51
|
Canales A, Park S, Kilias A, Anikeeva P. Multifunctional Fibers as Tools for Neuroscience and Neuroengineering. Acc Chem Res 2018; 51:829-838. [PMID: 29561583 DOI: 10.1021/acs.accounts.7b00558] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Multifunctional devices for modulation and probing of neuronal activity during free behavior facilitate studies of functions and pathologies of the nervous system. Probes composed of stiff materials, such as metals and semiconductors, exhibit elastic and chemical mismatch with the neural tissue, which is hypothesized to contribute to sustained tissue damage and gliosis. Dense glial scars have been found to encapsulate implanted devices, corrode their surfaces, and often yield poor recording quality in long-term experiments. Motivated by the hypothesis that reducing the mechanical stiffness of implanted probes may improve their long-term reliability, a variety of probes based on soft materials have been developed. In addition to enabling electrical neural recording, these probes have been engineered to take advantage of genetic tools for optical neuromodulation. With the emergence of optogenetics, it became possible to optically excite or inhibit genetically identifiable cell types via expression of light-sensitive opsins. Optogenetics experiments often demand implantable multifunctional devices to optically stimulate, deliver viral vectors and drugs, and simultaneously record electrophysiological signals from the specified cells within the nervous system. Recent advances in microcontact printing and microfabrication techniques have equipped flexible probes with microscale light-emitting diodes (μLEDs), waveguides, and microfluidic channels. Complementary to these approaches, fiber drawing has emerged as a scalable route to integration of multiple functional features within miniature and flexible neural probes. The thermal drawing process relies on the fabrication of macroscale models containing the materials of interest, which are then drawn into microstructured fibers with predefined cross-sectional geometries. We have recently applied this approach to produce fibers integrating conductive electrodes for extracellular recording of single- and multineuron potentials, low-loss optical waveguides for optogenetic neuromodulation, and microfluidic channels for drug and viral vector delivery. These devices allowed dynamic investigation of the time course of opsin expression across multiple brain regions and enabled pairing of optical stimulation with local pharmacological intervention in behaving animals. Neural probes designed to interface with the spinal cord, a viscoelastic tissue undergoing repeated strain during normal movement, rely on the integration of soft and flexible materials to avoid injury and device failure. Employing soft substrates, such as parylene C and poly-(dimethylsiloxane), for electrode and μLED arrays permitted stimulation and recording of neural activity on the surface of the spinal cord. Similarly, thermally drawn flexible and stretchable optoelectronic fibers that resemble the fibrous structure of the spinal cord were implanted without any significant inflammatory reaction in the vicinity of the probes. These fibers enabled simultaneous recording and optogenetic stimulation of neural activity in the spinal cord. In this Account, we review the applications of multifunctional fibers and other integrated devices for optoelectronic probing of neural circuits and discuss engineering directions that may facilitate future studies of nerve repair and accelerate the development of bioelectronic medical devices.
Collapse
Affiliation(s)
- Andres Canales
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Seongjun Park
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Antje Kilias
- Bernstein Center Freiburg, University of Freiburg, 79104 Freiburg, Germany
- Biomicrotechnology, Institute for Microsystems Engineering, University of Freiburg, 79110 Freiburg, Germany
- Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Polina Anikeeva
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
52
|
Zhou Z, Liu X, Wu W, Park S, Miller II AL, Terzic A, Lu L. Effective nerve cell modulation by electrical stimulation of carbon nanotube embedded conductive polymeric scaffolds. Biomater Sci 2018; 6:2375-2385. [DOI: 10.1039/c8bm00553b] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Biomimetic biomaterials require good biocompatibility and bioactivity to serve as appropriate scaffolds for tissue engineering applications.
Collapse
Affiliation(s)
- Zifei Zhou
- Department of Physiology and Biomedical Engineering and Department of Orthopedic Surgery
- Mayo Clinic
- Rochester
- USA
- Department of Orthopedic Surgery
| | - Xifeng Liu
- Department of Physiology and Biomedical Engineering and Department of Orthopedic Surgery
- Mayo Clinic
- Rochester
- USA
| | - Wei Wu
- Department of Physiology and Biomedical Engineering and Department of Orthopedic Surgery
- Mayo Clinic
- Rochester
- USA
- Department of Orthopedics Surgery
| | - Sungjo Park
- Department of Cardiovascular Diseases and Center for Regenerative Medicine
- Mayo Clinic
- Rochester
- USA
| | - A. Lee Miller II
- Department of Physiology and Biomedical Engineering and Department of Orthopedic Surgery
- Mayo Clinic
- Rochester
- USA
| | - Andre Terzic
- Department of Cardiovascular Diseases and Center for Regenerative Medicine
- Mayo Clinic
- Rochester
- USA
| | - Lichun Lu
- Department of Physiology and Biomedical Engineering and Department of Orthopedic Surgery
- Mayo Clinic
- Rochester
- USA
| |
Collapse
|