51
|
Moitra T, Karak P, Chakraborty S, Ruud K, Chakrabarti S. Behind the scenes of spin-forbidden decay pathways in transition metal complexes. Phys Chem Chem Phys 2021; 23:59-81. [PMID: 33319894 DOI: 10.1039/d0cp05108j] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The interpretation of the ultrafast photophysics of transition metal complexes following photo-absorption is quite involved as the heavy metal center leads to a complicated and entangled singlet-triplet manifold. This opens up multiple pathways for deactivation, often with competitive rates. As a result, intersystem crossing (ISC) and phosphorescence are commonly observed in transition metal complexes. A detailed understanding of such an excited-state structure and dynamics calls for state-of-the-art experimental and theoretical methodologies. In this review, we delve into the inability of non-relativistic quantum theory to describe spin-forbidden transitions, which can be overcome by taking into account spin-orbit coupling, whose importance grows with increasing atomic number. We present the quantum chemical theory of phosphorescence and ISC together with illustrative examples. Finally, a few applications are highlighted, bridging the gap between theoretical studies and experimental applications, such as photofunctional materials.
Collapse
Affiliation(s)
- Torsha Moitra
- DTU Chemistry, Technical University of Denmark, Kemitorvet Bldg 207, DK-2800 Kongens Lyngby, Denmark
| | | | | | | | | |
Collapse
|
52
|
Barlow K, Johansson JO. Ultrafast photoinduced dynamics in Prussian blue analogues. Phys Chem Chem Phys 2021; 23:8118-8131. [DOI: 10.1039/d1cp00535a] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
A review on ultrafast photoinduced processes in molecule-based magnets with an emphasis on Prussian blue analogues.
Collapse
Affiliation(s)
- Kyle Barlow
- EaStCHEM School of Chemistry
- University of Edinburgh
- David Brewster Road
- Edinburgh
- UK
| | - J. Olof Johansson
- EaStCHEM School of Chemistry
- University of Edinburgh
- David Brewster Road
- Edinburgh
- UK
| |
Collapse
|
53
|
Iuchi S, Koga N. A model electronic Hamiltonian to describe low-lying d-d and metal-to-ligand charge-transfer excited states of [Fe(bpy) 3 ] 2. J Comput Chem 2020; 42:166-179. [PMID: 33146893 DOI: 10.1002/jcc.26444] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 10/16/2020] [Accepted: 10/16/2020] [Indexed: 11/10/2022]
Abstract
A simple practical method to compute both d-d and metal-to-ligand charge-transfer (MLCT) excited states of iron(II) polypyridyl complexes is proposed for use in simulation studies. Specifically, a model electronic Hamiltonian developed previously for d-d excited states of [Fe(bpy)3 ]2+ is extended to deal with low-lying MLCT excited states simultaneously by including the MLCT electronic configurations into the basis functions of the model Hamiltonian. As a first attempt, parameters in the model Hamiltonian matrix elements are determined by using density functional theory (DFT) and time-dependent (TD-)DFT calculation results as benchmarks. To examine the performance of the model Hamiltonian, the potential energy curves along the interpolation between the lowest singlet and quintet state structures are compared to those from the (TD-)DFT calculations and to those from CASPT2 calculations in literature. The electronic absorption spectrum computed through molecular dynamics simulation is compared to the experimental spectrum. The spin-orbit couplings at the ground state structure are also compared to those from wavefunction-based ab initio electronic structure calculations. The results indicate that the constructed model Hamiltonian provides reasonable information on both the low-lying d-d and MLCT excited states of [Fe(bpy)3 ]2+ .
Collapse
Affiliation(s)
- Satoru Iuchi
- Graduate School of Informatics, Nagoya University, Nagoya, Japan
| | - Nobuaki Koga
- Graduate School of Informatics, Nagoya University, Nagoya, Japan
| |
Collapse
|
54
|
Mewes L, Ingle RA, Megow S, Böhnke H, Baranoff E, Temps F, Chergui M. Ultrafast Intersystem Crossing and Structural Dynamics of [Pt(ppy)(μ- tBu 2pz)] 2. Inorg Chem 2020; 59:14643-14653. [PMID: 32677823 DOI: 10.1021/acs.inorgchem.0c00902] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Intersystem crossing (ISC) rates of transition-metal complexes are determined by the complex interplay of a molecule's electronic and structural dynamics. To broaden our understanding of these key factors, we investigate the case of the prototypical d8-d8 dimetal complex [Pt(ppy)(μ-tBu2pz)]2 using broad-band transient absorption anisotropy in combination with ultrafast fluorescence up-conversion and ab initio calculations. We find that, upon excitation of the molecule's metal-metal-to-ligand charge-transfer transition, ISC occurs in hundreds of femtoseconds from the lowest excited singlet state S1 to the triplet state T2, from where the energy relaxes to the lowest energy triplet state T1. ISC to the T2 state, rather than T1, is further rationalized through supporting arguments. Observed vibrational coherences along the Pt-Pt mode are attributed to the formation of nuclear wavepackets on the ground and excited electronic states that dephase prior to ISC because of the structural flexibility of the complex. Beyond demonstrating the relationship between the energy relaxation and structural dynamics of [Pt(ppy)(μ-tBu2pz)]2, our results provide new insights into the photoinduced dynamics of d8-d8 dimetal complexes more generally.
Collapse
Affiliation(s)
- Lars Mewes
- Laboratoire de spectroscopie ultrarapide and Lausanne Centre for Ultrafast Spectroscopy, Ecole Polytechnique Fédérale de Lausanne, ISIC, FSB Station 6, Lausanne CH-1015, Switzerland
| | - Rebecca A Ingle
- Laboratoire de spectroscopie ultrarapide and Lausanne Centre for Ultrafast Spectroscopy, Ecole Polytechnique Fédérale de Lausanne, ISIC, FSB Station 6, Lausanne CH-1015, Switzerland
| | - Sebastian Megow
- Institut für Physikalische Chemie, Christian-Albrechts-Universität zu Kiel, Olshausenstrasse 40, Kiel D-24098, Germany
| | - Hendrik Böhnke
- Institut für Physikalische Chemie, Christian-Albrechts-Universität zu Kiel, Olshausenstrasse 40, Kiel D-24098, Germany
| | - Etienne Baranoff
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Friedrich Temps
- Institut für Physikalische Chemie, Christian-Albrechts-Universität zu Kiel, Olshausenstrasse 40, Kiel D-24098, Germany
| | - Majed Chergui
- Laboratoire de spectroscopie ultrarapide and Lausanne Centre for Ultrafast Spectroscopy, Ecole Polytechnique Fédérale de Lausanne, ISIC, FSB Station 6, Lausanne CH-1015, Switzerland
| |
Collapse
|
55
|
Li K, Tong GSM, Yuan J, Ma C, Du L, Yang C, Kwok WM, Phillips DL, Che CM. Excitation-Wavelength-Dependent and Auxiliary-Ligand-Tuned Intersystem-Crossing Efficiency in Cyclometalated Platinum(II) Complexes: Spectroscopic and Theoretical Studies. Inorg Chem 2020; 59:14654-14665. [PMID: 32806020 DOI: 10.1021/acs.inorgchem.0c01192] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Understanding the factors affecting the intersystem-crossing (ISC) rate constant (kISC) of transition-metal complexes is crucial to material design with tailored photophysical properties. Most of the works on ISC to date focused on the influence by the chromophoric ligand and the understanding of the ISC efficiency were mainly drawn from the steady-state fluorescence to phosphorescence intensity ratio and ground-state calculations, with only a few high-level calculations on kISC that take excited-state structural change and solvent reorganization into account for quantitative comparisons with the experimental data. In this work, a series of [Pt(thpy)X)]+ complexes were prepared [Hthpy = 2-(2'-thienyl)pyridine, where X = auxiliary ligands] and characterized by both steady-state and time-resolved luminescence spectroscopies. A panel of auxiliary ligands with varying σ-donating/π-accepting character have been used. For comparison, analogues of [Pt(ppy)(P^P)]+ (Hppy = 2-phenylpyridine and P^P = diphosphino ligand) were also examined. The [Pt(thpy)(P^P)]+ complexes exhibit dual fluorescence-phosphorescence emission, with their ISC rate constants varied with the electronic characteristics of the auxiliary ligand: the more electron-donating ligand induces faster ISC from the S1 excited state to the triplet manifold. Density functional theory (DFT)/time-dependent DFT calculations of kISC(S1→T2) at the optimized excited-state geometries give excellent quantitative agreement with the femtosecond time-resolved fluorescence measurements; it was revealed that the more electron-donating auxiliary ligand increases metal contributions to both occupied and virtual orbitals and decreases the energy gap of the coupling excited states, leading to a decrease in the activation energy and an increase in spin-orbit coupling. Furthermore, the ISC rate constants of [Pt(thpy)(P^P)]+ complexes are found to depend on the excitation wavelengths. The deviation from Kasha-Vavilov's rule upon photoexcitation at λexc < 350 nm is due to the ultrafast S2 → T2 and S2 → T3 ISCs, as demonstrated by the calculated τISC < 100 fs, giving hints as to why S2 → S1 internal conversion (τIC ∼ ps) is not competitive with this hyper-ISC.
Collapse
Affiliation(s)
- Kai Li
- State Key Laboratory of Synthetic Chemistry, Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, People's Republic of China.,Shenzhen Key Laboratory of Polymer Science and Technology, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518055, People's Republic of China
| | - Glenna So Ming Tong
- State Key Laboratory of Synthetic Chemistry, Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, People's Republic of China
| | - Jia Yuan
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, and Chemical Biology Center, College of Chemistry, Central China Normal University, Wuhan 430079, People's Republic of China
| | - Chensheng Ma
- State Key Laboratory of Synthetic Chemistry, Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, People's Republic of China
| | - Lili Du
- State Key Laboratory of Synthetic Chemistry, Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, People's Republic of China
| | - Chen Yang
- State Key Laboratory of Synthetic Chemistry, Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, People's Republic of China
| | - Wai-Ming Kwok
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, People's Republic of China
| | - David Lee Phillips
- State Key Laboratory of Synthetic Chemistry, Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, People's Republic of China
| | - Chi-Ming Che
- State Key Laboratory of Synthetic Chemistry, Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, People's Republic of China.,HKU Shenzhen Institute of Research and Innovation, Shenzhen 518055, People's Republic of China
| |
Collapse
|
56
|
Dill RD, Portillo RI, Shepard SG, Shores MP, Rappé AK, Damrauer NH. Long-Lived Mixed 2MLCT/MC States in Antiferromagnetically Coupled d 3 Vanadium(II) Bipyridine and Phenanthroline Complexes. Inorg Chem 2020; 59:14706-14715. [PMID: 32886504 DOI: 10.1021/acs.inorgchem.0c01950] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Exploration of [V(bpy)3]2+ and [V(phen)3]2+ (bpy = 2,2'-bipyridine; phen = 1,10-phenanthroline) using electronic spectroscopy reveals an ultrafast excited-state decay process and implicates a pair of low-lying doublets with mixed metal-to-ligand charge-transfer (MLCT) and metal-centered (MC) character. Transient absorption (TA) studies of the vanadium(II) species probing in the visible and near-IR, in combination with spectroelectrochemical techniques and computational chemistry, lead to the conclusion that after excitation into the intense and broad visible 4MLCT ← 4GS (ground-state) absorption band (ε400-700 nm = 900-8000 M-1 cm-1), the 4MLCT state rapidly (τisc < 200 fs) relaxes to the upper of two doublet states with mixed MLCT/MC character. Electronic interconversion (τ ∼ 2.5-3 ps) to the long-lived excited state follows, which we attribute to formation of the lower mixed state. Following these initial dynamics, GS recovery ensues with τ = 430 ps and 1.6 ns for [V(bpy)3]2+ and [V(phen)3]2+, respectively. This stands in stark contrast with isoelectronic [Cr(bpy)3]3+, which rapidly forms a long-lived doublet metal-centered (2MC) state following photoexcitation and lacks strong visible GS absorption character. 2MLCT character in the long-lived states of the vanadium(II) species produces geometric distortion and energetic stabilization, both of which accelerate nonradiative decay to the GS compared to [Cr(bpy)3]3+, where the GS and 2MC are well nested. These conclusions are significant because (i) long-lived states with MLCT character are rare in first-row transition-metal complexes and (ii) the presence of a 2MLCT state at lower energy than the 4MLCT state has not been previously considered. The spin assignment of charge-transfer states in open-shell transition-metal complexes is not trivial; when metal-ligand interaction is strong, low-spin states must be carefully considered when assessing reactivity and decay from electronic excited states.
Collapse
Affiliation(s)
- Ryan D Dill
- Department of Chemistry and Renewable and Sustainable Energy Institute, University of Colorado, Boulder, Colorado 80309, United States
| | - Romeo I Portillo
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Samuel G Shepard
- Department of Chemistry and Renewable and Sustainable Energy Institute, University of Colorado, Boulder, Colorado 80309, United States
| | - Matthew P Shores
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Anthony K Rappé
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Niels H Damrauer
- Department of Chemistry and Renewable and Sustainable Energy Institute, University of Colorado, Boulder, Colorado 80309, United States
| |
Collapse
|
57
|
Femtosecond X-ray emission study of the spin cross-over dynamics in haem proteins. Nat Commun 2020; 11:4145. [PMID: 32811825 PMCID: PMC7434878 DOI: 10.1038/s41467-020-17923-w] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Accepted: 07/21/2020] [Indexed: 12/27/2022] Open
Abstract
In haemoglobin the change from the low-spin (LS) hexacoordinated haem to the high spin (HS, S = 2) pentacoordinated domed deoxy-myoglobin (deoxyMb) form upon ligand detachment from the haem and the reverse process upon ligand binding are what ultimately drives the respiratory function. Here we probe them in the case of Myoglobin-NO (MbNO) using element- and spin-sensitive femtosecond Fe Kα and Kβ X-ray emission spectroscopy at an X-ray free-electron laser (FEL). We find that the change from the LS (S = 1/2) MbNO to the HS haem occurs in ~800 fs, and that it proceeds via an intermediate (S = 1) spin state. We also show that upon NO recombination, the return to the planar MbNO ground state is an electronic relaxation from HS to LS taking place in ~30 ps. Thus, the entire ligand dissociation-recombination cycle in MbNO is a spin cross-over followed by a reverse spin cross-over process. The change from low-spin hexacoordinated to high-spin pentacoordinated domed form in heam upon ligand detachment and the reverse process underlie the respiratory function. The authors, using femtosecond time-resolved X-ray emission spectroscopy, capture the transient states connecting the two forms in myoglobin-NO upon NO photoinduced detachment.
Collapse
|
58
|
Diez-Cabanes V, Prampolini G, Francés-Monerris A, Monari A, Pastore M. Iron's Wake: The Performance of Quantum Mechanical-Derived Versus General-Purpose Force Fields Tested on a Luminescent Iron Complex. Molecules 2020; 25:molecules25133084. [PMID: 32640764 PMCID: PMC7411876 DOI: 10.3390/molecules25133084] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 06/30/2020] [Accepted: 07/01/2020] [Indexed: 12/29/2022] Open
Abstract
Recently synthetized iron complexes have achieved long-lived excited states and stabilities which are comparable, or even superior, to their ruthenium analogues, thus representing an eco-friendly and cheaper alternative to those materials based on rare metals. Most of computational tools which could help unravel the origin of this large efficiency rely on ab-initio methods which are not able, however, to capture the nanosecond time scale underlying these photophysical processes and the influence of their realistic environment. Therefore, it exists an urgent need of developing new low-cost, but still accurate enough, computational methodologies capable to deal with the steady-state and transient spectroscopy of transition metal complexes in solution. Following this idea, here we focus on the comparison between general-purpose transferable force-fields (FFs), directly available from existing databases, and specific quantum mechanical derived FFs (QMD-FFs), obtained in this work through the Joyce procedure. We have chosen a recently reported FeIII complex with nanosecond excited-state lifetime as a representative case. Our molecular dynamics (MD) simulations demonstrated that the QMD-FF nicely reproduces the structure and the dynamics of the complex and its chemical environment within the same precision as higher cost QM methods, whereas general-purpose FFs failed in this purpose. Although in this particular case the chemical environment plays a minor role on the photo physics of this system, these results highlight the potential of QMD-FFs to rationalize photophysical phenomena provided an accurate QM method to derive its parameters is chosen.
Collapse
Affiliation(s)
- Valentin Diez-Cabanes
- Université de Lorraine & CNRS, LPCT UMR 7019, F-54000 Nancy, France;
- Correspondence: (V.D.-C.); (G.P.); (A.M.); (M.P.)
| | - Giacomo Prampolini
- Istituto di Chimica dei Composti Organo Metallici (ICCOM-CNR), Area della Ricerca, via G. Moruzzi 1, I-56124 Pisa, Italy
- Correspondence: (V.D.-C.); (G.P.); (A.M.); (M.P.)
| | - Antonio Francés-Monerris
- Université de Lorraine & CNRS, LPCT UMR 7019, F-54000 Nancy, France;
- Departament de Química Física, Universitat de València, 46100 Burjassot, Spain
| | - Antonio Monari
- Université de Lorraine & CNRS, LPCT UMR 7019, F-54000 Nancy, France;
- Correspondence: (V.D.-C.); (G.P.); (A.M.); (M.P.)
| | - Mariachiara Pastore
- Université de Lorraine & CNRS, LPCT UMR 7019, F-54000 Nancy, France;
- Correspondence: (V.D.-C.); (G.P.); (A.M.); (M.P.)
| |
Collapse
|
59
|
Melnikov AA, Pozdnyakov IP, Chekalin SV, Glebov EM. Direct measurement of ultrafast intersystem crossing time for the PtIVBr62− complex. MENDELEEV COMMUNICATIONS 2020. [DOI: 10.1016/j.mencom.2020.07.036] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
60
|
Vacher M, Kunnus K, Delcey MG, Gaffney KJ, Lundberg M. Origin of core-to-core x-ray emission spectroscopy sensitivity to structural dynamics. STRUCTURAL DYNAMICS (MELVILLE, N.Y.) 2020; 7:044102. [PMID: 32665965 PMCID: PMC7340509 DOI: 10.1063/4.0000022] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 06/18/2020] [Indexed: 05/05/2023]
Abstract
Recently, coherent structural dynamics in the excited state of an iron photosensitizer was observed through oscillations in the intensity of Kα x-ray emission spectroscopy (XES). Understanding the origin of the unexpected sensitivity of core-to-core transitions to structural dynamics is important for further development of femtosecond time-resolved XES methods and, we believe, generally necessary for interpretation of XES signals from highly non-equilibrium structures that are ubiquitous in photophysics and photochemistry. Here, we use multiconfigurational wavefunction calculations combined with atomic theory to analyze the emission process in detail. The sensitivity of core-to-core transitions to structural dynamics is due to a shift of the minimum energy metal-ligand bond distance between 1s and 2p core-hole states. A key effect is the additional contraction of the non-bonding 3s and 3p orbitals in 1s core-hole states, which decreases electron-electron repulsion and increases overlap in the metal-ligand bonds. The effect is believed to be general and especially pronounced for systems with strong bonds. The important role of 3s and 3p orbitals is consistent with the analysis of radial charge and spin densities and can be connected to the negative chemical shift observed for many transition metal complexes. The XES sensitivity to structural dynamics can be optimized by tuning the emission energy spectrometer, with oscillations up to ±4% of the maximum intensity for the current system. The theoretical predictions can be used to design experiments that separate electronic and nuclear degrees of freedom in ultrafast excited state dynamics.
Collapse
Affiliation(s)
| | | | - Mickaël G. Delcey
- Department of Chemistry-Ångström Laboratory, Uppsala University, SE-751 20 Uppsala, Sweden
| | - Kelly J. Gaffney
- PULSE Institute, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, California 94025, USA
| | - Marcus Lundberg
- Department of Chemistry-Ångström Laboratory, Uppsala University, SE-751 20 Uppsala, Sweden
- Authors to whom correspondence should be addressed: and
| |
Collapse
|
61
|
Paul LA, Röttcher NC, Zimara J, Borter JH, Du JP, Schwarzer D, Mata RA, Siewert I. Photochemical Properties of Re(CO)3 Complexes with and without a Local Proton Source and Implications for CO2 Reduction Catalysis. Organometallics 2020. [DOI: 10.1021/acs.organomet.0c00240] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Lucas A. Paul
- Universität Göttingen, Institut für Anorganische Chemie, Tammannstrasse 4, 37077 Göttingen, Germany
| | - Nico C. Röttcher
- Universität Göttingen, Institut für Anorganische Chemie, Tammannstrasse 4, 37077 Göttingen, Germany
| | - Jennifer Zimara
- Max-Planck-Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | - Jan-Hendrik Borter
- Max-Planck-Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | - Jia-Pei Du
- Universität Göttingen, Institut für Anorganische Chemie, Tammannstrasse 4, 37077 Göttingen, Germany
| | - Dirk Schwarzer
- Max-Planck-Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | - Ricardo A. Mata
- Universität Göttingen, Institut für Physikalische Chemie, Tammannstrasse 6, 37077 Göttingen, Germany
| | - Inke Siewert
- Universität Göttingen, Institut für Anorganische Chemie, Tammannstrasse 4, 37077 Göttingen, Germany
| |
Collapse
|
62
|
Livshits MY, Wang L, Vittardi SB, Ruetzel S, King A, Brixner T, Rack JJ. An excited state dynamics driven reaction: wavelength-dependent photoisomerization quantum yields in [Ru(bpy) 2(dmso) 2] 2. Chem Sci 2020; 11:5797-5807. [PMID: 34094082 PMCID: PMC8159332 DOI: 10.1039/d0sc00551g] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 05/17/2020] [Indexed: 12/21/2022] Open
Abstract
We report the excited-state behavior of a structurally simple bis-sulfoxide complex, cis-S,S-[Ru(bpy)2(dmso)2]2+, as investigated by femtosecond pump-probe spectroscopy. The results reveal that a single photon prompts phototriggered isomerization of one or both dmso ligands to yield a mixture of cis-S,O-[Ru(bpy)2(dmso)2]2+ and cis-O,O-[Ru(bpy)2(dmso)2]2+. The quantum yields of isomerization of each product and relative product distribution are dependent upon the excitation wavelength, with longer wavelengths favoring the double isomerization product, cis-O,O-[Ru(bpy)2(dmso)2]2+. Transient absorption measurements on cis-O,O-[Ru(bpy)2(dmso)2]2+ do not reveal an excited-state isomerization pathway to produce either the S,O or S,S isomers. Femtosecond pulse shaping experiments reveal no change in the product distribution. Pump-repump-probe transient absorption spectroscopy of cis-S,S-[Ru(bpy)2(dmso)2]2+ shows that a pump-repump time delay of 3 ps dramatically alters the S,O : O,O product ratio; pump-repump-probe transient absorption spectroscopy of cis-O,O-[Ru(bpy)2(dmso)2]2+ with a time delay of 3 ps uncovers an excited-state isomerization pathway to produce the S,O isomer. In conjunction with low-temperature steady-state emission spectroscopy, these results are interpreted in the context of an excited-state bifurcating pathway, in which the isomerization product distribution is determined not by thermodynamics, but rather as a dynamics driven reaction.
Collapse
Affiliation(s)
- Maksim Y Livshits
- Department of Chemistry and Chemical Biology, University of New Mexico Albuquerque NM 87131 USA
- Department of Chemistry and Biochemistry, Ohio University Athens OH 45701 USA
| | - Lei Wang
- Department of Chemistry and Biochemistry, Ohio University Athens OH 45701 USA
| | - Sebastian B Vittardi
- Department of Chemistry and Chemical Biology, University of New Mexico Albuquerque NM 87131 USA
| | - Stefan Ruetzel
- Institut für Physikalische und Theoretische Chemie, Universität Würzburg Am Hubland 97074 Würzburg Germany
| | - Albert King
- Department of Chemistry and Chemical Biology, University of New Mexico Albuquerque NM 87131 USA
| | - Tobias Brixner
- Institut für Physikalische und Theoretische Chemie, Universität Würzburg Am Hubland 97074 Würzburg Germany
| | - Jeffrey J Rack
- Department of Chemistry and Chemical Biology, University of New Mexico Albuquerque NM 87131 USA
- Department of Chemistry and Biochemistry, Ohio University Athens OH 45701 USA
| |
Collapse
|
63
|
An Q, Wang Z, Chen Y, Wang X, Zhang K, Pan H, Liu W, Zuo Z. Cerium-Catalyzed C-H Functionalizations of Alkanes Utilizing Alcohols as Hydrogen Atom Transfer Agents. J Am Chem Soc 2020; 142:6216-6226. [PMID: 32181657 DOI: 10.1021/jacs.0c00212] [Citation(s) in RCA: 119] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Modern photoredox catalysis has traditionally relied upon metal-to-ligand charge-transfer (MLCT) excitation of metal polypyridyl complexes for the utilization of light energy for the activation of organic substrates. Here, we demonstrate the catalytic application of ligand-to-metal charge-transfer (LMCT) excitation of cerium alkoxide complexes for the facile activation of alkanes utilizing abundant and inexpensive cerium trichloride as the catalyst. As demonstrated by cerium-catalyzed C-H amination and the alkylation of hydrocarbons, this reaction manifold has enabled the facile use of abundant alcohols as practical and selective hydrogen atom transfer (HAT) agents via the direct access of energetically challenging alkoxy radicals. Furthermore, the LMCT excitation event has been investigated through a series of spectroscopic experiments, revealing a rapid bond homolysis process and an effective production of alkoxy radicals, collectively ruling out the LMCT/homolysis event as the rate-determining step of this C-H functionalization.
Collapse
Affiliation(s)
- Qing An
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China.,University of Chinese Academy of Science, Shanghai 100049, China
| | - Ziyu Wang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China.,University of Chinese Academy of Science, Shanghai 100049, China
| | - Yuegang Chen
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Xin Wang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China.,University of Chinese Academy of Science, Shanghai 100049, China
| | - Kaining Zhang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China.,University of Chinese Academy of Science, Shanghai 100049, China
| | - Hui Pan
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China.,University of Chinese Academy of Science, Shanghai 100049, China
| | - Weimin Liu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China.,STU & SIOM Joint Laboratory for Superintense Lasers and the Applications, Shanghai 201210, China
| | - Zhiwei Zuo
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China.,State Key Laboratory of Bioorganic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| |
Collapse
|
64
|
Jiang Y, Liu LC, Sarracini A, Krawczyk KM, Wentzell JS, Lu C, Field RL, Matar SF, Gawelda W, Müller-Werkmeister HM, Miller RJD. Direct observation of nuclear reorganization driven by ultrafast spin transitions. Nat Commun 2020; 11:1530. [PMID: 32251278 PMCID: PMC7090058 DOI: 10.1038/s41467-020-15187-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 02/11/2020] [Indexed: 11/24/2022] Open
Abstract
One of the most basic molecular photophysical processes is that of spin transitions and intersystem crossing between excited states surfaces. The change in spin states affects the spatial distribution of electron density through the spin orbit coupling interaction. The subsequent nuclear reorganization reports on the full extent of the spin induced change in electron distribution, which can be treated similarly to intramolecular charge transfer with effective reaction coordinates depicting the spin transition. Here, single-crystal [FeII(bpy)3](PF6)2, a prototypical system for spin crossover (SCO) dynamics, is studied using ultrafast electron diffraction in the single-photon excitation regime. The photoinduced SCO dynamics are resolved, revealing two distinct processes with a (450 ± 20)-fs fast component and a (2.4 ± 0.4)-ps slow component. Using principal component analysis, we uncover the key structural modes, ultrafast Fe–N bond elongations coupled with ligand motions, that define the effective reaction coordinate to fully capture the relevant molecular reorganization. Electron spin is a fundamental property of molecules, and changes in spin state affect both molecular structure and dynamics. Here, the authors resolve, by ultrafast electron diffraction, the nuclear reorganization stabilizing spin transitions in a [FeII(bpy)3](PF6)2 crystal.
Collapse
Affiliation(s)
- Yifeng Jiang
- Max Planck Institute for the Structure and Dynamics of Matter, Luruper Chaussee 149, 22761, Hamburg, Germany.,European XFEL, Holzkoppel 4, 22869, Schenefeld, Germany
| | - Lai Chung Liu
- Departments of Chemistry and Physics, University of Toronto, 80 St. George St., Toronto, M5S 3H6, ON, Canada.,Uncharted Software, 600-2 Berkeley St., Toronto, M5A 4J5, ON, Canada
| | - Antoine Sarracini
- Departments of Chemistry and Physics, University of Toronto, 80 St. George St., Toronto, M5S 3H6, ON, Canada
| | - Kamil M Krawczyk
- Departments of Chemistry and Physics, University of Toronto, 80 St. George St., Toronto, M5S 3H6, ON, Canada
| | - Jordan S Wentzell
- Departments of Chemistry and Physics, University of Toronto, 80 St. George St., Toronto, M5S 3H6, ON, Canada
| | - Cheng Lu
- Departments of Chemistry and Physics, University of Toronto, 80 St. George St., Toronto, M5S 3H6, ON, Canada
| | - Ryan L Field
- Departments of Chemistry and Physics, University of Toronto, 80 St. George St., Toronto, M5S 3H6, ON, Canada
| | - Samir F Matar
- Lebanese German University, LGU, Sahel-Alma, P.O. Box 206, Jounieh, Lebanon
| | - Wojciech Gawelda
- European XFEL, Holzkoppel 4, 22869, Schenefeld, Germany.,Faculty of Physics, Adam Mickiewicz University, ul. Uniwersytetu Poznańskiego 2, 61-614, Poznań, Poland
| | | | - R J Dwayne Miller
- Max Planck Institute for the Structure and Dynamics of Matter, Luruper Chaussee 149, 22761, Hamburg, Germany. .,Departments of Chemistry and Physics, University of Toronto, 80 St. George St., Toronto, M5S 3H6, ON, Canada.
| |
Collapse
|
65
|
Rupp S, Plasser F, Krewald V. Multi‐Tier Electronic Structure Analysis of Sita's Mo and W Complexes Capable of Thermal or Photochemical N
2
Splitting. Eur J Inorg Chem 2020. [DOI: 10.1002/ejic.201901304] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Severine Rupp
- Fachbereich Chemie Theoretische Chemie Technische Universität Darmstadt Alarich‐Weiss‐Str. 4 64287 Darmstadt Germany
| | - Felix Plasser
- Department of Chemistry Loughborough University Loughborough LE11 3TU United Kingdom
| | - Vera Krewald
- Fachbereich Chemie Theoretische Chemie Technische Universität Darmstadt Alarich‐Weiss‐Str. 4 64287 Darmstadt Germany
| |
Collapse
|
66
|
Kunnus K, Vacher M, Harlang TCB, Kjær KS, Haldrup K, Biasin E, van Driel TB, Pápai M, Chabera P, Liu Y, Tatsuno H, Timm C, Källman E, Delcey M, Hartsock RW, Reinhard ME, Koroidov S, Laursen MG, Hansen FB, Vester P, Christensen M, Sandberg L, Németh Z, Szemes DS, Bajnóczi É, Alonso-Mori R, Glownia JM, Nelson S, Sikorski M, Sokaras D, Lemke HT, Canton SE, Møller KB, Nielsen MM, Vankó G, Wärnmark K, Sundström V, Persson P, Lundberg M, Uhlig J, Gaffney KJ. Vibrational wavepacket dynamics in Fe carbene photosensitizer determined with femtosecond X-ray emission and scattering. Nat Commun 2020; 11:634. [PMID: 32005815 PMCID: PMC6994595 DOI: 10.1038/s41467-020-14468-w] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 12/30/2019] [Indexed: 12/31/2022] Open
Abstract
The non-equilibrium dynamics of electrons and nuclei govern the function of photoactive materials. Disentangling these dynamics remains a critical goal for understanding photoactive materials. Here we investigate the photoinduced dynamics of the [Fe(bmip)2]2+ photosensitizer, where bmip = 2,6-bis(3-methyl-imidazole-1-ylidine)-pyridine, with simultaneous femtosecond-resolution Fe Kα and Kβ X-ray emission spectroscopy (XES) and X-ray solution scattering (XSS). This measurement shows temporal oscillations in the XES and XSS difference signals with the same 278 fs period oscillation. These oscillations originate from an Fe-ligand stretching vibrational wavepacket on a triplet metal-centered (3MC) excited state surface. This 3MC state is populated with a 110 fs time constant by 40% of the excited molecules while the rest relax to a 3MLCT excited state. The sensitivity of the Kα XES to molecular structure results from a 0.7% average Fe-ligand bond length shift between the 1 s and 2p core-ionized states surfaces.
Collapse
Affiliation(s)
- Kristjan Kunnus
- PULSE Institute, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, CA, 94025, USA.
| | - Morgane Vacher
- Department of Chemistry - Ångström laboratory, Uppsala University, Box 538, 75121, Uppsala, Sweden
| | - Tobias C B Harlang
- Department of Chemical Physics, Lund University, P.O. Box 12 4, 22100, Lund, Sweden
- Department of Physics, Technical University of Denmark, DK-2800, Lyngby, Denmark
| | - Kasper S Kjær
- PULSE Institute, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, CA, 94025, USA
- Department of Chemical Physics, Lund University, P.O. Box 12 4, 22100, Lund, Sweden
- Department of Physics, Technical University of Denmark, DK-2800, Lyngby, Denmark
| | - Kristoffer Haldrup
- Department of Physics, Technical University of Denmark, DK-2800, Lyngby, Denmark
| | - Elisa Biasin
- PULSE Institute, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, CA, 94025, USA
- Department of Physics, Technical University of Denmark, DK-2800, Lyngby, Denmark
| | - Tim B van Driel
- LCLS, SLAC National Accelerator Laboratory, Menlo Park, CA, 94025, USA
| | - Mátyás Pápai
- Department of Chemistry, Technical University of Denmark, Kemitorvet 207, DK-2800, Kongens Lyngby, Denmark
| | - Pavel Chabera
- Department of Chemical Physics, Lund University, P.O. Box 12 4, 22100, Lund, Sweden
| | - Yizhu Liu
- Department of Chemical Physics, Lund University, P.O. Box 12 4, 22100, Lund, Sweden
- Centre for Analysis and Synthesis, Department of Chemistry, Lund University, P.O. Box 124, 22100, Lund, Sweden
| | - Hideyuki Tatsuno
- Department of Chemical Physics, Lund University, P.O. Box 12 4, 22100, Lund, Sweden
| | - Cornelia Timm
- Department of Chemical Physics, Lund University, P.O. Box 12 4, 22100, Lund, Sweden
| | - Erik Källman
- Department of Chemistry - Ångström laboratory, Uppsala University, Box 538, 75121, Uppsala, Sweden
| | - Mickaël Delcey
- Department of Chemistry - Ångström laboratory, Uppsala University, Box 538, 75121, Uppsala, Sweden
| | - Robert W Hartsock
- PULSE Institute, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, CA, 94025, USA
| | - Marco E Reinhard
- PULSE Institute, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, CA, 94025, USA
| | - Sergey Koroidov
- PULSE Institute, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, CA, 94025, USA
| | - Mads G Laursen
- Department of Physics, Technical University of Denmark, DK-2800, Lyngby, Denmark
| | - Frederik B Hansen
- Department of Physics, Technical University of Denmark, DK-2800, Lyngby, Denmark
| | - Peter Vester
- Department of Physics, Technical University of Denmark, DK-2800, Lyngby, Denmark
| | - Morten Christensen
- Department of Physics, Technical University of Denmark, DK-2800, Lyngby, Denmark
| | - Lise Sandberg
- Department of Physics, Technical University of Denmark, DK-2800, Lyngby, Denmark
- University of Copenhagen, Niels Bohr Institute, Blegdamsvej 17, 2100, Copenhagen, Denmark
| | - Zoltán Németh
- Wigner Research Centre for Physics, Hungarian Academy of Sciences, P.O. Box 49, H-1525, Budapest, Hungary
| | - Dorottya Sárosiné Szemes
- Wigner Research Centre for Physics, Hungarian Academy of Sciences, P.O. Box 49, H-1525, Budapest, Hungary
| | - Éva Bajnóczi
- Wigner Research Centre for Physics, Hungarian Academy of Sciences, P.O. Box 49, H-1525, Budapest, Hungary
| | | | - James M Glownia
- LCLS, SLAC National Accelerator Laboratory, Menlo Park, CA, 94025, USA
| | - Silke Nelson
- LCLS, SLAC National Accelerator Laboratory, Menlo Park, CA, 94025, USA
| | - Marcin Sikorski
- LCLS, SLAC National Accelerator Laboratory, Menlo Park, CA, 94025, USA
| | | | - Henrik T Lemke
- LCLS, SLAC National Accelerator Laboratory, Menlo Park, CA, 94025, USA
| | - Sophie E Canton
- ELI-ALPS, ELI-HU Non-Profit Ltd., Dugonics ter 13, Szeged, 6720, Hungary
- Deutsches Elektronen-Synchrotron (DESY), Notkestrasse 85, D-22607, Hamburg, Germany
| | - Klaus B Møller
- Department of Chemistry, Technical University of Denmark, Kemitorvet 207, DK-2800, Kongens Lyngby, Denmark
| | - Martin M Nielsen
- Department of Physics, Technical University of Denmark, DK-2800, Lyngby, Denmark
| | - György Vankó
- Wigner Research Centre for Physics, Hungarian Academy of Sciences, P.O. Box 49, H-1525, Budapest, Hungary
| | - Kenneth Wärnmark
- Centre for Analysis and Synthesis, Department of Chemistry, Lund University, P.O. Box 124, 22100, Lund, Sweden
| | - Villy Sundström
- Department of Chemical Physics, Lund University, P.O. Box 12 4, 22100, Lund, Sweden
| | - Petter Persson
- Theoretical Chemistry Division, Lund University, P.O. Box 124, 22100, Lund, Sweden
| | - Marcus Lundberg
- Department of Chemistry - Ångström laboratory, Uppsala University, Box 538, 75121, Uppsala, Sweden
| | - Jens Uhlig
- Department of Chemical Physics, Lund University, P.O. Box 12 4, 22100, Lund, Sweden
| | - Kelly J Gaffney
- PULSE Institute, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, CA, 94025, USA.
| |
Collapse
|
67
|
Vibronic coherence evolution in multidimensional ultrafast photochemical processes. Nat Commun 2019; 10:5621. [PMID: 31819052 PMCID: PMC6901526 DOI: 10.1038/s41467-019-13503-9] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 11/07/2019] [Indexed: 12/17/2022] Open
Abstract
The complex choreography of electronic, vibrational, and vibronic couplings used by photoexcited molecules to transfer energy efficiently is remarkable, but an unambiguous description of the temporally evolving vibronic states governing these processes has proven experimentally elusive. We use multidimensional electronic-vibrational spectroscopy to identify specific time-dependent excited state vibronic couplings involving multiple electronic states, high-frequency vibrations, and low-frequency vibrations which participate in ultrafast intersystem crossing and subsequent relaxation of a photoexcited transition metal complex. We discover an excited state vibronic mechanism driving long-lived charge separation consisting of an initial electronically-localized vibrational wavepacket which triggers delocalization onto two charge transfer states after propagating for ~600 femtoseconds. Electronic delocalization consequently occurs through nonadiabatic internal conversion driven by a 50 cm-1 coupling resulting in vibronic coherence transfer lasting for ~1 picosecond. This study showcases the power of multidimensional electronic-vibrational spectroscopy to elucidate complex, non-equilibrium energy and charge transfer mechanisms involving multiple molecular coordinates.
Collapse
|
68
|
Roy Chowdhury S, Mishra S. Light-Induced Spin Crossover in an Intermediate-Spin Penta-Coordinated Iron(III) Complex. J Phys Chem A 2019; 123:9883-9892. [PMID: 31663743 DOI: 10.1021/acs.jpca.9b06490] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
(PMe3)2FeCl3 is an Fe(III) complex that exists in the intermediate-spin ground state in a distorted trigonal bipyramidal geometry. An electronic state with high-spin configuration lies in close vicinity to the ground state, making it a potential spin crossover candidate. A mechanistic account of the spin crossover from the lowest quartet state (Q0) to the lowest sextet state (S1) of this complex is provided by exploring both thermal and light-induced pathways. The presence of a large barrier between the two spin states suggests a possible thermal spin crossover at a rather high temperature. The light-induced spin crossover is investigated by employing complete active space self-consistent field calculations together with dynamic correlation and spin-orbit coupling for the lowest seven quartet and lowest five sextet states. The system in the Q0 state upon light absorption is excited to the optically bright Q4 LMCT state. By following minimum energy pathways along the electronic states, two light-induced pathways for spin crossover are identified. From the Q4 state, the system can photo-regenerate the ground intermediate-spin state (Q0) through an internal conversion of Q4/Q3 followed by Q3/S1 and S1/Q0 intersystem crossings. In an alternate route, through Q4/S2 intersystem crossing followed by S2/S1 internal conversion, the system can complete the spin crossover from the Q0 to S1 state.
Collapse
Affiliation(s)
- Sabyasachi Roy Chowdhury
- Department of Chemistry , Indian Institute of Technology Kharagpur , Kharagpur , West Bengal 721302 , India
| | - Sabyashachi Mishra
- Department of Chemistry , Indian Institute of Technology Kharagpur , Kharagpur , West Bengal 721302 , India
| |
Collapse
|
69
|
Megow S, Fitschen HL, Tuczek F, Temps F. Ultrafast Photodynamics of an Azopyridine-Functionalized Iron(II) Complex: Implications for the Concept of Ligand-Driven Light-Induced Spin Change. J Phys Chem Lett 2019; 10:6048-6054. [PMID: 31549841 DOI: 10.1021/acs.jpclett.9b02083] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
We report on the ultrafast photodynamics of an iron(II) complex with a photoisomerizable pentadentate azo-tetrapyridylamino ligand after irradiation with ultraviolet light. The results of femtosecond transient electronic absorption spectroscopy performed on the low-spin (LS) form of the title complex show that initial excitation of the ππ* state of the azopyridine unit in the ligand at λpump = 312 nm is followed by an ultrafast intersystem crossing (ISC) that leads to the formation of a metal-centered (MC) 5T state, in competition with the intended photoswitching of the azopyridine unit. Additional measurements carried out upon excitation of the singlet metal-to-ligand charge-transfer (1MLCT) transition at λpump = 455 nm suggest that this energy transfer occurs via an MLCT state. The resulting high-spin (HS) 5T state of the complex is metastable and recovers to the LS ground state with a time constant of ∼3 ns. The implications of these observations on the ligand-driven light-induced spin change concept are discussed.
Collapse
Affiliation(s)
- Sebastian Megow
- Institut für Physikalische Chemie , Christian-Albrechts-Universität , Olshausenstrasse 40 , 24098 Kiel , Germany
| | - Henrike-Leonie Fitschen
- Institut für Anorganische Chemie , Christian-Albrechts-Universität , Olshausenstrasse 40 , 24098 Kiel , Germany
| | - Felix Tuczek
- Institut für Anorganische Chemie , Christian-Albrechts-Universität , Olshausenstrasse 40 , 24098 Kiel , Germany
| | - Friedrich Temps
- Institut für Physikalische Chemie , Christian-Albrechts-Universität , Olshausenstrasse 40 , 24098 Kiel , Germany
| |
Collapse
|
70
|
Solute-solvent electronic interaction is responsible for initial charge separation in ruthenium complexes [Ru(bpy)3]2+ and [Ru(phen)3]2+. Commun Chem 2019. [DOI: 10.1038/s42004-019-0213-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Abstract
Origin of the initial charge separation in optically-excited Ruthenium(II) tris(bidentate) complexes of intrinsic D3 symmetry has remained a disputed issue for decades. Here we measure the femtosecond two-photon absorption (2PA) cross section spectra of [Ru(2,2′-bipyridine)3]2 and [Ru(1,10-phenanthroline)3]2 in a series of solvents with varying polarity and show that for vertical transitions to the lower-energy 1MLCT excited state, the permanent electric dipole moment change is nearly solvent-independent, Δμ = 5.1–6.3 D and 5.3–5.9 D, respectively. Comparison of experimental results with quantum-chemical calculations of complexes in the gas phase, in a polarizable dielectric continuum and in solute-solvent clusters containing up to 18 explicit solvent molecules indicate that the non-vanishing permanent dipole moment change in the nominally double-degenerate E-symmetry state is caused by the solute-solvent interaction twisting the two constituent dipoles out of their original opposite orientation, with average angles matching the experimental two-photon polarization ratio.
Collapse
|
71
|
Pápai M, Rozgonyi T, Penfold TJ, Nielsen MM, Møller KB. Simulation of ultrafast excited-state dynamics and elastic x-ray scattering by quantum wavepacket dynamics. J Chem Phys 2019; 151:104307. [DOI: 10.1063/1.5115204] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Affiliation(s)
- Mátyás Pápai
- Department of Chemistry, Technical University of Denmark, Kemitorvet 207, DK-2800 Kongens Lyngby, Denmark
| | - Tamás Rozgonyi
- Wigner Research Centre for Physics, Hungarian Academy of Sciences, P.O. Box 49, H-1525 Budapest, Hungary
- Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences, P.O. Box 286, H-1519 Budapest, Hungary
| | - Thomas J. Penfold
- Chemistry - School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne NE1 7RU, United Kingdom
| | - Martin M. Nielsen
- Department of Physics, Technical University of Denmark, Fysikvej 307, DK-2800 Kongens Lyngby, Denmark
| | - Klaus B. Møller
- Department of Chemistry, Technical University of Denmark, Kemitorvet 207, DK-2800 Kongens Lyngby, Denmark
| |
Collapse
|
72
|
Nastasi F, Santoro A, Serroni S, Campagna S, Kaveevivitchai N, Thummel RP. Early photophysical events of a ruthenium(ii) molecular dyad capable of performing photochemical water oxidation and of its model compounds. Photochem Photobiol Sci 2019; 18:2164-2173. [PMID: 30793142 DOI: 10.1039/c8pp00530c] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The early photophysical events occurring in the dinuclear metal complex [(ttb-terpy)(I)Ru(μ-dntpz)Ru(bpy)2]3+ (2; ttb-terpy = 4,4',4''-tri-tert-butyl-terpy; bpy = 2,2'-bipyridine; dntpz = 2,5-di-(1,8-dinaphthyrid-2-yl)pyrazine) - a species containing the chromophoric {(bpy)2Ru(μ-dntpz)}2+ subunit and the catalytic {(I)(ttb-terpy)Ru(μ-dntpz)}+ unit, already reported to be able to perform photocatalytic water oxidation - have been studied by ultrafast pump-probe spectroscopy in acetonitrile solution. The model species [Ru(bpy)2(dntpz)]2+ (1), [(bpy)2Ru(μ-dntpz)Ru(bpy)2]4+ (3), and [(ttb-terpy)(I)Ru((μ-dntpz)Ru[(ttb-terpy)(I)]2+ (4) have also been studied. For completeness, the absorption spectra, redox behavior of 1-4 and the spectroelectrochemistry of the dinuclear species 2-4 have been investigated. The usual 3MLCT (metal-to-ligand charge transfer) decay, characterized by relatively long lifetimes on the ns timescale, takes place in 1 and 3, whose lowest-energy level involves a {(bpy)2Ru(dntpz)}2+ unit, whereas for 2 and 4, whose lowest-energy excited state involves a 3MLCT centered on the {(I)(ttb-terpy)Ru(μ-dntpz)}+ subunit, the excited-state lifetimes are on the ps timescale, possibly involving population of a low-lying 3MC (metal-centered) level. Compound 2 also exhibits a fast process, with a time constant of 170 fs, which is attributed to intercomponent energy transfer from the MLCT state centered in the {(bpy)2Ru(μ-dntpz)}2+ unit to the MLCT state involving the {(I)(ttb-terpy)Ru(μ-dntpz)}+ unit. Both the intercomponent energy transfer and the MLCT-to-MC activation process take place from non-equilibrated MLCT states.
Collapse
Affiliation(s)
- Francesco Nastasi
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, and Centro Interuniversitario per la Conversione Chimica dell'Energia Solare (SOLARCHEM, sezione di Messina), 98166 Messina, Italy
| | - Antonio Santoro
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, and Centro Interuniversitario per la Conversione Chimica dell'Energia Solare (SOLARCHEM, sezione di Messina), 98166 Messina, Italy
| | - Scolastica Serroni
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, and Centro Interuniversitario per la Conversione Chimica dell'Energia Solare (SOLARCHEM, sezione di Messina), 98166 Messina, Italy
| | - Sebastiano Campagna
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, and Centro Interuniversitario per la Conversione Chimica dell'Energia Solare (SOLARCHEM, sezione di Messina), 98166 Messina, Italy
| | - Nattawut Kaveevivitchai
- Department of Chemistry, University of Houston, 112 Fleming Building, Houston, Texas 77204-5003, USA
| | - Randolph P Thummel
- Department of Chemistry, University of Houston, 112 Fleming Building, Houston, Texas 77204-5003, USA
| |
Collapse
|
73
|
Chatterjee R, Weninger C, Loukianov A, Gul S, Fuller FD, Cheah MH, Fransson T, Pham CC, Nelson S, Song S, Britz A, Messinger J, Bergmann U, Alonso-Mori R, Yachandra VK, Kern J, Yano J. XANES and EXAFS of dilute solutions of transition metals at XFELs. JOURNAL OF SYNCHROTRON RADIATION 2019; 26:1716-1724. [PMID: 31490163 PMCID: PMC6730626 DOI: 10.1107/s1600577519007550] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 05/23/2019] [Indexed: 05/27/2023]
Abstract
This work has demonstrated that X-ray absorption spectroscopy (XAS), both Mn XANES and EXAFS, of solutions with millimolar concentrations of metal is possible using the femtosecond X-ray pulses from XFELs. Mn XAS data were collected using two different sample delivery methods, a Rayleigh jet and a drop-on-demand setup, with varying concentrations of Mn. Here, a new method for normalization of XAS spectra based on solvent scattering that is compatible with data collection from a highly variable pulsed source is described. The measured XANES and EXAFS spectra of such dilute solution samples are in good agreement with data collected at synchrotron sources using traditional scanning protocols. The procedures described here will enable XFEL-based XAS on dilute biological samples, especially metalloproteins, with low sample consumption. Details of the experimental setup and data analysis methods used in this XANES and EXAFS study are presented. This method will also benefit XAS performed at high-repetition-rate XFELs such as the European XFEL, LCLS-II and LCLS-II-HE.
Collapse
Affiliation(s)
- Ruchira Chatterjee
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94704, USA
| | - Clemens Weninger
- LCLS, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - Anton Loukianov
- LCLS, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - Sheraz Gul
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94704, USA
| | - Franklin D. Fuller
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94704, USA
- LCLS, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - Mun Hon Cheah
- Department of Chemistry – Ångström Laboratory, Molecular Biomimetics, Uppsala University, SE 75237 Uppsala, Sweden
| | - Thomas Fransson
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - Cindy C. Pham
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94704, USA
| | - Silke Nelson
- LCLS, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - Sanghoon Song
- LCLS, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - Alexander Britz
- LCLS, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - Johannes Messinger
- Department of Chemistry – Ångström Laboratory, Molecular Biomimetics, Uppsala University, SE 75237 Uppsala, Sweden
- Institutionen för Kemi, Kemiskt Biologiskt Centrum, Umeå Universitet, SE 90187 Umeå, Sweden
| | - Uwe Bergmann
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | | | - Vittal K. Yachandra
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94704, USA
| | - Jan Kern
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94704, USA
| | - Junko Yano
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94704, USA
| |
Collapse
|
74
|
Kruppa SV, Groß C, Gui X, Bäppler F, Kwasigroch B, Sun Y, Diller R, Klopper W, Niedner-Schatteburg G, Riehn C, Thiel WR. Photoinitiated Charge Transfer in a Triangular Silver(I) Hydride Complex and Its Oxophilicity. Chemistry 2019; 25:11269-11284. [PMID: 31188502 DOI: 10.1002/chem.201901981] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 06/08/2019] [Indexed: 12/28/2022]
Abstract
The photoexcitation of a triangular silver(I) hydride complex, [Ag3 (μ3 -H)(μ2 -dcpm)3 ](PF6 )2 ([P](PF6 )2 , dcpm=bis(dicyclohexylphosphino)methane), designed with "UV-silent" bis-phosphine ligands, provokes hydride-to-Ag3 single and double electron transfer. The nature of the electronic transitions has been authenticated by absorption and photodissociation spectroscopy in parallel with high-level quantum-chemical computations utilizing the GW method and Bethe-Salpeter equation (GW-BSE). Specific photofragments of mass-selected [P]2+ ions testify to charge transfer and competing pathways resulting from the unique [Ag3 (μ3 -H)]2+ scaffold. This structural motif of [P](PF6 )2 has been unequivocally verified by 1 H NMR spectroscopy in concert with DFT and X-ray diffraction structural analysis, which revealed short equilateral Ag-Ag distances (dAgAg =3.08 Å) within the range of argentophilic interactions. The reduced radical cation [P]. + exhibits strong oxophilicity, forming [P+O2 ].+ ,which is a model intermediate for silver oxidation catalysis.
Collapse
Affiliation(s)
- Sebastian V Kruppa
- Department of Chemistry, Technische Universität Kaiserslautern (TUK), Erwin-Schrödinger. Str. 52, 67663, Kaiserslautern, Germany
| | - Cedric Groß
- Department of Chemistry, Technische Universität Kaiserslautern (TUK), Erwin-Schrödinger. Str. 52, 67663, Kaiserslautern, Germany
| | - Xin Gui
- Institute of Physical Chemistry, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 2, 76131, Karlsruhe, Germany
| | - Florian Bäppler
- Department of Physics, Technische Universität Kaiserslautern (TUK), Erwin-Schrödinger. Str. 46, 67663, Kaiserslautern, Germany
| | - Björn Kwasigroch
- Department of Chemistry, Technische Universität Kaiserslautern (TUK), Erwin-Schrödinger. Str. 52, 67663, Kaiserslautern, Germany
| | - Yu Sun
- Department of Chemistry, Technische Universität Kaiserslautern (TUK), Erwin-Schrödinger. Str. 52, 67663, Kaiserslautern, Germany
| | - Rolf Diller
- Department of Physics, Technische Universität Kaiserslautern (TUK), Erwin-Schrödinger. Str. 46, 67663, Kaiserslautern, Germany
| | - Wim Klopper
- Institute of Physical Chemistry, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 2, 76131, Karlsruhe, Germany
| | - Gereon Niedner-Schatteburg
- Department of Chemistry, Technische Universität Kaiserslautern (TUK), Erwin-Schrödinger. Str. 52, 67663, Kaiserslautern, Germany.,Research Center OPTIMAS, Erwin-Schrödinger Str. 46, 67663, Kaiserslautern, Germany
| | - Christoph Riehn
- Department of Chemistry, Technische Universität Kaiserslautern (TUK), Erwin-Schrödinger. Str. 52, 67663, Kaiserslautern, Germany.,Research Center OPTIMAS, Erwin-Schrödinger Str. 46, 67663, Kaiserslautern, Germany
| | - Werner R Thiel
- Department of Chemistry, Technische Universität Kaiserslautern (TUK), Erwin-Schrödinger. Str. 52, 67663, Kaiserslautern, Germany
| |
Collapse
|
75
|
Katayama T, Northey T, Gawelda W, Milne CJ, Vankó G, Lima FA, Bohinc R, Németh Z, Nozawa S, Sato T, Khakhulin D, Szlachetko J, Togashi T, Owada S, Adachi SI, Bressler C, Yabashi M, Penfold TJ. Tracking multiple components of a nuclear wavepacket in photoexcited Cu(I)-phenanthroline complex using ultrafast X-ray spectroscopy. Nat Commun 2019; 10:3606. [PMID: 31399565 PMCID: PMC6689108 DOI: 10.1038/s41467-019-11499-w] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 07/18/2019] [Indexed: 11/09/2022] Open
Abstract
Disentangling the strong interplay between electronic and nuclear degrees of freedom is essential to achieve a full understanding of excited state processes during ultrafast nonadiabatic chemical reactions. However, the complexity of multi-dimensional potential energy surfaces means that this remains challenging. The energy flow during vibrational and electronic relaxation processes can be explored with structural sensitivity by probing a nuclear wavepacket using femtosecond time-resolved X-ray Absorption Near Edge Structure (TR-XANES). However, it remains unknown to what level of detail vibrational motions are observable in this X-ray technique. Herein we track the wavepacket dynamics of a prototypical [Cu(2,9-dimethyl-1,10-phenanthroline)2]+ complex using TR-XANES. We demonstrate that sensitivity to individual wavepacket components can be modulated by the probe energy and that the bond length change associated with molecular breathing mode can be tracked with a sub-Angstrom resolution beyond optical-domain observables. Importantly, our results reveal how state-of-the-art TR-XANES provides deeper insights of ultrafast nonadiabatic chemical reactions.
Collapse
Affiliation(s)
- Tetsuo Katayama
- Japan Synchrotron Radiation Research Institute, Kouto 1-1-1, Sayo, Hyogo, 679-5198, Japan. .,RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo, Hyogo, 679-5148, Japan.
| | - Thomas Northey
- Chemistry-School of Natural and Environmental Sciences, Newcastle University, Newcastle Upon-Tyne, NE1 7RU, UK
| | - Wojciech Gawelda
- European XFEL, Holzkoppel 4, 22869, Schenefeld, Germany.,Faculty of Physics, Adam Mickiewicz University, 61-614, Poznań, Poland
| | | | - György Vankó
- Wigner Research Centre for Physics, Hungarian Academy of Sciences, 1525, Budapest, Hungary
| | | | - Rok Bohinc
- SwissFEL, Paul Scherrer Institut, 5232, Villigen-PSI, Switzerland
| | - Zoltán Németh
- Wigner Research Centre for Physics, Hungarian Academy of Sciences, 1525, Budapest, Hungary
| | - Shunsuke Nozawa
- Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK), 1-1 Oho, Tsukuba, Ibaraki, 305-0801, Japan.,Department of Materials Structure Science, School of High Energy Accelerator Science, The Graduate University for Advanced Studies, 1-1 Oho, Tsukuba, Ibaraki, 305-0801, Japan
| | - Tokushi Sato
- European XFEL, Holzkoppel 4, 22869, Schenefeld, Germany.,Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607, Hamburg, Germany
| | | | - Jakub Szlachetko
- Institute of Nuclear Physics, Polish Academy of Sciences, 31-342, Kraków, Poland
| | - Tadashi Togashi
- Japan Synchrotron Radiation Research Institute, Kouto 1-1-1, Sayo, Hyogo, 679-5198, Japan.,RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo, Hyogo, 679-5148, Japan
| | - Shigeki Owada
- Japan Synchrotron Radiation Research Institute, Kouto 1-1-1, Sayo, Hyogo, 679-5198, Japan.,RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo, Hyogo, 679-5148, Japan
| | - Shin-Ichi Adachi
- Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK), 1-1 Oho, Tsukuba, Ibaraki, 305-0801, Japan.,Department of Materials Structure Science, School of High Energy Accelerator Science, The Graduate University for Advanced Studies, 1-1 Oho, Tsukuba, Ibaraki, 305-0801, Japan
| | - Christian Bressler
- European XFEL, Holzkoppel 4, 22869, Schenefeld, Germany.,Centre for Ultrafast Imaging CUI, University of Hamburg, 22761, Hamburg, Germany
| | - Makina Yabashi
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo, Hyogo, 679-5148, Japan
| | - Thomas J Penfold
- Chemistry-School of Natural and Environmental Sciences, Newcastle University, Newcastle Upon-Tyne, NE1 7RU, UK.
| |
Collapse
|
76
|
Abstract
After presenting the basic theoretical models of excitation energy transfer and charge transfer, I describe some of the novel experimental methods used to probe them. Finally, I discuss recent results concerning ultrafast energy and charge transfer in biological systems, in chemical systems and in photovoltaics based on sensitized transition metal oxides.
Collapse
Affiliation(s)
- Majed Chergui
- Ecole Polytechnique Fédérale de Lausanne, Laboratoire de Spectroscopie Ultrarapide, ISIC, Lausanne Centre for Ultrafast Science (LACUS), FSB, Station 6, CH-1015 Lausanne, Switzerland.
| |
Collapse
|
77
|
Perspectives of medicinally privileged chalcone based metal coordination compounds for biomedical applications. Eur J Med Chem 2019; 174:142-158. [DOI: 10.1016/j.ejmech.2019.04.032] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 04/04/2019] [Accepted: 04/13/2019] [Indexed: 12/22/2022]
|
78
|
Francés‐Monerris A, Gros PC, Assfeld X, Monari A, Pastore M. Toward Luminescent Iron Complexes: Unravelling the Photophysics by Computing Potential Energy Surfaces. CHEMPHOTOCHEM 2019. [DOI: 10.1002/cptc.201900100] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Antonio Francés‐Monerris
- Laboratoire de Physique et Chimie Théoriques (LPCT)Université de Lorraine, CNRS 54000 Nancy France
| | - Philippe C. Gros
- Laboratoire Lorrain de Chimie Moléculaire (L2CM)Université de Lorraine, CNRS 54000 Nancy France
| | - Xavier Assfeld
- Laboratoire de Physique et Chimie Théoriques (LPCT)Université de Lorraine, CNRS 54000 Nancy France
| | - Antonio Monari
- Laboratoire de Physique et Chimie Théoriques (LPCT)Université de Lorraine, CNRS 54000 Nancy France
| | - Mariachiara Pastore
- Laboratoire de Physique et Chimie Théoriques (LPCT)Université de Lorraine, CNRS 54000 Nancy France
| |
Collapse
|
79
|
Baiardi A, Reiher M. Large-Scale Quantum Dynamics with Matrix Product States. J Chem Theory Comput 2019; 15:3481-3498. [DOI: 10.1021/acs.jctc.9b00301] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Alberto Baiardi
- Laboratorium für Physikalische Chemie, ETH Zürich, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland
| | - Markus Reiher
- Laboratorium für Physikalische Chemie, ETH Zürich, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland
| |
Collapse
|
80
|
Puntoriero F, Arrigo A, Santoro A, Ganga GL, Tuyèras F, Campagna S, Dupeyre G, Lainé PP. Photoinduced Intercomponent Processes in Selectively Addressable Bichromophoric Dyads Made of Linearly Arranged Ru(II) Terpyridine and Expanded Pyridinium Components. Inorg Chem 2019; 58:5807-5817. [PMID: 31017774 DOI: 10.1021/acs.inorgchem.9b00139] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Three new linearly arranged bichromophoric systems 1-3 have been prepared, and their photophysical properties have been studied, taking also advantage of femtosecond pump-probe transient absorption spectroscopy. The three compounds contain the same chromophores, that is a Ru(II)-terpy-like species and a fused expanded bipyridinium (FEBP) unit, separated by three different, variously methylated biphenylene-type bridges. The chromophores have been selected to be selectively addressable, and excitation involving the Ru-based or the FEBP-based dyes results in different excited-state decays. Upon Ru-based excitation at 570 nm, oxidative photoinduced electron transfer (OPET) takes place in 1-3 from the 3MLCT state; however, the charge-separated species does not accumulate, indicating that the charge recombination rate constant exceeds the OPET rate constant. Upon excitation of the organic dye at 400 nm, the FEBP-based 1π-π* level is prepared, which undergoes a series of intercomponent decay events, including (i) electron-exchange energy transfer leading to the MLCT manifold (SS-EnT), which successively decays according to 570 nm excitation, and (ii) reductive photoinduced electron transfer (RPET), leading to the preparation of the charge-separated (CS) state. Reductive PET, involving the FEBP-based singlet state, is much faster than oxidative PET, involving the MLCT triplet state, essentially because of driving force reasons. The rate constant of CR is intermediate between the rate constants of OPET and RPET, and this makes 1-3 capable to selectively read the 400 nm excitation as an active input to prepare the CS state, whereas excitation at wavelengths longer than 480 nm is inefficient to accumulate the CS state. Moreover, intriguing differences between the rate constants of the various processes in 1-3 have been analyzed and interpreted according to the superexchange theory for electron transfer. This allowed us to uncover the role of the electron-transfer and hole-transfer superexchange pathways in promoting the various intercomponent photoinduced decay processes occurring in 1-3.
Collapse
Affiliation(s)
- Fausto Puntoriero
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences (CHIBIOFARAM) , University of Messina and Centro Interuniversitario per la Conversione Chimica dell'Energia Solare (SOLAR-CHEM, sezione di Messina) - viale F. Stagno d'Alcontres 31 , 98166 Messina , Italy
| | - Antonino Arrigo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences (CHIBIOFARAM) , University of Messina and Centro Interuniversitario per la Conversione Chimica dell'Energia Solare (SOLAR-CHEM, sezione di Messina) - viale F. Stagno d'Alcontres 31 , 98166 Messina , Italy
| | - Antonio Santoro
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences (CHIBIOFARAM) , University of Messina and Centro Interuniversitario per la Conversione Chimica dell'Energia Solare (SOLAR-CHEM, sezione di Messina) - viale F. Stagno d'Alcontres 31 , 98166 Messina , Italy
| | - Giuseppina La Ganga
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences (CHIBIOFARAM) , University of Messina and Centro Interuniversitario per la Conversione Chimica dell'Energia Solare (SOLAR-CHEM, sezione di Messina) - viale F. Stagno d'Alcontres 31 , 98166 Messina , Italy
| | - Fabien Tuyèras
- Univ Paris Diderot , Sorbonne Paris Cité, ITODYS, UMR CNRS 7086 , 15 rue J-A de Baïf , 75013 Paris , France
| | - Sebastiano Campagna
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences (CHIBIOFARAM) , University of Messina and Centro Interuniversitario per la Conversione Chimica dell'Energia Solare (SOLAR-CHEM, sezione di Messina) - viale F. Stagno d'Alcontres 31 , 98166 Messina , Italy
| | - Grégory Dupeyre
- Univ Paris Diderot , Sorbonne Paris Cité, ITODYS, UMR CNRS 7086 , 15 rue J-A de Baïf , 75013 Paris , France
| | - Philippe P Lainé
- Univ Paris Diderot , Sorbonne Paris Cité, ITODYS, UMR CNRS 7086 , 15 rue J-A de Baïf , 75013 Paris , France
| |
Collapse
|
81
|
Smith JD, Jamhawi AM, Jasinski JB, Gallou F, Ge J, Advincula R, Liu J, Handa S. Organopolymer with dual chromophores and fast charge-transfer properties for sustainable photocatalysis. Nat Commun 2019; 10:1837. [PMID: 31015478 PMCID: PMC6478678 DOI: 10.1038/s41467-019-09316-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 03/01/2019] [Indexed: 12/20/2022] Open
Abstract
Photocatalytic polymers offer an alternative to prevailing organometallics and nanomaterials, and they may benefit from polymer-mediated catalytic and material enhancements. MPC-1, a polymer photoredox catalyst reported herein, exhibits enhanced catalytic activity arising from charge transfer states (CTSs) between its two chromophores. Oligomeric and polymeric MPC-1 preparations both promote efficient hydrodehalogenation of α-halocarbonyl compounds while exhibiting different solubility properties. The polymer is readily recovered by filtration. MPC-1-coated vessels enable batch and flow photocatalysis, even with opaque reaction mixtures, via "backside irradiation." Ultrafast transient absorption spectroscopy indicates a fast charge-transfer process within 20 ps of photoexcitation. Time-resolved photoluminescence measurements reveal an approximate 10 ns lifetime for bright valence states. Ultrafast measurements suggest a long CTS lifetime. Empirical catalytic activities of small-molecule models of MPC-1 subunits support the CTS hypothesis. Density functional theory (DFT) and time-dependent DFT calculations are in good agreement with experimental spectra, spectral peak assignment, and proposed underlying energetics.
Collapse
Affiliation(s)
- Justin D Smith
- Department of Chemistry, University of Louisville, 2320 South Brook Street, Louisville, KY, 40292, USA
| | - Abdelqader M Jamhawi
- Department of Chemistry, University of Louisville, 2320 South Brook Street, Louisville, KY, 40292, USA
| | - Jacek B Jasinski
- Materials Characterization, Conn Center for Renewable Energy Research, University of Louisville, Louisville, KY, 40292, USA
| | | | - Jin Ge
- Department of Macromolecular Science and Engineering, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Rigoberto Advincula
- Department of Macromolecular Science and Engineering, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Jinjun Liu
- Department of Chemistry, University of Louisville, 2320 South Brook Street, Louisville, KY, 40292, USA
| | - Sachin Handa
- Department of Chemistry, University of Louisville, 2320 South Brook Street, Louisville, KY, 40292, USA.
| |
Collapse
|
82
|
|
83
|
Bräm O, Cannizzo A, Chergui M. Ultrafast Broadband Fluorescence Up-conversion Study of the Electronic Relaxation of Metalloporphyrins. J Phys Chem A 2019; 123:1461-1468. [DOI: 10.1021/acs.jpca.9b00007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Olivier Bräm
- Laboratoire de Spectroscopie Ultrarapide, ISIC and Lausanne Centre for Ultrafast Science (LACUS), Ecole Polytechnique Fédérale de Lausanne (EPFL) CH-1015 Lausanne, Switzerland
| | - Andrea Cannizzo
- Laboratoire de Spectroscopie Ultrarapide, ISIC and Lausanne Centre for Ultrafast Science (LACUS), Ecole Polytechnique Fédérale de Lausanne (EPFL) CH-1015 Lausanne, Switzerland
| | - Majed Chergui
- Laboratoire de Spectroscopie Ultrarapide, ISIC and Lausanne Centre for Ultrafast Science (LACUS), Ecole Polytechnique Fédérale de Lausanne (EPFL) CH-1015 Lausanne, Switzerland
| |
Collapse
|
84
|
William P. C, Daniel B. T. Characterizing divergent spin-orbit coupling effects on ultrafast nonradiative decay in transition-metal compounds. EPJ WEB OF CONFERENCES 2019. [DOI: 10.1051/epjconf/201920505018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Two-dimensional electronic spectroscopy reveals divergent, spin-orbit coupling mediated, electronic relaxation dynamics in iridium(IV) hexa-bromide ([IrB6]2-) and the ruthenium(II)-based DSSC dye N719.
Collapse
|
85
|
Abedi M, Levi G, Zederkof DB, Henriksen NE, Pápai M, Møller KB. Excited-state solvation structure of transition metal complexes from molecular dynamics simulations and assessment of partial atomic charge methods. Phys Chem Chem Phys 2019; 21:4082-4095. [DOI: 10.1039/c8cp06567e] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Excited-state solvation structure (radial distribution function) of transition metal complexes by classical and mixed quantum-classical (QM/MM) molecular dynamics simulations.
Collapse
Affiliation(s)
- Mostafa Abedi
- Department of Chemistry
- Technical University of Denmark
- 2800 Kongens Lyngby
- Denmark
| | - Gianluca Levi
- Department of Chemistry
- Technical University of Denmark
- 2800 Kongens Lyngby
- Denmark
| | - Diana B. Zederkof
- Department of Physics
- Technical University of Denmark
- 2800 Kongens Lyngby
- Denmark
| | - Niels E. Henriksen
- Department of Chemistry
- Technical University of Denmark
- 2800 Kongens Lyngby
- Denmark
| | - Mátyás Pápai
- Department of Chemistry
- Technical University of Denmark
- 2800 Kongens Lyngby
- Denmark
- Wigner Research Center for Physics
| | - Klaus B. Møller
- Department of Chemistry
- Technical University of Denmark
- 2800 Kongens Lyngby
- Denmark
| |
Collapse
|
86
|
Yao Y, Yin HY, Ning Y, Wang J, Meng YS, Huang X, Zhang W, Kang L, Zhang JL. Strong Fluorescent Lanthanide Salen Complexes: Photophysical Properties, Excited-State Dynamics, and Bioimaging. Inorg Chem 2018; 58:1806-1814. [PMID: 30576111 DOI: 10.1021/acs.inorgchem.8b02376] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The synthesis, excited-state dynamics, and biological application of luminescent lanthanide salen complexes (Ln = Lu, Gd, Eu, Yb, salen = N, N'-bis(salicylidene)ethylenediamine-based ligands) with sandwich structures are described. Among them, Lu(III) complexes show unusually strong ligand-centered fluorescence with quantum yields up to 62%, although the metal center is close to a chromophore ligand. The excited-state dynamic studies including ultrafast spectroscopy for Ln-salen complexes revealed that their excited states are solely dependent on the salen ligands and the ISC rates are slow (108-109 s-1). Importantly, time-dependent density functional theory calculations attribute the low energy transfer efficiency to the weak spin-orbital coupling (SOC) between the singlet and triplet excited states. More importantly, Lu-salen has been applied as a molecular platform to construct fluorescence probes with organelle specificity in living cell imaging, which demonstrates the advantages of the sandwich structures as being capable of preventing intramolecular metal-ligand interactions and behaviors different from those of the previously reported Zn-salens. Most importantly, the preliminary study for in vivo imaging using a mouse model demonstrated the potential application of Ln coordination complexes in therapeutic and diagnostic bioimaging beyond living cells or in vitro.
Collapse
Affiliation(s)
- Yuhang Yao
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering , Peking University , Beijing 100871 , People's Republic of China
| | - Hao-Yan Yin
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering , Peking University , Beijing 100871 , People's Republic of China
| | - Yingying Ning
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering , Peking University , Beijing 100871 , People's Republic of China
| | - Jian Wang
- Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry , Jilin University , Changchun 130023 , People's Republic of China
| | - Yin-Shan Meng
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering , Peking University , Beijing 100871 , People's Republic of China
| | - Xinyue Huang
- Center for Advanced Quantum Studies, Department of Physics and Applied Optics Beijing Area Major Laboratory , Beijing Normal University , Beijing 100875 , People's Republic of China
| | - Wenkai Zhang
- Center for Advanced Quantum Studies, Department of Physics and Applied Optics Beijing Area Major Laboratory , Beijing Normal University , Beijing 100875 , People's Republic of China
| | - Lei Kang
- Department of Nuclear Medicine , Peking University First Hospital , Beijing 100034 , People's Republic of China
| | - Jun-Long Zhang
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering , Peking University , Beijing 100871 , People's Republic of China
| |
Collapse
|
87
|
Gutiérrez‐Arzaluz L, Ramírez‐Palma DI, Ramírez‐Palma LG, Barquera‐Lozada JE, Peon J, Cortés‐Guzmán F. Origin of the Photoinduced Geometrical Change of Copper(I) Complexes from the Quantum Chemical Topology View. Chemistry 2018; 25:775-784. [DOI: 10.1002/chem.201804596] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 11/02/2018] [Indexed: 11/06/2022]
Affiliation(s)
- Luis Gutiérrez‐Arzaluz
- Instituto de QuímicaUniversidad Nacional Autónoma de México Ciudad de México 04510 México
| | | | | | | | - Jorge Peon
- Instituto de QuímicaUniversidad Nacional Autónoma de México Ciudad de México 04510 México
| | - Fernando Cortés‐Guzmán
- Instituto de QuímicaUniversidad Nacional Autónoma de México Ciudad de México 04510 México
| |
Collapse
|
88
|
Sousa C, Alías M, Domingo A, de Graaf C. Deactivation of Excited States in Transition-Metal Complexes: Insight from Computational Chemistry. Chemistry 2018; 25:1152-1164. [DOI: 10.1002/chem.201801990] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Indexed: 11/11/2022]
Affiliation(s)
- Carmen Sousa
- Departament de Química Física and Institut de Química, Teòrica i Computacional; Universitat de Barcelona; C/ Martí i Franquès 1 08028 Barcelona Catalunya Spain
| | - Marc Alías
- Departament de Química Física i Inorgànica; Universitat Rovira i Virgili; Marcel⋅lí Domingo 1 43007 Tarragona Catalunya Spain
| | - Alex Domingo
- Departament de Química Física i Inorgànica; Universitat Rovira i Virgili; Marcel⋅lí Domingo 1 43007 Tarragona Catalunya Spain
| | - Coen de Graaf
- Departament de Química Física i Inorgànica; Universitat Rovira i Virgili; Marcel⋅lí Domingo 1 43007 Tarragona Catalunya Spain
- ICREA; Pg. Lluis Companys 23 08010 Barcelona Catalunya Spain
| |
Collapse
|
89
|
Gaynor JD, Petrone A, Li X, Khalil M. Mapping Vibronic Couplings in a Solar Cell Dye with Polarization-Selective Two-Dimensional Electronic-Vibrational Spectroscopy. J Phys Chem Lett 2018; 9:6289-6295. [PMID: 30339410 DOI: 10.1021/acs.jpclett.8b02752] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
This study uses polarization-selective two-dimensional electronic-vibrational (2D EV) spectroscopy to map intramolecular charge transfer in the well-known solar cell dye, [Ru(dcbpy)2(NCS)2]4- (N34-), dissolved in water. A static snapshot of the vibronic couplings present in aqueous N34- is reported. At least three different initially excited singlet metal-to-ligand charge-transfer (MLCT) states are observed to be coupled to vibrational modes probed in the lowest energy triplet MLCT state, emphasizing the role of vibronic coupling in intersystem crossing. Angles between electronic and vibrational transition dipole moments are extracted from spectrally isolated 2D EV peaks and compared with calculations to develop a microscopic description for how vibrations participate with 1MLCT states in charge transfer and intersystem crossing. These results suggest that 1MLCT states with significant electron density in the electron-donating plane formed by the Ru-(NCS)2 will participate strongly in charge transfer through these vibronically coupled degrees of freedom.
Collapse
Affiliation(s)
- James D Gaynor
- Department of Chemistry , University of Washington , Box 351700 , Seattle , Washington 98195 , United States
| | - Alessio Petrone
- Department of Chemistry , University of Washington , Box 351700 , Seattle , Washington 98195 , United States
| | - Xiaosong Li
- Department of Chemistry , University of Washington , Box 351700 , Seattle , Washington 98195 , United States
| | - Munira Khalil
- Department of Chemistry , University of Washington , Box 351700 , Seattle , Washington 98195 , United States
| |
Collapse
|
90
|
Liedy F, Bäppler F, Waldt E, Nosenko Y, Imanbaew D, Bhunia A, Yadav M, Diller R, Kappes MM, Roesky PW, Schooss D, Riehn C. Photodynamics and Luminescence of Mono- and Tri-Nuclear Lanthanide Complexes in the Gas Phase and in Solution. Chemphyschem 2018; 19:3050-3060. [DOI: 10.1002/cphc.201800599] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Indexed: 01/15/2023]
Affiliation(s)
- Florian Liedy
- Department of Physics; Technische Universität Kaiserslautern; Erwin-Schrödinger Str. 46, D- 67663 Kaiserslautern Germany
| | - Florian Bäppler
- Department of Physics; Technische Universität Kaiserslautern; Erwin-Schrödinger Str. 46, D- 67663 Kaiserslautern Germany
| | - Eugen Waldt
- Institute of Nanotechnology; Karlsruhe Institute of Technology (KIT); Hermann-von-Helmholtz-Platz 1 76344 Eggenstein-Leopoldshafen Germany
| | - Yevgeniy Nosenko
- Department of Chemistry; Technische Universität Kaiserslautern; Erwin-Schrödinger Str. 52, D- 67663 Kaiserslautern Germany
| | - Dimitri Imanbaew
- Department of Chemistry; Technische Universität Kaiserslautern; Erwin-Schrödinger Str. 52, D- 67663 Kaiserslautern Germany
| | - Asamanjoy Bhunia
- Institute of Inorganic Chemistry; Karlsruhe Institute of Technology (KIT) Engesserstr. 15, D- 76131 Karlsruhe Germany
| | - Munendra Yadav
- Institute of Inorganic Chemistry; Karlsruhe Institute of Technology (KIT) Engesserstr. 15, D- 76131 Karlsruhe Germany
| | - Rolf Diller
- Department of Physics; Technische Universität Kaiserslautern; Erwin-Schrödinger Str. 46, D- 67663 Kaiserslautern Germany
| | - Manfred M. Kappes
- Institute of Nanotechnology; Karlsruhe Institute of Technology (KIT); Hermann-von-Helmholtz-Platz 1 76344 Eggenstein-Leopoldshafen Germany
- Institute of Physical Chemistry; Karlsruhe Institute of Technology (KIT); Fritz-Haber-Weg 2, D- 76131 Karlsruhe Germany
| | - Peter W. Roesky
- Institute of Inorganic Chemistry; Karlsruhe Institute of Technology (KIT) Engesserstr. 15, D- 76131 Karlsruhe Germany
| | - Detlef Schooss
- Institute of Nanotechnology; Karlsruhe Institute of Technology (KIT); Hermann-von-Helmholtz-Platz 1 76344 Eggenstein-Leopoldshafen Germany
- Institute of Physical Chemistry; Karlsruhe Institute of Technology (KIT); Fritz-Haber-Weg 2, D- 76131 Karlsruhe Germany
| | - Christoph Riehn
- Department of Chemistry; Technische Universität Kaiserslautern; Erwin-Schrödinger Str. 52, D- 67663 Kaiserslautern Germany
- Research Center OPTIMAS; Erwin-Schrödinger Str. 46, D- 67663 Kaiserslautern Germany
| |
Collapse
|
91
|
Chergui M. Ultrafast photophysics and photochemistry of iron hexacyanides in solution: Infrared to X-ray spectroscopic studies. Coord Chem Rev 2018. [DOI: 10.1016/j.ccr.2018.05.021] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
92
|
Fumanal M, Gindensperger E, Daniel C. Ultrafast Intersystem Crossing vs Internal Conversion in α-Diimine Transition Metal Complexes: Quantum Evidence. J Phys Chem Lett 2018; 9:5189-5195. [PMID: 30145893 DOI: 10.1021/acs.jpclett.8b02319] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Whereas third row transition metal carbonyl α-diimine complexes display luminescent properties and possess low-lying triplet metal-to-ligand charge transfer (MLCT) states efficiently accessible by a spin-vibronic mechanism, first row analogues hold low-lying metal-centered (MC) excited states that could quench these properties. Upon visible irradiation, different functions are potentially stimulated, namely, luminescence, electron transfer, or photoinduced CO release, the branching ratio of which is governed by the energetics, the character, and the early time dynamics of the photoactive excited states. Simulations of ultrafast nonadiabatic quantum dynamics, including spin-vibronic effects, of [M(imidazole)(CO)3(phenanthroline)]+ (M = Mn, Re) highlight the role of the metal atom. An ultrafast intersystem crossing process, driven by spin-orbit coupling, populates the low-lying triplet states of [Re(imidazole)(CO)3(phen)]+ within the first tens of fs. In contrast, efficient internal conversion between the two lowest 1MLCT states of [Mn(imidazole)(CO)3(phen)]+ is mediated within 50 fs by vibronic coupling with upper MC and MLCT states.
Collapse
Affiliation(s)
- Maria Fumanal
- Laboratoire de Chimie Quantique, Institut de Chimie Strasbourg , UMR7177 CNRS/Université de Strasbourg , 1 Rue Blaise Pascal BP296/R8 , F-67008 Strasbourg , France
| | - Etienne Gindensperger
- Laboratoire de Chimie Quantique, Institut de Chimie Strasbourg , UMR7177 CNRS/Université de Strasbourg , 1 Rue Blaise Pascal BP296/R8 , F-67008 Strasbourg , France
| | - Chantal Daniel
- Laboratoire de Chimie Quantique, Institut de Chimie Strasbourg , UMR7177 CNRS/Université de Strasbourg , 1 Rue Blaise Pascal BP296/R8 , F-67008 Strasbourg , France
| |
Collapse
|
93
|
Lang B. Photometrics of ultrafast and fast broadband electronic transient absorption spectroscopy: State of the art. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2018; 89:093112. [PMID: 30278696 DOI: 10.1063/1.5039457] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 08/30/2018] [Indexed: 06/08/2023]
Abstract
The physical limits of the photometric resolution in broadband electronic transient absorption spectroscopy are discussed together with solutions for how to reach these limits in practice. In the first part, quantitative expressions for the noise contributions to the transient absorption signal are derived and experimentally tested. Experimental approaches described in the literature are discussed and compared on this basis. Guide-lines for designing a setup are established. In the second part, a method for obtaining nearly shot-noise limited kinetics with photometric resolution of the order of 100 μOD in overall measurement times of a few minutes from femtosecond to microsecond time scale is presented. The results are discussed in view of other experiments of step-scan type which are subject to a background or to correlated noise. Finally, detailed information is provided on how to obtain transient absorption spectra where counting statistics are the sole source of noise. A method for how to suppress outliers without introducing bias is discussed. An application example is given to demonstrate the achievable signal-to-noise level and the fast acquisition time.
Collapse
Affiliation(s)
- Bernhard Lang
- Department of Physical Chemistry, University of Geneva, 30 Quai Ernest Ansermet, CH-1211 Genève 4, Switzerland
| |
Collapse
|
94
|
Vibrational coherence transfer in the ultrafast intersystem crossing of a diplatinum complex in solution. Proc Natl Acad Sci U S A 2018; 115:E6396-E6403. [PMID: 29941568 DOI: 10.1073/pnas.1719899115] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We investigate the ultrafast transient absorption response of tetrakis(μ-pyrophosphito)diplatinate(II), [Pt2(μ-P2O5H2)4]4- [hereafter abbreviated Pt(pop)], in acetonitrile upon excitation of its lowest singlet 1A2u state. Compared with previously reported solvents [van der Veen RM, Cannizzo A, van Mourik F, Vlček A, Jr, Chergui M (2011) J Am Chem Soc 133:305-315], a significant shortening of the intersystem crossing (ISC) time (<1 ps) from the lowest singlet to the lowest triplet state is found, allowing for a transfer of vibrational coherence, observed in the course of an ISC in a polyatomic molecule in solution. Density functional theory (DFT) quantum mechanical/molecular mechanical (QM/MM) simulations of Pt(pop) in acetonitrile and ethanol show that high-lying, mostly triplet, states are strongly mixed and shifted to lower energies due to interactions with the solvent, providing an intermediate state (or manifold of states) for the ISC. This suggests that the larger the solvation energies of the intermediate state(s), the shorter the ISC time. Because the latter is smaller than the pure dephasing time of the vibrational wave packet, coherence is conserved during the spin transition. These results underscore the crucial role of the solvent in directing pathways of intramolecular energy flow.
Collapse
|
95
|
Hu D, Xie Y, Li X, Li L, Lan Z. Inclusion of Machine Learning Kernel Ridge Regression Potential Energy Surfaces in On-the-Fly Nonadiabatic Molecular Dynamics Simulation. J Phys Chem Lett 2018; 9:2725-2732. [PMID: 29732893 DOI: 10.1021/acs.jpclett.8b00684] [Citation(s) in RCA: 98] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
We discuss a theoretical approach that employs machine learning potential energy surfaces (ML-PESs) in the nonadiabatic dynamics simulation of polyatomic systems by taking 6-aminopyrimidine as a typical example. The Zhu-Nakamura theory is employed in the surface hopping dynamics, which does not require the calculation of the nonadiabatic coupling vectors. The kernel ridge regression is used in the construction of the adiabatic PESs. In the nonadiabatic dynamics simulation, we use ML-PESs for most geometries and switch back to the electronic structure calculations for a few geometries either near the S1/S0 conical intersections or in the out-of-confidence regions. The dynamics results based on ML-PESs are consistent with those based on CASSCF PESs. The ML-PESs are further used to achieve the highly efficient massive dynamics simulations with a large number of trajectories. This work displays the powerful role of ML methods in the nonadiabatic dynamics simulation of polyatomic systems.
Collapse
Affiliation(s)
- Deping Hu
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology , Chinese Academy of Sciences , Qingdao 266101 , China
- University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Yu Xie
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology , Chinese Academy of Sciences , Qingdao 266101 , China
| | - Xusong Li
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology , Chinese Academy of Sciences , Qingdao 266101 , China
- University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Lingyue Li
- University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Zhenggang Lan
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology , Chinese Academy of Sciences , Qingdao 266101 , China
- University of Chinese Academy of Sciences , Beijing 100049 , China
| |
Collapse
|
96
|
Liu XY, Zhang YH, Fang WH, Cui G. Early-Time Excited-State Relaxation Dynamics of Iridium Compounds: Distinct Roles of Electron and Hole Transfer. J Phys Chem A 2018; 122:5518-5532. [PMID: 29874071 DOI: 10.1021/acs.jpca.8b04392] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Xiang-Yang Liu
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Ya-Hui Zhang
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Wei-Hai Fang
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Ganglong Cui
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
97
|
Rather SR, Bezdek MJ, Koch M, Chirik PJ, Scholes GD. Ultrafast Photophysics of a Dinitrogen-Bridged Molybdenum Complex. J Am Chem Soc 2018; 140:6298-6307. [PMID: 29719149 DOI: 10.1021/jacs.8b00890] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Among the many metal-dinitrogen complexes synthesized, the end-on bridging (μ2, η1, η1-N2) coordination mode is notoriously unreactive for nitrogen fixation. This is principally due to the large activation energy for ground-state nitrogen-element bond formation and motivates exploration of the photoexcited reactivity of this coordination mode. To provide the foundation for this concept, the photophysics of a dinitrogen-bridged molybdenum complex was explored by ultrafast electronic spectroscopies. The complex absorbs light from the UV to near-IR, and the transitions are predominantly of metal-to-ligand charge transfer (MLCT) character. Five excitation wavelengths (440, 520, 610, 730, and 1150 nm) were employed to access MLCT bands, and the dynamics were probed between 430 and 1600 nm. Despite the large energy space occupied by electronic states (ca. 1.2 eV), the dynamics were independent of the excitation wavelength. In the proposed kinetic model, photoexcitation from a Mo-N═N-Mo centered ground state populates the π*-state delocalized over two terpyridine ligands. Due to a large terpyridine-terpyridine spatial separation, electronic localization occurs within 100 fs, augmented by symmetry breaking. The subsequent interplay of internal conversion and intersystem crossing (ISC) populates the lowest 3MLCT state in 2-3 ps. Decay to the ground state occurs either directly or via a thermally activated metal-centered (3MC) trap state having two time constants (10-15 ps, 23-26 ps [298 K]; 103 ps, 612 ps [77 K]). ISC between 1MLCT and 3MLCT involves migration of energized electron density from the terpyridine π* orbitals to the Mo-N═N-Mo core. Implication of the observed dynamics for the potential N-H bond forming reactivity are discussed.
Collapse
Affiliation(s)
- Shahnawaz R Rather
- Frick Chemistry Laboratory , Princeton University , Princeton , New Jersey 08544 , United States
| | - Máté J Bezdek
- Frick Chemistry Laboratory , Princeton University , Princeton , New Jersey 08544 , United States
| | - Marius Koch
- Frick Chemistry Laboratory , Princeton University , Princeton , New Jersey 08544 , United States
| | - Paul J Chirik
- Frick Chemistry Laboratory , Princeton University , Princeton , New Jersey 08544 , United States
| | - Gregory D Scholes
- Frick Chemistry Laboratory , Princeton University , Princeton , New Jersey 08544 , United States
| |
Collapse
|
98
|
Shafizadeh N, Boyé-Péronne S, Soorkia S, Cunha de Miranda BK, Garcia GA, Nahon L, Chen S, de la Lande A, Poisson L, Soep B. The surprisingly high ligation energy of CO to ruthenium porphyrins. Phys Chem Chem Phys 2018; 20:11730-11739. [PMID: 29687125 DOI: 10.1039/c8cp01190g] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A combined theoretical and experimental approach has been used to investigate the binding energy of a ruthenium metalloporphyrin ligated with CO, ruthenium tetraphenylporphyrin [RuII TPP], in the RuII oxidation degree. Measurements performed with VUV ionization using the DESIRS beamline at Synchrotron SOLEIL led to adiabatic ionization energies of [RuII TPP] and its complex with CO, [RuII TPP-CO], of 6.48 ± 0.03 eV and 6.60 ± 0.03 eV, respectively, while the ion dissociation threshold of [RuII TPP-CO]+ is measured to be 8.36 ± 0.03 eV using the ground-state neutral complex. These experimental data are used to derive the binding energies of the CO ligand in neutral and cationic complexes (1.88 ± 0.06 eV and 1.76 ± 0.06 eV, respectively) using a Born-Haber cycle. Density functional theory calculations, in very satisfactory agreement with the experimental results, help to get insights into the metal-ligand bond. Notably, the high ligation energies can be rationalized in terms of the ruthenium orbital structure, which is singular compared to that of the iron atom. Thus, beyond indications of a strengthening of the Ru-CO bond due to the decrease in the CO vibrational frequency in the complex as compared to the Fe-CO bond, high-level calculations are essential to accurately describe the metal ligand (CO) bond and show that the Ru-CO bond energy is strongly affected by the splitting of triplet and singlet spin states in uncomplexed [Ru TPP].
Collapse
Affiliation(s)
- Niloufar Shafizadeh
- Institut des Sciences Moléculaires d'Orsay (ISMO), CNRS, Université Paris-Saclay, Université Paris-Sud, Orsay F-91405, France.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
99
|
Kim J, Cho B, Yoon TH, Cho M. Dual-Frequency Comb Transient Absorption: Broad Dynamic Range Measurement of Femtosecond to Nanosecond Relaxation Processes. J Phys Chem Lett 2018; 9:1866-1871. [PMID: 29589950 DOI: 10.1021/acs.jpclett.8b00886] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
We experimentally demonstrate a dual-frequency comb-based transient absorption (DFC-TA) technique, which has a 12 fs time resolution and an ultrafast scan rate. Here, the fast scan rate is achieved by employing asynchronous optical sampling (ASOPS), which utilizes two independent mode-locked lasers with a slightly detuned repetition rates. The ASOPS approach is advantageous because photodegradation damage of optical sample during TA measurements can be minimized by a gated sampling. We show that the vibrational and electronic population relaxations of near-IR dye molecules in solution that occur in the time range from femtoseconds to nanoseconds can be resolved even with a single time scan measurement. The phase coherent nature of our dual-frequency comb lasers is shown to be the key for successful coherent averaging with femtosecond time resolution preserved over many data acquisitions. We anticipate that the present DFC-TA method without using any pump-probe time delay devices could be of use in developing ultrafast TA-based microscopy and time-resolved coherent multidimensional spectroscopy.
Collapse
Affiliation(s)
- JunWoo Kim
- Center for Molecular Spectroscopy and Dynamics , Institute for Basic Science (IBS) , Seoul 02841 , Republic of Korea
| | - Byungmoon Cho
- Center for Molecular Spectroscopy and Dynamics , Institute for Basic Science (IBS) , Seoul 02841 , Republic of Korea
| | - Tai Hyun Yoon
- Center for Molecular Spectroscopy and Dynamics , Institute for Basic Science (IBS) , Seoul 02841 , Republic of Korea
- Department of Physics , Korea University , Seoul 02841 , Republic of Korea
| | - Minhaeng Cho
- Center for Molecular Spectroscopy and Dynamics , Institute for Basic Science (IBS) , Seoul 02841 , Republic of Korea
- Department of Chemistry , Korea University , Seoul 02841 , Republic of Korea
| |
Collapse
|
100
|
Sousa C, Domingo A, de Graaf C. Effect of Second-Order Spin-Orbit Coupling on the Interaction between Spin States in Spin-Crossover Systems. Chemistry 2018; 24:5146-5152. [PMID: 29143986 DOI: 10.1002/chem.201704854] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 11/14/2017] [Indexed: 11/10/2022]
Abstract
The second-order spin-orbit coupling is evaluated in two transition-metal complexes to establish the effect on the deactivation mechanism of the excited low-spin state in systems that undergo spin transitions under the influence of light. We compare the standard perturbational approach to calculate the second-order interaction with a variational strategy based on the effective Hamiltonian theory and show that the former one can only be applied in some special cases and even then gives results that largely overestimate the interaction. The combined effect of geometry distortions and second-order spin-orbit coupling leads to sizeable interactions for states that are nearly uncoupled in the symmetric (average) structure of the complex. This opens the possibility of a direct deactivation from the singlet and triplet states of the metal-to-ligand charge-transfer manifold to the final high-spin state as suggested from the interpretation of experimental data but so far not supported by theoretical descriptions of the light-induced spin crossover.
Collapse
Affiliation(s)
- Carmen Sousa
- Departament de Química Física, Institut de Química Teòrica i Computacional, Universitat de Barcelona, C/ Martí i Franquès 1, 08028, Barcelona, Spain
| | - Alex Domingo
- Departament de Química Fsica i Inorgànica, Universitat Rovira i Virgili, Marcel⋅lí Domingo s/n, 43007, Tarragona, Spain
| | - Coen de Graaf
- Departament de Química Fsica i Inorgànica, Universitat Rovira i Virgili, Marcel⋅lí Domingo s/n, 43007, Tarragona, Spain.,ICREA, Pg. Lluis Companys 23, 08010, Barcelona, Spain
| |
Collapse
|