51
|
Hao F, Liu QS, Chen X, Zhao X, Zhou Q, Liao C, Jiang G. Exploring the Heterogeneity of Nanoparticles in Their Interactions with Plasma Coagulation Factor XII. ACS NANO 2019; 13:1990-2003. [PMID: 30742411 DOI: 10.1021/acsnano.8b08471] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Tuning the characteristics of nanoparticles (NPs) would be promising in improving their biocompatibilities, regarding biosafety and nanodrug considerations. Due to the high priority of the artificial NPs in contacting the circulatory system, understanding their interactions with plasma zymogens is of great importance. Four kinds of NPs, including 5 nm gold NPs (GNP-5), 5 and 20 nm silver NPs (SNP-5, SNP-20), and 20 nm silica NPs (SiNP-20), were investigated for their interactions with the coagulation factor XII (FXII). GNP-5 adsorbed FXII in a standing-up mode, and exhibited high binding affinity for the heavy chain of the protein without altering its secondary structure or inducing its activation. In contrast to GNP-5, FXII adsorption on the other tested NPs was in a lying-down mode, and their interactions with FXII induced its conformational changes, thus causing the evident zymogen cleavage. The structural alterations and activation of FXII induced by the NPs exhibited in specific surface area dependent manners, which were related with different NP cores and sizes. Additionally, the enzymatic activity of α-FXIIa was also influenced by NP incubation, and the alterations were dependent on the specific characters of the NPs as evidenced by the enzymatic inhibition effect of GNP-5 (noncompetitive) and SNP-5 (competitive), and enhanced enzymatic catalysis abilities of SNP-20 and SiNP-20. The interesting findings on the heterogeneity of NPs in their interactions with plasma FXII not only revealed the underlying mechanism for NP-triggered hematological responses, but also suggested the crucial role of tuning NP parameters in their potential bioapplication, like nanodrug design.
Collapse
Affiliation(s)
- Fang Hao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences , Chinese Academy of Sciences , Beijing 100085 , China
- College of Resources and Environment , University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Qian S Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences , Chinese Academy of Sciences , Beijing 100085 , China
| | - Xi Chen
- Waters Corporation , Asia Pacific Headquarter , Shanghai 201206 , China
| | - Xingchen Zhao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences , Chinese Academy of Sciences , Beijing 100085 , China
| | - Qunfang Zhou
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences , Chinese Academy of Sciences , Beijing 100085 , China
- College of Resources and Environment , University of Chinese Academy of Sciences , Beijing 100049 , China
- Institute of Environment and Health , Jianghan University , Wuhan 430056 , China
| | - Chunyang Liao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences , Chinese Academy of Sciences , Beijing 100085 , China
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences , Chinese Academy of Sciences , Beijing 100085 , China
- College of Resources and Environment , University of Chinese Academy of Sciences , Beijing 100049 , China
| |
Collapse
|
52
|
Wang W, Han Y, Fan Y, Wang Y. Effects of Gold Nanospheres and Nanocubes on Amyloid-β Peptide Fibrillation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:2334-2342. [PMID: 30636427 DOI: 10.1021/acs.langmuir.8b04006] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Direct exposure or intake of engineered nanoparticles (ENPs) to the human body will trigger a series of complicated biological consequences. Especially, ENPs could either up- or downregulate peptide fibrillation, which is associated with various degenerative diseases like Alzheimer's and Parkinson's diseases. This work reports the effects of gold nanoparticles (AuNPs) with different shapes on the aggregation of an amyloid-β peptide (Aβ(1-40)) involved in Alzheimer's disease. Two kinds of AuNPs were investigated, i.e., gold nanospheres (AuNSs, ∼20 nm in diameter) and gold nanocubes (AuNCs, ∼20 nm in edge length). It was found that AuNPs play a catalytic role in peptide nucleation through interfacial adsorption of Aβ(1-40). AuNSs with hybrid facets have higher affinity to Aβ(1-40) because of the higher degree of surface atomic unsaturation than the {100}-faceted AuNCs. Therefore, AuNSs exert a more significant acceleration effect on the fibrillation process of Aβ(1-40) than AuNCs. Besides, a shape-dependent secondary structure transformation of Aβ(1-40) with different AuNPs was observed using Fourier transform infrared spectroscopy. The variation of peptide-NP and peptide-peptide interactions caused by the shape alteration of AuNPs influences the equilibrium of inter- and intramolecular hydrogen bonds, which is believed to be responsible for the shape-dependent secondary structure transformation. The study offers further understanding on the complicated NP-mediated Aβ aggregation and also facilitates further development on designing and synthesizing task-specific AuNPs for amyloid disease diagnosis and therapy.
Collapse
Affiliation(s)
- Wentao Wang
- Key Laboratory of Colloid, Interface and Chemical Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Beijing National Laboratory for Molecular Sciences (BNLMS), Institute of Chemistry , Chinese Academy of Sciences , Beijing 100190 , People's Republic of China
- Department of Radiochemistry , China Institute of Atomic Energy , Beijing 102413 , People's Republic of China
| | - Yuchun Han
- Key Laboratory of Colloid, Interface and Chemical Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Beijing National Laboratory for Molecular Sciences (BNLMS), Institute of Chemistry , Chinese Academy of Sciences , Beijing 100190 , People's Republic of China
| | - Yaxun Fan
- Key Laboratory of Colloid, Interface and Chemical Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Beijing National Laboratory for Molecular Sciences (BNLMS), Institute of Chemistry , Chinese Academy of Sciences , Beijing 100190 , People's Republic of China
| | - Yilin Wang
- Key Laboratory of Colloid, Interface and Chemical Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Beijing National Laboratory for Molecular Sciences (BNLMS), Institute of Chemistry , Chinese Academy of Sciences , Beijing 100190 , People's Republic of China
| |
Collapse
|
53
|
Fadeel B. Hide and Seek: Nanomaterial Interactions With the Immune System. Front Immunol 2019; 10:133. [PMID: 30774634 PMCID: PMC6367956 DOI: 10.3389/fimmu.2019.00133] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 01/16/2019] [Indexed: 01/18/2023] Open
Abstract
Engineered nanomaterials hold promise for a wide range of applications in medicine. However, safe use of nanomaterials requires that interactions with biological systems, not least with the immune system, are understood. Do nanomaterials elicit novel or unexpected effects, or is it possible to predict immune responses to nanomaterials based on how the immune system handles pathogens? How does the bio-corona of adsorbed biomolecules influence subsequent immune interactions of nanomaterials? How does the grafting of polymers such as poly(ethylene glycol) onto nanomaterial surfaces impact on these interactions? Can ancient immune evasion or “stealth” strategies of pathogens inform the design of nanomaterials for biomedical applications? Can nanoparticles co-opt immune cells to target diseased tissues? The answers to these questions may prove useful for the development of nanomedicines.
Collapse
Affiliation(s)
- Bengt Fadeel
- Nanosafety and Nanomedicine Laboratory, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
54
|
Sun A, Lai Z, Zhao M, Mu L, Hu X. Native nanodiscs from blood inhibit pulmonary fibrosis. Biomaterials 2019; 192:51-61. [DOI: 10.1016/j.biomaterials.2018.10.045] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 09/29/2018] [Accepted: 10/28/2018] [Indexed: 12/27/2022]
|
55
|
Konečný P, Ehrlich R, Gulumian M, Jacobs M. Immunity to the Dual Threat of Silica Exposure and Mycobacterium tuberculosis. Front Immunol 2019; 9:3069. [PMID: 30687311 PMCID: PMC6334662 DOI: 10.3389/fimmu.2018.03069] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 12/11/2018] [Indexed: 01/28/2023] Open
Abstract
Exposure to silica and the consequent development of silicosis are well-known health problems in countries with mining and other dust producing industries. Apart from its direct fibrotic effect on lung tissue, chronic and immunomodulatory character of silica causes susceptibility to tuberculosis (TB) leading to a significantly higher TB incidence in silica-exposed populations. The presence of silica particles in the lung and silicosis may facilitate initiation of tuberculous infection and progression to active TB, and exacerbate the course and outcome of TB, including prognosis and survival. However, the exact mechanisms of the involvement of silica in the pathological processes during mycobacterial infection are not yet fully understood. In this review, we focus on the host's immunological response to both silica and Mycobacterium tuberculosis, on agents of innate and adaptive immunity, and particularly on silica-induced immunological modifications in co-exposure that influence disease pathogenesis. We review what is known about the impact of silica and Mycobacterium tuberculosis or their co-exposure on the host's immune system, especially an impact that goes beyond an exclusive focus on macrophages as the first line of the defense. In both silicosis and TB, acquired immunity plays a major role in the restriction and/or elimination of pathogenic agents. Further research is needed to determine the effects of silica in adaptive immunity and in the pathogenesis of TB.
Collapse
Affiliation(s)
- Petr Konečný
- Centre for Environmental and Occupational Health, School of Public Health and Family Medicine, University of Cape Town, Cape Town, South Africa.,Division of Immunology, Department of Pathology and Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Rodney Ehrlich
- Centre for Environmental and Occupational Health, School of Public Health and Family Medicine, University of Cape Town, Cape Town, South Africa
| | - Mary Gulumian
- National Health Laboratory Service, Department of Toxicology and Biochemistry, National Institute for Occupational Health, Johannesburg, South Africa.,Division of Molecular Medicine and Haematology, University of the Witwatersrand, Johannesburg, South Africa.,National Health Laboratory Service, Johannesburg, South Africa
| | - Muazzam Jacobs
- Division of Immunology, Department of Pathology and Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa.,National Health Laboratory Service, Johannesburg, South Africa.,Immunology of Infectious Disease Research Unit, South African Medical Research Council, Cape Town, South Africa
| |
Collapse
|
56
|
Huaux F. Emerging Role of Immunosuppression in Diseases Induced by Micro- and Nano-Particles: Time to Revisit the Exclusive Inflammatory Scenario. Front Immunol 2018; 9:2364. [PMID: 30510551 PMCID: PMC6252316 DOI: 10.3389/fimmu.2018.02364] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 09/24/2018] [Indexed: 12/21/2022] Open
Abstract
Fibrosis, cancer, and autoimmunity developing upon particle exposure have been exclusively linked with uncontrolled inflammatory processes. The critical role of inflammation is now challenged by several contradictory observations indicating that the emergence of these chronic disorders may result from non-inflammatory events. A growing number of studies reveals that micro- and nano-particles can cause exaggerated and persistent immunosuppression characterized by the release of potent anti-inflammatory cytokines (IL-10 and TGF-β), and the recruitment of major regulatory immune cells (M2 macrophages, T and B regs, and MDSC). This persistent immunosuppressive environment is initially established to limit early inflammation but contributes later to fibrosis, cancer, and infection. Immunosuppression promotes fibroblast proliferation and matrix element synthesis and subverts innate and adaptive immune surveillance against tumor cells and microorganisms. This review details the contribution of immunosuppressive cells and their derived immunoregulatory mediators and delineates the mutual role of inflammatory vs. immunosuppressive mechanisms in the pathogenesis of chronic diseases induced by particles. The consideration of these new results explains how particle-related diseases can develop independently of chronic inflammation, enriches current bioassays predicting particle toxicity and suggests new clinical strategies for treating patients affected by particle-associated diseases.
Collapse
Affiliation(s)
- François Huaux
- Louvain Centre for Toxicology and Applied Pharmacology, Institut de Recherche Experimentale et Clinique, Université catholique de Louvain, Brussels, Belgium
| |
Collapse
|
57
|
Silica nanoparticles induce conformational changes of tau protein and oxidative stress and apoptosis in neuroblastoma cell line. Int J Biol Macromol 2018; 124:1312-1320. [PMID: 30248427 DOI: 10.1016/j.ijbiomac.2018.09.118] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 09/19/2018] [Accepted: 09/20/2018] [Indexed: 12/31/2022]
Abstract
The adverse effects of SiO2 NPs on the biological systems like nervous system have not been well explored. This study aimed to evaluate the toxicity of SiO2 NPs on the nervous system in vitro. Therefore, human tau protein and neuroblastoma cell line (SH-SY5Y) were used as targets. In this study we examined the side effects of SiO2 NPs on tau protein structure using several techniques including CD, ANS fluorescence, UV-vis (360 nm), Congo red absorbance, TEM, and molecular dynamic. Also, the cytotoxicity effects of SiO2 NPs against SH-SY5Y cell line were evaluated using MTT, ROS and apoptotic assays. Spectroscopic and molecular dynamic investigations indicated that natively unfolded structure of tau in the presence of SiO2 NPs experienced a partially folded and amorphous aggregated structure. Cellular assay demonstrated that SiO2 NPs exerted cytotoxic effect on SH-SY5Y cells through ROS accumulation and induction of apoptosis. Overall, these findings proved that SiO2 NPs could induce adverse effects on tau structure and SH-SY5Y cell integrity. Moreover, further studies are required to elucidate the molecular mechanism of SiO2 NPs-induced side effects in vivo.
Collapse
|
58
|
Gonçalves MC. Sol-gel Silica Nanoparticles in Medicine: A Natural Choice. Design, Synthesis and Products. Molecules 2018; 23:E2021. [PMID: 30104542 PMCID: PMC6222648 DOI: 10.3390/molecules23082021] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 08/01/2018] [Accepted: 08/03/2018] [Indexed: 12/16/2022] Open
Abstract
Silica is one of the most abundant minerals in the Earth's crust, and over time it has been introduced first into human life and later into engineering. Silica is present in the food chain and in the human body. As a biomaterial, silica is widely used in dentistry, orthopedics, and dermatology. Recently amorphous sol-gel SiO₂ nanoparticles (NPs) have appeared as nanocarriers in a wide range of medical applications, namely in drug/gene target delivery and imaging diagnosis, where they stand out for their high biocompatibility, hydrophilicity, enormous flexibility for surface modification with a high payload capacity, and prolonged blood circulation time. The sol-gel process is an extremely versatile bottom-up methodology used in the synthesis of silica NPs, offering a great variety of chemical possibilities, such as high homogeneity and purity, along with full scale pH processing. By introducing organic functional groups or surfactants during the sol-gel process, ORMOSIL NPs or mesoporous NPs are produced. Colloidal route, biomimetic synthesis, solution route and template synthesis (the main sol-gel methods to produce monosized silica nanoparticles) are compared and discussed. This short review goes over some of the emerging approaches in the field of non-porous sol-gel silica NPs aiming at medical applications, centered on the syntheses processes used.
Collapse
Affiliation(s)
- M Clara Gonçalves
- Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa,Av. Rovisco Pais, 1049-001 Lisboa, Portugal.
- CQE, Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa,1049-001 Lisboa, Portugal.
| |
Collapse
|
59
|
Wang C, Wang Z, Dong L. Translating Current Bioanalytical Techniques for Studying Corona Activity. Trends Biotechnol 2018; 36:661-672. [DOI: 10.1016/j.tibtech.2018.02.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 01/11/2018] [Accepted: 02/26/2018] [Indexed: 01/11/2023]
|
60
|
Lara S, Perez-Potti A, Herda LM, Adumeau L, Dawson KA, Yan Y. Differential Recognition of Nanoparticle Protein Corona and Modified Low-Density Lipoprotein by Macrophage Receptor with Collagenous Structure. ACS NANO 2018; 12:4930-4937. [PMID: 29668255 DOI: 10.1021/acsnano.8b02014] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Key practical challenges such as understanding the immunological processes at the nanoscale and controlling the targeting and accumulation of nano-objects in vivo now further stimulate efforts to underpin phenomenological knowledge of the nanoscale with more mechanistic and molecular insight. Thus, the question as to what constitutes nanoscale biological identity continues to evolve. Certainly nanoparticles in contact with a complex biological milieu develop a biological identity, differing from the original nanomaterial, now referred to as the "biomolecular corona". However, this surface-adsorbed layer of biomolecules may in some circumstance lead to different forms of receptor-particle interactions not evident only from the identity of the surface-adsorbed biomolecules and hard to predict or detect by current physicochemical methods. Here we show that scavenger receptors may recognize complex as yet unidentified biomolecular surface layer motifs, even when no current physicochemical analysis is capable of doing so. For instance, fluorescently labeled SiO2 nanoparticles in a biological milieu are strongly recognized by the macrophage receptor with collagenous structure (MARCO) in even dense biological media (human serum) apparently using a form of binding with which most of the MARCO's known ligands ( e. g., LPS, modified LDL) fail to compete. Such observations may suggest the need for a much stronger emphasis on nanoscale receptor-corona and other biomolecular interaction studies if one wishes to unravel how biomolecular recognition drives outcomes in the nanoscale biological domain.
Collapse
Affiliation(s)
- Sandra Lara
- Centre for BioNano Interactions, School of Chemistry , University College Dublin , Belfield, Dublin 4 , Ireland
| | - André Perez-Potti
- Centre for BioNano Interactions, School of Chemistry , University College Dublin , Belfield, Dublin 4 , Ireland
| | - Luciana M Herda
- Centre for BioNano Interactions, School of Chemistry , University College Dublin , Belfield, Dublin 4 , Ireland
| | - Laurent Adumeau
- Centre for BioNano Interactions, School of Chemistry , University College Dublin , Belfield, Dublin 4 , Ireland
| | - Kenneth A Dawson
- Centre for BioNano Interactions, School of Chemistry , University College Dublin , Belfield, Dublin 4 , Ireland
| | - Yan Yan
- Centre for BioNano Interactions, School of Chemistry , University College Dublin , Belfield, Dublin 4 , Ireland
- UCD Conway Institute of Biomolecular and Biomedical Research, School of Biomolecular and Biomedical Science , University College Dublin , Belfield, Dublin 4 , Ireland
| |
Collapse
|
61
|
Growth differentiation factor 15 contributes to marrow adipocyte remodeling in response to the growth of leukemic cells. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2018; 37:66. [PMID: 29566722 PMCID: PMC5863796 DOI: 10.1186/s13046-018-0738-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2017] [Accepted: 03/15/2018] [Indexed: 12/15/2022]
Abstract
Background The adipocyte remodeling, including of the morphological change, might indicate special pathological function. Our previous study found that the morphological remodeling of larger marrow adipocytes into small marrow adipocytes correlates with a poor prognosis for acute myeloid leukemia (AML) patients. However, the mechanisms contributed to the marrow adipocyte remodeling are still poorly understood. Methods GDF15 expression was analyzed by RT-qPCR and western blotting assays in the leukemic cells. The enhancing and antibody neutralization tests in vitro were employed to evaluate the effect of GDF15 on the morphology of mature adipocytes. CCK8 test was used to detect the proliferation of leukemic cells after co-cultivation with small marrow adipocytes. Flow cytometry was used to analysis the proportion of cell cycle of leukemic cells. Immunofluorescence staining and linear analysis were applied to verify the GDF15 expression and the relationship between GDF15 and small marrow adipocytes in AML patients. Results In this study, we found that leukemic cell lines not only expressed significantly higher growth differentiation factor 15 (GDF15) than the other three cytokines associated with adipocyte differentiation in RNA level but also secreted GDF15 factor. Furthermore, the in vitro experiments demonstrated that GDF15 was involved in the conversion of small marrow adipocytes from larger marrow adipocytes. Correspondingly, the leukemic cells proliferated more rapidly through regulating the cell cycle when co-cultured with GDF15-induced small marrow adipocytes. The immunofluorescence staining on the bone marrow sections of AML patients further exhibited that GDF15 was partly produced by leukemic cells. The positive correlation between the concentration of GDF15 in the marrow aspirates and the number and the volume of small marrow adipocytes might suggest the contribution of GDF15 in AML patients (r = 0.72, r = 0.67). Conclusions GDF15 secreted by leukemic cells was involved in the morphological remodeling of marrow adipocytes, which can in turn promote leukemic cell growth, indicating that GDF15 may be a promising treatment target for AML patients. Electronic supplementary material The online version of this article (10.1186/s13046-018-0738-y) contains supplementary material, which is available to authorized users.
Collapse
|
62
|
Wang Z, Wang C, Abudukeremu A, Rui X, Liu S, Zhang X, Zhang M, Zhang J, Dong L. Engineering a Tumor Microenvironment-Mimetic Niche for Tissue Regeneration with Xenogeneic Cancer Cells. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2018; 5:1700666. [PMID: 29593968 PMCID: PMC5867037 DOI: 10.1002/advs.201700666] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Revised: 11/22/2017] [Indexed: 05/05/2023]
Abstract
The insufficient number of cells suitable for transplantation is a long-standing problem to cell-based therapies aimed at tissue regeneration. Xenogeneic cancer cells (XCC) may be an alternative source of therapeutic cells, but their transplantation risks both immune rejection and unwanted spreading. In this study, a strategy to facilitate XCC transplantation is reported and their spreading in vivo is confined by constructing an engineering matrix that mimics the characteristics of tumor microenvironment. The data show that this matrix, a tumor homogenate-containing hydrogel (THAG), successfully creates an immunosuppressive enclave after transplantation into immunocompetent mice. XCC of different species and tissue origins seeded into THAG survive well, integrated with the host and developed the intrinsic morphology of the native tissue, without being eliminated or spreading out of the enclave. Most strikingly, immortalized human hepatocyte cells and rat β-cells loaded into THAG exert the physiological functions of the human liver and rat pancreas islets, respectively, in the mouse body. This study demonstrates a novel and feasible approach to harness the unique features of tumor development for tissue transplantation and regenerative medicine.
Collapse
Affiliation(s)
- Zhenzhen Wang
- State Key Laboratory of Pharmaceutical BiotechnologySchool of Life SciencesNanjing University163 Xianlin AvenueNanjing210093China
| | - Chunming Wang
- State Key Laboratory of Quality Research in Chinese MedicineInstitute of Chinese Medical SciencesUniversity of MacauTaipa999078Macau SAR
| | - Ayipaxia Abudukeremu
- State Key Laboratory of Pharmaceutical BiotechnologySchool of Life SciencesNanjing University163 Xianlin AvenueNanjing210093China
| | - Xiaying Rui
- State Key Laboratory of Pharmaceutical BiotechnologySchool of Life SciencesNanjing University163 Xianlin AvenueNanjing210093China
| | - Shang Liu
- State Key Laboratory of Pharmaceutical BiotechnologySchool of Life SciencesNanjing University163 Xianlin AvenueNanjing210093China
| | - Xiaoyi Zhang
- Department of ChemistryEmory University1515 Dickey DriveAtlantaGA30322USA
| | - Min Zhang
- State Key Laboratory of Pharmaceutical BiotechnologySchool of Life SciencesNanjing University163 Xianlin AvenueNanjing210093China
| | - Junfeng Zhang
- State Key Laboratory of Pharmaceutical BiotechnologySchool of Life SciencesNanjing University163 Xianlin AvenueNanjing210093China
| | - Lei Dong
- State Key Laboratory of Pharmaceutical BiotechnologySchool of Life SciencesNanjing University163 Xianlin AvenueNanjing210093China
| |
Collapse
|
63
|
Shu C, Li D, Li T, Ji S, Ding L. Sensitive and accurate detection of ALP activity using a fluorescence on–off–on switch and mass barcode signal amplification. RSC Adv 2018; 8:36527-36533. [PMID: 35558943 PMCID: PMC9088893 DOI: 10.1039/c8ra06973e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 10/10/2018] [Indexed: 12/27/2022] Open
Abstract
Alkaline phosphatase (ALP) is an important biomarker for many diseases. Therefore, the sensitive and accurate detection of ALP activity is essential for fundamental biochemical processes and clinic diagnosis. Herein, we design a fluorescent on–off–on switch for sensitive and visual detection of ALP activity. Meanwhile, mass barcode-modified quantum dots (QDs) amplified the LC-MS/MS detection signal in complex biological samples. Firstly, the QDs were modified with phosphorylated Gly-Gly-Phe-Phe-Tyr (OPO3H2) peptide (GGFFYp) and the mass barcode. The fluorescence of QDs-SS-Yp was quenched by fluorescence resonance energy transfer (FRET) between QDs-SS-Yp and dansyl chloride (DNS). ALP can hydrolyze the phosphorylated peptide to form peptide self-assemblies on the QDs-SS-Yp surfaces. The effective separation distance between the QDs-SS-Yp donor and DNS acceptor becomes larger, restricting FRET between the QDs-SS-Yp and DNS. At this point, the obvious QDs-SS-Yp fluorescence signal can be restored. However, the absence of ALP results in no peptide self-assembly on the QDs-SS-Yp surface and no obvious QDs-SS-Yp fluorescence signal was detected. Therefore, the ALP activity can be analyzed according to the degree of fluorescence restoration by the fluorescence on–off–on switch. Finally, the small tag molecules obtained by cleaving the disulfide bond of the QDs-SS-Yp as a mass barcode were used to amplify the LC-MS/MS detection signal. The proposed approach shows a good linear relationship (from 0.01 to 2.4 U L−1) and has the significant advantage of a low detection limit of 0.001 U L−1. The sensitive and accurate detection of ALP activity using a fluorescence on–off–on switch and mass barcode signal amplification.![]()
Collapse
Affiliation(s)
- Chang Shu
- Key Laboratory of Drug Quality Control and Pharmacovigilance (China Pharmaceutical University)
- Ministry of Education
- Nanjing 210009
- China
- Department of Pharmaceutical Analysis
| | - Duo Li
- Key Laboratory of Drug Quality Control and Pharmacovigilance (China Pharmaceutical University)
- Ministry of Education
- Nanjing 210009
- China
- Department of Pharmaceutical Analysis
| | - Tengfei Li
- Key Laboratory of Drug Quality Control and Pharmacovigilance (China Pharmaceutical University)
- Ministry of Education
- Nanjing 210009
- China
- Department of Pharmaceutical Analysis
| | - Shunli Ji
- Key Laboratory of Drug Quality Control and Pharmacovigilance (China Pharmaceutical University)
- Ministry of Education
- Nanjing 210009
- China
- Department of Pharmaceutical Analysis
| | - Li Ding
- Key Laboratory of Drug Quality Control and Pharmacovigilance (China Pharmaceutical University)
- Ministry of Education
- Nanjing 210009
- China
- Department of Pharmaceutical Analysis
| |
Collapse
|
64
|
Li Z, Li D, Li Q, Luo C, Li J, Kou L, Zhang D, Zhang H, Zhao S, Kan Q, Liu J, Zhang P, Liu X, Sun Y, Wang Y, He Z, Sun J. In situlow-immunogenic albumin-conjugating-corona guiding nanoparticles for tumor-targeting chemotherapy. Biomater Sci 2018; 6:2681-2693. [DOI: 10.1039/c8bm00692j] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Thein siturecruited albumin corona enables NPs' tumor-targeting and enhanced antitumor activityin vivo.
Collapse
|
65
|
In situ sequestration of endogenous PDGF-BB with an ECM-mimetic sponge for accelerated wound healing. Biomaterials 2017; 148:54-68. [DOI: 10.1016/j.biomaterials.2017.09.028] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 09/21/2017] [Accepted: 09/22/2017] [Indexed: 02/04/2023]
|
66
|
Zhang TX, Zhu GY, Lu BY, Zhang CL, Peng Q. Concentration-dependent protein adsorption at the nano-bio interfaces of polymeric nanoparticles and serum proteins. Nanomedicine (Lond) 2017; 12:2757-2769. [PMID: 29017387 DOI: 10.2217/nnm-2017-0238] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
AIM A comprehensive understanding of nanoparticle (NP)-protein interaction (protein corona formation) is required. So far, many factors influencing this interaction have been investigated, like size and ζ potential. However, NPs exposure concentration has always been ignored. Herein, we aim to disclose the correlation of NPs exposure concentration with protein adsorption. MATERIALS & METHODS Four polymeric NPs systems possessing similar sizes (230 ± 20 nm) but varied ζ potentials (-30 ∼ +40 mv) were prepared. Physicochemical properties and protein adsorption upon NP-protein interaction were characterized. RESULTS Protein adsorption capacity and adsorbed protein types were NPs concentration-dependent. CONCLUSION Considering the critical impacts of protein adsorption on NPs delivery, our work could be an urgent warning about the possible risks of dosage adjustment of nanoformulations.
Collapse
Affiliation(s)
- Tian-Xu Zhang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Guan-Yin Zhu
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Bo-Yao Lu
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Chao-Liang Zhang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Qiang Peng
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| |
Collapse
|
67
|
Raghavendra AJ, Fritz K, Fu S, Brown JM, Podila R, Shannahan JH. Variations in biocorona formation related to defects in the structure of single walled carbon nanotubes and the hyperlipidemic disease state. Sci Rep 2017; 7:8382. [PMID: 28814800 PMCID: PMC5559455 DOI: 10.1038/s41598-017-08896-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Accepted: 07/19/2017] [Indexed: 01/25/2023] Open
Abstract
Ball-milling utilizes mechanical stress to modify properties of carbon nanotubes (CNTs) including size, capping, and functionalization. Ball-milling, however, may introduce structural defects resulting in altered CNT-biomolecule interactions. Nanomaterial-biomolecule interactions result in the formation of the biocorona (BC), which alters nanomaterial properties, function, and biological responses. The formation of the BC is governed by the nanomaterial physicochemical properties and the physiological environment. Underlying disease states such as cardiovascular disease can alter the biological milieu possibly leading to unique BC identities. In this ex vivo study, we evaluated variations in the formation of the BC on single-walled CNTs (SWCNTs) due to physicochemical alterations in structure resulting from ball-milling and variations in the environment due to the high-cholesterol disease state. Increased ball-milling time of SWCNTs resulted in enhanced structural defects. Following incubation in normal mouse serum, label-free quantitative proteomics identified differences in the biomolecular content of the BC due to the ball-milling process. Further, incubation in cholesterol-rich mouse serum resulted in the formation of unique BCs compared to SWCNTs incubated in normal serum. Our study demonstrates that the BC is modified due to physicochemical modifications such as defects induced by ball-milling and physiological disease conditions, which may result in variable biological responses.
Collapse
Affiliation(s)
- Achyut J Raghavendra
- Department of Physics and Astronomy, Clemson University, Clemson, South Carolina, 29634, USA
- Clemson Nanomaterials Center and COMSET, Clemson University, Anderson, South Carolina, 29625, USA
| | - Kristofer Fritz
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, The University of Colorado Anschutz Medical Campus, Aurora, Colorado, 80045, USA
| | - Sherleen Fu
- School of Health Sciences, College of Human and Health Sciences, Purdue University, West Lafayette, IN, 47907, USA
| | - Jared M Brown
- Colorado Center for Nanomedicine and Nanosafety, Skaggs School of Pharmacy and Pharmaceutical Sciences, The University of Colorado Anschutz Medical Campus, Aurora, Colorado, 80045, USA
| | - Ramakrishna Podila
- Department of Physics and Astronomy, Clemson University, Clemson, South Carolina, 29634, USA.
- Clemson Nanomaterials Center and COMSET, Clemson University, Anderson, South Carolina, 29625, USA.
| | - Jonathan H Shannahan
- School of Health Sciences, College of Human and Health Sciences, Purdue University, West Lafayette, IN, 47907, USA.
| |
Collapse
|
68
|
Bianchi MG, Allegri M, Chiu M, Costa AL, Blosi M, Ortelli S, Bussolati O, Bergamaschi E. Lipopolysaccharide Adsorbed to the Bio-Corona of TiO 2 Nanoparticles Powerfully Activates Selected Pro-inflammatory Transduction Pathways. Front Immunol 2017; 8:866. [PMID: 28824614 PMCID: PMC5540950 DOI: 10.3389/fimmu.2017.00866] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 07/07/2017] [Indexed: 12/13/2022] Open
Abstract
It is known that the adsorption of bioactive molecules provides engineered nanoparticles (NPs) with novel biological activities. However, the biological effects of the adsorbed molecules may also be modified by the interaction with NP. Bacterial lipopolysaccharide (LPS), a powerful pro-inflammatory compound, is a common environmental contaminant and is present in several body compartments such as the gut. We recently observed that the co-incubation of LPS with TiO2 NPs markedly potentiates its pro-inflammatory effects on murine macrophages, suggesting that, when included in a NP bio-corona, LPS activity is enhanced. To distinguish the effects of adsorbed LPS from those of the free endotoxin, a pellet fraction, denominated P25/LPS, was isolated by centrifugation from a mixture of P25 TiO2 NP (128 µg/ml) and LPS (10 ng/ml) in the presence of fetal bovine serum. Western blot analysis of the pellet eluate indicated that the P25/LPS fraction contained, besides proteins, also LPS, pointing to the presence of LPS-doped NP. The effects of adsorbed or free LPS were then compared in Raw264.7 murine macrophages. RT-PCR was used to evaluate the induction of cytokine genes, whereas active, phosphorylated isoforms of proteins involved in signaling pathways were assessed with western blot. At a nominal LPS concentration of 40 pg/ml, P25/LPS induced the expression of both NF-κB and IRF3-dependent cytokines at levels comparable with those observed with free LPS (10 ng/ml), although with different time courses. Moreover, compared to free LPS, P25/LPS caused a more sustained phosphorylation of p38 MAPK and a more prolonged induction of STAT1-dependent genes. Cytochalasin B partially inhibited the induction of Tnfa by P25/LPS, but not by free LPS, and suppressed the induction of IRF3-dependent genes by either P25/LPS or free LPS. These data suggest that, when included in the bio-corona of TiO2 NP, LPS exhibits enhanced and time-shifted pro-inflammatory effects. Thus, in assessing the hazard of NP in real life, the enhanced effects of adsorbed bioactive molecules should be taken into account.
Collapse
Affiliation(s)
| | - Manfredi Allegri
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Martina Chiu
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Anna L Costa
- Institute of Science and Technology for Ceramics (CNR-ISTEC), National Research Council of Italy, Faenza, Ravenna, Italy
| | - Magda Blosi
- Institute of Science and Technology for Ceramics (CNR-ISTEC), National Research Council of Italy, Faenza, Ravenna, Italy
| | - Simona Ortelli
- Institute of Science and Technology for Ceramics (CNR-ISTEC), National Research Council of Italy, Faenza, Ravenna, Italy
| | - Ovidio Bussolati
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Enrico Bergamaschi
- Department of Public Health Science and Pediatrics, University of Turin, Turin, Italy
| |
Collapse
|
69
|
Spengler C, Thewes N, Jung P, Bischoff M, Jacobs K. Determination of the nano-scaled contact area of staphylococcal cells. NANOSCALE 2017; 9:10084-10093. [PMID: 28695218 DOI: 10.1039/c7nr02297b] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Bacterial adhesion is a crucial step during the development of infections as well as the formation of biofilms. Hence, fundamental research of bacterial adhesion mechanisms is of utmost importance. So far, less is known about the size of the contact area between bacterial cells and a surface. This gap will be filled by this study using a single-cell force spectroscopy-based method to investigate the contact area between a single bacterial cell of Staphylococcus aureus and a solid substrate. The technique relies on the strong influence of the hydrophobic interaction on bacterial adhesion: by incrementally crossing a very sharp hydrophobic/hydrophilic interface while performing force-distance curves with a single bacterial probe, the bacterial contact area can be determined. Assuming circular contact areas, their radii - determined in our experiments - are in the range from tens of nanometers to a few hundred nanometers. The contact area can be slightly enlarged by a larger load force, yet does not resemble a Hertzian contact, rather, the enlargement is a property of the individual bacterial cell. Additionally, Staphylococcus carnosus has been probed, which is less adherent than S. aureus, yet both bacteria exhibit a similar contact area size. This corroborates the notion that the adhesive strength of bacteria is not a matter of contact area, but rather a matter of which and how many molecules of the bacterial species' cell wall form the contact. Moreover, our method of determining the contact area can be applied to other microorganisms and the results might also be useful for studies using nanoparticles covered with soft, macromolecular coatings.
Collapse
Affiliation(s)
- Christian Spengler
- Department of Experimental Physics, Saarland University, 66041 Saarbrücken, Germany.
| | | | | | | | | |
Collapse
|