51
|
Lu X, Gu W, Sun R, Liu X. Investigation of Electrochemical Properties of Metalloporphyrin Species at the Liquid/Liquid Interface by Switching Substitutes on the Porphyrin Ring. ELECTROANAL 2012. [DOI: 10.1002/elan.201200396] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
52
|
Neugebauer U, März A, Henkel T, Schmitt M, Popp J. Spectroscopic detection and quantification of heme and heme degradation products. Anal Bioanal Chem 2012; 404:2819-29. [PMID: 22903430 DOI: 10.1007/s00216-012-6288-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2012] [Revised: 07/17/2012] [Accepted: 07/19/2012] [Indexed: 10/28/2022]
Abstract
Heme and heme degradation products play critical roles in numerous biological phenomena which until now have only been partially understood. One reason for this is the very low concentrations at which free heme, its complexes and the partly unstable degradation products occur in living cells. Therefore, powerful and specific detection methods are needed. In this contribution, the potential of nondestructive Raman spectroscopy for the detection, quantification and discrimination of heme and heme degradation products is investigated. Resonance Raman spectroscopy using different excitation wavelengths (413, 476, 532, and 752 nm) is employed to estimate the limit of detection for hemin, myoglobin, biliverdin, and bilirubin. Concentrations in the low micromolar range (down to 3 μmol/L) could be reliably detected when utilizing the resonance enhancement effect. Furthermore, a systematic study on the surface-enhanced Raman spectroscopy (SERS) detection of hemin in the presence of other cellular components, such as the highly similar cytochrome c, DNA, and the important antioxidant glutathione, is presented. A microfluidic device was used to reproducibly create a segmented flow of aqueous droplets and oil compartments. Those aqueous droplets acted as model chambers where the analytes have to compete for the colloid. With the help of statistical analysis, it was possible to detect and differentiate the pure substances as well as the binary mixtures and gain insights into their interaction.
Collapse
Affiliation(s)
- U Neugebauer
- Center for Sepsis Control and Care, Jena University Hospital, Erlanger Allee 101, 07747 Jena, Germany
| | | | | | | | | |
Collapse
|
53
|
Trotta A, Antonacci A, Marsano F, Redondo-Gomez S, Figueroa Clemente EM, Andreucci F, Barbato R. Identification of a 2-cys peroxiredoxin as a tetramethyl benzidine-hydrogen peroxide stained protein from the thylakoids of the extreme halophyte Arthrocnemum macrostachyum L. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2012; 57:59-66. [PMID: 22683464 DOI: 10.1016/j.plaphy.2012.05.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2011] [Accepted: 05/09/2012] [Indexed: 06/01/2023]
Abstract
Tetramethylbenzidine-H(2)O(2) staining of SDS-polyacrylamide gel is a widely used method for the specific detection of proteins with heme-dependent peroxidase activity. When this method was used with thylakoids from the halophytic plant Arthrocnemum macrostachyum, besides the cytochrome f and cytochrome b6 proteins usually found in higher plants and cyanobacteria, at least four additional bands were detected. One of them, a 46-kDa protein, was shown to be an extrinsic protein, and identified by mass spectrometry and immunoblotting as a 2-cys peroxiredoxin. Peroxidase activity was insensitive to oxidizing agents such as trans-4,4-diydroxy-1,2-dithiane or hydrogen peroxide, but was inhibited by treatment of thylakoids with reducing agents such as dithiothreitol or mercaptoethanol. By immunoblotting, it was shown that loss of peroxidase activity was paralleled by disappearance of the 46-kDa band, which was converted to a 23-kDa immunoreactive form. A dimer/monomer relationship between the two proteins is suggested, with the dimeric form likely being a heme-binding protein. This possibility was further supported by anionic exchange chromatography and de novo sequencing of tryptic fragments of the protein and sequence comparison, as most of the residues previously implicated in heme binding in 2-cys peroxiredoxin from Rattus norvegicus were conserved in A. macrostachyum. The amount of this protein was modulated by environmental conditions, and increased when salt concentration in the growth medium was higher or lower than the optimal one.
Collapse
Affiliation(s)
- Andrea Trotta
- Dipartimento di Scienze dell'Ambiente e della Vita, Università del Piemonte Orientale Amedeo Avogadro, Alessandria, Novara, Vercelli, Italy.
| | | | | | | | | | | | | |
Collapse
|
54
|
Aerobic kinetoplastid flagellate Phytomonas does not require heme for viability. Proc Natl Acad Sci U S A 2012; 109:3808-13. [PMID: 22355128 DOI: 10.1073/pnas.1201089109] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Heme is an iron-coordinated porphyrin that is universally essential as a protein cofactor for fundamental cellular processes, such as electron transport in the respiratory chain, oxidative stress response, or redox reactions in various metabolic pathways. Parasitic kinetoplastid flagellates represent a rare example of organisms that depend on oxidative metabolism but are heme auxotrophs. Here, we show that heme is fully dispensable for the survival of Phytomonas serpens, a plant parasite. Seeking to understand the metabolism of this heme-free eukaryote, we searched for heme-containing proteins in its de novo sequenced genome and examined several cellular processes for which heme has so far been considered indispensable. We found that P. serpens lacks most of the known hemoproteins and does not require heme for electron transport in the respiratory chain, protection against oxidative stress, or desaturation of fatty acids. Although heme is still required for the synthesis of ergosterol, its precursor, lanosterol, is instead incorporated into the membranes of P. serpens grown in the absence of heme. In conclusion, P. serpens is a flagellate with unique metabolic adaptations that allow it to bypass all requirements for heme.
Collapse
|
55
|
Dimitrijević BP, Borozan SZ, Stojanović SĐ. π–π and cation–π interactions in protein–porphyrin complex crystal structures. RSC Adv 2012. [DOI: 10.1039/c2ra21937a] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
|
56
|
Kühl T, Sahoo N, Nikolajski M, Schlott B, Heinemann SH, Imhof D. Determination of hemin-binding characteristics of proteins by a combinatorial peptide library approach. Chembiochem 2011; 12:2846-55. [PMID: 22045633 DOI: 10.1002/cbic.201100556] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2011] [Indexed: 12/28/2022]
Abstract
Studies of the binding of heme/hemin to proteins or peptides have recently intensified as it became evident that heme serves not only as a prosthetic group, but also as a regulator and effector molecule interacting with transmembrane and cytoplasmic proteins. The iron-ion-containing heme group can associate with these proteins in different ways, with the amino acids Cys, His, and Tyr allowing individual modes of binding. Strong coordinate-covalent binding, such as in cytochrome c, is known, and reversible attachment is also discussed. Ligands for both types of binding have been reported independently, though sometimes with different affinities for similar sequences. We applied a combinatorial approach using the library (X)(4) (C/H/Y)(X)(4) to characterize peptide ligands with considerable hemin binding capacities. Some of the library-selected peptides were comparable in terms of hemin association independently of whether or not a cysteine residue was present in the sequence. Indeed, a preference for His-based (≈39 %) and Tyr-based (≈40 %) sequences over Cys-based ones (≈21 %) was detected. The binding affinities for the library-selected peptides, as determined by UV/Vis spectroscopy, were in the nanomolar range. Moreover, selected representatives efficiently competed for hemin binding with the human BK channel hSlo1, which is known to be regulated by heme through binding to its heme-binding domain.
Collapse
Affiliation(s)
- Toni Kühl
- Department of Biochemistry and Biophysics, Friedrich Schiller University of Jena, Hans-Knöll-Strasse 2, 07745 Jena, Germany
| | | | | | | | | | | |
Collapse
|
57
|
Franken ACW, Lokman BC, Ram AFJ, Punt PJ, van den Hondel CAMJJ, de Weert S. Heme biosynthesis and its regulation: towards understanding and improvement of heme biosynthesis in filamentous fungi. Appl Microbiol Biotechnol 2011; 91:447-60. [PMID: 21687966 PMCID: PMC3136693 DOI: 10.1007/s00253-011-3391-3] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2011] [Revised: 05/16/2011] [Accepted: 05/16/2011] [Indexed: 12/01/2022]
Abstract
Heme biosynthesis in fungal host strains has acquired considerable interest in relation to the production of secreted heme-containing peroxidases. Class II peroxidase enzymes have been suggested as eco-friendly replacements of polluting chemical processes in industry. These peroxidases are naturally produced in small amounts by basidiomycetes. Filamentous fungi like Aspergillus sp. are considered as suitable hosts for protein production due to their high capacity of protein secretion. For the purpose of peroxidase production, heme is considered a putative limiting factor. However, heme addition is not appropriate in large-scale production processes due to its high hydrophobicity and cost price. The preferred situation in order to overcome the limiting effect of heme would be to increase intracellular heme levels. This requires a thorough insight into the biosynthetic pathway and its regulation. In this review, the heme biosynthetic pathway is discussed with regards to synthesis, regulation, and transport. Although the heme biosynthetic pathway is a highly conserved and tightly regulated pathway, the mode of regulation does not appear to be conserved among eukaryotes. However, common factors like feedback inhibition and regulation by heme, iron, and oxygen appear to be involved in regulation of the heme biosynthesis pathway in most organisms. Therefore, they are the initial targets to be investigated in Aspergillus niger.
Collapse
Affiliation(s)
- Angelique C W Franken
- The Netherlands & Kluyver Centre for Genomics of Industrial Fermentation, PO Box 5057, 2600 GA Delft, The Netherlands
| | | | | | | | | | | |
Collapse
|
58
|
Westberg JA, Jiang J, Andersson LC. Stanniocalcin 1 binds hemin through a partially conserved heme regulatory motif. Biochem Biophys Res Commun 2011; 409:266-9. [DOI: 10.1016/j.bbrc.2011.05.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2011] [Accepted: 05/01/2011] [Indexed: 10/18/2022]
|
59
|
The Pseudomonas aeruginosa DNR transcription factor: light and shade of nitric oxide-sensing mechanisms. Biochem Soc Trans 2011; 39:294-8. [PMID: 21265791 DOI: 10.1042/bst0390294] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
In response to environmental conditions, NO (nitric oxide) induces global changes in the cellular metabolism of Pseudomonas aeruginosa, which are strictly related to pathogenesis. In particular, at low oxygen tensions and in the presence of NO the denitrification alternative respiration is activated by a key regulator: DNR (dissimilative nitrate respiration regulator). DNR belongs to the CRP (cAMP receptor protein)-FNR (fumarate and nitrate reductase regulatory protein) superfamily of bacterial transcription factors. These regulators are involved in many different pathways and distinct activation mechanism seems to be operative in several cases. Recent results indicate that DNR is a haem protein capable of discriminating between NO and CO (carbon monoxide). On the basis of the available structural data, a suggested activation mechanism is discussed.
Collapse
|
60
|
de Armas-Ricard M, Levicán G, Katz A, Moser J, Jahn D, Orellana O. Cellular levels of heme affect the activity of dimeric glutamyl-tRNA reductase. Biochem Biophys Res Commun 2011; 405:134-9. [PMID: 21219871 DOI: 10.1016/j.bbrc.2011.01.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2010] [Accepted: 01/04/2011] [Indexed: 01/25/2023]
Abstract
Glutamyl-tRNA reductase (GluTR) is the first enzyme committed to tetrapyrrole biosynthesis by the C(5)-pathway. This enzyme transforms glutamyl-tRNA into glutamate-1-semi-aldehyde, which is then transformed into 5-amino levulinic acid by the glutamate-1-semi-aldehyde 2,1-aminomutase. Binding of heme to GluTR seems to be relevant to regulate the enzyme function. Recombinant GluTR from Acidithiobacillus ferrooxidans an acidophilic bacterium that participates in bioleaching of minerals was expressed in Escherichia coli and purified as a soluble protein containing type b heme. Upon control of the cellular content of heme in E. coli, GluTR with different levels of bound heme was obtained. An inverse correlation between the activity of the enzyme and the level of bound heme to GluTR suggested a control of the enzyme activity by heme. Heme bound preferentially to dimeric GluTR. An intact dimerization domain was essential for the enzyme to be fully active. We propose that the cellular levels of heme might regulate the activity of GluTR and ultimately its own biosynthesis.
Collapse
Affiliation(s)
- Merly de Armas-Ricard
- Programa de Biología Celular y Molecular, ICBM, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | | | | | | | | | | |
Collapse
|
61
|
|
62
|
Yang F, Wang ED. Heme regulates protein homeostasis at transcription, protein translation, and degradation levels. ACTA ACUST UNITED AC 2010. [DOI: 10.1007/s11515-010-7700-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
63
|
Neugebauer U, Heinemann SH, Schmitt M, Popp J. Combination of patch clamp and Raman spectroscopy for single-cell analysis. Anal Chem 2010; 83:344-50. [PMID: 21141833 DOI: 10.1021/ac1024667] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In this contribution we present the combination of patch clamp with Raman spectroscopy for a label-free quantitative detection of intracellular components. Patch clamp is used to gain controlled access to the cytosol and internalize water-soluble compounds into the cell. The presence and concentration of these substances inside the living mammalian cell are probed by means of Raman spectroscopy in a label-free manner. A proof of principle was given using the carotinoid crocin as a sample compound that does not show specific interaction with the cell. When the intracellular crocin concentration as determined from the Raman spectra was monitored, the kinetics of internalization/diffusion into the cell could be characterized by a single-exponential function. Furthermore, the technique was successfully applied to observe differences in the internalization of free and protein-bound heme into the living cell. Although the peptide-capped microperoxidase MP-11 did not show specific interactions, free heme accumulated in the cell by binding to cellular components.
Collapse
Affiliation(s)
- Ute Neugebauer
- Institute of Photonic Technology, Albert-Einstein-Strasse 9, 07745 Jena, Germany
| | | | | | | |
Collapse
|
64
|
Toh SQ, Glanfield A, Gobert GN, Jones MK. Heme and blood-feeding parasites: friends or foes? Parasit Vectors 2010; 3:108. [PMID: 21087517 PMCID: PMC2999593 DOI: 10.1186/1756-3305-3-108] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2010] [Accepted: 11/18/2010] [Indexed: 12/01/2022] Open
Abstract
Hemoparasites, like malaria and schistosomes, are constantly faced with the challenges of storing and detoxifying large quantities of heme, released from their catabolism of host erythrocytes. Heme is an essential prosthetic group that forms the reactive core of numerous hemoproteins with diverse biological functions. However, due to its reactive nature, it is also a potentially toxic molecule. Thus, the acquisition and detoxification of heme is likely to be paramount for the survival and establishment of parasitism. Understanding the underlying mechanism involved in this interaction could possibly provide potential novel targets for drug and vaccine development, and disease treatment. However, there remains a wide gap in our understanding of these mechanisms. This review summarizes the biological importance of heme for hemoparasite, and the adaptations utilized in its sequestration and detoxification.
Collapse
Affiliation(s)
- Shu Qin Toh
- Queensland Institute of Medical Research, Herston, Queensland, 4006, Australia.
| | | | | | | |
Collapse
|
65
|
Yao X, Balamurugan P, Arvey A, Leslie C, Zhang L. Heme controls the regulation of protein tyrosine kinases Jak2 and Src. Biochem Biophys Res Commun 2010; 403:30-5. [PMID: 21036157 DOI: 10.1016/j.bbrc.2010.10.101] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2010] [Accepted: 10/22/2010] [Indexed: 10/18/2022]
Abstract
Protein tyrosine kinases play key roles in many molecular and cellular processes in diverse living organisms. Their proper functioning is crucial for the normal growth, development, and health in humans, whereas their dysfunction can cause serious diseases, including various cancers. As such, intense studies have been performed to understand the molecular mechanisms by which the activities of protein tyrosine kinases are regulated in mammalian cells. Particularly, small molecules that can modulate the activity of tyrosine kinases are of great importance for discovering therapeutic drug candidates for numerous diseases. Notably, heme cannot only serve as a prosthetic group for hemoglobins and enzymes, but it also is a small signaling molecule that can control the activity of diverse signaling and regulatory proteins. Using a computational search, we found that a group of non-membrane spanning tyrosine kinases contains one or more CP motifs that can potentially bind to heme and mediate heme regulation. We then used experimental approaches to determine whether heme can affect the activity of any of these tyrosine kinases. We found that heme indeed affects the phosphorylation of key tyrosine residues in Jak2 and Src, and is therefore able to modulate Jak2 and Src activity. Further experiments showed that Jak2 and Src bind to heme and that the presence of heme alters the sensitivity of Jak2 and Src to trypsin digestion. These results suggest that heme actively interacts with Jak2 and Src and alters their conformation.
Collapse
Affiliation(s)
- Xiao Yao
- Department of Molecular and Cell Biology, University of Texas at Dallas, Mail Stop FO31, 800 W. Campbell Road, Richardson, TX 75080, USA
| | | | | | | | | |
Collapse
|
66
|
Yang F, Xia X, Lei HY, Wang ED. Hemin binds to human cytoplasmic arginyl-tRNA synthetase and inhibits its catalytic activity. J Biol Chem 2010; 285:39437-46. [PMID: 20923763 DOI: 10.1074/jbc.m110.159913] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The free form of human cytoplasmic arginyl-tRNA synthetase (hcArgRS) is hypothesized to participate in ubiquitin-dependent protein degradation by offering arginyl-tRNA(Arg) to arginyl-tRNA transferase (ATE1). We investigated the effect of hemin on hcArgRS based on the fact that hemin regulates several critical proteins in the "N-end rule" protein degradation pathway. Extensive biochemical evidence has established that hemin could bind to both forms of hcArgRS in vitro. Based on the spectral changes of the Soret band on site-directed protein mutants, we identified Cys-115 as a specific axial ligand of hemin binding that is located in the Add1 domain. Hemin inhibited the catalytic activity of full-length and N-terminal 72-amino acid-truncated hcArgRSs by blocking amino acid activation. Kinetic analysis demonstrated that the K(m) values for tRNA(Arg), arginine, and ATP in the presence of hemin were not altered, but k(cat) values dramatically decreased compared with those in the absence of hemin. By comparison, the activity of prokaryotic ArgRS was not affected obviously by hemin. Gel filtration chromatography suggested that hemin induced oligomerization of both the isolated Add1 domain and the wild type enzyme, which could account for the inhibition of catalytic activity. However, the catalytic activity of an hcArgRS mutant with Cys-115 replaced by alanine (hcArgRS-C115A) was also inhibited by hemin, suggesting that hemin binding to Cys-115 is not responsible for the inhibition of enzymatic activity and that the specific binding may participate in other biological functions.
Collapse
Affiliation(s)
- Fang Yang
- State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China
| | | | | | | |
Collapse
|
67
|
Lechardeur D, Fernandez A, Robert B, Gaudu P, Trieu-Cuot P, Lamberet G, Gruss A. The 2-Cys peroxiredoxin alkyl hydroperoxide reductase c binds heme and participates in its intracellular availability in Streptococcus agalactiae. J Biol Chem 2010; 285:16032-41. [PMID: 20332091 PMCID: PMC2871472 DOI: 10.1074/jbc.m109.024505] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2009] [Revised: 03/12/2010] [Indexed: 11/06/2022] Open
Abstract
Heme is a redox-reactive molecule with vital and complex roles in bacterial metabolism, survival, and virulence. However, few intracellular heme partners were identified to date and are not well conserved in bacteria. The opportunistic pathogen Streptococcus agalactiae (group B Streptococcus) is a heme auxotroph, which acquires exogenous heme to activate an aerobic respiratory chain. We identified the alkyl hydroperoxide reductase AhpC, a member of the highly conserved thiol-dependent 2-Cys peroxiredoxins, as a heme-binding protein. AhpC binds hemin with a K(d) of 0.5 microm and a 1:1 stoichiometry. Mutagenesis of cysteines revealed that hemin binding is dissociable from catalytic activity and multimerization. AhpC reductase activity was unchanged upon interaction with heme in vitro and in vivo. A group B Streptococcus ahpC mutant displayed attenuation of two heme-dependent functions, respiration and activity of a heterologous catalase, suggesting a role for AhpC in heme intracellular fate. In support of this hypothesis, AhpC-bound hemin was protected from chemical degradation in vitro. Our results reveal for the first time a role for AhpC as a heme-binding protein.
Collapse
Affiliation(s)
- Delphine Lechardeur
- From the Institut National de la Recherche Agronomique, Institut Micalis, UMR 1319, 78352 Jouy-en-Josas
| | - Annabelle Fernandez
- From the Institut National de la Recherche Agronomique, Institut Micalis, UMR 1319, 78352 Jouy-en-Josas
| | - Bruno Robert
- the Commissariat à l'Energie Atomique, Institut de Biologie et de Technologie de Saclay, CNRS, URA 2096, 91400 Gif sur Yvette, and
| | - Philippe Gaudu
- From the Institut National de la Recherche Agronomique, Institut Micalis, UMR 1319, 78352 Jouy-en-Josas
| | - Patrick Trieu-Cuot
- the Institut Pasteur, Unité de Biologie des Bactéries Pathogènes à Gram-Positif, CNRS, URA 2172, 75015 Paris, France
| | - Gilles Lamberet
- From the Institut National de la Recherche Agronomique, Institut Micalis, UMR 1319, 78352 Jouy-en-Josas
| | - Alexandra Gruss
- From the Institut National de la Recherche Agronomique, Institut Micalis, UMR 1319, 78352 Jouy-en-Josas
| |
Collapse
|
68
|
Jones AM, Elliott T. A purified mutant HemA protein from Salmonella enterica serovar Typhimurium lacks bound heme and is defective for heme-mediated regulation in vivo. FEMS Microbiol Lett 2010; 307:41-7. [PMID: 20412302 DOI: 10.1111/j.1574-6968.2010.01967.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Archaea, plants, and most bacteria synthesize heme using the C5 pathway, in which the first committed step is catalyzed by the enzyme glutamyl-tRNA reductase (GluTR or HemA). In some cases, an overproduced and purified HemA enzyme contains noncovalently bound heme. The enteric bacteria Salmonella enterica and Escherichia coli also synthesize heme by the C5 pathway, and the HemA protein in these bacteria is regulated by proteolysis. The enzyme is unstable during normal growth due to the action of Lon and ClpAP, but becomes stable when heme is limiting for growth. We describe a method for the overproduction of S. enterica HemA that yields a purified enzyme containing bound heme, identified as a b-type heme by spectroscopy. A mutant of HemA (C170A) does not contain heme when similarly purified. The mutant was used to test whether heme is directly involved in HemA regulation. When expressed from the S. enterica chromosome in a wild-type background, the C170A mutant allele of hemA is shown to confer an unregulated phenotype, with high levels of HemA regardless of the heme status. These results strongly suggest that the presence of bound heme targets the HemA enzyme for degradation and is required for normal regulation.
Collapse
Affiliation(s)
- Amy M Jones
- Department of Microbiology, Immunology and Cell Biology, West Virginia University Health Sciences Center, Morgantown, WV 26506, USA
| | | |
Collapse
|
69
|
Affiliation(s)
- Scott Severance
- Department of Animal & Avian Sciences and Department of Cell Biology & Molecular Genetics, University of Maryland, College Park, Maryland 20742, USA
| | - Iqbal Hamza
- Department of Animal & Avian Sciences and Department of Cell Biology & Molecular Genetics, University of Maryland, College Park, Maryland 20742, USA
| |
Collapse
|
70
|
Hou S, Heinemann SH, Hoshi T. Modulation of BKCa channel gating by endogenous signaling molecules. Physiology (Bethesda) 2009; 24:26-35. [PMID: 19196649 DOI: 10.1152/physiol.00032.2008] [Citation(s) in RCA: 109] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Large-conductance Ca(2+)- and voltage-activated K(+) (BK(Ca), MaxiK, or Slo1) channels are expressed in almost every tissue in our body and participate in many critical functions such as neuronal excitability, vascular tone regulation, and neurotransmitter release. The functional versatility of BK(Ca) channels owes in part to the availability of a spectacularly wide array of biological modulators of the channel function. In this review, we focus on modulation of BK(Ca) channels by small endogenous molecules, emphasizing their molecular mechanisms. The mechanistic information available from studies on the small naturally occurring modulators is expected to contribute to our understanding of the physiological and pathophysiological roles of BK(Ca) channels.
Collapse
Affiliation(s)
- Shangwei Hou
- Department of Physiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | | | | |
Collapse
|
71
|
Liu M, Kagahara T, Abe H, Ito Y. Direct In Vitro Selection of Hemin-Binding DNA Aptamer with Peroxidase Activity. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2009. [DOI: 10.1246/bcsj.82.99] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
72
|
Chernova T, Higginson FM, Davies R, Smith AG. B2 SINE retrotransposon causes polymorphic expression of mouse 5-aminolevulinic acid synthase 1 gene. Biochem Biophys Res Commun 2008; 377:515-520. [PMID: 18929534 DOI: 10.1016/j.bbrc.2008.10.020] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2008] [Accepted: 10/03/2008] [Indexed: 11/18/2022]
Abstract
5-Aminolevulinic acid synthase 1 (ALAS1) is the key enzyme in the homeostasis of nonerythroid heme and of fundamental importance in respiration, the metabolism of drugs, chemicals and steroids and cell signalling. The regulation of ALAS1 in response to stimuli occurs at transcriptional, translational and post-translational levels which could depend on inter-individual variation in basal expression. A genetic difference in hepatic ALAS1 mRNA levels between C57BL/6J and DBA/2 mice was detected by microarray and was >5-fold in whole liver or hepatocytes when estimated by qRT-PCR. Analysis of the ALAS1 promoter showed a 210 nt insert in the DBA/2 containing a B2 SINE retrotransposon causing a marked repression of expression by intracellular reporter systems. Deletions across the B2 SINE demonstrated that the full sequence was required for transcriptional inhibition. The findings show that a B2 SINE can contribute to the regulation of ALAS1 and SINEs in 5'-UTR regions contribute to inter-individual differences in gene expression.
Collapse
Affiliation(s)
| | | | | | - Andrew G Smith
- MRC Toxicology Unit, University of Leicester, Leicester, UK.
| |
Collapse
|
73
|
Giardina G, Rinaldo S, Johnson KA, Di Matteo A, Brunori M, Cutruzzolà F. NO sensing in Pseudomonas aeruginosa: Structure of the Transcriptional Regulator DNR. J Mol Biol 2008; 378:1002-15. [DOI: 10.1016/j.jmb.2008.03.013] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2007] [Revised: 03/04/2008] [Accepted: 03/06/2008] [Indexed: 11/17/2022]
|
74
|
RcoM: a new single-component transcriptional regulator of CO metabolism in bacteria. J Bacteriol 2008; 190:3336-43. [PMID: 18326575 DOI: 10.1128/jb.00033-08] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Genomic analysis suggested the existence of a CO-sensing bacterial transcriptional regulator that couples an N-terminal PAS fold domain to a C-terminal DNA-binding LytTR domain. UV/visible-light spectral analyses of heterologously expressed, purified full-length proteins indicated that they contained a hexacoordinated b-type heme moiety that avidly binds CO and NO. Studies of protein variants strongly suggested that the PAS domain residues His74 and Met104 serve as the heme Fe(II) axial ligands, with displacement of Met104 upon binding of the gaseous effectors. Two RcoM (regulator of CO metabolism) homologs were shown to function in vivo as CO sensors capable of regulating an aerobic CO oxidation (cox) regulon. The genetic linkage of rcoM with both aerobic (cox) and anaerobic (coo) CO oxidation systems suggests that in different organisms RcoM proteins may control either regulon type.
Collapse
|
75
|
Lee KS, Raymond LD, Schoen B, Raymond GJ, Kett L, Moore RA, Johnson LM, Taubner L, Speare JO, Onwubiko HA, Baron GS, Caughey WS, Caughey B. Hemin Interactions and Alterations of the Subcellular Localization of Prion Protein. J Biol Chem 2007; 282:36525-33. [DOI: 10.1074/jbc.m705620200] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
76
|
Medlock AE, Dailey TA, Ross TA, Dailey HA, Lanzilotta WN. A pi-helix switch selective for porphyrin deprotonation and product release in human ferrochelatase. J Mol Biol 2007; 373:1006-16. [PMID: 17884090 PMCID: PMC2083577 DOI: 10.1016/j.jmb.2007.08.040] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2007] [Revised: 08/14/2007] [Accepted: 08/16/2007] [Indexed: 11/17/2022]
Abstract
Ferrochelatase (protoheme ferrolyase, EC 4.99.1.1) is the terminal enzyme in heme biosynthesis and catalyzes the insertion of ferrous iron into protoporphyrin IX to form protoheme IX (heme). Due to the many critical roles of heme, synthesis of heme is required by the vast majority of organisms. Despite significant investigation of both the microbial and eukaryotic enzyme, details of metal chelation remain unidentified. Here we present the first structure of the wild-type human enzyme, a lead-inhibited intermediate of the wild-type enzyme with bound metallated porphyrin macrocycle, the product bound form of the enzyme, and a higher resolution model for the substrate-bound form of the E343K variant. These data paint a picture of an enzyme that undergoes significant changes in secondary structure during the catalytic cycle. The role that these structural alterations play in overall catalysis and potential protein-protein interactions with other proteins, as well as the possible molecular basis for these changes, is discussed. The atomic details and structural rearrangements presented herein significantly advance our understanding of the substrate binding mode of ferrochelatase and reveal new conformational changes in a structurally conserved pi-helix that is predicted to have a central role in product release.
Collapse
Affiliation(s)
- Amy E Medlock
- Biomedical and Health Sciences Institute, Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA
| | | | | | | | | |
Collapse
|