51
|
Bacterial Pathogens Hijack the Innate Immune Response by Activation of the Reverse Transsulfuration Pathway. mBio 2019; 10:mBio.02174-19. [PMID: 31662455 PMCID: PMC6819659 DOI: 10.1128/mbio.02174-19] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Macrophages are professional immune cells that ingest and kill microbes. In this study, we show that different pathogenic bacteria induce the expression of cystathionine γ-lyase (CTH) in macrophages. This enzyme is involved in a metabolic pathway called the reverse transsulfuration pathway, which leads to the production of numerous metabolites, including cystathionine. Phagocytized bacteria use cystathionine to better survive in macrophages. In addition, the induction of CTH results in dysregulation of the metabolism of polyamines, which in turn dampens the proinflammatory response of macrophages. In conclusion, pathogenic bacteria can evade the host immune response by inducing CTH in macrophages. The reverse transsulfuration pathway is the major route for the metabolism of sulfur-containing amino acids. The role of this metabolic pathway in macrophage response and function is unknown. We show that the enzyme cystathionine γ-lyase (CTH) is induced in macrophages infected with pathogenic bacteria through signaling involving phosphatidylinositol 3-kinase (PI3K)/MTOR and the transcription factor SP1. This results in the synthesis of cystathionine, which facilitates the survival of pathogens within myeloid cells. Our data demonstrate that the expression of CTH leads to defective macrophage activation by (i) dysregulation of polyamine metabolism by depletion of S-adenosylmethionine, resulting in immunosuppressive putrescine accumulation and inhibition of spermidine and spermine synthesis, and (ii) increased histone H3K9, H3K27, and H3K36 di/trimethylation, which is associated with gene expression silencing. Thus, CTH is a pivotal enzyme of the innate immune response that disrupts host defense. The induction of the reverse transsulfuration pathway by bacterial pathogens can be considered an unrecognized mechanism for immune escape.
Collapse
|
52
|
Wang X, Sun Q, Zhao L, Gong S, Xu L. Visualization of hydrogen polysulfides in living cells and in vivo via a near-infrared fluorescent probe. J Biol Inorg Chem 2019; 24:1077-1085. [PMID: 31515622 DOI: 10.1007/s00775-019-01718-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 08/29/2019] [Indexed: 11/24/2022]
Abstract
Hydrogen polysulfides (H2Sn, n > 1), as the oxidized forms of H2S, have attracted increasing attention these years due to their involvement in signaling transduction and cytoprotective processes. It is necessary to detect H2Sn in living systems for the study of their functions. In this work, we report a BODIPY-based near-infrared emitting fluorescence probe NIR-PHS1, with "turn-on" response, rapid response rate (within 10 min), outstanding selectivity and excellent sensitivity (detection limit = 12 nM) response towards H2Sn. The probe was successfully applied to the visualizing of endogenous H2Sn in living cells. Moreover, it can be used for near-infrared in vivo imaging of H2Sn in living mice. Therefore, NIR-PHS1 could be a potential imaging tool to study the biological roles of H2Sn in living systems.
Collapse
Affiliation(s)
- Xiaoqing Wang
- College of Science, Nanjing Forestry University, Nanjing, 210037, China.
| | - Qian Sun
- College of Science, Nanjing Forestry University, Nanjing, 210037, China
| | - Liming Zhao
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, 252059, China
| | - Shuwen Gong
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, 252059, China
| | - Li Xu
- College of Science, Nanjing Forestry University, Nanjing, 210037, China. .,Institute of Material Physics and Chemistry, Nanjing Forestry University, Nanjing, 210037, China.
| |
Collapse
|
53
|
Hou N, Yan Z, Fan K, Li H, Zhao R, Xia Y, Xun L, Liu H. OxyR senses sulfane sulfur and activates the genes for its removal in Escherichia coli. Redox Biol 2019; 26:101293. [PMID: 31421411 PMCID: PMC6831875 DOI: 10.1016/j.redox.2019.101293] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 07/24/2019] [Accepted: 08/07/2019] [Indexed: 01/08/2023] Open
Abstract
Sulfane sulfur species including hydrogen polysulfide and organic persulfide are newly recognized normal cellular components, and they participate in signaling and protect cells from oxidative stress. Their production has been extensively studied, but their removal is less characterized. Herein, we showed that sulfane sulfur at high levels was toxic to Escherichia coli under both anaerobic and aerobic conditions. OxyR, a well-known regulator against H2O2, also sensed sulfane sulfur, as revealed via mutational analysis, constructed gene circuits, and in vitro gene expression. Hydrogen polysulfide modified OxyR at Cys199 to form a persulfide OxyR C199-SSH, and the modified OxyR activated the expression of thioredoxin 2 and glutaredoxin 1. The two enzymes are known to reduce sulfane sulfur to hydrogen sulfide. Bioinformatics analysis indicated that OxyR homologs are widely present in bacteria, including obligate anaerobic bacteria. Thus, the OxyR sensing of sulfane sulfur may represent a preserved mechanism for bacteria to deal with sulfane sulfur stress. OxyR also senses sulfane sulfur stress and activates the genes for its removal. OxyR senses hydrogen polysulfide via persulfidation of OxyR at Cys199. OxyR responds to sulfane sulfur stress under both aerobic and anaerobic conditions. OxyR is widely distributed in bacterial genomes, including anaerobic bacteria.
Collapse
Affiliation(s)
- Ningke Hou
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, People's Republic of China
| | - Zhenzhen Yan
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, People's Republic of China
| | - Kaili Fan
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, People's Republic of China
| | - Huanjie Li
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, People's Republic of China
| | - Rui Zhao
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, People's Republic of China
| | - Yongzhen Xia
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, People's Republic of China
| | - Luying Xun
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, People's Republic of China; School of Molecular Biosciences, Washington State University, Pullman, WA, 99164-7520, USA.
| | - Huaiwei Liu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, People's Republic of China.
| |
Collapse
|
54
|
Zheng C, Guo S, Tennant WG, Pradhan PK, Black KA, Dos Santos PC. The Thioredoxin System Reduces Protein Persulfide Intermediates Formed during the Synthesis of Thio-Cofactors in Bacillus subtilis. Biochemistry 2019; 58:1892-1904. [PMID: 30855939 DOI: 10.1021/acs.biochem.9b00045] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The biosynthesis of Fe-S clusters and other thio-cofactors requires the participation of redox agents. A shared feature in these pathways is the formation of transient protein persulfides, which are susceptible to reduction by artificial reducing agents commonly used in reactions in vitro. These agents modulate the reactivity and catalytic efficiency of biosynthetic reactions and, in some cases, skew the enzymes' kinetic behavior, bypassing sulfur acceptors known to be critical for the functionality of these pathways in vivo. Here, we provide kinetic evidence for the selective reactivity of the Bacillus subtilis Trx (thioredoxin) system toward protein-bound persulfide intermediates. Our results demonstrate that the redox flux of the Trx system modulates the rate of sulfide production in cysteine desulfurase assays. Likewise, the activity of the Trx system is dependent on the rate of persulfide formation, suggesting the occurrence of coupled reaction schemes between both enzymatic systems in vitro. Inactivation of TrxA (thioredoxin) or TrxR (thioredoxin reductase) impairs the activity of Fe-S enzymes in B. subtilis, indicating the involvement of the Trx system in Fe-S cluster metabolism. Surprisingly, biochemical characterization of TrxA reveals that this enzyme is able to coordinate Fe-S species, resulting in the loss of its reductase activity. The inactivation of TrxA through the coordination of a labile cluster, combined with its proposed role as a physiological reducing agent in sulfur transfer pathways, suggests a model for redox regulation. These findings provide a potential link between redox regulation and Fe-S metabolism.
Collapse
Affiliation(s)
- Chenkang Zheng
- Department of Chemistry , Wake Forest University , Winston-Salem , North Carolina 27106 , United States
| | - Selina Guo
- Department of Chemistry , Wake Forest University , Winston-Salem , North Carolina 27106 , United States
| | - William G Tennant
- Department of Chemistry , Wake Forest University , Winston-Salem , North Carolina 27106 , United States
| | - Pradyumna K Pradhan
- Department of Chemistry , Wake Forest University , Winston-Salem , North Carolina 27106 , United States.,Department of Chemistry and Biochemistry , The University of North Carolina at Greensboro , Greensboro , North Carolina 27412 , United States
| | - Katherine A Black
- Department of Chemistry , Wake Forest University , Winston-Salem , North Carolina 27106 , United States.,Department of Medicine , Weill Cornell Medicine , New York , New York 10065 , United States
| | - Patricia C Dos Santos
- Department of Chemistry , Wake Forest University , Winston-Salem , North Carolina 27106 , United States
| |
Collapse
|
55
|
H 2S, a Bacterial Defense Mechanism against the Host Immune Response. Infect Immun 2018; 87:IAI.00272-18. [PMID: 30323021 DOI: 10.1128/iai.00272-18] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 10/04/2018] [Indexed: 12/21/2022] Open
Abstract
The biological mediator hydrogen sulfide (H2S) is produced by bacteria and has been shown to be cytoprotective against oxidative stress and to increase the sensitivity of various bacteria to a range of antibiotic drugs. Here we evaluated whether bacterial H2S provides resistance against the immune response, using two bacterial species that are common sources of nosocomial infections, Escherichia coli and Staphylococcus aureus Elevations in H2S levels increased the resistance of both species to immune-mediated killing. Clearances of infections with wild-type and genetically H2S-deficient E. coli and S. aureus were compared in vitro and in mouse models of abdominal sepsis and burn wound infection. Also, inhibitors of H2S-producing enzymes were used to assess bacterial killing by leukocytes. We found that inhibition of bacterial H2S production can increase the susceptibility of both bacterial species to rapid killing by immune cells and can improve bacterial clearance after severe burn, an injury that increases susceptibility to opportunistic infections. These findings support the role of H2S as a bacterial defense mechanism against the host response and implicate bacterial H2S inhibition as a potential therapeutic intervention in the prevention or treatment of infections.
Collapse
|
56
|
Tiwari V. Post-translational modification of ESKAPE pathogens as a potential target in drug discovery. Drug Discov Today 2018; 24:814-822. [PMID: 30572117 DOI: 10.1016/j.drudis.2018.12.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 11/23/2018] [Accepted: 12/12/2018] [Indexed: 12/19/2022]
Abstract
ESKAPE pathogens are gaining clinical importance owing to their high pervasiveness and increasing resistance to various antimicrobials. These bacteria have several post-translational modifications (PTMs) that destabilize or divert host cell pathways. Prevalent PTMs of ESKAPE pathogens include addition of chemical groups (acetylation, phosphorylation, methylation and hydroxylation) or complex molecules (AMPylation, ADP-ribosylation, glycosylation and isoprenylation), covalently linked small proteins [ubiquitylation, ubiquitin-like proteins (UBL) conjugation and small ubiquitin-like modifier (SUMO)] or modification of amino acid side-chains (eliminylation and deamidation). Therefore, the understanding of different bacterial PTMs and host proteins manipulated by these PTMs provides better insight into host-pathogen interaction and will also help to develop new antibacterial agents against ESKAPE pathogens.
Collapse
Affiliation(s)
- Vishvanath Tiwari
- Department of Biochemistry, Central University of Rajasthan, Bandarsindri, Ajmer 305817, India.
| |
Collapse
|
57
|
Capdevila DA, Huerta F, Edmonds KA, Le MT, Wu H, Giedroc DP. Tuning site-specific dynamics to drive allosteric activation in a pneumococcal zinc uptake regulator. eLife 2018; 7:37268. [PMID: 30328810 PMCID: PMC6224198 DOI: 10.7554/elife.37268] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 10/16/2018] [Indexed: 11/25/2022] Open
Abstract
MarR (multiple antibiotic resistance repressor) family proteins are bacterial repressors that regulate transcription in response to a wide range of chemical signals. Although specific features of MarR family function have been described, the role of atomic motions in MarRs remains unexplored thus limiting insights into the evolution of allostery in this ubiquitous family of repressors. Here, we provide the first experimental evidence that internal dynamics play a crucial functional role in MarR proteins. Streptococcus pneumoniae AdcR (adhesin-competence repressor) regulates ZnII homeostasis and ZnII functions as an allosteric activator of DNA binding. ZnII coordination triggers a transition from somewhat independent domains to a more compact structure. We identify residues that impact allosteric activation on the basis of ZnII-induced perturbations of atomic motions over a wide range of timescales. These findings appear to reconcile the distinct allosteric mechanisms proposed for other MarRs and highlight the importance of conformational dynamics in biological regulation.
Collapse
Affiliation(s)
| | - Fidel Huerta
- Department of Chemistry, Indiana University, Bloomington, United States.,Graduate Program in Biochemistry, Indiana University, Bloomington, United States
| | | | - My Tra Le
- Department of Chemistry, Indiana University, Bloomington, United States
| | - Hongwei Wu
- Department of Chemistry, Indiana University, Bloomington, United States
| | - David P Giedroc
- Department of Chemistry, Indiana University, Bloomington, United States.,Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, United States
| |
Collapse
|
58
|
Peng H, Zhang Y, Trinidad JC, Giedroc DP. Thioredoxin Profiling of Multiple Thioredoxin-Like Proteins in Staphylococcus aureus. Front Microbiol 2018; 9:2385. [PMID: 30374335 PMCID: PMC6196236 DOI: 10.3389/fmicb.2018.02385] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 09/18/2018] [Indexed: 12/23/2022] Open
Abstract
Hydrogen sulfide (H2S) is thought to signal through protein S-sulfuration (persulfidation; S-sulfhydration) in both mammalian systems and bacteria. We previously profiled proteome S-sulfuration in Staphylococcus aureus (S. aureus) and identified two thioredoxin-like proteins, designated TrxP and TrxQ, that were capable of reducing protein persulfides as a potential regulatory mechanism. In this study, we further characterize TrxP, TrxQ and the canonical thioredoxin, TrxA, by identifying candidate protein substrates in S. aureus cells using a mechanism-based profiling assay where we trap mixed disulfides that exist between the attacking cysteine of a FLAG-tagged Trx and a persulfidated cysteine on the candidate substrate protein in cells. Largely non-overlapping sets of four, 32 and three candidate cellular substrates were detected for TrxA, TrxP, and TrxQ, respectively, many of which were previously identified as global proteome S-sulfuration targets including for example, pyruvate kinase, PykA. Both TrxA (k cat = 0.13 s-1) and TrxP (k cat = 0.088 s-1) are capable of reducing protein persulfides on PykA, a model substrate detected as a candidate substrate of TrxP; in contrast, TrxQ shows lower activity (k cat = 0.015 s-1). This work reveals that protein S-sulfuration, central to H2S and reactive sulfur species (RSS) signaling, may impact cellular activities and appears to be regulated in S. aureus largely by TrxP under conditions of sulfide stress.
Collapse
Affiliation(s)
- Hui Peng
- Department of Chemistry, Indiana University Bloomington, Bloomington, IN, United States.,Biochemistry Graduate Program, Indiana University Bloomington, Bloomington, IN, United States
| | - Yixiang Zhang
- Department of Chemistry, Indiana University Bloomington, Bloomington, IN, United States.,Laboratory for Biological Mass Spectrometry, Department of Chemistry, Indiana University Bloomington, Bloomington, IN, United States
| | - Jonathan C Trinidad
- Department of Chemistry, Indiana University Bloomington, Bloomington, IN, United States.,Laboratory for Biological Mass Spectrometry, Department of Chemistry, Indiana University Bloomington, Bloomington, IN, United States
| | - David P Giedroc
- Department of Chemistry, Indiana University Bloomington, Bloomington, IN, United States.,Department of Molecular and Cellular Biochemistry, Indiana University Bloomington, Bloomington, IN, United States
| |
Collapse
|
59
|
Do nitric oxide, carbon monoxide and hydrogen sulfide really qualify as 'gasotransmitters' in bacteria? Biochem Soc Trans 2018; 46:1107-1118. [PMID: 30190328 PMCID: PMC6195638 DOI: 10.1042/bst20170311] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 07/27/2018] [Accepted: 07/30/2018] [Indexed: 01/04/2023]
Abstract
A gasotransmitter is defined as a small, generally reactive, gaseous molecule that, in solution, is generated endogenously in an organism and exerts important signalling roles. It is noteworthy that these molecules are also toxic and antimicrobial. We ask: is this definition of a gasotransmitter appropriate in the cases of nitric oxide, carbon monoxide and hydrogen sulfide (H2S) in microbes? Recent advances show that, not only do bacteria synthesise each of these gases, but the molecules also have important signalling or messenger roles in addition to their toxic effects. However, strict application of the criteria proposed for a gasotransmitter leads us to conclude that the term ‘small molecule signalling agent’, as proposed by Fukuto and others, is preferable terminology.
Collapse
|
60
|
Imber M, Pietrzyk-Brzezinska AJ, Antelmann H. Redox regulation by reversible protein S-thiolation in Gram-positive bacteria. Redox Biol 2018; 20:130-145. [PMID: 30308476 PMCID: PMC6178380 DOI: 10.1016/j.redox.2018.08.017] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 08/09/2018] [Accepted: 08/23/2018] [Indexed: 12/21/2022] Open
Abstract
Low molecular weight (LMW) thiols play an important role as thiol-cofactors for many enzymes and are crucial to maintain the reduced state of the cytoplasm. Most Gram-negative bacteria utilize glutathione (GSH) as major LMW thiol. However, in Gram-positive Actinomycetes and Firmicutes alternative LMW thiols, such as mycothiol (MSH) and bacillithiol (BSH) play related roles as GSH surrogates, respectively. Under conditions of hypochlorite stress, MSH and BSH are known to form mixed disulfides with protein thiols, termed as S-mycothiolation or S-bacillithiolation that function in thiol-protection and redox regulation. Protein S-thiolations are widespread redox-modifications discovered in different Gram-positive bacteria, such as Bacillus and Staphylococcus species, Mycobacterium smegmatis, Corynebacterium glutamicum and Corynebacterium diphtheriae. S-thiolated proteins are mainly involved in cellular metabolism, protein translation, redox regulation and antioxidant functions with some conserved targets across bacteria. The reduction of protein S-mycothiolations and S-bacillithiolations requires glutaredoxin-related mycoredoxin and bacilliredoxin pathways to regenerate protein functions. In this review, we present an overview of the functions of mycothiol and bacillithiol and their physiological roles in protein S-bacillithiolations and S-mycothiolations in Gram-positive bacteria. Significant progress has been made to characterize the role of protein S-thiolation in redox-regulation and thiol protection of main metabolic and antioxidant enzymes. However, the physiological roles of the pathways for regeneration are only beginning to emerge as well as their interactions with other cellular redox systems. Future studies should be also directed to explore the roles of protein S-thiolations and their redox pathways in pathogenic bacteria under infection conditions to discover new drug targets and treatment options against multiple antibiotic resistant bacteria. Bacillithiol and mycothiol are major LMW thiols in many Gram-positive bacteria. HOCl leads to widespread protein S-mycothiolation and S-bacillithiolation which function in thiol-protection and redox regulation. Redox-sensitive metabolic and antioxidant enzymes are main targets for S-mycothiolation or S-bacillithiolation. Mycoredoxin and bacilliredoxin pathways mediate reduction of S-thiolations.
Collapse
Affiliation(s)
- Marcel Imber
- Freie Universität Berlin, Institute for Biology-Microbiology, Königin-Luise-Strasse 12-16, D-14195 Berlin, Germany
| | - Agnieszka J Pietrzyk-Brzezinska
- Freie Universität Berlin, Laboratory of Structural Biochemistry, D-14195 Berlin, Germany; Institute of Technical Biochemistry, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Lodz 90-924, Poland
| | - Haike Antelmann
- Freie Universität Berlin, Institute for Biology-Microbiology, Königin-Luise-Strasse 12-16, D-14195 Berlin, Germany.
| |
Collapse
|
61
|
Shen J, Walsh BJC, Flores-Mireles AL, Peng H, Zhang Y, Zhang Y, Trinidad JC, Hultgren SJ, Giedroc DP. Hydrogen Sulfide Sensing through Reactive Sulfur Species (RSS) and Nitroxyl (HNO) in Enterococcus faecalis. ACS Chem Biol 2018; 13:1610-1620. [PMID: 29712426 PMCID: PMC6088750 DOI: 10.1021/acschembio.8b00230] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Recent studies of hydrogen sulfide (H2S) signaling implicate low molecular weight (LMW) thiol persulfides and other reactive sulfur species (RSS) as signaling effectors. Here, we show that a CstR protein from the human pathogen Enterococcus faecalis ( E. faecalis), previously identified in Staphylococcus aureus ( S. aureus), is an RSS-sensing repressor that transcriptionally regulates a cst-like operon in response to both exogenous sulfide stress and Angeli's salt, a precursor of nitroxyl (HNO). E. faecalis CstR reacts with coenzyme A persulfide (CoASSH) to form interprotomer disulfide and trisulfide bridges between C32 and C61', which negatively regulate DNA binding to a consensus CstR DNA operator. A Δ cstR strain exhibits deficiency in catheter colonization in a catheter-associated urinary tract infection (CAUTI) mouse model, suggesting sulfide regulation and homeostasis is critical for pathogenicity. Cellular polysulfide metabolite profiling of sodium sulfide-stressed E. faecalis confirms an increase in both inorganic polysulfides and LMW thiols and persulfides sensed by CstR. The cst-like operon encodes two authentic thiosulfate sulfurtransferases and an enzyme we characterize here as an NADH and FAD-dependent coenzyme A (CoA) persulfide reductase (CoAPR) that harbors an N-terminal CoA disulfide reductase (CDR) domain and a C-terminal rhodanese homology domain (RHD). Both cysteines in the CDR (C42) and RHD (C508) domains are required for CoAPR activity and complementation of a sulfide-induced growth phenotype of a S. aureus strain lacking cstB, encoding a nonheme FeII persulfide dioxygenase. We propose that S. aureus CstB and E. faecalis CoAPR employ orthogonal chemistries to lower CoASSH that accumulates under conditions of cellular sulfide toxicity and signaling.
Collapse
Affiliation(s)
- Jiangchuan Shen
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405-7102, United States
- Biochemistry Graduate Program, Indiana University, Bloomington, Indiana 47405, United States
| | - Brenna J. C. Walsh
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405-7102, United States
| | - Ana Lidia Flores-Mireles
- Department of Molecular Microbiology and Center for Women’s Infectious Disease Research, Washington University School of Medicine, St. Louis, Missouri 63011, United States
| | - Hui Peng
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405-7102, United States
- Biochemistry Graduate Program, Indiana University, Bloomington, Indiana 47405, United States
| | - Yifan Zhang
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405-7102, United States
- Biochemistry Graduate Program, Indiana University, Bloomington, Indiana 47405, United States
| | - Yixiang Zhang
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405-7102, United States
- Laboratory for Biological Mass Spectrometry, Indiana University, Bloomington, Indiana 47405-7102, United States
| | - Jonathan C. Trinidad
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405-7102, United States
- Laboratory for Biological Mass Spectrometry, Indiana University, Bloomington, Indiana 47405-7102, United States
| | - Scott J. Hultgren
- Department of Molecular Microbiology and Center for Women’s Infectious Disease Research, Washington University School of Medicine, St. Louis, Missouri 63011, United States
| | - David P. Giedroc
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405-7102, United States
- Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, Indiana 47405, United States
| |
Collapse
|
62
|
Pal VK, Bandyopadhyay P, Singh A. Hydrogen sulfide in physiology and pathogenesis of bacteria and viruses. IUBMB Life 2018; 70:393-410. [PMID: 29601123 PMCID: PMC6029659 DOI: 10.1002/iub.1740] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 02/14/2018] [Accepted: 03/02/2018] [Indexed: 12/18/2022]
Abstract
An increasing number of studies have established hydrogen sulfide (H2S) gas as a major cytoprotectant and redox modulator. Following its discovery, H2S has been found to have pleiotropic effects on physiology and human health. H2S acts as a gasotransmitter and exerts its influence on gastrointestinal, neuronal, cardiovascular, respiratory, renal, and hepatic systems. Recent discoveries have clearly indicated the importance of H2S in regulating vasorelaxation, angiogenesis, apoptosis, ageing, and metabolism. Contrary to studies in higher organisms, the role of H2S in the pathophysiology of infectious agents such as bacteria and viruses has been less studied. Bacterial and viral infections are often accompanied by changes in the redox physiology of both the host and the pathogen. Emerging studies indicate that bacterial-derived H2S constitutes a defense system against antibiotics and oxidative stress. The H2S signaling pathway also seems to interfere with redox-based events affected on infection with viruses. This review aims to summarize recent advances on the emerging role of H2S gas in the bacterial physiology and viral infections. Such studies have opened up new research avenues exploiting H2S as a potential therapeutic intervention.
Collapse
Affiliation(s)
- Virender Kumar Pal
- Department of Microbiology and Cell Biology, Centre for Infectious Disease Research, Indian Institute of Science (IISc), Bangalore, India
| | - Parijat Bandyopadhyay
- Department of Microbiology and Cell Biology, Centre for Infectious Disease Research, Indian Institute of Science (IISc), Bangalore, India
| | - Amit Singh
- Department of Microbiology and Cell Biology, Centre for Infectious Disease Research, Indian Institute of Science (IISc), Bangalore, India
| |
Collapse
|
63
|
Reactive Cysteine Persulphides: Occurrence, Biosynthesis, Antioxidant Activity, Methodologies, and Bacterial Persulphide Signalling. Adv Microb Physiol 2018; 72:1-28. [PMID: 29778212 DOI: 10.1016/bs.ampbs.2018.01.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Cysteine hydropersulphide (CysSSH) is a cysteine derivative having one additional sulphur atom bound to a cysteinyl thiol group. Recent advances in the development of analytical methods for detection and quantification of persulphides and polysulphides have revealed the biological presence, in both prokaryotes and eukaryotes, of hydropersulphides in diverse forms such as CysSSH, homocysteine hydropersulphide, glutathione hydropersulphide, bacillithiol hydropersulphide, coenzyme A hydropersulphide, and protein hydropersulphides. Owing to the chemical reactivity of the persulphide moiety, biological systems utilize persulphides as important intermediates in the synthesis of various sulphur-containing biomolecules. Accumulating evidence has revealed another important feature of persulphides: their potent reducing activity, which implies that they are implicated in the regulation of redox signalling and antioxidant functions. In this chapter, we discuss the biological occurrence and possible biosynthetic mechanisms of CysSSH and related persulphides, and we include descriptions of recent advances in the analytical methods that have been used to detect and quantitate persulphide species. We also discuss the antioxidant activity of persulphide species that contributes to protecting cells from reactive oxygen species-associated damage, and we examine the signalling roles of CysSSH in bacteria.
Collapse
|