisien de Chimie Moléculaire, UMR CNRS 8232, 75005 Paris, France
| | - Hervé Vezin
- Université des Sciences et Technologies de Lille, LASIR, UMR CNRS 8516, 59655 Villeneuve d'Ascq Cedex, France
| | - Maylis Orio
- Aix Marseille Université, CNRS, Centrale Marseille, iSm2, UMR CNRS 7313, 13397 Marseille, France
| | - Sébastien Blanchard
- Sorbonne Université, Institut Parisien de Chimie Moléculaire, UMR CNRS 8232, 75005 Paris, France
| | - Marine Desage-El Murr
- Université de Strasbourg, Institut de Chimie, UMR CNRS 7177, 67000 Strasbourg, France.
| |
Collapse
|
61
|
Ren X, Chandgude AL, Fasan R. Highly Stereoselective Synthesis of Fused Cyclopropane-γ-Lactams via Biocatalytic Iron-Catalyzed Intramolecular Cyclopropanation. ACS Catal 2020; 10:2308-2313. [PMID: 32257580 PMCID: PMC7111458 DOI: 10.1021/acscatal.9b05383] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
We report the development of an iron-based biocatalytic strategy for the asymmetric synthesis of fused cyclopropane-γ-lactams, which are key structural motifs found in synthetic drugs and bioactive natural products. Using a combination of mutational landscape and iterative site-saturation mutagenesis, sperm whale myoglobin was evolved into a biocatalyst capable of promoting the cyclization of a diverse range of allyl diazoacetamide substrates into the corresponding bicyclic lactams in high yields and with high enantioselectivity (up to 99% ee). These biocatalytic transformations can be performed in whole cells and could be leveraged to enable the efficient (chemo)enzymatic construction of chiral cyclopropane-γ-lactams as well as β-cyclopropyl amines and cyclopropane-fused pyrrolidines, as valuable building blocks and synthons for medicinal chemistry and natural product synthesis.
Collapse
Affiliation(s)
| | | | - Rudi Fasan
- Department of Chemistry, University of Rochester, 120 Trustee Road, Rochester, NY 14627, United States
| |
Collapse
|
62
|
Unbiased libraries in protein directed evolution. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2020; 1868:140321. [DOI: 10.1016/j.bbapap.2019.140321] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 10/03/2019] [Accepted: 10/31/2019] [Indexed: 12/17/2022]
|
63
|
|
64
|
Damiano C, Sonzini P, Gallo E. Iron catalysts with N-ligands for carbene transfer of diazo reagents. Chem Soc Rev 2020; 49:4867-4905. [DOI: 10.1039/d0cs00221f] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
This review provides an overview of the catalytic activity of iron complexes of nitrogen ligands in driving carbene transfers towards CC, C–H and X–H bonds. The reactivity of diazo reagents is discussed as well as the proposed reaction mechanisms.
Collapse
Affiliation(s)
| | - Paolo Sonzini
- Department of Chemistry
- University of Milan
- 20133 Milan
- Italy
| | - Emma Gallo
- Department of Chemistry
- University of Milan
- 20133 Milan
- Italy
| |
Collapse
|
65
|
Liu Y, You T, Wang HX, Tang Z, Zhou CY, Che CM. Iron- and cobalt-catalyzed C(sp3)–H bond functionalization reactions and their application in organic synthesis. Chem Soc Rev 2020; 49:5310-5358. [DOI: 10.1039/d0cs00340a] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
This review highlights the developments in iron and cobalt catalyzed C(sp3)–H bond functionalization reactions with emphasis on their applications in organic synthesis, i.e. natural products and pharmaceuticals synthesis and/or modification.
Collapse
Affiliation(s)
- Yungen Liu
- Department of Chemistry
- Southern University of Science and Technology
- Shenzhen
- P. R. China
| | - Tingjie You
- Department of Chemistry
- State Key Laboratory of Synthetic Chemistry
- The University of Hong Kong
- Hong Kong
- P. R. China
| | - Hai-Xu Wang
- Department of Chemistry
- State Key Laboratory of Synthetic Chemistry
- The University of Hong Kong
- Hong Kong
- P. R. China
| | - Zhou Tang
- Department of Chemistry
- State Key Laboratory of Synthetic Chemistry
- The University of Hong Kong
- Hong Kong
- P. R. China
| | - Cong-Ying Zhou
- Department of Chemistry
- State Key Laboratory of Synthetic Chemistry
- The University of Hong Kong
- Hong Kong
- P. R. China
| | - Chi-Ming Che
- Department of Chemistry
- Southern University of Science and Technology
- Shenzhen
- P. R. China
- Department of Chemistry
| |
Collapse
|
66
|
TANAKA K, VONG K. Unlocking the therapeutic potential of artificial metalloenzymes. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2020; 96:79-94. [PMID: 32161212 PMCID: PMC7167364 DOI: 10.2183/pjab.96.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
In order to harness the functionality of metals, nature has evolved over billions of years to utilize metalloproteins as key components in numerous cellular processes. Despite this, transition metals such as ruthenium, palladium, iridium, and gold are largely absent from naturally occurring metalloproteins, likely due to their scarcity as precious metals. To mimic the evolutionary process of nature, the field of artificial metalloenzymes (ArMs) was born as a way to benefit from the unique chemoselectivity and orthogonality of transition metals in a biological setting. In its current state, numerous examples have successfully incorporated transition metals into a variety of protein scaffolds. Using these ArMs, many examples of new-to-nature reactions have been carried out, some of which have shown substantial biocompatibility. Given the rapid rate at which this field is growing, this review aims to highlight some important studies that have begun to take the next step within this field; namely the development of ArM-centered drug therapies or biotechnological tools.
Collapse
Affiliation(s)
- Katsunori TANAKA
- Cluster for Pioneering Research, RIKEN, Wako, Saitama, Japan
- A. Butlerov Institute of Chemistry, Kazan Federal University, Kazan, Russia
- Baton Zone Program, RIKEN, Wako, Saitama, Japan
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, Tokyo, Japan
- Correspondence should be addressed: K. Tanaka, Biofunctional Synthetic Chemistry Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan (e-mail: )
| | - Kenward VONG
- Cluster for Pioneering Research, RIKEN, Wako, Saitama, Japan
| |
Collapse
|
67
|
Asymmetric redox-neutral radical cyclization catalysed by flavin-dependent 'ene'-reductases. Nat Chem 2019; 12:71-75. [PMID: 31792387 PMCID: PMC6925616 DOI: 10.1038/s41557-019-0370-2] [Citation(s) in RCA: 106] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 10/07/2019] [Indexed: 01/08/2023]
Abstract
Flavin-dependent 'ene'-reductases (EREDs) are exquisite catalysts for effecting stereoselective reductions. Although these reactions typically proceed through a hydride transfer mechanism, we recently found that EREDs can also catalyse reductive dehalogenations and cyclizations via single electron transfer mechanisms. Here, we demonstrate that these enzymes can catalyse redox-neutral radical cyclizations to produce enantioenriched oxindoles from α-haloamides. This transformation is a C-C bond-forming reaction currently unknown in nature and one for which there are no catalytic asymmetric examples. Mechanistic studies indicate the reaction proceeds via the flavin semiquinone/quinone redox couple, where ground-state flavin semiquinone provides the electron for substrate reduction and flavin quinone oxidizes the vinylogous α-amido radical formed after cyclization. This mechanistic manifold was previously unknown for this enzyme family, highlighting the versatility of EREDs in asymmetric synthesis.
Collapse
|
68
|
Herndon JW. The chemistry of the carbon-transition metal double and triple bond: Annual survey covering the year 2018. Coord Chem Rev 2019. [DOI: 10.1016/j.ccr.2019.213051] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
69
|
Ward TR. ACS Central Science Virtual Issue on Bioinspired Catalysis. ACS CENTRAL SCIENCE 2019; 5:1732-1735. [PMID: 31807670 PMCID: PMC6891863 DOI: 10.1021/acscentsci.9b01045] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
|
70
|
Leveson-Gower RB, Mayer C, Roelfes G. The importance of catalytic promiscuity for enzyme design and evolution. Nat Rev Chem 2019. [DOI: 10.1038/s41570-019-0143-x] [Citation(s) in RCA: 121] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
71
|
Abstract
On the occasion of Professor Frances H. Arnold's recent acceptance of the 2018 Nobel Prize in Chemistry, we honor her numerous contributions to the fields of directed evolution and biocatalysis. Arnold pioneered the development of directed evolution methods for engineering enzymes as biocatalysts. Her highly interdisciplinary research has provided a ground not only for understanding the mechanisms of enzyme evolution but also for developing commercially viable enzyme biocatalysts and biocatalytic processes. In this Account, we highlight some of her notable contributions in the past three decades in the development of foundational directed evolution methods and their applications in the design and engineering of enzymes with desired functions for biocatalysis. Her work has created a paradigm shift in the broad catalysis field.
Collapse
Affiliation(s)
- Rudi Fasan
- Department of Chemistry, University of Rochester, Rochester, New York 14627, United States
| | - S. B. Jennifer Kan
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Huimin Zhao
- Departments of Chemical and Biomolecular Engineering, Chemistry, and Biochemistry, Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
72
|
Herraiz AG, Suero MG. A transition-metal-free & diazo-free styrene cyclopropanation. Chem Sci 2019; 10:9374-9379. [PMID: 32110302 PMCID: PMC7017872 DOI: 10.1039/c9sc02749a] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 08/17/2019] [Indexed: 12/13/2022] Open
Abstract
An operationally simple and broadly applicable novel cyclopropanation of styrenes using gem-diiodomethyl carbonyl reagents has been developed. Visible-light triggered the photoinduced generation of iodomethyl carbonyl radicals, able to cyclopropanate a wide array of styrenes with excellent chemoselectivity and functional group tolerance. To highlight the utility of our photocyclopropanation, we demonstrated the late-stage functionalization of biomolecule derivatives.
Collapse
Affiliation(s)
- Ana G Herraiz
- Institute of Chemical Research of Catalonia (ICIQ) , The Barcelona Institute of Science and Technology , Av. Països Catalans 16 , Tarragona , 43007 , Spain .
- Departament de Química Analítica i Química Orgànica , Universitat Rovira i Virgili , Calle Marcel. lí Domingo, 1 , Tarragona , 43007 , Spain
| | - Marcos G Suero
- Institute of Chemical Research of Catalonia (ICIQ) , The Barcelona Institute of Science and Technology , Av. Països Catalans 16 , Tarragona , 43007 , Spain .
| |
Collapse
|
73
|
Carminati DM, Fasan R. Stereoselective Cyclopropanation of Electron-Deficient Olefins with a Cofactor Redesigned Carbene Transferase Featuring Radical Reactivity. ACS Catal 2019; 9:9683-9697. [PMID: 32257582 DOI: 10.1021/acscatal.9b02272] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Engineered myoglobins and other hemoproteins have recently emerged as promising catalysts for asymmetric olefin cyclopropanation reactions via carbene transfer chemistry. Despite this progress, the transformation of electron-poor alkenes has proven very challenging using these systems. Here, we describe the design of a myoglobin-based carbene transferase incorporating a non-native iron-porphyrin cofactor and axial ligand, as an efficient catalyst for the asymmetric cyclopropanation of electron-deficient alkenes. Using this metalloenzyme, a broad range of both electron-rich and electron-deficient alkenes are cyclopropanated with high efficiency and high diastereo- and enantioselectivity (up to >99% de and ee). Mechanistic studies revealed that the expanded reaction scope of this carbene transferase is dependent upon the acquisition of metallocarbene radical reactivity as a result of the reconfigured coordination environment around the metal center. The radical-based reactivity of this system diverges from the electrophilic reactivity of myoglobin and most of known organometallic carbene transfer catalysts. This work showcases the value of cofactor redesign toward tuning and expanding the reactivity of metalloproteins in abiological reactions and it provides a biocatalytic solution to the asymmetric cyclopropanation of electrodeficient alkenes. The metallocarbene radical reactivity exhibited by this biocatalyst is anticipated to prove useful in the context of a variety of other synthetic transformations.
Collapse
Affiliation(s)
- Daniela M. Carminati
- Department of Chemistry, University of Rochester, Rochester, New York 14627, United States
| | - Rudi Fasan
- Department of Chemistry, University of Rochester, Rochester, New York 14627, United States
| |
Collapse
|
74
|
Zhang Y. Computational Investigations of Heme Carbenes and Heme Carbene Transfer Reactions. Chemistry 2019; 25:13231-13247. [DOI: 10.1002/chem.201901984] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 06/19/2019] [Indexed: 12/15/2022]
Affiliation(s)
- Yong Zhang
- Department of Chemistry and Chemical Biology Stevens Institute of Technology 1 Castle Point on Hudson Hoboken NJ 07030 USA
| |
Collapse
|
75
|
Khade RL, Chandgude AL, Fasan R, Zhang Y. Mechanistic Investigation of Biocatalytic Heme Carbenoid Si-H Insertions. ChemCatChem 2019; 11:3101-3108. [PMID: 31428208 PMCID: PMC6699785 DOI: 10.1002/cctc.201801755] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Indexed: 12/28/2022]
Abstract
Recent studies reported the development of biocatalytic heme carbenoid Si-H insertions for the selective formation of carbon-silicon bonds, but many mechanistic questions remain unaddressed. To this end, a DFT mechanistic investigation was performed which reveals an FeII-based concerted hydride transfer mechanism with early transition state feature. The results from these computational analyses are consistent with experimental data of radical trapping, kinetic isotope effects, and structure-reactivity data using engineered variants of hemoproteins. Detailed geometric and electronic profiles along the heme catalyzed Si-H insertion pathways were provided to help understand the origin of experimental reactivity trends. Quantitative relationships between reaction barriers and some properties such as charge transfer from substrate to heme carbene and Si-H bond length change from reactant to transition state were found. Results suggest catalyst modifications to facilitate the charge transfer from the silane substrate to the carbene, which was determined to be a major electronic driving force of this reaction, should enable the development of improved biocatalysts for Si-H carbene insertion reactions.
Collapse
Affiliation(s)
- Rahul L Khade
- Department of Chemistry and Chemical Biology, Stevens Institute of Technology, 1 Castle Point on Hudson, Hoboken, NJ 07030 (USA)
| | - Ajay L Chandgude
- Department of Chemistry, University of Rochester, 120 Trustee Road, Rochester, NY 14627 (USA)
| | - Rudi Fasan
- Department of Chemistry, University of Rochester, 120 Trustee Road, Rochester, NY 14627 (USA)
| | - Yong Zhang
- Department of Chemistry and Chemical Biology, Stevens Institute of Technology, 1 Castle Point on Hudson, Hoboken, NJ 07030 (USA)
| |
Collapse
|
76
|
Vargas DA, Khade RL, Zhang Y, Fasan R. Biocatalytic Strategy for Highly Diastereo- and Enantioselective Synthesis of 2,3-Dihydrobenzofuran-Based Tricyclic Scaffolds. Angew Chem Int Ed Engl 2019; 58:10148-10152. [PMID: 31099936 DOI: 10.1002/anie.201903455] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 05/03/2019] [Indexed: 12/11/2022]
Abstract
2,3-Dihydrobenzofurans are key pharmacophores in many natural and synthetic bioactive molecules. A biocatalytic strategy is reported here for the highly diastereo- and enantioselective construction of stereochemically rich 2,3-dihydrobenzofurans in high enantiopurity (>99.9% de and ee), high yields, and on a preparative scale via benzofuran cyclopropanation with engineered myoglobins. Computational and structure-reactivity studies provide insights into the mechanism of this reaction, enabling the elaboration of a stereochemical model that can rationalize the high stereoselectivity of the biocatalyst. This information was leveraged to implement a highly stereoselective route to a drug molecule and a tricyclic scaffold featuring five stereogenic centers via a single-enzyme transformation. This work expands the biocatalytic toolbox for asymmetric C-C bond transformations and should prove useful for further development of metalloprotein catalysts for abiotic carbene transfer reactions.
Collapse
Affiliation(s)
- David A Vargas
- Department of Chemistry, University of Rochester, 120 Trustee Road, Rochester, NY, 14627, USA
| | - Rahul L Khade
- Department of Chemistry and Chemical Biology, Stevens Institute of Technology, Hoboken, NJ, 07030, USA
| | - Yong Zhang
- Department of Chemistry and Chemical Biology, Stevens Institute of Technology, Hoboken, NJ, 07030, USA
| | - Rudi Fasan
- Department of Chemistry, University of Rochester, 120 Trustee Road, Rochester, NY, 14627, USA
| |
Collapse
|
77
|
Vargas DA, Khade RL, Zhang Y, Fasan R. Biocatalytic Strategy for Highly Diastereo‐ and Enantioselective Synthesis of 2,3‐Dihydrobenzofuran‐Based Tricyclic Scaffolds. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201903455] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- David A. Vargas
- Department of Chemistry University of Rochester 120 Trustee Road Rochester NY 14627 USA
| | - Rahul L. Khade
- Department of Chemistry and Chemical Biology Stevens Institute of Technology Hoboken NJ 07030 USA
| | - Yong Zhang
- Department of Chemistry and Chemical Biology Stevens Institute of Technology Hoboken NJ 07030 USA
| | - Rudi Fasan
- Department of Chemistry University of Rochester 120 Trustee Road Rochester NY 14627 USA
| |
Collapse
|
78
|
Zhang J, Huang X, Zhang RK, Arnold FH. Enantiodivergent α-Amino C-H Fluoroalkylation Catalyzed by Engineered Cytochrome P450s. J Am Chem Soc 2019; 141:9798-9802. [PMID: 31187993 DOI: 10.1021/jacs.9b04344] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The introduction of fluoroalkyl groups into organic compounds can significantly alter pharmacological characteristics. One enabling but underexplored approach for the installation of fluoroalkyl groups is selective C( sp3)-H functionalization due to the ubiquity of C-H bonds in organic molecules. We have engineered heme enzymes that can insert fluoroalkyl carbene intermediates into α-amino C( sp3)-H bonds and enable enantiodivergent synthesis of fluoroalkyl-containing molecules. Using directed evolution, we engineered cytochrome P450 enzymes to catalyze this abiological reaction under mild conditions with total turnovers (TTN) up to 4070 and enantiomeric excess (ee) up to 99%. The iron-heme catalyst is fully genetically encoded and configurable by directed evolution so that just a few mutations to the enzyme completely inverted product enantioselectivity. These catalysts provide a powerful method for synthesis of chiral organofluorine molecules that is currently not possible with small-molecule catalysts.
Collapse
Affiliation(s)
- Juner Zhang
- Division of Chemistry and Chemical Engineering , California Institute of Technology , 1200 East California Boulevard , MC 210-41, Pasadena , California 91125 , United States
| | - Xiongyi Huang
- Division of Chemistry and Chemical Engineering , California Institute of Technology , 1200 East California Boulevard , MC 210-41, Pasadena , California 91125 , United States
| | - Ruijie K Zhang
- Division of Chemistry and Chemical Engineering , California Institute of Technology , 1200 East California Boulevard , MC 210-41, Pasadena , California 91125 , United States
| | - Frances H Arnold
- Division of Chemistry and Chemical Engineering , California Institute of Technology , 1200 East California Boulevard , MC 210-41, Pasadena , California 91125 , United States
| |
Collapse
|
79
|
Yan X, Li C, Xu X, He Q, Zhao X, Pan Y. Sulfonium ylide formation and subsequent C S bond cleavage of aromatic isopropyl sulfide catalyzed by hemin in aqueous solvent. Tetrahedron 2019. [DOI: 10.1016/j.tet.2019.04.035] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
80
|
Chandgude AL, Ren X, Fasan R. Stereodivergent Intramolecular Cyclopropanation Enabled by Engineered Carbene Transferases. J Am Chem Soc 2019; 141:9145-9150. [PMID: 31099569 DOI: 10.1021/jacs.9b02700] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
We report the development of engineered myoglobin biocatalysts for executing asymmetric intramolecular cyclopropanations resulting in cyclopropane-fused γ-lactones, which are key motifs found in many bioactive molecules. Using this strategy, a broad range of allyl diazoacetate substrates were efficiently cyclized in high yields with up to 99% enantiomeric excess. Upon remodeling of the active site via protein engineering, myoglobin variants with stereodivergent selectivity were also obtained. In combination with whole-cell transformations, these biocatalysts enabled the gram-scale assembly of a key intermediate useful for the synthesis of the insecticide permethrin and other natural products. The enzymatically produced cyclopropyl-γ-lactones can be further elaborated to furnish a variety of enantiopure trisubstituted cyclopropanes. This work introduces a first example of biocatalytic intramolecular cyclopropanation and provides an attractive strategy for the stereodivergent preparation of fused cyclopropyl-γ-lactones of high value for medicinal chemistry and the synthesis of natural products.
Collapse
Affiliation(s)
- Ajay L Chandgude
- Department of Chemistry , University of Rochester , 120 Trustee Road , Rochester , New York 14627 , United States
| | - Xinkun Ren
- Department of Chemistry , University of Rochester , 120 Trustee Road , Rochester , New York 14627 , United States
| | - Rudi Fasan
- Department of Chemistry , University of Rochester , 120 Trustee Road , Rochester , New York 14627 , United States
| |
Collapse
|
81
|
Cho I, Jia ZJ, Arnold FH. RETRACTED: Site-selective enzymatic C‒H amidation for synthesis of diverse lactams. Science 2019; 364:575-578. [PMID: 31073063 DOI: 10.1126/science.aaw9068] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 03/28/2019] [Indexed: 02/23/2024]
Abstract
A major challenge in carbon‒hydrogen (C‒H) bond functionalization is to have the catalyst control precisely where a reaction takes place. In this study, we report engineered cytochrome P450 enzymes that perform unprecedented enantioselective C‒H amidation reactions and control the site selectivity to divergently construct β-, γ-, and δ-lactams, completely overruling the inherent reactivities of the C‒H bonds. The enzymes, expressed in Escherichia coli cells, accomplish this abiological carbon‒nitrogen bond formation via reactive iron-bound carbonyl nitrenes generated from nature-inspired acyl-protected hydroxamate precursors. This transformation is exceptionally efficient (up to 1,020,000 total turnovers) and selective (up to 25:1 regioselectivity and 97%, please refer to compound 2v enantiomeric excess), and can be performed easily on preparative scale.
Collapse
Affiliation(s)
- Inha Cho
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Zhi-Jun Jia
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Frances H Arnold
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA.
| |
Collapse
|
82
|
Xu J, Cen Y, Singh W, Fan J, Wu L, Lin X, Zhou J, Huang M, Reetz MT, Wu Q. Stereodivergent Protein Engineering of a Lipase To Access All Possible Stereoisomers of Chiral Esters with Two Stereocenters. J Am Chem Soc 2019; 141:7934-7945. [DOI: 10.1021/jacs.9b02709] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jian Xu
- Department of Chemistry, Zhejiang University, Hangzhou 310027, PR China
| | - Yixin Cen
- Department of Chemistry, Zhejiang University, Hangzhou 310027, PR China
- State Key Laboratory of Bio-organic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, PR China
| | - Warispreet Singh
- School of Chemistry and Chemical Engineering, Queen’s University, David Keir Building, Stranmillis Road, Belfast BT9 5AG, Northern Ireland, U.K
| | - Jiajie Fan
- Department of Chemistry, Zhejiang University, Hangzhou 310027, PR China
| | - Lian Wu
- State Key Laboratory of Bio-organic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, PR China
| | - Xianfu Lin
- Department of Chemistry, Zhejiang University, Hangzhou 310027, PR China
| | - Jiahai Zhou
- State Key Laboratory of Bio-organic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, PR China
| | - Meilan Huang
- School of Chemistry and Chemical Engineering, Queen’s University, David Keir Building, Stranmillis Road, Belfast BT9 5AG, Northern Ireland, U.K
| | - Manfred T. Reetz
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
- Chemistry Department, Philipps-University, Hans-Meerwein-Str. 4, 35032 Marburg, Germany
| | - Qi Wu
- Department of Chemistry, Zhejiang University, Hangzhou 310027, PR China
| |
Collapse
|
83
|
Montesinos‐Magraner M, Costantini M, Ramírez‐Contreras R, Muratore ME, Johansson MJ, Mendoza A. General Cyclopropane Assembly by Enantioselective Transfer of a Redox‐Active Carbene to Aliphatic Olefins. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201814123] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
| | - Matteo Costantini
- Dept. of Organic ChemistryStockholm University, Arrhenius Laboratory 10691 Stockholm Sweden
| | | | - Michael E. Muratore
- Cardiovascular, Renal and Metabolism IMED Biotech UnitAstraZeneca Gothenburg 43183 Mölndal Sweden
| | - Magnus J. Johansson
- Cardiovascular, Renal and Metabolism IMED Biotech UnitAstraZeneca Gothenburg 43183 Mölndal Sweden
| | - Abraham Mendoza
- Dept. of Organic ChemistryStockholm University, Arrhenius Laboratory 10691 Stockholm Sweden
| |
Collapse
|
84
|
Moore EJ, Fasan R. Effect of proximal ligand substitutions on the carbene and nitrene transferase activity of myoglobin. Tetrahedron 2019; 75:2357-2363. [PMID: 31133770 PMCID: PMC6534480 DOI: 10.1016/j.tet.2019.03.009] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Engineered myoglobins were recently shown to be effective catalysts for abiological carbene and nitrene transfer reactions. Here, we investigated the impact of substituting the conserved heme-coordinating histidine residue with both proteinogenic (Cys, Ser, Tyr, Asp) and non-proteinogenic Lewis basic amino acids (3-(3'-pyridyl)-alanine, p-aminophenylalanine, and β-(3-thienyl)-alanine), on the reactivity of this metalloprotein toward these abiotic transformations. These studies showed that mutation of the proximal histidine residue with both natural and non-natural amino acids result in stable myoglobin variants that can function as both carbene and nitrene transferases. In addition, substitution of the proximal histidine with an aspartate residue led to a myoglobin-based catalyst capable of promoting stereoselective olefin cyclopropanation under nonreducing conditions. Overall, these studies demonstrate that proximal ligand substitution provides a promising strategy to tune the reactivity of myoglobin-based carbene and nitrene transfer catalysts and provide a first, proof-of-principle demonstration of the viability of pyridine-, thiophene-, and aniline-based unnatural amino acids for metalloprotein engineering.
Collapse
Affiliation(s)
- Eric J Moore
- Department of Chemistry, University of Rochester, Rochester, NY 14627, United States.
| | - Rudi Fasan
- Department of Chemistry, University of Rochester, Rochester, NY 14627, United States.
| |
Collapse
|
85
|
San HH, Wang CY, Zeng HP, Fu ST, Jiang M, Tang XY. Boron-Catalyzed Azide Insertion of α-Aryl α-Diazoesters. J Org Chem 2019; 84:4478-4485. [DOI: 10.1021/acs.joc.8b03278] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Htet Htet San
- School of Chemistry and Chemical Engineering and Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, People’s Republic of China
| | - Chun-Ying Wang
- School of Chemistry and Chemical Engineering and Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, People’s Republic of China
| | - Hai-Peng Zeng
- School of Chemistry and Chemical Engineering and Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, People’s Republic of China
| | - Shi-Tao Fu
- School of Chemistry and Chemical Engineering and Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, People’s Republic of China
| | - Min Jiang
- Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry (SIOC), Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, People’s Republic of China
| | - Xiang-Ying Tang
- School of Chemistry and Chemical Engineering and Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, People’s Republic of China
| |
Collapse
|
86
|
Kim T, Kassim AM, Botejue A, Zhang C, Forte J, Rozzell D, Huffman MA, Devine PN, McIntosh JA. Hemoprotein-Catalyzed Cyclopropanation En Route to the Chiral Cyclopropanol Fragment of Grazoprevir. Chembiochem 2019; 20:1129-1132. [PMID: 30666768 DOI: 10.1002/cbic.201800652] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 01/14/2019] [Indexed: 11/07/2022]
Abstract
Reactions that were once the exclusive province of synthetic catalysts can increasingly be addressed using biocatalysis. Through discovery of unnatural enzyme reactions, biochemists have significantly expanded the reach of enzymatic catalysis to include carbene transfer chemistries including olefin cyclopropanation. Here we describe hemoprotein cyclopropanation catalysts derived from thermophilic bacterial globins that react with diazoacetone and an unactivated olefin substrate to furnish a cyclopropyl ketone, a previously unreported reaction for enzyme catalysts. We further demonstrate that the resulting cyclopropyl ketone can be converted to a key cyclopropanol intermediate that occurs en route to the anti-hepatitis C drug grazoprevir.
Collapse
Affiliation(s)
- Taejin Kim
- Provivi Inc., 1701 Colorado Avenue, Santa Monica, CA, 90404, USA
| | - Amude M Kassim
- Merck & Co., Inc., Enabling Technologies, 126 E. Lincoln Avenue, Rahway, NJ, 07065, USA
| | - Ajit Botejue
- Provivi Inc., 1701 Colorado Avenue, Santa Monica, CA, 90404, USA
| | - Chen Zhang
- Provivi Inc., 1701 Colorado Avenue, Santa Monica, CA, 90404, USA
| | - Jared Forte
- Provivi Inc., 1701 Colorado Avenue, Santa Monica, CA, 90404, USA
| | - David Rozzell
- Provivi Inc., 1701 Colorado Avenue, Santa Monica, CA, 90404, USA
| | - Mark A Huffman
- Merck & Co., Inc., Enabling Technologies, 126 E. Lincoln Avenue, Rahway, NJ, 07065, USA
| | - Paul N Devine
- Merck & Co., Inc., Enabling Technologies, 126 E. Lincoln Avenue, Rahway, NJ, 07065, USA
| | - John A McIntosh
- Merck & Co., Inc., Enabling Technologies, 126 E. Lincoln Avenue, Rahway, NJ, 07065, USA
| |
Collapse
|
87
|
Huang X, Garcia-Borràs M, Miao K, Kan SBJ, Zutshi A, Houk KN, Arnold FH. A Biocatalytic Platform for Synthesis of Chiral α-Trifluoromethylated Organoborons. ACS CENTRAL SCIENCE 2019; 5:270-276. [PMID: 30834315 PMCID: PMC6396380 DOI: 10.1021/acscentsci.8b00679] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Indexed: 05/04/2023]
Abstract
There are few biocatalytic transformations that produce fluorine-containing molecules prevalent in modern pharmaceuticals. To expand the scope of biocatalysis for organofluorine synthesis, we have developed an enzymatic platform for highly enantioselective carbene B-H bond insertion to yield versatile α-trifluoromethylated (α-CF3) organoborons, an important class of organofluorine molecules that contain stereogenic centers bearing both CF3 and boron groups. In contrast to current "carbene transferase" enzymes that use a limited set of simple diazo compounds as carbene precursors, this system based on Rhodothermus marinus cytochrome c (Rma cyt c) can accept a broad range of trifluorodiazo alkanes and deliver versatile chiral α-CF3 organoborons with total turnovers up to 2870 and enantiomeric ratios up to 98.5:1.5. Computational modeling reveals that this broad diazo scope is enabled by an active-site environment that directs the alkyl substituent on the heme CF3-carbene intermediate toward the solvent-exposed face, thereby allowing the protein to accommodate diazo compounds with diverse structural features.
Collapse
Affiliation(s)
- Xiongyi Huang
- Division
of Chemistry and Chemical Engineering, California
Institute of Technology, Pasadena, California 91125, United States
| | - Marc Garcia-Borràs
- Department
of Chemistry and Biochemistry, University
of California, Los Angeles, California 90095, United States
| | - Kun Miao
- Division
of Chemistry and Chemical Engineering, California
Institute of Technology, Pasadena, California 91125, United States
| | - S. B. Jennifer Kan
- Division
of Chemistry and Chemical Engineering, California
Institute of Technology, Pasadena, California 91125, United States
| | - Arjun Zutshi
- Division
of Chemistry and Chemical Engineering, California
Institute of Technology, Pasadena, California 91125, United States
| | - K. N. Houk
- Department
of Chemistry and Biochemistry, University
of California, Los Angeles, California 90095, United States
| | - Frances H. Arnold
- Division
of Chemistry and Chemical Engineering, California
Institute of Technology, Pasadena, California 91125, United States
| |
Collapse
|
88
|
Montesinos-Magraner M, Costantini M, Ramírez-Contreras R, Muratore ME, Johansson MJ, Mendoza A. General Cyclopropane Assembly by Enantioselective Transfer of a Redox-Active Carbene to Aliphatic Olefins. Angew Chem Int Ed Engl 2019; 58:5930-5935. [PMID: 30675970 DOI: 10.1002/anie.201814123] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Indexed: 12/30/2022]
Abstract
Asymmetric cyclopropane synthesis currently requires bespoke strategies, methods, substrates, and reagents, even when targeting similar compounds. This approach slows down discovery and limits available chemical space. Introduced herein is a practical and versatile diazocompound and its performance in the first unified asymmetric synthesis of functionalized cyclopropanes. The redox-active leaving group in this reagent enhances the reactivity and selectivity of geminal carbene transfer. This effect allowed the asymmetric cyclopropanation of various olefins, including unfunctionalized aliphatic alkenes, that enables the three-step total synthesis of (-)-dictyopterene A. This unified synthetic approach delivers high enantioselectivities that are independent of the stereoelectronic properties of the functional groups transferred. Our results demonstrate that orthogonally differentiated diazocompounds are viable and advantageous equivalents of single-carbon chirons.
Collapse
Affiliation(s)
- Marc Montesinos-Magraner
- Dept. of Organic Chemistry, Stockholm University, Arrhenius Laboratory, 10691, Stockholm, Sweden
| | - Matteo Costantini
- Dept. of Organic Chemistry, Stockholm University, Arrhenius Laboratory, 10691, Stockholm, Sweden
| | | | - Michael E Muratore
- Cardiovascular, Renal and Metabolism IMED Biotech Unit, AstraZeneca Gothenburg, 43183, Mölndal, Sweden
| | - Magnus J Johansson
- Cardiovascular, Renal and Metabolism IMED Biotech Unit, AstraZeneca Gothenburg, 43183, Mölndal, Sweden
| | - Abraham Mendoza
- Dept. of Organic Chemistry, Stockholm University, Arrhenius Laboratory, 10691, Stockholm, Sweden
| |
Collapse
|
89
|
Tinoco A, Wei Y, Bacik JP, Carminati DM, Moore EJ, Ando N, Zhang Y, Fasan R. Origin of high stereocontrol in olefin cyclopropanation catalyzed by an engineered carbene transferase. ACS Catal 2019; 9:1514-1524. [PMID: 31134138 DOI: 10.1021/acscatal.8b04073] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Recent advances in metalloprotein engineering have led to the development of a myoglobin-based catalyst, Mb(H64V,V68A), capable of promoting the cyclopropanation of vinylarenes with high efficiency and high diastereo- and enantioselectivity. Whereas many enzymes evolved in nature often exhibit catalytic proficiency and exquisite stereoselectivity, how these features are achieved for a non-natural reaction has remained unclear. In this work, the structural determinants responsible for chiral induction and high stereocontrol in Mb(H64V,V68A)-catalyzed cyclopropanation were investigated via a combination of crystallographic, computational (DFT), and structure-activity analyses. Our results show the importance of steric complementarity and non-covalent interactions involving first-sphere active site residues, heme-carbene, and the olefin substrate, in dictating the stereochemical outcome of the cyclopropanation reaction. High stereocontrol is achieved through two major mechanisms. First, by enforcing a specific conformation of the heme-bound carbene within the active site. Second, by controlling the geometry of attack of the olefin on the carbene via steric occlusion, attractive van der Waals forces and protein-mediated π-π interactions with the olefin substrate. These insights could be leveraged to expand the substrate scope of the myoglobin-based cyclopropanation catalyst toward non-activated olefins and to increase its cyclopropanation activity in the presence of a bulky α-diazo-ester. This work sheds first light into the origin of enzyme-catalyzed enantioselective cyclopropanation, furnishing a mechanistic framework for both understanding the reactivity of current systems and guiding the future development of biological catalysts for this class of synthetically important, abiotic transformations.
Collapse
Affiliation(s)
- Antonio Tinoco
- Department of Chemistry, University of Rochester, Rochester, New York 14627, United States
| | - Yang Wei
- Department of Chemistry and Chemical Biology, Stevens Institute of Technology, Hoboken, New Jersey 07030, United States
| | - John-Paul Bacik
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Daniela M. Carminati
- Department of Chemistry, University of Rochester, Rochester, New York 14627, United States
| | - Eric J. Moore
- Department of Chemistry, University of Rochester, Rochester, New York 14627, United States
| | - Nozomi Ando
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Yong Zhang
- Department of Chemistry and Chemical Biology, Stevens Institute of Technology, Hoboken, New Jersey 07030, United States
| | - Rudi Fasan
- Department of Chemistry, University of Rochester, Rochester, New York 14627, United States
| |
Collapse
|
90
|
Wu S, Zhou Y, Li Z. Biocatalytic selective functionalisation of alkenes via single-step and one-pot multi-step reactions. Chem Commun (Camb) 2019; 55:883-896. [PMID: 30566124 DOI: 10.1039/c8cc07828a] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Alkenes are excellent starting materials for organic synthesis due to the versatile reactivity of C[double bond, length as m-dash]C bonds and the easy availability of many unfunctionalised alkenes. Direct regio- and/or enantioselective conversion of alkenes into functionalised (chiral) compounds has enormous potential for industrial applications, and thus has attracted the attention of researchers for extensive development using chemo-catalysis over the past few years. On the other hand, many enzymes have also been employed for conversion of alkenes in a highly selective and much greener manner to offer valuable products. Herein, we review recent advances in seven well-known types of biocatalytic conversion of alkenes. Remarkably, recent mechanism-guided directed evolution and enzyme cascades have enabled the development of seven novel types of single-step and one-pot multi-step functionalisation of alkenes, some of which are even unattainable via chemo-catalysis. These new reactions are particularly highlighted in this feature article. Overall, we present an ever-expanding enzyme toolbox for various alkene functionalisations inspiring further research in this fast-developing theme.
Collapse
Affiliation(s)
- Shuke Wu
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585.
| | | | | |
Collapse
|
91
|
Pickl M, Kurakin S, Cantú Reinhard FG, Schmid P, Pöcheim A, Winkler CK, Kroutil W, de Visser SP, Faber K. Mechanistic Studies of Fatty Acid Activation by CYP152 Peroxygenases Reveal Unexpected Desaturase Activity. ACS Catal 2019; 9:565-577. [PMID: 30637174 PMCID: PMC6323616 DOI: 10.1021/acscatal.8b03733] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 12/04/2018] [Indexed: 02/05/2023]
Abstract
![]()
The
majority of cytochrome P450 enzymes (CYPs) predominantly operate
as monooxygenases, but recently a class of P450 enzymes was discovered,
that can act as peroxygenases (CYP152). These enzymes convert fatty
acids through oxidative decarboxylation, yielding terminal alkenes,
and through α- and β-hydroxylation to yield hydroxy-fatty
acids. Bioderived olefins may serve as biofuels, and hence understanding
the mechanism and substrate scope of this class of enzymes is important.
In this work, we report on the substrate scope and catalytic promiscuity
of CYP OleTJE and two of its orthologues from the CYP152
family, utilizing α-monosubstituted branched carboxylic acids.
We identify α,β-desaturation as an unexpected dominant
pathway for CYP OleTJE with 2-methylbutyric acid. To rationalize
product distributions arising from α/β-hydroxylation,
oxidative decarboxylation, and desaturation depending on the substrate’s
structure and binding pattern, a computational study was performed
based on an active site complex of CYP OleTJE containing
the heme cofactor in the substrate binding pocket and 2-methylbutyric
acid as substrate. It is shown that substrate positioning determines
the accessibility of the oxidizing species (Compound I) to the substrate
and hence the regio- and chemoselectivity of the reaction. Furthermore,
the results show that, for 2-methylbutyric acid, α,β-desaturation
is favorable because of a rate-determining α-hydrogen atom abstraction,
which cannot proceed to decarboxylation. Moreover, substrate hydroxylation
is energetically impeded due to the tight shape and size of the substrate
binding pocket.
Collapse
Affiliation(s)
- Mathias Pickl
- Department of Chemistry, Organic & Bioorganic Chemistry, University of Graz, Heinrichstrasse 28, A-8010 Graz, Austria
| | - Sara Kurakin
- Department of Chemistry, Organic & Bioorganic Chemistry, University of Graz, Heinrichstrasse 28, A-8010 Graz, Austria
| | - Fabián G. Cantú Reinhard
- The Manchester Institute of Biotechnology and School of Chemical Engineering and Analytical Science, The University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom
| | - Philipp Schmid
- Department of Chemistry, Organic & Bioorganic Chemistry, University of Graz, Heinrichstrasse 28, A-8010 Graz, Austria
| | - Alexander Pöcheim
- Department of Chemistry, Organic & Bioorganic Chemistry, University of Graz, Heinrichstrasse 28, A-8010 Graz, Austria
| | - Christoph K. Winkler
- Department of Chemistry, Organic & Bioorganic Chemistry, University of Graz, Heinrichstrasse 28, A-8010 Graz, Austria
- Austrian Centre of Industrial Biotechnology (ACIB GmbH), Petersgasse 14, A-8010 Graz, Austria
| | - Wolfgang Kroutil
- Department of Chemistry, Organic & Bioorganic Chemistry, University of Graz, Heinrichstrasse 28, A-8010 Graz, Austria
| | - Sam P. de Visser
- The Manchester Institute of Biotechnology and School of Chemical Engineering and Analytical Science, The University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom
| | - Kurt Faber
- Department of Chemistry, Organic & Bioorganic Chemistry, University of Graz, Heinrichstrasse 28, A-8010 Graz, Austria
| |
Collapse
|
92
|
Abstract
Enzymes are complex biological catalysts and are critical to life. Most oxidations of chemicals are catalyzed by cytochrome P450 (P450, CYP) enzymes, which generally utilize mixed-function oxidase stoichiometry, utilizing pyridine nucleotides as electron donors: NAD(P)H + O2 + R → NAD(P)+ + RO + H2O (where R is a carbon substrate and RO is an oxidized product). The catalysis of oxidations is largely understood in the context of the heme iron-oxygen complex generally referred to as Compound I, formally FeO3+, whose basis was in peroxidase chemistry. Many X-ray crystal structures of P450s are now available (≥ 822 structures from ≥146 different P450s) and have helped in understanding catalytic specificity. In addition to hydroxylations, P450s catalyze more complex oxidations, including C-C bond formation and cleavage. Enzymes derived from P450s by directed evolution can even catalyze more unusual reactions, e.g. cyclopropanation. Current P450 questions under investigation include the potential role of the intermediate Compound 0 (formally FeIII-O2 -) in catalysis of some reactions, the roles of high- and low-spin forms of Compound I, the mechanism of desaturation, the roles of open and closed structures of P450s in catalysis, the extent of processivity in multi-step oxidations, and the role of the accessory protein cytochrome b 5. More global questions include exactly how structure drives function, prediction of catalysis, and roles of multiple protein conformations.
Collapse
Affiliation(s)
- F. Peter Guengerich
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146, United States
| |
Collapse
|
93
|
Guo J, Zhang R, Ouyang J, Zhang F, Qin F, Liu G, Zhang W, Li H, Ji X, Jia X, Qin B, You S. Stereodivergent Synthesis of Carveol and Dihydrocarveol through Ketoreductases/Ene‐Reductases Catalyzed Asymmetric Reduction. ChemCatChem 2018. [DOI: 10.1002/cctc.201801391] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Jiyang Guo
- School of Life Sciences and Biopharmaceutical SciencesShenyang Pharmaceutical University 103 Wenhua Road, Shenhe District Shenyang 110016 P.R. China
| | - Rui Zhang
- Wuya College of InnovationShenyang Pharmaceutical University 103 Wenhua Road, Shenhe District Shenyang 110016 P.R. China
| | - Jingping Ouyang
- School of Pharmaceutical EngineeringShenyang Pharmaceutical University 103 Wenhua Road, Shenhe District Shenyang 110016 P.R. China
| | - Feiting Zhang
- School of Life Sciences and Biopharmaceutical SciencesShenyang Pharmaceutical University 103 Wenhua Road, Shenhe District Shenyang 110016 P.R. China
| | - Fengyu Qin
- School of Life Sciences and Biopharmaceutical SciencesShenyang Pharmaceutical University 103 Wenhua Road, Shenhe District Shenyang 110016 P.R. China
| | - Guigao Liu
- Wuya College of InnovationShenyang Pharmaceutical University 103 Wenhua Road, Shenhe District Shenyang 110016 P.R. China
| | - Wenhe Zhang
- School of Life Sciences and Biopharmaceutical SciencesShenyang Pharmaceutical University 103 Wenhua Road, Shenhe District Shenyang 110016 P.R. China
| | - Hengyu Li
- School of Life Sciences and Biopharmaceutical SciencesShenyang Pharmaceutical University 103 Wenhua Road, Shenhe District Shenyang 110016 P.R. China
| | - Xiaohong Ji
- Wuya College of InnovationShenyang Pharmaceutical University 103 Wenhua Road, Shenhe District Shenyang 110016 P.R. China
| | - Xian Jia
- School of Pharmaceutical EngineeringShenyang Pharmaceutical University 103 Wenhua Road, Shenhe District Shenyang 110016 P.R. China
| | - Bin Qin
- Wuya College of InnovationShenyang Pharmaceutical University 103 Wenhua Road, Shenhe District Shenyang 110016 P.R. China
| | - Song You
- School of Life Sciences and Biopharmaceutical SciencesShenyang Pharmaceutical University 103 Wenhua Road, Shenhe District Shenyang 110016 P.R. China
| |
Collapse
|
94
|
Chandgude AL, Fasan R. Highly Diastereo- and Enantioselective Synthesis of Nitrile-Substituted Cyclopropanes by Myoglobin-Mediated Carbene Transfer Catalysis. Angew Chem Int Ed Engl 2018; 57:15852-15856. [PMID: 30300955 DOI: 10.1002/anie.201810059] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Indexed: 11/08/2022]
Abstract
A chemobiocatalytic strategy for the highly stereoselective synthesis of nitrile-substituted cyclopropanes is reported. The present approach relies on an asymmetric olefin cyclopropanation reaction catalyzed by an engineered myoglobin in the presence of ex situ generated diazoacetonitrile within a compartmentalized reaction system. This method enabled the efficient transformation of a broad range of olefin substrates at a preparative scale with up to 99.9 % de and ee and up to 5600 turnovers. The enzymatic product could be further elaborated to afford a variety of functionalized chiral cyclopropanes. This work expands the range of synthetically valuable, abiotic transformations accessible through biocatalysis and paves the way to the practical and safe exploitation of diazoacetonitrile in biocatalytic carbene transfer reactions.
Collapse
Affiliation(s)
- Ajay L Chandgude
- Department of Chemistry, University of Rochester, 120 Trustee Road, Rochester, NY, 14627, USA
| | - Rudi Fasan
- Department of Chemistry, University of Rochester, 120 Trustee Road, Rochester, NY, 14627, USA
| |
Collapse
|
95
|
Chandgude AL, Fasan R. Highly Diastereo‐ and Enantioselective Synthesis of Nitrile‐Substituted Cyclopropanes by Myoglobin‐Mediated Carbene Transfer Catalysis. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201810059] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Ajay L. Chandgude
- Department of Chemistry University of Rochester 120 Trustee Road Rochester NY 14627 USA
| | - Rudi Fasan
- Department of Chemistry University of Rochester 120 Trustee Road Rochester NY 14627 USA
| |
Collapse
|
96
|
Chen K, Zhang SQ, Brandenberg OF, Hong X, Arnold FH. Alternate Heme Ligation Steers Activity and Selectivity in Engineered Cytochrome P450-Catalyzed Carbene-Transfer Reactions. J Am Chem Soc 2018; 140:16402-16407. [DOI: 10.1021/jacs.8b09613] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Kai Chen
- Division of Chemistry and Chemical Engineering 210-41, California Institute of Technology, Pasadena, California 91125, United States
| | - Shuo-Qing Zhang
- Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang 310027, P. R. China
| | - Oliver F. Brandenberg
- Division of Chemistry and Chemical Engineering 210-41, California Institute of Technology, Pasadena, California 91125, United States
| | - Xin Hong
- Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang 310027, P. R. China
| | - Frances H. Arnold
- Division of Chemistry and Chemical Engineering 210-41, California Institute of Technology, Pasadena, California 91125, United States
| |
Collapse
|
97
|
Lewis RD, Garcia-Borràs M, Chalkley MJ, Buller AR, Houk KN, Kan SBJ, Arnold FH. Catalytic iron-carbene intermediate revealed in a cytochrome c carbene transferase. Proc Natl Acad Sci U S A 2018; 115:7308-7313. [PMID: 29946033 PMCID: PMC6048479 DOI: 10.1073/pnas.1807027115] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Recently, heme proteins have been discovered and engineered by directed evolution to catalyze chemical transformations that are biochemically unprecedented. Many of these nonnatural enzyme-catalyzed reactions are assumed to proceed through a catalytic iron porphyrin carbene (IPC) intermediate, although this intermediate has never been observed in a protein. Using crystallographic, spectroscopic, and computational methods, we have captured and studied a catalytic IPC intermediate in the active site of an enzyme derived from thermostable Rhodothermus marinus (Rma) cytochrome c High-resolution crystal structures and computational methods reveal how directed evolution created an active site for carbene transfer in an electron transfer protein and how the laboratory-evolved enzyme achieves perfect carbene transfer stereoselectivity by holding the catalytic IPC in a single orientation. We also discovered that the IPC in Rma cytochrome c has a singlet ground electronic state and that the protein environment uses geometrical constraints and noncovalent interactions to influence different IPC electronic states. This information helps us to understand the impressive reactivity and selectivity of carbene transfer enzymes and offers insights that will guide and inspire future engineering efforts.
Collapse
Affiliation(s)
- Russell D Lewis
- Division of Biology and Bioengineering, California Institute of Technology, Pasadena, CA 91125
| | - Marc Garcia-Borràs
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095
| | - Matthew J Chalkley
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125
| | - Andrew R Buller
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125
| | - K N Houk
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095;
| | - S B Jennifer Kan
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125
| | - Frances H Arnold
- Division of Biology and Bioengineering, California Institute of Technology, Pasadena, CA 91125;
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125
| |
Collapse
|
98
|
Brandenberg OF, Prier CK, Chen K, Knight AM, Wu Z, Arnold FH. Stereoselective Enzymatic Synthesis of Heteroatom-Substituted Cyclopropanes. ACS Catal 2018. [DOI: 10.1021/acscatal.7b04423] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Oliver F. Brandenberg
- Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 East California Boulevard, Pasadena, California 91125, United States
| | - Christopher K. Prier
- Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 East California Boulevard, Pasadena, California 91125, United States
| | - Kai Chen
- Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 East California Boulevard, Pasadena, California 91125, United States
| | - Anders M. Knight
- Division of Biology and Bioengineering, California Institute of Technology, 1200 East California Boulevard, Pasadena, California 91125, United States
| | - Zachary Wu
- Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 East California Boulevard, Pasadena, California 91125, United States
| | - Frances H. Arnold
- Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 East California Boulevard, Pasadena, California 91125, United States
| |
Collapse
|