51
|
Rana M, Balcioglu M, Kovach M, Hizir MS, Robertson NM, Khan I, Yigit MV. Reprogrammable multiplexed detection of circulating oncomiRs using hybridization chain reaction. Chem Commun (Camb) 2016; 52:3524-7. [DOI: 10.1039/c5cc09910b] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Coupling the DNA polymerization capability of HCR with the plasmonic properties of AuNP for reprogrammable, multiplexed and visual detection of three different circulating oncomiRs in seven different combinations.
Collapse
Affiliation(s)
- Muhit Rana
- Department of Chemistry
- University at Albany
- State University of New York
- Albany
- USA
| | - Mustafa Balcioglu
- Department of Chemistry
- University at Albany
- State University of New York
- Albany
- USA
| | - Maya Kovach
- Department of Chemistry
- University at Albany
- State University of New York
- Albany
- USA
| | - Mustafa Salih Hizir
- Department of Chemistry
- University at Albany
- State University of New York
- Albany
- USA
| | - Neil M. Robertson
- Department of Chemistry
- University at Albany
- State University of New York
- Albany
- USA
| | - Irfan Khan
- Department of Chemistry
- University at Albany
- State University of New York
- Albany
- USA
| | - Mehmet V. Yigit
- Department of Chemistry
- University at Albany
- State University of New York
- Albany
- USA
| |
Collapse
|
52
|
Bosutti A, Zanconati F, Grassi G, Dapas B, Passamonti S, Scaggiante B. Epigenetic and miRNAs Dysregulation in Prostate Cancer: The role of Nutraceuticals. Anticancer Agents Med Chem 2016; 16:1385-1402. [PMID: 27109021 PMCID: PMC5068501 DOI: 10.2174/1871520616666160425105257] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Revised: 03/29/2016] [Accepted: 04/22/2016] [Indexed: 02/08/2023]
Abstract
The control of cancer onset and progression is recognized to benefit from specific molecular targeting. MiRNAs are increasingly being implicated in prostate cancer, and the evidence suggests they are possible targets for molecular therapy and diagnosis. In cancer cells, growing attention has been dedicated to novel molecular mechanisms linking the epigenetic scenario to miRNA dysregulation. Currently, the rising evidence shows that nutritional and natural agents, the so-called nutraceuticals, could modulate miRNAs expression, and, as a consequence, might influence cellular responses in health or diseases conditions, including cancer. Among dietary components, plant-derived polyphenols are receiving wide interest, either for their anti-aging and anti-oxidant properties, or for their more general "cell-protective" effects. Above all, their role in preventing the occurrence/recurrence of cancer and, in particular, their potentiality in nutritional intervention for modulating the functions of miRNAs and the epigenetic mechanisms, is still under active debate. This review is focused on the more recent highlights of the impact of miRNAs dysregulation on the onset and progression of prostate cancer, their interplay with epigenetic control and their modulation by natural agents.
Collapse
Affiliation(s)
| | | | | | | | | | - Bruna Scaggiante
- Address correspondence to this author at the Dept. of Life Sciences, Via Giorgeri, 1, University of Trieste, 34127 Trieste, Italy; Tel: ++39 040 558 3686; Fax: ++39 040 558 3691; E-mail:
| |
Collapse
|
53
|
Pattnaik S, Swain K, Lin Z. Graphene and graphene-based nanocomposites: biomedical applications and biosafety. J Mater Chem B 2016; 4:7813-7831. [DOI: 10.1039/c6tb02086k] [Citation(s) in RCA: 109] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Graphene is the first carbon-based two dimensional atomic crystal and has gained much attention since its discovery by Geim and co-workers in 2004.
Collapse
Affiliation(s)
- Satyanarayan Pattnaik
- Department of Pharmaceutics
- Formulation Development and Drug Delivery Systems
- Pharmacy College Saifai
- UP University of Medical Sciences
- Saifai
| | - Kalpana Swain
- Talla Padmavathi College of Pharmacy
- Warangal-506002
- India
| | - Zhiqun Lin
- School of Materials Science and Engineering
- Georgia Institute of Technology
- Atlanta
- USA
| |
Collapse
|
54
|
Hizir MS, Top M, Balcioglu M, Rana M, Robertson NM, Shen F, Sheng J, Yigit MV. Multiplexed Activity of perAuxidase: DNA-Capped AuNPs Act as Adjustable Peroxidase. Anal Chem 2015; 88:600-5. [DOI: 10.1021/acs.analchem.5b03926] [Citation(s) in RCA: 125] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Mustafa Salih Hizir
- Department
of Chemistry, University at Albany, State University of New York, 1400 Washington Avenue, Albany, New York 12222, United States
| | - Meryem Top
- Department
of Chemistry, University at Albany, State University of New York, 1400 Washington Avenue, Albany, New York 12222, United States
| | - Mustafa Balcioglu
- Department
of Chemistry, University at Albany, State University of New York, 1400 Washington Avenue, Albany, New York 12222, United States
| | - Muhit Rana
- Department
of Chemistry, University at Albany, State University of New York, 1400 Washington Avenue, Albany, New York 12222, United States
| | - Neil M. Robertson
- Department
of Chemistry, University at Albany, State University of New York, 1400 Washington Avenue, Albany, New York 12222, United States
| | - Fusheng Shen
- Department
of Chemistry, University at Albany, State University of New York, 1400 Washington Avenue, Albany, New York 12222, United States
| | - Jia Sheng
- Department
of Chemistry, University at Albany, State University of New York, 1400 Washington Avenue, Albany, New York 12222, United States
- The
RNA Institute, University at Albany, State University of New York, 1400 Washington Avenue, Albany, New York 12222, United States
| | - Mehmet V. Yigit
- Department
of Chemistry, University at Albany, State University of New York, 1400 Washington Avenue, Albany, New York 12222, United States
- The
RNA Institute, University at Albany, State University of New York, 1400 Washington Avenue, Albany, New York 12222, United States
| |
Collapse
|
55
|
Wang W, Kong T, Zhang D, Zhang J, Cheng G. Label-Free MicroRNA Detection Based on Fluorescence Quenching of Gold Nanoparticles with a Competitive Hybridization. Anal Chem 2015; 87:10822-9. [DOI: 10.1021/acs.analchem.5b01930] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Wei Wang
- Key Laboratory
of Nano-Bio Interface, Suzhou Institute of Nano-Tech and
Nano-Bionics, Chinese Academy of Sciences, 398 Ruoshui Road, Suzhou Industrial Park, Jiangsu 215123, China
| | - Tao Kong
- Key Laboratory
of Nano-Bio Interface, Suzhou Institute of Nano-Tech and
Nano-Bionics, Chinese Academy of Sciences, 398 Ruoshui Road, Suzhou Industrial Park, Jiangsu 215123, China
| | - Dong Zhang
- Key Laboratory
of Nano-Bio Interface, Suzhou Institute of Nano-Tech and
Nano-Bionics, Chinese Academy of Sciences, 398 Ruoshui Road, Suzhou Industrial Park, Jiangsu 215123, China
| | - Jinan Zhang
- Bona Tianyuan
Biotech LLC, 568 Longmian Avenue, Jiangning, Jiangsu 211100, China
| | - Guosheng Cheng
- Key Laboratory
of Nano-Bio Interface, Suzhou Institute of Nano-Tech and
Nano-Bionics, Chinese Academy of Sciences, 398 Ruoshui Road, Suzhou Industrial Park, Jiangsu 215123, China
| |
Collapse
|
56
|
Robertson NM, Hizir MS, Balcioglu M, Wang R, Yavuz MS, Yumak H, Ozturk B, Sheng J, Yigit MV. Discriminating a Single Nucleotide Difference for Enhanced miRNA Detection Using Tunable Graphene and Oligonucleotide Nanodevices. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2015; 31:9943-52. [PMID: 26305398 DOI: 10.1021/acs.langmuir.5b02026] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
In this study we have reported our efforts to address some of the challenges in the detection of miRNAs using water-soluble graphene oxide and DNA nanoassemblies. Purposefully inserting mismatches at specific positions in our DNA (probe) strands shows increasing specificity against our target miRNA, miR-10b, over miR-10a which varies by only a single nucleotide. This increased specificity came at a loss of signal intensity within the system, but we demonstrated that this could be addressed with the use of DNase I, an endonuclease capable of cleaving the DNA strands of the RNA/DNA heteroduplex and recycling the RNA target to hybridize to another probe strand. As we previously demonstrated, this enzymatic signal also comes with an inherent activity of the enzyme on the surface-adsorbed probe strands. To remove this activity of DNase I and the steady nonspecific increase in the fluorescence signal without compromising the recovered signal, we attached a thermoresponsive PEGMA polymer (poly(ethylene glycol) methyl ether methacrylate) to nGO. This smart polymer is able to shield the probes adsorbed on the nGO surface from the DNase I activity and is capable of tuning the detection capacity of the nGO nanoassembly with a thermoswitch at 39 °C. By utilizing probes with multiple mismatches, DNase I cleavage of the DNA probe strands, and the attachment of PEGMA polymers to graphene oxide to block undesired DNase I activity, we were able to detect miR-10b from liquid biopsy mimics and breast cancer cell lines. Overall we have reported our efforts to improve the specificity, increase the sensitivity, and eliminate the undesired enzymatic activity of DNase I on surface-adsorbed probes for miR-10b detection using water-soluble graphene nanodevices. Even though we have demonstrated only the discrimination of miR-10b from miR-10a, our approach can be extended to other short RNA molecules which differ by a single nucleotide.
Collapse
Affiliation(s)
- Neil M Robertson
- Department of Chemistry , University at Albany, State University of New York, 1400 Washington Avenue, Albany, New York 12222, United States
| | - Mustafa Salih Hizir
- Department of Chemistry , University at Albany, State University of New York, 1400 Washington Avenue, Albany, New York 12222, United States
| | - Mustafa Balcioglu
- Department of Chemistry , University at Albany, State University of New York, 1400 Washington Avenue, Albany, New York 12222, United States
| | - Rui Wang
- Department of Chemistry , University at Albany, State University of New York, 1400 Washington Avenue, Albany, New York 12222, United States
- The RNA Institute, University at Albany, State University of New York, 1400 Washington Avenue, Albany, New York 12222, United States
| | - Mustafa Selman Yavuz
- Department of Metallurgy and Materials Engineering, Advanced Technology Research and Application Center, Selcuk University , Konya, Turkey
| | - Hasan Yumak
- Department of Science, BMCC, City University of New York , 199 Chambers Street, New York, New York 10007, United States
| | - Birol Ozturk
- Department of Physics and Engineering Physics, Morgan State University , 1700 E. Cold Spring Lane, Baltimore, Maryland 21251, United States
| | - Jia Sheng
- Department of Chemistry , University at Albany, State University of New York, 1400 Washington Avenue, Albany, New York 12222, United States
- The RNA Institute, University at Albany, State University of New York, 1400 Washington Avenue, Albany, New York 12222, United States
| | - Mehmet V Yigit
- Department of Chemistry , University at Albany, State University of New York, 1400 Washington Avenue, Albany, New York 12222, United States
- The RNA Institute, University at Albany, State University of New York, 1400 Washington Avenue, Albany, New York 12222, United States
| |
Collapse
|
57
|
Abstract
In recent years, graphene has received widespread attention owing to its extraordinary electrical, chemical, optical, mechanical and structural properties. Lately, considerable interest has been focused on exploring the potential applications of graphene in life sciences, particularly in disease-related molecular diagnostics. In particular, the coupling of functional molecules with graphene as a nanoprobe offers an excellent platform to realize the detection of biomarkers, such as nucleic acids, proteins and other bioactive molecules, with high performance. This article reviews emerging graphene-based nanoprobes in electrical, optical and other assay methods and their application in various strategies of molecular diagnostics. In particular, this review focuses on the construction of graphene-based nanoprobes and their special advantages for the detection of various bioactive molecules. Properties of graphene-based materials and their functionalization are also comprehensively discussed in view of the development of nanoprobes. Finally, future challenges and perspectives of graphene-based nanoprobes are discussed.
Collapse
Affiliation(s)
- Shixing Chen
- Division of Physical Biology and Bioimaging Center, Shanghai Synchrotron Radiation Facility, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, 201800, Shanghai, China.
| | | | | | | |
Collapse
|
58
|
Abstract
MicroRNAs (miRNAs) are small endogenous non-coding RNAs of ~22 nucleotides that play important functions in the regulation of many biological processes, including cell proliferation, differentiation, and death. Since their expression has been in close association with the development of many diseases, recently, miRNAs have been regarded as clinically important biomarkers and drug discovery targets. However, because of the short length, high sequence similarity and low abundance of miRNAs in vivo, it is difficult to realize the sensitive and selective detection of miRNAs with conventional methods. In line with the rapid development of nanotechnology, nanomaterials have attracted great attention and have been intensively studied in biological analysis due to their unique chemical, physical and size properties. In particular, fluorimetric methodologies in combination with nanotechnology are especially rapid, sensitive and efficient. The aim of this review is to provide insight into nanomaterials-based fluorimetric methods for the detection of miRNAs, including metal nanomaterials, quantum dots (QDs), graphene oxide (GO) and silicon nanoparticles.
Collapse
|
59
|
Shen Y, Tian F, Chen Z, Li R, Ge Q, Lu Z. Amplification-based method for microRNA detection. Biosens Bioelectron 2015; 71:322-331. [PMID: 25930002 DOI: 10.1016/j.bios.2015.04.057] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Revised: 04/17/2015] [Accepted: 04/18/2015] [Indexed: 12/20/2022]
Abstract
Over the last two decades, the study of miRNAs has attracted tremendous attention since they regulate gene expression post-transcriptionally and have been demonstrated to be dysregulated in many diseases. Detection methods with higher sensitivity, specificity and selectivity between precursors and mature microRNAs are urgently needed and widely studied. This review gave an overview of the amplification-based technologies including traditional methods, current modified methods and the cross-platforms of them combined with other techniques. Many progresses were found in the modified amplification-based microRNA detection methods, while traditional platforms could not be replaced until now. Several sample-specific normalizers had been validated, suggesting that the different normalizers should be established for different sample types and the combination of several normalizers might be more appropriate than a single universal normalizer. This systematic overview would be useful to provide comprehensive information for subsequent related studies and could reduce the un-necessary repetition in the future.
Collapse
Affiliation(s)
- Yanting Shen
- Research Center for Learning Science, Southeast University, Sipailou road no. 2, Nanjing, Jiangsu Province 2100096, PR China.
| | - Fei Tian
- Research Center for Learning Science, Southeast University, Sipailou road no. 2, Nanjing, Jiangsu Province 2100096, PR China.
| | - Zhenzhu Chen
- Research Center for Learning Science, Southeast University, Sipailou road no. 2, Nanjing, Jiangsu Province 2100096, PR China.
| | - Rui Li
- Research Center for Learning Science, Southeast University, Sipailou road no. 2, Nanjing, Jiangsu Province 2100096, PR China.
| | - Qinyu Ge
- Research Center for Learning Science, Southeast University, Sipailou road no. 2, Nanjing, Jiangsu Province 2100096, PR China; State Key Laboratory of Bioelectronics, Southeast University, Sipailou road no. 2, Nanjing, Jiangsu Province 2100096, PR China.
| | - Zuhong Lu
- Research Center for Learning Science, Southeast University, Sipailou road no. 2, Nanjing, Jiangsu Province 2100096, PR China; State Key Laboratory of Bioelectronics, Southeast University, Sipailou road no. 2, Nanjing, Jiangsu Province 2100096, PR China.
| |
Collapse
|
60
|
Majem B, Rigau M, Reventós J, Wong DT. Non-coding RNAs in saliva: emerging biomarkers for molecular diagnostics. Int J Mol Sci 2015; 16:8676-98. [PMID: 25898412 PMCID: PMC4425103 DOI: 10.3390/ijms16048676] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Revised: 04/02/2015] [Accepted: 04/08/2015] [Indexed: 01/05/2023] Open
Abstract
Saliva is a complex body fluid that comprises secretions from the major and minor salivary glands, which are extensively supplied by blood. Therefore, molecules such as proteins, DNA, RNA, etc., present in plasma could be also present in saliva. Many studies have reported that saliva body fluid can be useful for discriminating several oral diseases, but also systemic diseases including cancer. Most of these studies revealed messenger RNA (mRNA) and proteomic biomarker signatures rather than specific non-coding RNA (ncRNA) profiles. NcRNAs are emerging as new regulators of diverse biological functions, playing an important role in oncogenesis and tumor progression. Indeed, the small size of these molecules makes them very stable in different body fluids and not as susceptible as mRNAs to degradation by ribonucleases (RNases). Therefore, the development of a non-invasive salivary test, based on ncRNAs profiles, could have a significant applicability to clinical practice, not only by reducing the cost of the health system, but also by benefitting the patient. Here, we summarize the current status and clinical implications of the ncRNAs present in human saliva as a source of biological information.
Collapse
Affiliation(s)
- Blanca Majem
- Research Unit in Biomedicine and Translational Oncology, Lab 209, Collserola Building, Vall Hebron Research Institute (VHIR) and University Hospital, Pg. Vall Hebron 119-129, 08035 Barcelona, Spain.
| | - Marina Rigau
- Research Unit in Biomedicine and Translational Oncology, Lab 209, Collserola Building, Vall Hebron Research Institute (VHIR) and University Hospital, Pg. Vall Hebron 119-129, 08035 Barcelona, Spain.
| | - Jaume Reventós
- Research Unit in Biomedicine and Translational Oncology, Lab 209, Collserola Building, Vall Hebron Research Institute (VHIR) and University Hospital, Pg. Vall Hebron 119-129, 08035 Barcelona, Spain.
- IDIBELL-Bellvitge Biomedical Research Institute & Universitat Internacional de Catalunya, 08908 Barcelona, Spain.
| | - David T Wong
- Center for Oral/Head & Neck Oncology Research, University of California, Los Angeles, CA 90095, USA.
| |
Collapse
|
61
|
Wong DTW. Salivary extracellular noncoding RNA: emerging biomarkers for molecular diagnostics. Clin Ther 2015; 37:540-51. [PMID: 25795433 DOI: 10.1016/j.clinthera.2015.02.017] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Revised: 02/16/2015] [Accepted: 02/17/2015] [Indexed: 01/05/2023]
Abstract
Saliva is a complex body fluid that comprises secretions from the major and minor salivary glands, nourished by body's vasculature. Although many circulatory molecules (DNA, RNA, and proteins) can also be present in saliva, saliva harbors unique molecular constituents that can be discriminatory for oral and systemic disease screening and detection. Many studies have reported that salivary constituents can discriminate oral diseases (oral cancer and Sjögren's syndrome) and also systemic diseases (lung cancer, breast cancer, pancreatic cancer, and ovarian cancer). Noncoding RNAs (ncRNAs) are emerging new regulators of diverse biological functions, playing important roles in oncogenesis and tumor progression. Indeed, the short size of these molecules makes them stable in different body fluids such as urine, blood, and saliva, being not as susceptible as mRNAs to degradation by RNases. Here, the current status and clinical implications of the ncRNAs present in human saliva are reviewed for translational applications and basic biological research. The development of noninvasive salivary test (based on ncRNAs profiles) for disease detection could have effective applications into the clinical context with a translational significance as emerging molecular biomarkers for non-invasively disease detection, not only by reducing the cost to the health care system but also by benefitting patients.
Collapse
Affiliation(s)
- David T W Wong
- Division of Oral Biology, School of Dentistry; Jonnson Comprehensive Cancer Center, Department of Head and Neck Surgery, David Geffen School of Medicine; School of Engineering, University of California Los Angeles, Los Angeles, California.
| |
Collapse
|
62
|
Robertson NM, Hizir MS, Balcioglu M, Rana M, Yumak H, Ecevit O, Yigit MV. Monitoring the multitask mechanism of DNase I activity using graphene nanoassemblies. Bioconjug Chem 2015; 26:735-45. [PMID: 25734834 DOI: 10.1021/acs.bioconjchem.5b00067] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Here we have demonstrated that graphene serves as a remarkable platform for monitoring the multitask activity of an enzyme with fluorescence spectroscopy. Our studies showed that four different simultaneous enzymatic tasks of DNase I can be observed and measured in a high throughput fashion using graphene oxide and oligonucleotide nanoassemblies. We have used phosphorothioate modified oligonucleotides to pinpoint the individual and highly specific functions of DNase I with single stranded DNA, RNA, and DNA/DNA and DNA/RNA duplexes. DNase I resulted in fluorescence recovery in the nanoassemblies and enhanced the intensity tremendously in the presence of sequence specific DNA or RNA molecules with different degrees of amplification. Our study enabled us to discover the sources of this remarkable signal enhancement, which has been used for biomedical applications of graphene for sensitive detection of specific oncogenes. The significant difference in the signal amplification observed for the detection of DNA and RNA molecules is a result of the positive and/or reductive signal generating events with the enzyme. In the presence of DNA there are four possible ways that the fluorescence reading is influenced, with two of them resulting in a gain in signal while the other two result in a loss. Since the observed signal is a summation of all the events together, the absence of the two fluorescence reduction events with RNA gives a greater degree of fluorescence signal enhancement when compared to target DNA molecules. Overall, our study demonstrates that graphene has powerful features for determining the enzymatic functions of a protein and reveals some of the unknowns observed in the graphene and oligonucleotide assemblies with DNase I.
Collapse
Affiliation(s)
| | | | | | | | - Hasan Yumak
- §Department of Science, BMCC, City University of New York, 199 Chambers Street, New York, New York 10007, United States
| | - Ozgur Ecevit
- §Department of Science, BMCC, City University of New York, 199 Chambers Street, New York, New York 10007, United States
| | | |
Collapse
|
63
|
Yang C, Shi K, Dou B, Xiang Y, Chai Y, Yuan R. In situ DNA-templated synthesis of silver nanoclusters for ultrasensitive and label-free electrochemical detection of microRNA. ACS APPLIED MATERIALS & INTERFACES 2015; 7:1188-93. [PMID: 25537119 DOI: 10.1021/am506933r] [Citation(s) in RCA: 111] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
On the basis of the use of silver nanoclusters (AgNCs) in situ synthesized by cytosine (C)-rich loop DNA templates as signal amplification labels, the development of a label-free and highly sensitive method for electrochemical detection of microRNA (miRNA-199a) is described. The target miRNA-199a hybridizes with the partial dsDNA probes to initiate the target-assisted polymerization nicking reaction (TAPNR) amplification to produce massive intermediate sequences, which can be captured on the sensing electrode by the self-assembled DNA secondary probes. These surface-captured intermediate sequences further trigger the hybridization chain reaction (HCR) amplification to form dsDNA polymers with numerous C-rich loop DNA templates on the electrode surface. DNA-templated synthesis of AgNCs can be realized by subsequent incubation of the dsDNA polymer-modified electrode with AgNO3 and sodium borohydride. With this integrated TAPNR and HCR dual amplification strategy, the amount of in situ synthesized AgNCs is dramatically enhanced, leading to substantially amplified current response for highly sensitive detection of miRNA-199a down to 0.64 fM. In addition, the developed method also shows high selectivity toward the target miRNA-199a. Featured with high sensitivity and label-free capability, the proposed sensing scheme can thus offer new opportunities for achieving sensitive, selective, and simple detection of different types of microRNA targets.
Collapse
Affiliation(s)
- Cuiyun Yang
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University , Chongqing 400715, P.R. China
| | | | | | | | | | | |
Collapse
|
64
|
Balcioglu M, Buyukbekar BZ, Yavuz MS, Yigit MV. Smart-Polymer-Functionalized Graphene Nanodevices for Thermo-Switch-Controlled Biodetection. ACS Biomater Sci Eng 2014; 1:27-36. [DOI: 10.1021/ab500029h] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Mustafa Balcioglu
- Department
of Chemistry and The RNA Institute, University at Albany, State University of New York, 1400 Washington Avenue, Albany, New York 12222, United States
| | - Burak Zafer Buyukbekar
- Department
of Metallurgy and Materials Engineering, Advanced Technology Research
and Application Center, Selcuk University, Konya, Turkey
| | - Mustafa Selman Yavuz
- Department
of Metallurgy and Materials Engineering, Advanced Technology Research
and Application Center, Selcuk University, Konya, Turkey
| | - Mehmet V. Yigit
- Department
of Chemistry and The RNA Institute, University at Albany, State University of New York, 1400 Washington Avenue, Albany, New York 12222, United States
| |
Collapse
|