51
|
Wang K, Shao YG, Yan FZ, Zhang Z, Li S. Construction of Supramolecular Polymers with Different Topologies by Orthogonal Self-Assembly of Cryptand-Paraquat Recognition and Metal Coordination. Molecules 2021; 26:952. [PMID: 33670156 PMCID: PMC7916833 DOI: 10.3390/molecules26040952] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 02/04/2021] [Accepted: 02/06/2021] [Indexed: 12/04/2022] Open
Abstract
Recently, metal-coordinated orthogonal self-assembly has been used as a feasible and efficient method in the construction of polymeric materials, which can also provide supramolecular self-assembly complexes with different topologies. Herein, a cryptand with a rigid pyridyl group on the third arm derived from BMP32C10 was synthesized. Through coordination-driven self-assembly with a bidentate organoplatinum(II) acceptor or tetradentate Pd(BF4)2•4CH3CN, a di-cryptand complex and tetra-cryptand complex were prepared, respectively. Subsequently, through the addition of a di-paraquat guest, linear and cross-linked supramolecular polymers were constructed through orthogonal self-assembly, respectively. By comparing their proton nuclear magnetic resonance (1H NMR) and diffusion-ordered spectroscopy (DOSY) spectra, it was found that the degrees of polymerization were dependent not only on the concentrations of the monomers but also on the topologies of the supramolecular polymers.
Collapse
Affiliation(s)
- Kai Wang
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, China
| | - Yuan-Guang Shao
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, China
| | - Feng-Zhi Yan
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, China
| | - Zibin Zhang
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, China
| | - Shijun Li
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, China
| |
Collapse
|
52
|
Banerjee B, Kaur G, Kaur N. p-Sulfonic Acid Calix[n]arene Catalyzed Synthesis of Bioactive Heterocycles: A Review. CURR ORG CHEM 2021. [DOI: 10.2174/1385272824999201019162655] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Metal-free organocatalysts are becoming an important tool for the sustainable development
of various bioactive heterocycles. On the other hand, during the last two decades,
calix[n]arenes have been gaining considerable attention due to their wide range of applicability
in the field of supramolecular chemistry. Recently, sulfonic acid functionalized calix[n]
arenes are being employed as an efficient alternative catalyst for the synthesis of various bioactive
scaffolds. In this review, we have summarized the catalytic efficiency of p-sulfonic
acid calix[n]arenes for the synthesis of diverse, biologically promising scaffolds under various
reaction conditions. There is no such review available in the literature showing the catalytic
applicability of p-sulfonic acid calix[n]arenes. Therefore, it is strongly believed that this
review will surely attract those researchers who are interested in this fascinating organocatalyst.
Collapse
Affiliation(s)
- Bubun Banerjee
- Department of Chemistry, Indus International University, V.P.O. Bathu, Distt. Una, Himachal Pradesh-174301, India
| | - Gurpreet Kaur
- Department of Chemistry, Indus International University, V.P.O. Bathu, Distt. Una, Himachal Pradesh-174301, India
| | - Navdeep Kaur
- Department of Chemistry, Indus International University, V.P.O. Bathu, Distt. Una, Himachal Pradesh-174301, India
| |
Collapse
|
53
|
Hu YX, Wu GY, Wang XQ, Yin GQ, Zhang CW, Li X, Xu L, Yang HB. Acid-Activated Motion Switching of DB24C8 between Two Discrete Platinum(II) Metallacycles. Molecules 2021; 26:molecules26030716. [PMID: 33573149 PMCID: PMC7866548 DOI: 10.3390/molecules26030716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 01/25/2021] [Accepted: 01/26/2021] [Indexed: 11/16/2022] Open
Abstract
The precise operation of molecular motion for constructing complicated mechanically interlocked molecules has received considerable attention and is still an energetic field of supramolecular chemistry. Herein, we reported the construction of two tris[2]pseudorotaxanes metallacycles with acid-base controllable molecular motion through self-sorting strategy and host-guest interaction. Firstly, two hexagonal Pt(II) metallacycles M1 and M2 decorated with different host-guest recognition sites have been constructed via coordination-driven self-assembly strategy. The binding of metallacycles M1 and M2 with dibenzo-24-crown-8 (DB24C8) to form tris[2]pseudorotaxanes complexes TPRM1 and TPRM2 have been investigated. Furthermore, by taking advantage of the strong binding affinity between the protonated metallacycle M2 and DB24C8, the addition of trifluoroacetic acid (TFA) as a stimulus successfully induces an acid-activated motion switching of DB24C8 between the discrete metallacycles M1 and M2. This research not only affords a highly efficient way to construct stimuli-responsive smart supramolecular systems but also offers prospects for precisely control multicomponent cooperative motion.
Collapse
Affiliation(s)
- Yi-Xiong Hu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 3663 N. Zhongshan Road, Shanghai 200062, China; (Y.-X.H.); (G.-Y.W.); (X.-Q.W.); (C.-W.Z.)
| | - Gui-Yuan Wu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 3663 N. Zhongshan Road, Shanghai 200062, China; (Y.-X.H.); (G.-Y.W.); (X.-Q.W.); (C.-W.Z.)
- Anhui Province Key Laboratory of Optoelectronic Material Science and Technology, School of Physics and Electronic Information, Anhui Normal University, Wuhu 241002, China
| | - Xu-Qing Wang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 3663 N. Zhongshan Road, Shanghai 200062, China; (Y.-X.H.); (G.-Y.W.); (X.-Q.W.); (C.-W.Z.)
| | - Guang-Qiang Yin
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518055, China; (G.-Q.Y.); (X.L.)
| | - Chang-Wei Zhang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 3663 N. Zhongshan Road, Shanghai 200062, China; (Y.-X.H.); (G.-Y.W.); (X.-Q.W.); (C.-W.Z.)
| | - Xiaopeng Li
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518055, China; (G.-Q.Y.); (X.L.)
| | - Lin Xu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 3663 N. Zhongshan Road, Shanghai 200062, China; (Y.-X.H.); (G.-Y.W.); (X.-Q.W.); (C.-W.Z.)
- Correspondence: (L.X.); (H.-B.Y.)
| | - Hai-Bo Yang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 3663 N. Zhongshan Road, Shanghai 200062, China; (Y.-X.H.); (G.-Y.W.); (X.-Q.W.); (C.-W.Z.)
- Correspondence: (L.X.); (H.-B.Y.)
| |
Collapse
|
54
|
Zhang D, Ronson TK, Zou YQ, Nitschke JR. Metal–organic cages for molecular separations. Nat Rev Chem 2021; 5:168-182. [PMID: 37117530 DOI: 10.1038/s41570-020-00246-1] [Citation(s) in RCA: 229] [Impact Index Per Article: 57.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 12/09/2020] [Indexed: 12/30/2022]
Abstract
Separation technology is central to industries as diverse as petroleum, pharmaceuticals, mining and life sciences. Metal-organic cages, a class of molecular containers formed via coordination-driven self-assembly, show great promise as separation agents. Precise control of the shape, size and functionalization of cage cavities enables them to selectively bind and distinguish a wide scope of physicochemically similar substances in solution. Extensive research has, thus, been performed involving separations of high-value targets using coordination cages, ranging from gases and liquids to compounds dissolved in solution. Enantiopure capsules also show great potential for the separation of chiral molecules. The use of crystalline cages as absorbents, or the incorporation of cages into polymer membranes, could increase the selectivity and efficiency of separation processes. This Review covers recent progress in using metal-organic cages to achieve separations, with discussion of the many methods of using them in this context. Challenges and potential future developments are also discussed.
Collapse
|
55
|
Fu H, Chipot C, Cai W, Shao X. Repurposing Existing Molecular Machines through Accurate Regulation of Cooperative Motions. J Phys Chem Lett 2021; 12:613-619. [PMID: 33382629 DOI: 10.1021/acs.jpclett.0c03444] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
To understand how different external stimuli affect the cooperative motions in a molecular machine consisting of multiple components, we have investigated at the atomic level the effects of pH, solvent, and ionic strength on the mechanism underlying the ring-through-ring movement in a saturated [3]rotaxane. Our results indicate that different external stimuli regulate the stable states, the shuttling rate, and the mechanism that governs the ring-through-ring motion by controlling the cooperative movement of the components and triggering a gamut of responses, thereby opening to a vast number of potential applications, such as quaternary logical calculations. The present work cogently demonstrates that with existing nanomachines possessing a simple topology, but using different external stimuli-an approach coined multidimensional regulation-challenging tasks requiring precise control of the molecular motions at play can be achieved, and our methodology is particularly germane for de novo design of intelligent molecular machines.
Collapse
Affiliation(s)
- Haohao Fu
- Research Center for Analytical Sciences, College of Chemistry, Nankai University, Tianjin Key Laboratory of Biosensing and Molecular Recognition, State Key Laboratory of Medicinal Chemical Biology, Tianjin 300071, China
| | - Christophe Chipot
- Laboratoire International Associé CNRS and University of Illinois at Urbana-Champaign, UMR No. 7019, Université de Lorraine, BP 70239, F-54506 Vandœuvre-lès-Nancy, France
- Department of Physics, University of Illinois at Urbana-Champaign, 1110 West Green Street, Urbana, Illinois 61801, United States
| | - Wensheng Cai
- Research Center for Analytical Sciences, College of Chemistry, Nankai University, Tianjin Key Laboratory of Biosensing and Molecular Recognition, State Key Laboratory of Medicinal Chemical Biology, Tianjin 300071, China
| | - Xueguang Shao
- Research Center for Analytical Sciences, College of Chemistry, Nankai University, Tianjin Key Laboratory of Biosensing and Molecular Recognition, State Key Laboratory of Medicinal Chemical Biology, Tianjin 300071, China
| |
Collapse
|
56
|
Bej S, Nandi M, Ghosh P. A Cd(ii) and Zn(ii) selective naphthyl based [2]rotaxane acts as an exclusive Zn(ii) sensor upon further functionalization with pyrene. Dalton Trans 2021; 50:294-303. [PMID: 33300925 DOI: 10.1039/d0dt03645e] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A new multi-functional [2]rotaxane, ROTX, has been synthesized via a Cu(i) catalysed azide-alkyne cycloaddition reaction between Ni(ii) templated azide terminated pseudorotaxane composed of a naphthalene based heteroditopic wheel, NaphMC, and an alkyne terminated stopper. Subsequently, ROTX has been functionalized with pyrene moieties to develop a bifluorophoric [2]rotaxane, PYROTX, having naphthalene and pyrene moieties. Detailed characterization of these two rotaxanes is performed by utilizing several techniques such as ESI-MS, (1D and 2D) NMR, UV/Vis and PL studies. Comparative metal ion sensing studies of NaphMC (a fluorophoric cyclic receptor), ROTX ([2]rotaxane with a naphthyl fluorophore) and PYROTX ([2]rotaxane having naphthyl and pyrene fluorophores) have been performed to determine the effect of dimensionality/functionalization on the metal ion selectivity. Although NaphMC fails to discriminate between metal ions, ROTX serves as a selective sensor for Zn(ii) and Cd(ii). Importantly, PYROTX shows exclusive selectivity towards Zn(ii) over various transition, alkali and alkaline earth metal ions including Cd(ii).
Collapse
Affiliation(s)
- Somnath Bej
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Kolkata 700032, India.
| | | | | |
Collapse
|
57
|
Shao YG, He L, Mao QQ, Hong T, Ying XW, Zhang Z, Li S, Stang PJ. Efficient one-pot synthesis of [3]catenanes based on Pt( ii) metallacycles with a flexible building block. Org Chem Front 2021. [DOI: 10.1039/d1qo00910a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Three [3]catenanes were fabricated in high efficiency through the self-assembly of a 90° platinum(ii) receptor, a flexible bis(4,4′-bipyridinium) donor and a crown ether (DB24C8 or DB30C10).
Collapse
Affiliation(s)
- Yuan-Guang Shao
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, China
| | - Lang He
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, China
| | - Qian-Qian Mao
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, China
| | - Tao Hong
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, China
| | - Xin-Wen Ying
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, China
| | - Zibin Zhang
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, China
| | - Shijun Li
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, China
| | - Peter J. Stang
- Department of Chemistry, University of Utah, 315 South 1400 East, Room 2020, Salt Lake City, Utah 84112, USA
| |
Collapse
|
58
|
Feng H, Luo Y, Liu M, Chen Q, Tao Z, Xiao X. A facile cucurbit[8]uril-based porous assembly: utilization in the adsorption of drugs and their controlled release. NEW J CHEM 2021. [DOI: 10.1039/d1nj04749c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Cucurbit[n]urils (Q[n]s) are essential members of the supramolecular organic framework family owing to their distinct structure.
Collapse
Affiliation(s)
- Huaming Feng
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Guizhou University, Guiyang, 550025, China
| | - Yang Luo
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Guizhou University, Guiyang, 550025, China
| | - Ming Liu
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Guizhou University, Guiyang, 550025, China
| | - Qing Chen
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Guizhou University, Guiyang, 550025, China
| | - Zhu Tao
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Guizhou University, Guiyang, 550025, China
| | - Xin Xiao
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Guizhou University, Guiyang, 550025, China
| |
Collapse
|
59
|
Li M, Hua B, Huang F. Pillar[5]arene-based ion-pair recognition for constructing a [2]pseudorotaxane with supramolecular interaction induced LCST behavior. Org Chem Front 2021. [DOI: 10.1039/d1qo00457c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Here, we report a novel [2]pseudorotaxane based on perbromoethylated pillar[5]arene/imidazolium iodide ionic liquid ion-pair recognition and this pseudorotaxane shows supramolecular interaction induced LCST behavior in solution.
Collapse
Affiliation(s)
- Ming Li
- State Key Laboratory of Chemical Engineering
- Key Laboratory of Excited-State Materials of Zhejiang Province
- Stoddart Institute of Molecular Science
- Department of Chemistry
- Zhejiang University
| | - Bin Hua
- State Key Laboratory of Chemical Engineering
- Key Laboratory of Excited-State Materials of Zhejiang Province
- Stoddart Institute of Molecular Science
- Department of Chemistry
- Zhejiang University
| | - Feihe Huang
- State Key Laboratory of Chemical Engineering
- Key Laboratory of Excited-State Materials of Zhejiang Province
- Stoddart Institute of Molecular Science
- Department of Chemistry
- Zhejiang University
| |
Collapse
|
60
|
Cao J, Zhu H, Shangguan L, Liu Y, Liu P, Li Q, Wu Y, Huang F. A pillar[5]arene-based 3D polymer network for efficient iodine capture in aqueous solution. Polym Chem 2021. [DOI: 10.1039/d1py00535a] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
A pillar[5]arene-based 3D polymer network is constructed. It possesses good stability, recyclability and high efficiency in iodine capture in aqueous solution.
Collapse
Affiliation(s)
- Jiajun Cao
- State Key Laboratory of Chemical Engineering
- Key Laboratory of Excited-State Materials of Zhejiang Province
- Stoddart Institute of Molecular Science
- Department of Chemistry
- Zhejiang University
| | - Huangtianzhi Zhu
- State Key Laboratory of Chemical Engineering
- Key Laboratory of Excited-State Materials of Zhejiang Province
- Stoddart Institute of Molecular Science
- Department of Chemistry
- Zhejiang University
| | - Liqing Shangguan
- State Key Laboratory of Chemical Engineering
- Key Laboratory of Excited-State Materials of Zhejiang Province
- Stoddart Institute of Molecular Science
- Department of Chemistry
- Zhejiang University
| | - Yuezhou Liu
- State Key Laboratory of Chemical Engineering
- Key Laboratory of Excited-State Materials of Zhejiang Province
- Stoddart Institute of Molecular Science
- Department of Chemistry
- Zhejiang University
| | - Peiren Liu
- State Key Laboratory of Chemical Engineering
- Key Laboratory of Excited-State Materials of Zhejiang Province
- Stoddart Institute of Molecular Science
- Department of Chemistry
- Zhejiang University
| | - Qi Li
- State Key Laboratory of Chemical Engineering
- Key Laboratory of Excited-State Materials of Zhejiang Province
- Stoddart Institute of Molecular Science
- Department of Chemistry
- Zhejiang University
| | - Yitao Wu
- State Key Laboratory of Chemical Engineering
- Key Laboratory of Excited-State Materials of Zhejiang Province
- Stoddart Institute of Molecular Science
- Department of Chemistry
- Zhejiang University
| | - Feihe Huang
- State Key Laboratory of Chemical Engineering
- Key Laboratory of Excited-State Materials of Zhejiang Province
- Stoddart Institute of Molecular Science
- Department of Chemistry
- Zhejiang University
| |
Collapse
|
61
|
Chong H, Nie C, Wang L, Wang S, Han Y, Wang Y, Wang C, Yan C. Construction and investigation of photo-switch property of azobenzene-bridged pillar[5]arene-based [3]rotaxanes. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2020.11.020] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
62
|
Multiple Stimuli-Responsive Conformational Exchanges of Biphen[3]arene Macrocycle. Molecules 2020; 25:molecules25245780. [PMID: 33302382 PMCID: PMC7762528 DOI: 10.3390/molecules25245780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 11/09/2020] [Accepted: 11/11/2020] [Indexed: 11/17/2022] Open
Abstract
Conformational exchanges of synthetic macrocyclic acceptors are rather fast, which is rarely studied in the absence of guests. Here, we report multiple stimuli-responsive conformational exchanges between two preexisting conformations of 2,2',4,4'-tetramethoxyl biphen[3]arene (MeBP3) macrocycle. Structures of these two conformations are both observed in solid state, and characterized by 1H NMR, 13C NMR and 2D NMR in solution. In particular, conformational exchanges can respond to solvents, temperatures, guest binding and acid/base addition. The current system may have a role to play in the construction of molecular switches and other stimuli-responsive systems.
Collapse
|
63
|
Ji X, Wang F, Yan X, Dong S, Huang F. Construction of Supramolecular Polymers Based on
Host‐Guest
Recognition
†. CHINESE J CHEM 2020. [DOI: 10.1002/cjoc.202000314] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Xiaofan Ji
- Department of Chemistry Zhejiang University Hangzhou Zhejiang 310027 China
| | - Feng Wang
- Department of Chemistry Zhejiang University Hangzhou Zhejiang 310027 China
| | - Xuzhou Yan
- Department of Chemistry Zhejiang University Hangzhou Zhejiang 310027 China
| | - Shengyi Dong
- Department of Chemistry Zhejiang University Hangzhou Zhejiang 310027 China
| | - Feihe Huang
- Department of Chemistry Zhejiang University Hangzhou Zhejiang 310027 China
| |
Collapse
|
64
|
Duan Q, Wang F, Zhang H, Lu K. pH-Responsive Host-Guest Complexations Between a Water-Soluble Pillar[6]arene Dodecyl-Ammonium Chloride and Aromatic Sulfonic Acids. Front Chem 2020; 8:588201. [PMID: 33195089 PMCID: PMC7533581 DOI: 10.3389/fchem.2020.588201] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 08/13/2020] [Indexed: 11/13/2022] Open
Abstract
In the present work, new host-guest binding motifs based on a water-soluble pillar[6]arene dodecyl-ammonium chloride (CP6) with two aromatic sulfonic acids in aqueous media were fabricated. In accordance with the integrated results of 1H NMR, 2D NOESY, and florescence titration experiments, it was demonstrated that the host-guest binding of CP6 with the two aromatic sulfonic acids in aqueous solution not only has high binding constants but also has pH-responsiveness.
Collapse
Affiliation(s)
- Qunpeng Duan
- Henan International Joint Laboratory of Rare Earth Composite Materials, School of Materials and Chemical Engineering, Henan University of Engineering, Zhengzhou, China
| | - Fei Wang
- Henan International Joint Laboratory of Rare Earth Composite Materials, School of Materials and Chemical Engineering, Henan University of Engineering, Zhengzhou, China
| | - Hongsong Zhang
- Henan International Joint Laboratory of Rare Earth Composite Materials, School of Materials and Chemical Engineering, Henan University of Engineering, Zhengzhou, China
| | - Kui Lu
- Henan International Joint Laboratory of Rare Earth Composite Materials, School of Materials and Chemical Engineering, Henan University of Engineering, Zhengzhou, China.,School of Chemical Engineering and Food Science, Zhengzhou Institute of Technology, Zhengzhou, China
| |
Collapse
|
65
|
Hupatz H, Gaedke M, Schröder HV, Beerhues J, Valkonen A, Klautzsch F, Müller S, Witte F, Rissanen K, Sarkar B, Schalley CA. Thermodynamic and electrochemical study of tailor-made crown ethers for redox-switchable (pseudo)rotaxanes. Beilstein J Org Chem 2020; 16:2576-2588. [PMID: 33133289 PMCID: PMC7590624 DOI: 10.3762/bjoc.16.209] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 10/02/2020] [Indexed: 12/28/2022] Open
Abstract
Crown ethers are common building blocks in supramolecular chemistry and are frequently applied as cation sensors or as subunits in synthetic molecular machines. Developing switchable and specifically designed crown ethers enables the implementation of function into molecular assemblies. Seven tailor-made redox-active crown ethers incorporating tetrathiafulvalene (TTF) or naphthalene diimide (NDI) as redox-switchable building blocks are described with regard to their potential to form redox-switchable rotaxanes. A combination of isothermal titration calorimetry and voltammetric techniques reveals correlations between the binding energies and redox-switching properties of the corresponding pseudorotaxanes with secondary ammonium ions. For two different weakly coordinating anions, a surprising relation between the enthalpic and entropic binding contributions of the pseudorotaxanes was discovered. These findings were applied to the synthesis of an NDI-[2]rotaxane, which retains similar spectroelectrochemical properties compared to the corresponding free macrocycle. The detailed understanding of the thermodynamic and electrochemical properties of the tailor-made crown ethers lays the foundation for the construction of new types of molecular redox switches with emergent properties.
Collapse
Affiliation(s)
- Henrik Hupatz
- Institut für Chemie und Biochemie, Freie Universität Berlin, Arnimallee 20, 14195 Berlin, Germany
| | - Marius Gaedke
- Institut für Chemie und Biochemie, Freie Universität Berlin, Arnimallee 20, 14195 Berlin, Germany
| | - Hendrik V Schröder
- Institut für Chemie und Biochemie, Freie Universität Berlin, Arnimallee 20, 14195 Berlin, Germany.,present address: Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ08544, USA
| | - Julia Beerhues
- Institut für Chemie und Biochemie, Freie Universität Berlin, Fabeckstr. 34/36, 14195 Berlin, Germany.,present address: Lehrstuhl für Anorganische Koordinationschemie, Institut für Anorganische Chemie, Universität Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany
| | - Arto Valkonen
- Department of Chemistry, University of Jyvaskyla P. O. Box 35, 40014 Jyväskylä, Finland
| | - Fabian Klautzsch
- Institut für Chemie und Biochemie, Freie Universität Berlin, Arnimallee 20, 14195 Berlin, Germany
| | - Sebastian Müller
- Institut für Chemie und Biochemie, Freie Universität Berlin, Arnimallee 20, 14195 Berlin, Germany
| | - Felix Witte
- Institut für Chemie und Biochemie, Freie Universität Berlin, Arnimallee 20, 14195 Berlin, Germany
| | - Kari Rissanen
- Department of Chemistry, University of Jyvaskyla P. O. Box 35, 40014 Jyväskylä, Finland
| | - Biprajit Sarkar
- Institut für Chemie und Biochemie, Freie Universität Berlin, Fabeckstr. 34/36, 14195 Berlin, Germany.,present address: Lehrstuhl für Anorganische Koordinationschemie, Institut für Anorganische Chemie, Universität Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany
| | - Christoph A Schalley
- Institut für Chemie und Biochemie, Freie Universität Berlin, Arnimallee 20, 14195 Berlin, Germany
| |
Collapse
|
66
|
Liu YZ, Zhang JB, Yuan K. Theoretical Prediction on a Novel Reduction-Responsive Nanoring Having a Disulfide Group for Facile Encapsulation and Release of Fullerenes C 60 and C 70. ACS OMEGA 2020; 5:25400-25407. [PMID: 33043220 PMCID: PMC7542849 DOI: 10.1021/acsomega.0c03788] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 09/15/2020] [Indexed: 06/11/2023]
Abstract
In this work, a novel reduction-responsive disulfide bond-containing cycloparaphenylene nanoring molecule (DSCPP) with a pyriform shape has been designed. In addition, the interactions between the designed nanoring (host) and fullerenes C60 and C70 (guests) were investigated theoretically at the M06-2X/6-31G(d,p) and M06-L/MIDI! levels of theory. By analyzing geometric characteristics and host-guest binding energies, it is revealed that the designed DSCPP is an ideal host molecule of guests C60 and C70. DSCPP presents excellent elastic deformation during the encapsulation of C60 and C70. The high binding energies suggest that both DSCPP⊃C60 and DSCPP⊃C70 (∼92 and 118 kJ·mol-1 at the M06-2X/6-31G(d,p) level of theory) are stable host-guest complexes, and the guest C70 is more strongly encapsulated than C60 in the gas phase. The thermodynamic information indicates that the formation of the two host-guest complexes is thermodynamically spontaneous. In addition, the frontier molecular orbital (FMO) features and intermolecular weak interaction region between DSCPP and fullerenes gusts are discussed to further understand the structures and properties of the DSCPP⊃fullerene systems. Finally, the ring-opening mechanism of the DSCPP under reduction conditions is investigated.
Collapse
Affiliation(s)
- Yan-Zhi Liu
- School
of Chemical Engineering and Technology, Tianshui Normal University, Tianshui 741001, China
- Key
Laboratory for New Molecule Materials Design and Function of Gansu
Universities, Tianshui Normal University, Tianshui 741001, China
| | - Jian-Bin Zhang
- School
of Chemical Engineering and Technology, Tianshui Normal University, Tianshui 741001, China
| | - Kun Yuan
- School
of Chemical Engineering and Technology, Tianshui Normal University, Tianshui 741001, China
- Key
Laboratory for New Molecule Materials Design and Function of Gansu
Universities, Tianshui Normal University, Tianshui 741001, China
| |
Collapse
|
67
|
Characterizing intermolecular interactions in redox-active pyridinium-based molecular junctions. J Electroanal Chem (Lausanne) 2020. [DOI: 10.1016/j.jelechem.2020.114070] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
68
|
Li T, Zhang Q, Li D, Dong S, Zhao W, Stang PJ. Rational Design and Bulk Synthesis of Water-Containing Supramolecular Polymers. ACS APPLIED MATERIALS & INTERFACES 2020; 12:38700-38707. [PMID: 32803947 DOI: 10.1021/acsami.0c11546] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The utilization of structural water in chemical self-assembly has not only effectively eliminated the negative influences of solvents from solutions or gels but has also provided new insight into the fabrication of new materials in bulk. However, up to now, supramolecular polymerization triggered by structural water has been dominated more by serendipity than rational design. After carefully analyzing the chemical structures of artificial monomers and gaining a deep understanding of the water-triggered assembly process, we report herein the bulk formation of polymeric materials from water and low-molecular weight monomers by rational design instead of serendipity.
Collapse
Affiliation(s)
- Tao Li
- College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, P. R. China
| | - Qiao Zhang
- College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, P. R. China
| | - Doudou Li
- College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, P. R. China
| | - Shengyi Dong
- College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, P. R. China
| | - Wanxiang Zhao
- College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, P. R. China
| | - Peter J Stang
- Department of Chemistry, University of Utah, 315 South 1400 East, Room 2020, Salt Lake City, Utah 84112, United States
| |
Collapse
|
69
|
Synthesis, Structure and Supramolecular Properties of a Novel C3 Cryptand with Pyridine Units in the Bridges. Molecules 2020; 25:molecules25173789. [PMID: 32825376 PMCID: PMC7504419 DOI: 10.3390/molecules25173789] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 08/10/2020] [Accepted: 08/17/2020] [Indexed: 11/17/2022] Open
Abstract
The high-yield synthesis and the structural investigation of a new cryptand with C3 symmetry, exhibiting 2,4,6-triphenyl-1,3,5-triazine central units and pyridine-based bridges, are reported. The structure of the compound was investigated by single crystal X-ray diffractometry, NMR (nuclear magnetic resonance), HRMS (high resolution mass spectrometry) measurements, and theoretical calculations. The study of supramolecular behavior in solid state revealed the association of cryptand molecules by C-H---π and π---π contacts. Moreover, theoretical calculations indicated the high binding affinity of the cryptand for various organic molecules as guests.
Collapse
|
70
|
Bruemmer KJ, Crossley SWM, Chang CJ. Activity-Based Sensing: A Synthetic Methods Approach for Selective Molecular Imaging and Beyond. Angew Chem Int Ed Engl 2020; 59:13734-13762. [PMID: 31605413 PMCID: PMC7665898 DOI: 10.1002/anie.201909690] [Citation(s) in RCA: 153] [Impact Index Per Article: 30.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Indexed: 01/10/2023]
Abstract
Emerging from the origins of supramolecular chemistry and the development of selective chemical receptors that rely on lock-and-key binding, activity-based sensing (ABS)-which utilizes molecular reactivity rather than molecular recognition for analyte detection-has rapidly grown into a distinct field to investigate the production and regulation of chemical species that mediate biological signaling and stress pathways, particularly metal ions and small molecules. Chemical reactions exploit the diverse chemical reactivity of biological species to enable the development of selective and sensitive synthetic methods to decipher their contributions within complex living environments. The broad utility of this reaction-driven approach facilitates application to imaging platforms ranging from fluorescence, luminescence, photoacoustic, magnetic resonance, and positron emission tomography modalities. ABS methods are also being expanded to other fields, such as drug and materials discovery.
Collapse
Affiliation(s)
- Kevin J Bruemmer
- Department of Chemistry, University of California, Berkeley, Berkeley, CA, 94720, USA
| | - Steven W M Crossley
- Department of Chemistry, University of California, Berkeley, Berkeley, CA, 94720, USA
| | - Christopher J Chang
- Department of Chemistry, University of California, Berkeley, Berkeley, CA, 94720, USA
- Department of Molecular and Cell Biology and Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, 94720, USA
| |
Collapse
|
71
|
Feng T, Li X, An Y, Bai S, Sun L, Li Y, Wang Y, Han Y. Backbone‐Directed Self‐Assembly of Interlocked Molecular Cyclic Metalla[3]Catenanes. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202004112] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Ting Feng
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education College of Chemistry and Materials Science Northwest University Xi'an 710127 P. R. China
| | - Xin Li
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education College of Chemistry and Materials Science Northwest University Xi'an 710127 P. R. China
| | - Yuan‐Yuan An
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education College of Chemistry and Materials Science Northwest University Xi'an 710127 P. R. China
| | - Sha Bai
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education College of Chemistry and Materials Science Northwest University Xi'an 710127 P. R. China
| | - Li‐Ying Sun
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education College of Chemistry and Materials Science Northwest University Xi'an 710127 P. R. China
| | - Yang Li
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education College of Chemistry and Materials Science Northwest University Xi'an 710127 P. R. China
| | - Yao‐Yu Wang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education College of Chemistry and Materials Science Northwest University Xi'an 710127 P. R. China
| | - Ying‐Feng Han
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education College of Chemistry and Materials Science Northwest University Xi'an 710127 P. R. China
| |
Collapse
|
72
|
Han C, Zhao D, Dong S. Host-Guest Complexations Between Pillar[6]arenes and Neutral Pentaerythritol Derivatives. Chem Asian J 2020; 15:2642-2645. [PMID: 32662186 DOI: 10.1002/asia.202000723] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 07/11/2020] [Indexed: 12/31/2022]
Abstract
It is demonstrated that three kinds of neutral pentaerythritol derivatives possess promising host-guest complexations with pillar[6]arenes both in solution and in the solid state. The inclusion structures were characterized by NMR spectroscopy and X-ray crystallography. The complexation properties in different solvents were also investigated.
Collapse
Affiliation(s)
- Chengyou Han
- Department of Chemistry College of Science, China University of Petroleum (East China), No. 66, Changjiang West Road, Huangdao District, Qingdao, 266580, P. R. China
| | - Dezhi Zhao
- Department of Chemistry College of Science, China University of Petroleum (East China), No. 66, Changjiang West Road, Huangdao District, Qingdao, 266580, P. R. China
| | - Shengyi Dong
- College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, Hunan, P. R. China
| |
Collapse
|
73
|
Pederson AMP, Gibson HW, Slebodnick C. Adventitious isolation of a pseudorotaxane complex of a trans-bis(Hydroxymethylbenzo)-27-crown-9 pyridyl cryptand and a viologen. Supramol Chem 2020. [DOI: 10.1080/10610278.2020.1785624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Adam M.-P. Pederson
- Department of Chemistry, Virginia Polytechnic Institute & State University, Blacksburg, VA, USA
| | - Harry W. Gibson
- Department of Chemistry, Virginia Polytechnic Institute & State University, Blacksburg, VA, USA
| | - Carla Slebodnick
- Department of Chemistry, Virginia Polytechnic Institute & State University, Blacksburg, VA, USA
| |
Collapse
|
74
|
Hayashida O, Tanaka H. Guest Capture and Separation by Temperature Responsive Cyclophane-PNIPAM Conjugates. CHEM LETT 2020. [DOI: 10.1246/cl.200135] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Osamu Hayashida
- Department of Chemistry, Faculty of Science, Fukuoka University, 8-19-1 Nanakuma, Fukuoka 814-0180, Japan
| | - Haruna Tanaka
- Department of Chemistry, Faculty of Science, Fukuoka University, 8-19-1 Nanakuma, Fukuoka 814-0180, Japan
| |
Collapse
|
75
|
La Cognata S, Miljkovic A, Mobili R, Bergamaschi G, Amendola V. Organic Cages as Building Blocks for Mechanically Interlocked Molecules: Towards Molecular Machines. Chempluschem 2020; 85:1145-1155. [PMID: 32490593 DOI: 10.1002/cplu.202000274] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 05/11/2020] [Indexed: 01/15/2023]
Abstract
The research on systems able to perform controllable motions under external stimuli arises great interest in the scientific community. Over the years, a library of innovative devices has been produced, classified in different categories according to the molecular or supramolecular level of motion. This minireview aims to highlight some representative studies, in which organic cages are used as building blocks for mechanically interlocked molecules, and in which intramolecular motions are triggered by external input. However, the application of organic cages in the construction of molecular machines is hardly achieved. A good compromise must actually be reached, between flexibility and rigidity of the cage's framework for an effective control of the intra- and/or intermolecular motion in the final mechanical device. Our final goal is to stimulate researchers' curiosity towards cage-like molecules, so that they take on the challenge of converting a cage into a molecular machine.
Collapse
Affiliation(s)
- Sonia La Cognata
- Department of Chemistry, University of Pavia, V. le Taramelli 12, 27100, Pavia, Italy
| | - Ana Miljkovic
- Department of Chemistry, University of Pavia, V. le Taramelli 12, 27100, Pavia, Italy
| | - Riccardo Mobili
- Department of Chemistry, University of Pavia, V. le Taramelli 12, 27100, Pavia, Italy
| | - Greta Bergamaschi
- National Research Council of Italy, Istituto di Scienze e Tecnologie Chimiche, Via M. Bianco 9, 20131, Milano, Italy
| | - Valeria Amendola
- Department of Chemistry, University of Pavia, V. le Taramelli 12, 27100, Pavia, Italy
| |
Collapse
|
76
|
Feng T, Li X, An Y, Bai S, Sun L, Li Y, Wang Y, Han Y. Backbone‐Directed Self‐Assembly of Interlocked Molecular Cyclic Metalla[3]Catenanes. Angew Chem Int Ed Engl 2020; 59:13516-13520. [DOI: 10.1002/anie.202004112] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 04/20/2020] [Indexed: 12/16/2022]
Affiliation(s)
- Ting Feng
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education College of Chemistry and Materials Science Northwest University Xi'an 710127 P. R. China
| | - Xin Li
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education College of Chemistry and Materials Science Northwest University Xi'an 710127 P. R. China
| | - Yuan‐Yuan An
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education College of Chemistry and Materials Science Northwest University Xi'an 710127 P. R. China
| | - Sha Bai
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education College of Chemistry and Materials Science Northwest University Xi'an 710127 P. R. China
| | - Li‐Ying Sun
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education College of Chemistry and Materials Science Northwest University Xi'an 710127 P. R. China
| | - Yang Li
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education College of Chemistry and Materials Science Northwest University Xi'an 710127 P. R. China
| | - Yao‐Yu Wang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education College of Chemistry and Materials Science Northwest University Xi'an 710127 P. R. China
| | - Ying‐Feng Han
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education College of Chemistry and Materials Science Northwest University Xi'an 710127 P. R. China
| |
Collapse
|
77
|
Xia D, Wang P, Ji X, Khashab NM, Sessler JL, Huang F. Functional Supramolecular Polymeric Networks: The Marriage of Covalent Polymers and Macrocycle-Based Host–Guest Interactions. Chem Rev 2020; 120:6070-6123. [DOI: 10.1021/acs.chemrev.9b00839] [Citation(s) in RCA: 263] [Impact Index Per Article: 52.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Danyu Xia
- Scientific Instrument Center, Shanxi University, Taiyuan 030006, P. R. China
| | - Pi Wang
- Ministry of Education Key Laboratory of Interface Science and Engineering in Advanced Materials, Taiyuan University of Technology, Taiyuan 030024, P. R. China
| | - Xiaofan Ji
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Niveen M. Khashab
- Smart Hybrid Materials (SHMS) Laboratory, Chemical Science Program, King Abdullah University of Science and Technology (KAUST), 4700 King Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Jonathan L. Sessler
- Department of Chemistry, The University of Texas at Austin, 105 East 24th Street, Stop A5300, Austin, Texas 78712-1224, United States
- Center for Supramolecular Chemistry and Catalysis, Shanghai University, Shanghai 200444, P. R. China
| | - Feihe Huang
- State Key Laboratory of Chemical Engineering, Center for Chemistry of High-Performance & Novel Materials, Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China
- Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
| |
Collapse
|
78
|
Shao L, Pan Y, Hua B, Xu S, Yu G, Wang M, Liu B, Huang F. Constructing Adaptive Photosensitizers via Supramolecular Modification Based on Pillararene Host–Guest Interactions. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202000338] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Li Shao
- State Key Laboratory of Chemical Engineering Center for Chemistry of High-Performance & Novel Materials Department of Chemistry Zhejiang University Hangzhou 310027 P. R. China
| | - Yutong Pan
- Department of Chemical and Biomolecular Engineering National University of Singapore 4 Engineering Drive 4 117585 Singapore Singapore
| | - Bin Hua
- State Key Laboratory of Chemical Engineering Center for Chemistry of High-Performance & Novel Materials Department of Chemistry Zhejiang University Hangzhou 310027 P. R. China
| | - Shidang Xu
- Department of Chemical and Biomolecular Engineering National University of Singapore 4 Engineering Drive 4 117585 Singapore Singapore
| | - Guocan Yu
- Laboratory of Molecular Imaging and Nanomedicine National Institute of Biomedical Imaging and Bioengineering National Institutes of Health Bethesda MD 20892 USA
| | - Mengbin Wang
- State Key Laboratory of Chemical Engineering Center for Chemistry of High-Performance & Novel Materials Department of Chemistry Zhejiang University Hangzhou 310027 P. R. China
| | - Bin Liu
- Department of Chemical and Biomolecular Engineering National University of Singapore 4 Engineering Drive 4 117585 Singapore Singapore
| | - Feihe Huang
- State Key Laboratory of Chemical Engineering Center for Chemistry of High-Performance & Novel Materials Department of Chemistry Zhejiang University Hangzhou 310027 P. R. China
- Green Catalysis Center and College of Chemistry Zhengzhou University Zhengzhou 450001 P. R. China
| |
Collapse
|
79
|
Sinawang G, Osaki M, Takashima Y, Yamaguchi H, Harada A. Biofunctional hydrogels based on host–guest interactions. Polym J 2020. [DOI: 10.1038/s41428-020-0352-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
80
|
Shao L, Pan Y, Hua B, Xu S, Yu G, Wang M, Liu B, Huang F. Constructing Adaptive Photosensitizers via Supramolecular Modification Based on Pillararene Host-Guest Interactions. Angew Chem Int Ed Engl 2020; 59:11779-11783. [PMID: 32324962 DOI: 10.1002/anie.202000338] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 04/14/2020] [Indexed: 01/13/2023]
Abstract
In order to promote the development of photodynamic therapy (PDT), undesired side effects like low tumor specificity and the "always-on" phenomenon should be avoided. An effective solution is to construct an adaptive photosensitizer that can be activated to generate reactive oxygen species (ROS) in the tumor microenvironment. Herein, we design and synthesize a supramolecular switch based on a host-guest complex containing a water-soluble pillar[5]arene (WP5) and an AIEgen photosensitizer (G). The formation of the host-guest complex WP5⊃G quenches the fluorescence and inhibits ROS generation of G. Benefitting from the pH-responsiveness of WP5, the binding site between G and WP5 changes in an acidic environment through a shuttle movement. Consequently, fluorescence and ROS generation of the host-guest complex can be switched on at pH 5.0. This work offers a new paradigm for the construction of adaptive photosensitizers by using a supramolecular method.
Collapse
Affiliation(s)
- Li Shao
- State Key Laboratory of Chemical Engineering, Center for Chemistry of High-Performance & Novel Materials, Department of Chemistry, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Yutong Pan
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, 117585, Singapore, Singapore
| | - Bin Hua
- State Key Laboratory of Chemical Engineering, Center for Chemistry of High-Performance & Novel Materials, Department of Chemistry, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Shidang Xu
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, 117585, Singapore, Singapore
| | - Guocan Yu
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Mengbin Wang
- State Key Laboratory of Chemical Engineering, Center for Chemistry of High-Performance & Novel Materials, Department of Chemistry, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Bin Liu
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, 117585, Singapore, Singapore
| | - Feihe Huang
- State Key Laboratory of Chemical Engineering, Center for Chemistry of High-Performance & Novel Materials, Department of Chemistry, Zhejiang University, Hangzhou, 310027, P. R. China.,Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou, 450001, P. R. China
| |
Collapse
|
81
|
Bruemmer KJ, Crossley SWM, Chang CJ. Aktivitätsbasierte Sensorik: ein synthetisch‐methodischer Ansatz für die selektive molekulare Bildgebung und darüber hinaus. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201909690] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Kevin J. Bruemmer
- Department of Chemistry University of California, Berkeley Berkeley CA 94720 USA
| | | | - Christopher J. Chang
- Department of Chemistry University of California, Berkeley Berkeley CA 94720 USA
- Department of Molecular and Cell Biology and Helen Wills Neuroscience Institute University of California, Berkeley Berkeley CA 94720 USA
| |
Collapse
|
82
|
Hayashida O, Shibata K. Stimuli-Responsive Supramolecular Coaggregation and Disaggregation of Host-Guest Conjugates Having a Disulfide Linkage. J Org Chem 2020; 85:5493-5502. [PMID: 32233372 DOI: 10.1021/acs.joc.0c00237] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Water-soluble cationic and anionic cyclophanes (1a and 2a, respectively) having a dabsyl group with a cleavable disulfide linkage were synthesized as a host-guest conjugate covalently bound with both host and guest components. Self-inclusion phenomena but not self-aggregation behaviors were observed for each cyclophane in aqueous media. Each cyclophane includes its own dabsyl moiety (guest component) in its macrocyclic cavity (host component) through hydrophobic interaction. When 1 equiv. of cationic 1a was added to an aqueous solution of anionic 2a, however, supramolecular coaggregates formed spontaneously through host-guest complexation. As regard the supramolecular coaggregates, the existence of larger particles was confirmed by DLS measurements and TEM observation. The hydrophobic interaction between the dabsyl moiety and macrocyclic cavity and electrostatic interactions between 1a and 2a play important roles in the supramolecular coaggregate formation. Each cyclophane having a cleavable disulfide linkage was easily transformed to the corresponding thiols by reducing reagents such as DTT, which was confirmed by MALDI-TOF MS. Disaggregation of the supramolecular coaggregates composed of 1a and 2a was successfully performed upon addition of DTT, with release of the thiol derivative of dabsyl. Such disaggregation of the coaggregates was also conducted by other external stimuli such as salts and competitive guests.
Collapse
Affiliation(s)
- Osamu Hayashida
- Department of Chemistry, Faculty of Science, Fukuoka University, Nanakuma 8-19-1, Fukuoka 814-0180, Japan
| | - Kana Shibata
- Department of Chemistry, Faculty of Science, Fukuoka University, Nanakuma 8-19-1, Fukuoka 814-0180, Japan
| |
Collapse
|
83
|
Sinawang G, Osaki M, Takashima Y, Yamaguchi H, Harada A. Supramolecular self-healing materials from non-covalent cross-linking host-guest interactions. Chem Commun (Camb) 2020; 56:4381-4395. [PMID: 32249859 DOI: 10.1039/d0cc00672f] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The introduction of non-covalent bonds is effective for achieving self-healing properties because they can be controlled reversibly. One approach to introduce these bonds into supramolecular materials is use of host-guest interactions. This feature article summarizes the development of supramolecular materials constructed by non-covalent cross-linking through several approaches, such as host-guest interactions between host polymers and guest polymers, 1 : 2-type host-guest interactions, and host-guest interactions from the polymerization of host-guest inclusion complexes. Host-guest interactions show self-healing functions while also enabling stimuli-responsiveness (redox, pH, and temperature). The self-healing function of supramolecular materials is achieved by stress dispersion arising from host-guest interactions when stress is applied. Reversible bonds based on host-guest interactions have tremendous potential to expand the variety of functional materials.
Collapse
Affiliation(s)
- Garry Sinawang
- Department of Macromolecular Science, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan.
| | | | | | | | | |
Collapse
|
84
|
Akine S, Sakata Y. Control of Guest Binding Kinetics in Macrocycles and Molecular Cages. CHEM LETT 2020. [DOI: 10.1246/cl.200017] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Shigehisa Akine
- Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
- WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Yoko Sakata
- Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
- WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| |
Collapse
|
85
|
Akae Y, Iijima K, Tanaka M, Tarao T, Takata T. Main Chain-Type Polyrotaxanes Derived from Cyclodextrin-Based Pseudo[3]rotaxane Diamine and Macromolecular Diisocyanate: Synthesis, Modification, and Characterization. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c00215] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Yosuke Akae
- School of Chemical Science and Engineering, Tokyo Institute of Technology, Nagatsuta-cho 4259, Midori-ku, Yokohama 226-8503, Japan
| | - Keisuke Iijima
- School of Chemical Science and Engineering, Tokyo Institute of Technology, Nagatsuta-cho 4259, Midori-ku, Yokohama 226-8503, Japan
| | - Mami Tanaka
- Sports Business Headquarters, Sumitomo Rubber Industries, Ltd., 6-9, 3-chome, Wakinohama-cho, Chuo-ku, Kobe 651-0072, Japan
| | - Toshiyuki Tarao
- Sports Business Headquarters, Sumitomo Rubber Industries, Ltd., 6-9, 3-chome, Wakinohama-cho, Chuo-ku, Kobe 651-0072, Japan
| | - Toshikazu Takata
- School of Chemical Science and Engineering, Tokyo Institute of Technology, Nagatsuta-cho 4259, Midori-ku, Yokohama 226-8503, Japan
| |
Collapse
|
86
|
Kundu S, Sk B, Pallavi P, Giri A, Patra A. Molecular Engineering Approaches Towards All‐Organic White Light Emitting Materials. Chemistry 2020; 26:5557-5582. [DOI: 10.1002/chem.201904626] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Indexed: 12/14/2022]
Affiliation(s)
- Subhankar Kundu
- Department of ChemistryIndian Institute of Science Education and Research Bhopal, Bhopal Bypass, Road Bhauri, Bhopal 462066 Madhya Pradesh India
| | - Bahadur Sk
- Department of ChemistryIndian Institute of Science Education and Research Bhopal, Bhopal Bypass, Road Bhauri, Bhopal 462066 Madhya Pradesh India
| | - Pragyan Pallavi
- Department of ChemistryIndian Institute of Science Education and Research Bhopal, Bhopal Bypass, Road Bhauri, Bhopal 462066 Madhya Pradesh India
| | - Arkaprabha Giri
- Department of ChemistryIndian Institute of Science Education and Research Bhopal, Bhopal Bypass, Road Bhauri, Bhopal 462066 Madhya Pradesh India
| | - Abhijit Patra
- Department of ChemistryIndian Institute of Science Education and Research Bhopal, Bhopal Bypass, Road Bhauri, Bhopal 462066 Madhya Pradesh India
| |
Collapse
|
87
|
Chen W, Tian X, He W, Li J, Feng Y, Pan G. Emerging functional materials based on chemically designed molecular recognition. ACTA ACUST UNITED AC 2020. [DOI: 10.1186/s42833-019-0007-1] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
AbstractThe specific interactions responsible for molecular recognition play a crucial role in the fundamental functions of biological systems. Mimicking these interactions remains one of the overriding challenges for advances in both fundamental research in biochemistry and applications in material science. However, current molecular recognition systems based on host–guest supramolecular chemistry rely on familiar platforms (e.g., cyclodextrins, crown ethers, cucurbiturils, calixarenes, etc.) for orienting functionality. These platforms limit the opportunity for diversification of function, especially considering the vast demands in modern material science. Rational design of novel receptor-like systems for both biological and chemical recognition is important for the development of diverse functional materials. In this review, we focus on recent progress in chemically designed molecular recognition and their applications in material science. After a brief introduction to representative strategies, we describe selected advances in these emerging fields. The developed functional materials with dynamic properties including molecular assembly, enzyme-like and bio-recognition abilities are highlighted. We have also selected materials with dynamic properties in contract to traditional supramolecular host–guest systems. Finally, the current limitations and some future trends of these systems are discussed.
Collapse
|
88
|
Xiao T, Zhou L, Sun XQ, Huang F, Lin C, Wang L. Supramolecular polymers fabricated by orthogonal self-assembly based on multiple hydrogen bonding and macrocyclic host–guest interactions. CHINESE CHEM LETT 2020. [DOI: 10.1016/j.cclet.2019.05.011] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
89
|
Zhang CW, Jiang ST, Zheng W, Ji T, Huo GF, Yin GQ, Li X, Liao X. Supramolecular metallacyclic hydrogels with tunable strength switched by host–guest interactions. Polym Chem 2020; 11:882-888. [DOI: 10.1039/c9py01471c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
A new family of supramolecular hydrogels with tunable strength was successfully constructed through a combination of coordination-driven self-assembly, post-assembly polymerization and host–guest interactions.
Collapse
Affiliation(s)
- Chang-Wei Zhang
- School of Chemistry and Molecular Engineering
- East China Normal University
- Shanghai 200062
- P. R. China
| | - Shu-Ting Jiang
- School of Chemistry and Molecular Engineering
- East China Normal University
- Shanghai 200062
- P. R. China
| | - Wei Zheng
- School of Chemistry and Molecular Engineering
- East China Normal University
- Shanghai 200062
- P. R. China
| | - Tan Ji
- School of Chemistry and Molecular Engineering
- East China Normal University
- Shanghai 200062
- P. R. China
| | - Gui-Fei Huo
- School of Chemistry and Molecular Engineering
- East China Normal University
- Shanghai 200062
- P. R. China
| | - Guang-Qiang Yin
- School of Chemistry and Molecular Engineering
- East China Normal University
- Shanghai 200062
- P. R. China
| | - Xiaopeng Li
- Department of Chemistry
- University of South Florida
- Tampa
- USA
| | - Xiaojuan Liao
- School of Chemistry and Molecular Engineering
- East China Normal University
- Shanghai 200062
- P. R. China
| |
Collapse
|
90
|
Nakamura T, Mori Y, Naito M, Okuma Y, Miyagawa S, Takaya H, Kawasaki T, Tokunaga Y. Rotaxanes comprising cyclic phenylenedioxydiacetamides and secondary mono- and bis-dialkylammonium ions: effect of macrocyclic ring size on pseudorotaxane formation. Org Chem Front 2020. [DOI: 10.1039/c9qo01359h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
[2]Rotaxanes, stabilized through multiple and cooperative hydrogen bonding system, were synthesized from dialkylammonium ions and macrocycle possessing two phenylenedioxydiacetamide units and appropriate spacers.
Collapse
Affiliation(s)
- Takanori Nakamura
- Department of Materials Science and Engineering
- Faculty of Engineering
- University of Fukui
- Fukui 910-8507
- Japan
| | - Yuka Mori
- Department of Materials Science and Engineering
- Faculty of Engineering
- University of Fukui
- Fukui 910-8507
- Japan
| | - Masaya Naito
- Department of Materials Science and Engineering
- Faculty of Engineering
- University of Fukui
- Fukui 910-8507
- Japan
| | - Yukari Okuma
- Department of Materials Science and Engineering
- Faculty of Engineering
- University of Fukui
- Fukui 910-8507
- Japan
| | - Shinobu Miyagawa
- Department of Materials Science and Engineering
- Faculty of Engineering
- University of Fukui
- Fukui 910-8507
- Japan
| | - Hikaru Takaya
- International Research Center for Elements Science
- Institute for Chemical Research
- Kyoto University
- Uji 611-0011
- Japan
| | - Tsuneomi Kawasaki
- Department of Applied Chemistry
- Tokyo University of Science
- Tokyo 162-8601
- Japan
| | - Yuji Tokunaga
- Department of Materials Science and Engineering
- Faculty of Engineering
- University of Fukui
- Fukui 910-8507
- Japan
| |
Collapse
|
91
|
Blanco-Gómez A, Cortón P, Barravecchia L, Neira I, Pazos E, Peinador C, García MD. Controlled binding of organic guests by stimuli-responsive macrocycles. Chem Soc Rev 2020; 49:3834-3862. [DOI: 10.1039/d0cs00109k] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Synthetic supramolecular chemistry pursues not only the construction of new matter, but also control over its inherently dynamic behaviour.
Collapse
Affiliation(s)
- Arturo Blanco-Gómez
- Departamento de Química
- Facultade de Ciencias and Centro de Investigacións Científicas Avanzadas (CICA)
- Universidade da Coruña
- 15071 A Coruña
- Spain
| | - Pablo Cortón
- Departamento de Química
- Facultade de Ciencias and Centro de Investigacións Científicas Avanzadas (CICA)
- Universidade da Coruña
- 15071 A Coruña
- Spain
| | - Liliana Barravecchia
- Departamento de Química
- Facultade de Ciencias and Centro de Investigacións Científicas Avanzadas (CICA)
- Universidade da Coruña
- 15071 A Coruña
- Spain
| | - Iago Neira
- Departamento de Química
- Facultade de Ciencias and Centro de Investigacións Científicas Avanzadas (CICA)
- Universidade da Coruña
- 15071 A Coruña
- Spain
| | - Elena Pazos
- Departamento de Química
- Facultade de Ciencias and Centro de Investigacións Científicas Avanzadas (CICA)
- Universidade da Coruña
- 15071 A Coruña
- Spain
| | - Carlos Peinador
- Departamento de Química
- Facultade de Ciencias and Centro de Investigacións Científicas Avanzadas (CICA)
- Universidade da Coruña
- 15071 A Coruña
- Spain
| | - Marcos D. García
- Departamento de Química
- Facultade de Ciencias and Centro de Investigacións Científicas Avanzadas (CICA)
- Universidade da Coruña
- 15071 A Coruña
- Spain
| |
Collapse
|
92
|
García-López V, Liu D, Tour JM. Light-Activated Organic Molecular Motors and Their Applications. Chem Rev 2019; 120:79-124. [PMID: 31849216 DOI: 10.1021/acs.chemrev.9b00221] [Citation(s) in RCA: 125] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Molecular motors are at the heart of cellular machinery, and they are involved in converting chemical and light energy inputs into efficient mechanical work. From a synthetic perspective, the most advanced molecular motors are rotators that are activated by light wherein a molecular subcomponent rotates unidirectionally around an axis. The mechanical work produced by arrays of molecular motors can be used to induce a macroscopic effect. Light activation offers advantages over biological chemically activated molecular motors because one can direct precise spatiotemporal inputs while conducting reactions in the gas phase, in solution and in vacuum, while generating no chemical byproducts or waste. In this review, we describe the origins of the first light-activated rotary motors and their modes of function, the structural modifications that led to newer motor designs with optimized rotary properties at variable activation wavelengths. Presented are molecular motor attachments to surfaces, their insertion into supramolecular structures and photomodulating materials, their use in catalysis, and their action in biological environments to produce exciting new prospects for biomedicine.
Collapse
|
93
|
Smith JB, Camp AM, Farquhar AH, Kerr SH, Chen CH, Miller AJM. Organometallic Elaboration as a Strategy for Tuning the Supramolecular Characteristics of Aza-Crown Ethers. Organometallics 2019. [DOI: 10.1021/acs.organomet.9b00462] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Jacob B. Smith
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290, United States
| | - Andrew M. Camp
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290, United States
| | - Alexandra H. Farquhar
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290, United States
| | - Stewart H. Kerr
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290, United States
| | - Chun-Hsing Chen
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290, United States
| | - Alexander J. M. Miller
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290, United States
| |
Collapse
|
94
|
Jin L, Li B, Cui Z, Shang J, Wang Y, Shao C, Pan T, Ge Y, Qi Z. Selenium Substitution-Induced Hydration Changes of Crown Ethers As Tools for Probing Water Interactions with Supramolecular Macrocycles in Aqueous Solutions. J Phys Chem B 2019; 123:9692-9698. [DOI: 10.1021/acs.jpcb.9b09618] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Lin Jin
- Sino-German Joint Research Lab for Space Biomaterials and Translational Technology, Synergetic Innovation Center of Flexible Electronics and Healthcare Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi’an, Shaanxi 710072, P. R. China
| | - Bo Li
- Sino-German Joint Research Lab for Space Biomaterials and Translational Technology, Synergetic Innovation Center of Flexible Electronics and Healthcare Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi’an, Shaanxi 710072, P. R. China
| | - Zhiliyu Cui
- Sino-German Joint Research Lab for Space Biomaterials and Translational Technology, Synergetic Innovation Center of Flexible Electronics and Healthcare Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi’an, Shaanxi 710072, P. R. China
| | - Jie Shang
- Sino-German Joint Research Lab for Space Biomaterials and Translational Technology, Synergetic Innovation Center of Flexible Electronics and Healthcare Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi’an, Shaanxi 710072, P. R. China
| | - Yangxin Wang
- Sino-German Joint Research Lab for Space Biomaterials and Translational Technology, Synergetic Innovation Center of Flexible Electronics and Healthcare Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi’an, Shaanxi 710072, P. R. China
| | - Chenguang Shao
- Sino-German Joint Research Lab for Space Biomaterials and Translational Technology, Synergetic Innovation Center of Flexible Electronics and Healthcare Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi’an, Shaanxi 710072, P. R. China
| | - Tiezheng Pan
- Sino-German Joint Research Lab for Space Biomaterials and Translational Technology, Synergetic Innovation Center of Flexible Electronics and Healthcare Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi’an, Shaanxi 710072, P. R. China
| | - Yan Ge
- Sino-German Joint Research Lab for Space Biomaterials and Translational Technology, Synergetic Innovation Center of Flexible Electronics and Healthcare Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi’an, Shaanxi 710072, P. R. China
| | - Zhenhui Qi
- Sino-German Joint Research Lab for Space Biomaterials and Translational Technology, Synergetic Innovation Center of Flexible Electronics and Healthcare Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi’an, Shaanxi 710072, P. R. China
| |
Collapse
|
95
|
Zhao R, Zhou YJ, Jie KC, Yang J, Perrier S, Huang FH. Fluorescent Supramolecular Polymersomes Based on Pillararene/Paraquat Molecular Recognition for pH-controlled Drug Release. CHINESE JOURNAL OF POLYMER SCIENCE 2019. [DOI: 10.1007/s10118-019-2305-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
96
|
Zhang D, Ronson TK, Güryel S, Thoburn JD, Wales DJ, Nitschke JR. Temperature Controls Guest Uptake and Release from Zn 4L 4 Tetrahedra. J Am Chem Soc 2019; 141:14534-14538. [PMID: 31478658 PMCID: PMC6753657 DOI: 10.1021/jacs.9b07307] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
![]()
We report the preparation of triazatruxene-faced
tetrahedral cage 1, which exhibits two diastereomeric
configurations (T1 and T2) that differ in
the handedness of the
ligand faces relative to that of the octahedrally coordinated metal
centers. At lower temperatures, T1 is favored, whereas T2 predominates at higher temperatures. Host–guest
studies show that T1 binds small aliphatic guests, whereas T2 binds larger aromatic molecules, with these changes in
binding preference resulting from differences in cavity size and degree
of enclosure. Thus, by a change in temperature the cage system can
be triggered to eject one bound guest and take up another.
Collapse
Affiliation(s)
- Dawei Zhang
- Department of Chemistry , University of Cambridge , Lensfield Road , Cambridge CB2 1EW , United Kingdom
| | - Tanya K Ronson
- Department of Chemistry , University of Cambridge , Lensfield Road , Cambridge CB2 1EW , United Kingdom
| | - Songül Güryel
- Department of Chemistry , University of Cambridge , Lensfield Road , Cambridge CB2 1EW , United Kingdom
| | - John D Thoburn
- Department of Chemistry , Randolph-Macon College , Ashland , Virginia 23005 , United States
| | - David J Wales
- Department of Chemistry , University of Cambridge , Lensfield Road , Cambridge CB2 1EW , United Kingdom
| | - Jonathan R Nitschke
- Department of Chemistry , University of Cambridge , Lensfield Road , Cambridge CB2 1EW , United Kingdom
| |
Collapse
|
97
|
Shi B, Zhou Z, Vanderlinden RT, Tang JH, Yu G, Acharyya K, Sepehrpour H, Stang PJ. Spontaneous Supramolecular Polymerization Driven by Discrete Platinum Metallacycle-Based Host-Guest Complexation. J Am Chem Soc 2019; 141:11837-11841. [PMID: 31303001 PMCID: PMC6693626 DOI: 10.1021/jacs.9b06181] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Considerable progress in platinum metallacycle-based supramolecular polymerization has promoted the fabrication and application of supramolecular materials. However, despite recent advances, supramolecular polymers constructed through platinum metallacycle-based host-guest complexation remain rare because of the dynamics of platinum metallacycles. Here, we achieve linear supramolecular polymerization via platinum metallacycle-based host-guest complexation by following the design rule of suppressing the dynamics of the metallacycles. The establishment of the platinum metallacycle-based host-guest system and the realization of this type of supramolecular polymerization are expected to open opportunities for platinum metallacycle-based functional materials.
Collapse
Affiliation(s)
- Bingbing Shi
- Key Laboratory of Eco-Functional Polymer Materials of the Ministry of Education, College of Chemistry and Chemical Engineering , Northwest Normal University , Lanzhou 730070 , P. R. China
- Department of Chemistry , University of Utah , 315 South 1400 East, Room 2020 , Salt Lake City , Utah 84112 , United States
| | - Zhixuan Zhou
- Department of Chemistry , University of Utah , 315 South 1400 East, Room 2020 , Salt Lake City , Utah 84112 , United States
| | - Ryan T Vanderlinden
- Department of Chemistry , University of Utah , 315 South 1400 East, Room 2020 , Salt Lake City , Utah 84112 , United States
| | - Jian-Hong Tang
- Department of Chemistry , University of Utah , 315 South 1400 East, Room 2020 , Salt Lake City , Utah 84112 , United States
| | - Guocan Yu
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering , National Institutes of Health , Bethesda , Maryland 20892 , United States
| | - Koushik Acharyya
- Department of Chemistry , University of Utah , 315 South 1400 East, Room 2020 , Salt Lake City , Utah 84112 , United States
| | - Hajar Sepehrpour
- Department of Chemistry , University of Utah , 315 South 1400 East, Room 2020 , Salt Lake City , Utah 84112 , United States
| | - Peter J Stang
- Department of Chemistry , University of Utah , 315 South 1400 East, Room 2020 , Salt Lake City , Utah 84112 , United States
| |
Collapse
|
98
|
de Paiva WF, Braga IB, de Assis JV, Castañeda SMB, Sathicq ÁG, Palermo V, Romanelli GP, Natalino R, da Silva MJ, Martins FT, de Carvalho GSG, Amarante GW, Fernandes SA. Microwave-assisted multicomponent synthesis of julolidines using silica-supported calix[4]arene as heterogeneous catalyst. Tetrahedron 2019. [DOI: 10.1016/j.tet.2019.05.049] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
99
|
Affiliation(s)
- Bo Zheng
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University Xi’an Shaanxi 710069 China
| | - Yali Hou
- State Key Laboratory for Mechanical Behavior of Materials, Xi’an Jiaotong University Xi’an Shaanxi 710049 China
| | - Lingyan Gao
- State Key Laboratory for Mechanical Behavior of Materials, Xi’an Jiaotong University Xi’an Shaanxi 710049 China
| | - Mingming Zhang
- State Key Laboratory for Mechanical Behavior of Materials, Xi’an Jiaotong University Xi’an Shaanxi 710049 China
| |
Collapse
|
100
|
Ge Y, Shen X, Cao H, Jin L, Shang J, Wang Y, Pan T, Yang Y, Qi Z. Biological Macrocycle: Supramolecular Hydrophobic Guest Transport System Based on Nanodiscs with Photodynamic Activity. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:7824-7829. [PMID: 31141380 DOI: 10.1021/acs.langmuir.9b00126] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
A biogenic macrocycle-based guest loading system has been developed by the self-assembly of membrane scaffold protein and phospholipids. The resulting 10 nm level transport system can increase the solubility of hydrophobic photodynamic agent hypocrellin B in aqueous medium and exhibited a cellular internalization capacity with substantial photodynamic activity.
Collapse
Affiliation(s)
- Yan Ge
- Sino-German Joint Research Lab for Space Biomaterials and Translational Technology, School of Life Sciences , Northwestern Polytechnical University , Xi'an , Shaanxi 710072 , China
| | - Xin Shen
- Sino-German Joint Research Lab for Space Biomaterials and Translational Technology, School of Life Sciences , Northwestern Polytechnical University , Xi'an , Shaanxi 710072 , China
| | - Hongqian Cao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety , National Center for Nanoscience and Technology , Beijing 100190 , China
- Department of Public Health , Shandong University , Jinan , Shandong 250012 , China
| | - Lin Jin
- Sino-German Joint Research Lab for Space Biomaterials and Translational Technology, School of Life Sciences , Northwestern Polytechnical University , Xi'an , Shaanxi 710072 , China
| | - Jie Shang
- Sino-German Joint Research Lab for Space Biomaterials and Translational Technology, School of Life Sciences , Northwestern Polytechnical University , Xi'an , Shaanxi 710072 , China
| | - Yangxin Wang
- Sino-German Joint Research Lab for Space Biomaterials and Translational Technology, School of Life Sciences , Northwestern Polytechnical University , Xi'an , Shaanxi 710072 , China
| | - Tiezheng Pan
- Sino-German Joint Research Lab for Space Biomaterials and Translational Technology, School of Life Sciences , Northwestern Polytechnical University , Xi'an , Shaanxi 710072 , China
| | - Yang Yang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety , National Center for Nanoscience and Technology , Beijing 100190 , China
| | - Zhenhui Qi
- Sino-German Joint Research Lab for Space Biomaterials and Translational Technology, School of Life Sciences , Northwestern Polytechnical University , Xi'an , Shaanxi 710072 , China
- Institute of Biomedical Materials & Engineering (IBME) , Northwestern Polytechnical University , Xi'an , Shaanxi 710072 , China
| |
Collapse
|