51
|
Buchholz TJ, Geders TW, Bartley FE, Reynolds KA, Smith JL, Sherman DH. Structural basis for binding specificity between subclasses of modular polyketide synthase docking domains. ACS Chem Biol 2009; 4:41-52. [PMID: 19146481 DOI: 10.1021/cb8002607] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Bacterial type I polyketide synthases (PKSs) assemble structurally diverse natural products of significant clinical value from simple metabolic building blocks. The synthesis of these compounds occurs in a processive fashion along a large multiprotein complex. Transfer of the acyl intermediate across interpolypeptide junctions is mediated, at least in large part, by N- and C-terminal docking domains. We report here a comprehensive analysis of the binding affinity and selectivity for the complete set of discrete docking domain pairs in the pikromycin and erythromycin PKS systems. Despite disconnection from their parent module, each cognate pair of docking domains retained exquisite binding selectivity. Further insights were obtained by X-ray crystallographic analysis of the PikAIII/PikAIV docking domain interface. This new information revealed a series of key interacting residues that enabled development of a structural model for the recently proposed H2-T2 class of polypeptides involved in PKS intermodular molecular recognition.
Collapse
Affiliation(s)
- Tonia J. Buchholz
- Life Sciences Institute, Departments of Medicinal Chemistry, Chemistry, and Microbiology & Immunology, University of Michigan, Ann Arbor, Michigan 48109
| | - Todd W. Geders
- Life Sciences Institute, Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan 48109
| | - Frank E. Bartley
- Life Sciences Institute, Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan 48109
| | - Kevin A. Reynolds
- Department of Chemistry, Portland State University, Portland, Oregon 97207
| | - Janet L. Smith
- Life Sciences Institute, Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan 48109
| | - David H. Sherman
- Life Sciences Institute, Departments of Medicinal Chemistry, Chemistry, and Microbiology & Immunology, University of Michigan, Ann Arbor, Michigan 48109
| |
Collapse
|
52
|
Liu T, Lin X, Zhou X, Deng Z, Cane DE. Mechanism of thioesterase-catalyzed chain release in the biosynthesis of the polyether antibiotic nanchangmycin. ACTA ACUST UNITED AC 2008; 15:449-58. [PMID: 18482697 DOI: 10.1016/j.chembiol.2008.04.006] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2008] [Revised: 04/04/2008] [Accepted: 04/17/2008] [Indexed: 10/22/2022]
Abstract
The polyketide backbone of the polyether ionophore antibiotic nanchangmycin (1) is assembled by a modular polyketide synthase in Streptomyces nanchangensis NS3226. The ACP-bound polyketide is thought to undergo a cascade of oxidative cyclizations to generate the characteristic polyether. Deletion of the glycosyl transferase gene nanG5 resulted in accumulation of the corresponding nanchangmycin aglycone (6). The discrete thioesterase NanE exhibited a nearly 17-fold preference for hydrolysis of 4, the N-acetylcysteamine (SNAC) thioester of nanchangmycin, over 7, the corresponding SNAC derivative of the aglycone, consistent with NanE-catalyzed hydrolysis of ACP-bound nanchangmycin being the final step in the biosynthetic pathway. Site-directed mutagenesis established that Ser96, His261, and Asp120, the proposed components of the NanE catalytic triad, were all essential for thioesterase activity, while Trp97 was shown to influence the preference for polyether over polyketide substrates.
Collapse
Affiliation(s)
- Tiangang Liu
- Laboratory of Microbial Metabolism and School of Life Science and Biotechnology, Shanghai Jiaotong University, Shanghai, China
| | | | | | | | | |
Collapse
|
53
|
Weissman KJ, Müller R. Protein–Protein Interactions in Multienzyme Megasynthetases. Chembiochem 2008; 9:826-48. [DOI: 10.1002/cbic.200700751] [Citation(s) in RCA: 111] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
54
|
Kapur S, Worthington A, Tang Y, Cane DE, Burkart MD, Khosla C. Mechanism based protein crosslinking of domains from the 6-deoxyerythronolide B synthase. Bioorg Med Chem Lett 2008; 18:3034-8. [PMID: 18243693 DOI: 10.1016/j.bmcl.2008.01.073] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2007] [Accepted: 01/16/2008] [Indexed: 11/28/2022]
Abstract
The critical role of protein-protein interactions in the chemistry of polyketide synthases is well established. However, the transient and weak nature of these interactions, in particular those involving the acyl carrier protein (ACP), has hindered efforts to structurally characterize these interactions. We describe a chemo-enzymatic approach that crosslinks the active sites of ACP and their cognate ketosynthase (KS) domains, resulting in the formation of a stable covalent adduct. This process is driven by specific protein-protein interactions between KS and ACP domains. Suitable manipulation of the reaction conditions enabled complete crosslinking of a representative KS and ACP, allowing isolation of a stable, conformationally constrained adduct suitable for high-resolution structural analysis.
Collapse
Affiliation(s)
- Shiven Kapur
- Department of Chemistry, Stanford University, Stanford, CA 94305, USA
| | | | | | | | | | | |
Collapse
|
55
|
Richter CD, Nietlispach D, Broadhurst RW, Weissman KJ. Multienzyme docking in hybrid megasynthetases. Nat Chem Biol 2007; 4:75-81. [DOI: 10.1038/nchembio.2007.61] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2007] [Accepted: 10/30/2007] [Indexed: 11/09/2022]
|
56
|
Kittendorf JD, Beck BJ, Buchholz TJ, Seufert W, Sherman DH. Interrogating the molecular basis for multiple macrolactone ring formation by the pikromycin polyketide synthase. ACTA ACUST UNITED AC 2007; 14:944-54. [PMID: 17719493 PMCID: PMC2707933 DOI: 10.1016/j.chembiol.2007.07.013] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2007] [Revised: 07/09/2007] [Accepted: 07/13/2007] [Indexed: 11/25/2022]
Abstract
The pikromycin polyketide synthase (PKS) is unique in its ability to generate both 12 and 14 membered ring macrolactones. As such, dissection of the molecular basis for controlling metabolic diversity in this system remains an important objective for understanding modular PKS function and expanding chemical diversity. Here, we describe a series of experiments designed to probe the importance of the protein-protein interaction that occurs between the final two monomodules, PikAIII (module 5) and PikAIV (module 6), for the production of the 12 membered ring macrolactone 10-deoxymethynolide. The results obtained from these in vitro studies demonstrate that PikAIII and PikAIV generate the 12 membered ring macrocycle most efficiently when engaged in their native protein-protein interaction. Accordingly, the data are consistent with PikAIV adopting an alternative conformation that enables the terminal thioesterase domain to directly off-load the PikAIII-bound hexaketide intermediate for macrocyclization.
Collapse
Affiliation(s)
| | | | | | | | - David H. Sherman
- Corresponding Author: , Telephone: (734)-615-9907, Fax: (734)-615-3641
| |
Collapse
|
57
|
Thattai M, Burak Y, Shraiman BI. The origins of specificity in polyketide synthase protein interactions. PLoS Comput Biol 2007; 3:1827-35. [PMID: 17907798 PMCID: PMC1994986 DOI: 10.1371/journal.pcbi.0030186] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2007] [Accepted: 08/10/2007] [Indexed: 11/18/2022] Open
Abstract
Polyketides, a diverse group of heteropolymers with antibiotic and antitumor properties, are assembled in bacteria by multiprotein chains of modular polyketide synthase (PKS) proteins. Specific protein–protein interactions determine the order of proteins within a multiprotein chain, and thereby the order in which chemically distinct monomers are added to the growing polyketide product. Here we investigate the evolutionary and molecular origins of protein interaction specificity. We focus on the short, conserved N- and C-terminal docking domains that mediate interactions between modular PKS proteins. Our computational analysis, which combines protein sequence data with experimental protein interaction data, reveals a hierarchical interaction specificity code. PKS docking domains are descended from a single ancestral interacting pair, but have split into three phylogenetic classes that are mutually noninteracting. Specificity within one such compatibility class is determined by a few key residues, which can be used to define compatibility subclasses. We identify these residues using a novel, highly sensitive co-evolution detection algorithm called CRoSS (correlated residues of statistical significance). The residue pairs selected by CRoSS are involved in direct physical interactions in a docked-domain NMR structure. A single PKS system can use docking domain pairs from multiple classes, as well as domain pairs from multiple subclasses of any given class. The termini of individual proteins are frequently shuffled, but docking domain pairs straddling two interacting proteins are linked as an evolutionary module. The hierarchical and modular organization of the specificity code is intimately related to the processes by which bacteria generate new PKS pathways. Biomolecular interactions can be extraordinarily specific. In many instances, a protein can select its single correct binding partner from among a large array of closely related candidates. For polyketide synthases (PKSs), a family of bacterial enzymes, such specificity is essential. Like workers on an assembly line, PKSs function as multiprotein chains, each enzyme modifying its substrate before passing it along to the next. And like a well-designed jigsaw puzzle, the overall multiprotein chain is correctly ordered precisely because each component protein can only bind to specific nearest neighbors. A PKS multiprotein chain is held together by sticky “head” and “tail” domains found at either end of each protein, the head of one protein binding to the tail of the next. We looked for patterns in the amino-acid sequences of these domains that could explain why certain head–tail pairs bind, while others do not. We discovered that heads and tails each come in three very different varieties. Mismatched head–tail pairs do not bind at all, while the binding of a matching head–tail pair is governed by the amino acids found at a few key positions on the physical interface between these domains.
Collapse
Affiliation(s)
- Mukund Thattai
- National Centre for Biological Sciences, Bangalore, India.
| | | | | |
Collapse
|
58
|
Abstract
This review chronicles the synergistic growth of the fields of fatty acid and polyketide synthesis over the last century. In both animal fatty acid synthases and modular polyketide synthases, similar catalytic elements are covalently linked in the same order in megasynthases. Whereas in fatty acid synthases the basic elements of the design remain immutable, guaranteeing the faithful production of saturated fatty acids, in the modular polyketide synthases, the potential of the basic design has been exploited to the full for the elaboration of a wide range of secondary metabolites of extraordinary structural diversity.
Collapse
Affiliation(s)
- Stuart Smith
- Children's Hospital Oakland Research Institute, 5700 Martin Luther King Jr. Way, Oakland, California 94609, USA.
| | | |
Collapse
|
59
|
Abstract
6-Deoxyerythronolide B, the macrocyclic aglycone of the antibiotic erythromycin, is synthesized by a polyketide synthase (PKS) that has emerged as the prototypical modular megasynthase. A variety of molecular biological, protein chemical, and biosynthetic experiments over the past two decades have yielded insights into its mechanistic features. More recently, high-resolution structural images of portions of the 6-deoxyerythronolide B synthase have provided a platform for interpreting this wealth of biochemical data, while at the same time presenting a fundamentally new basis for the design of more detailed investigations into this remarkable enzyme. For example, the critical roles of domain-domain interactions and nonconserved linkers, as well as large interdomain movements in the structure and function of modular PKSs, have been highlighted. In turn, these insights point the way forward for more sophisticated and efficient biosynthetic engineering of complex polyketide natural products.
Collapse
Affiliation(s)
- Chaitan Khosla
- Department of Chemical Engineering, Stanford University, Stanford, California 94305, USA.
| | | | | | | | | |
Collapse
|
60
|
Velkov T, Lawen A. Photoaffinity Labeling of the N-methyltransferase Domains of Cyclosporin Synthetase¶. Photochem Photobiol 2007. [DOI: 10.1562/0031-8655(2003)0770129plotnm2.0.co2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
61
|
Menzella HG, Carney JR, Santi DV. Rational design and assembly of synthetic trimodular polyketide synthases. ACTA ACUST UNITED AC 2007; 14:143-51. [PMID: 17317568 DOI: 10.1016/j.chembiol.2006.12.002] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2006] [Revised: 11/22/2006] [Accepted: 12/04/2006] [Indexed: 10/23/2022]
Abstract
Type I polyketide synthases (PKSs) consist of modules that add two-carbon units in polyketide backbones. Rearranging modules from different sources can yield novel enzymes that produce unnatural products, but the rules that govern module-module communication are still not well known. The construction and assay of hybrid bimodular units with synthetic PKS genes were recently reported. Here, we describe the rational design of trimodular PKSs by combining bimodular units. A cloning-expression system was developed to assemble and test 54 unnatural trimodular PKSs flanked by the loading module and the thioesterase from the erythromycin synthase. Remarkably, 96% of them produced the expected polyketide. The obtained results represent an important milestone toward the ultimate goal of making new bioactive polyketides by rational design. Additionally, these results show a path for the production of customized tetraketides by fermentation, which can be an important source of advanced intermediates to facilitate the synthesis of complex products.
Collapse
|
62
|
Minowa Y, Araki M, Kanehisa M. Comprehensive analysis of distinctive polyketide and nonribosomal peptide structural motifs encoded in microbial genomes. J Mol Biol 2007; 368:1500-17. [PMID: 17400247 DOI: 10.1016/j.jmb.2007.02.099] [Citation(s) in RCA: 112] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2006] [Revised: 02/19/2007] [Accepted: 02/22/2007] [Indexed: 11/23/2022]
Abstract
We developed a highly accurate method to predict polyketide (PK) and nonribosomal peptide (NRP) structures encoded in microbial genomes. PKs/NRPs are polymers of carbonyl/peptidyl chains synthesized by polyketide synthases (PKS) and nonribosomal peptide synthetases (NRPS). We analyzed domain sequences corresponding to specific substrates and physical interactions between PKSs/NRPSs in order to predict which substrates (carbonyl/peptidyl units) are selected and assembled into highly ordered chemical structures. The predicted PKs/NRPs were represented as the sequences of carbonyl/peptidyl units to extract the structural motifs efficiently. We applied our method to 4529 PKSs/NRPSs and found 619 PKs/NRPs. We also collected 1449 PKs/NRPs whose chemical structures have been determined experimentally. The structural sequences were compared using the Smith-Waterman algorithm, and clustered into 271 clusters. From the compound clusters, we extracted 33 structural motifs that are significantly related with their bioactivities. We used the structural motifs to infer functions of 13 novel PKs/NRPs clusters produced by Pseudomonas spp. and Burkholderia spp. and found a putative virulence factor. The integrative analysis of genomic and chemical information given here will provide a strategy to predict the chemical structures, the biosynthetic pathways, and the biological activities of PKs/NRPs, which is useful for the rational design of novel PKs/NRPs.
Collapse
Affiliation(s)
- Yohsuke Minowa
- Bioinformatics Center, Institute for Chemical Research, Kyoto University Uji, Kyoto 611-0011, Japan.
| | | | | |
Collapse
|
63
|
Gokhale RS, Saxena P, Chopra T, Mohanty D. Versatile polyketide enzymatic machinery for the biosynthesis of complex mycobacterial lipids. Nat Prod Rep 2007; 24:267-77. [PMID: 17389997 DOI: 10.1039/b616817p] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The cell envelope of Mycobacterium tuberculosis (Mtb) is a treasure house of a variety of biologically active molecules with fascinating architectures. The decoding of the genetic blueprint of Mtb in recent years has provided the impetus for dissecting the metabolic pathways involved in the biosynthesis of lipidic metabolites. The focus of the Highlight is to emphasize the functional role of polyketide synthase (PKS) proteins in the biosynthesis of complex mycobacterial lipids. The catalytic as well as mechanistic versatility of PKS. in generating metabolic diversity and the significance of recently discovered fatty acyl-AMP ligases in establishing "biochemical crosstalk" between fatty acid synthases (FASs) and PKSs is described. The phenotypic heterogeneity and remodeling of the mycobacterial cell wall in its aetiopathogenesis is discussed.
Collapse
Affiliation(s)
- Rajesh S Gokhale
- National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, 110 067, India.
| | | | | | | |
Collapse
|
64
|
Watanabe K, Oikawa H. Robust platform for de novo production of heterologous polyketides and nonribosomal peptides in Escherichia coli. Org Biomol Chem 2007; 5:593-602. [PMID: 17285165 DOI: 10.1039/b615589h] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
During the past decade, numerous gene clusters responsible for the biosynthesis of important natural products have been identified from a variety of organisms. Heterologous expression utilizing E. coli has been employed to provide proteins for mechanistic understanding and structural analyses. It was very recently shown that this system is also capable of de novo production of biologically active forms of heterologous nonribosomal peptides, echinomycin and triostin A, through the introduction of genes encoding modules responsible for their assembly into this model bacterial host. The superlative advantage of using E. coli as a heterologous host is the availability of a wealth of well-established molecular biological techniques for its genetic and metabolic manipulation. The platform described above which was developed in our laboratory is ideal for use in the production of metabolites found in marine and symbiotic bacteria that are not amenable to artificial cultivation. Development and tailoring of our system will allow for the design of these natural products and ultimately combinatorial yet rational modification of these compounds. This review focuses on the heterologous expression of biosynthetic gene clusters for the assembly of therapeutically potent compounds.
Collapse
Affiliation(s)
- Kenji Watanabe
- Department of Pharmaceutical Sciences, University of Southern California, 1985 Zonal Ave PSC 718, Los Angeles, California 90033, USA.
| | | |
Collapse
|
65
|
Rokem JS, Lantz AE, Nielsen J. Systems biology of antibiotic production by microorganisms. Nat Prod Rep 2007; 24:1262-87. [DOI: 10.1039/b617765b] [Citation(s) in RCA: 123] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
66
|
Kittendorf JD, Sherman DH. Developing tools for engineering hybrid polyketide synthetic pathways. Curr Opin Biotechnol 2006; 17:597-605. [PMID: 17046237 DOI: 10.1016/j.copbio.2006.09.005] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2006] [Revised: 09/15/2006] [Accepted: 09/28/2006] [Indexed: 11/22/2022]
Abstract
Bacterial type I polyketide synthases (PKSs) are complex, multifunctional enzymes that synthesize structurally diverse and medicinally important natural products. Given their modular organization, the manipulation of type I PKSs holds tremendous promise for the generation of novel compounds that are not easily accessible by standard synthetic chemical approaches. In theory, hybrid polyketide synthetic pathways can be constructed through the rational recombination of catalytic domains or modules from a variety of PKS systems; however, the general success of this strategy has been elusive, largely due to a poor understanding of the interactions between catalytic domains, as well as PKS modules. Over the past several years, a fundamental knowledge of these issues, and others, has begun to emerge, offering refined strategies for the facile engineering of hybrid polyketide pathways.
Collapse
Affiliation(s)
- Jeffrey D Kittendorf
- University of Michigan Life Sciences Institute, Department of Medicinal Chemistry, 210 Washtenaw Avenue, Ann Arbor, Michigan 48109-2216, USA
| | | |
Collapse
|
67
|
Chandran SS, Menzella HG, Carney JR, Santi DV. Activating hybrid modular interfaces in synthetic polyketide synthases by cassette replacement of ketosynthase domains. ACTA ACUST UNITED AC 2006; 13:469-74. [PMID: 16720267 DOI: 10.1016/j.chembiol.2006.02.011] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2005] [Revised: 02/16/2006] [Accepted: 02/17/2006] [Indexed: 11/23/2022]
Abstract
Unnatural combinations of polyketide synthase modules often fail to make a polyketide product. The causes of these failures are likely complex and are not yet amenable to rational correction. One possible explanation is the inability of the ketosynthase (KS) domain to extend the ketide donated to it by the upstream module. We therefore addressed the problem by exchanging KS domains of the acceptor module in a combinatorial fashion and coexpressing these chimeric modules with ketide-donor modules that naturally interact with the transplanted KS. This approach was remarkably successful in activating previously unproductive bimodular combinations, and the results augur well for the ongoing development of molecular tools to design and produce novel polyketides.
Collapse
Affiliation(s)
- Sunil S Chandran
- Kosan Biosciences, Inc., 3832 Bay Center Place, Hayward, California 94545, USA
| | | | | | | |
Collapse
|
68
|
Chiocchini C, Linne U, Stachelhaus T. In Vivo Biocombinatorial Synthesis of Lipopeptides by COM Domain-Mediated Reprogramming of the Surfactin Biosynthetic Complex. ACTA ACUST UNITED AC 2006; 13:899-908. [PMID: 16931339 DOI: 10.1016/j.chembiol.2006.06.015] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2006] [Revised: 05/30/2006] [Accepted: 06/26/2006] [Indexed: 10/24/2022]
Abstract
The intermolecular communication within NRPS complexes relies on the coordinated interplay of donor and acceptor communication-mediating (COM) domains. In this study, the potential of COM domains was exploited in vivo by establishing a system for the true biocombinatorial synthesis of lipopeptides via directed reprogramming of a natural NRP biosynthetic assembly line (i.e., surfactin). By means of COM domain swapping, these experiments verified the decisive role of COM domains for the control of protein-protein interactions between NRPSs, demonstrated the functionality of COM domain pairs even in the context of a heterologous host and NRPS system, and allowed for the intended skipping of a biosynthetic enzyme within a multienzymatic biosynthetic complex. Ultimately, abrogation of the selectivity barrier provided by COM domains afforded the successful simultaneous, biocombinatorial synthesis of distinct lipopeptide products.
Collapse
Affiliation(s)
- Claudia Chiocchini
- Philipps-University Marburg, Faculty of Chemistry/Biochemistry, Hans-Meerwein-Strasse, D-35032 Marburg, Germany
| | | | | |
Collapse
|
69
|
Weissman KJ. Single Amino Acid Substitutions Alter the Efficiency of Docking in Modular Polyketide Biosynthesis. Chembiochem 2006; 7:1334-42. [PMID: 16871615 DOI: 10.1002/cbic.200600185] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Kira J Weissman
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, UK.
| |
Collapse
|
70
|
Tang Y, Kim CY, Mathews II, Cane DE, Khosla C. The 2.7-Angstrom crystal structure of a 194-kDa homodimeric fragment of the 6-deoxyerythronolide B synthase. Proc Natl Acad Sci U S A 2006; 103:11124-9. [PMID: 16844787 PMCID: PMC1636687 DOI: 10.1073/pnas.0601924103] [Citation(s) in RCA: 226] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The x-ray crystal structure of a 194-kDa fragment from module 5 of the 6-deoxyerythronolide B synthase has been solved at 2.7 Angstrom resolution. Each subunit of the homodimeric protein contains a full-length ketosynthase (KS) and acyl transferase (AT) domain as well as three flanking "linkers." The linkers are structurally well defined and contribute extensively to intersubunit or interdomain interactions, frequently by means of multiple highly conserved residues. The crystal structure also reveals that the active site residue Cys-199 of the KS domain is separated from the active site residue Ser-642 of the AT domain by approximately 80 Angstrom. This distance is too large to be covered simply by alternative positioning of a statically anchored, fully extended phosphopantetheine arm of the acyl carrier protein domain from module 5. Thus, substantial domain reorganization appears necessary for the acyl carrier protein to interact successively with both the AT and the KS domains of this prototypical polyketide synthase module. The 2.7-Angstrom KS-AT structure is fully consistent with a recently reported lower resolution, 4.5-Angstrom model of fatty acid synthase structure, and emphasizes the close biochemical and structural similarity between polyketide synthase and fatty acid synthase enzymology.
Collapse
Affiliation(s)
- Yinyan Tang
- *Departments of Chemistry and Chemical Engineering, Stanford University, Stanford, CA 94305
| | - Chu-Young Kim
- *Departments of Chemistry and Chemical Engineering, Stanford University, Stanford, CA 94305
| | - Irimpan I. Mathews
- Stanford Synchrotron Radiation Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025; and
| | - David E. Cane
- Department of Chemistry, Brown University, Providence, RI 02912
| | - Chaitan Khosla
- *Departments of Chemistry and Chemical Engineering, Stanford University, Stanford, CA 94305
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
71
|
Miao V, Coëffet-Le Gal MF, Nguyen K, Brian P, Penn J, Whiting A, Steele J, Kau D, Martin S, Ford R, Gibson T, Bouchard M, Wrigley SK, Baltz RH. Genetic Engineering in Streptomyces roseosporus to Produce Hybrid Lipopeptide Antibiotics. ACTA ACUST UNITED AC 2006; 13:269-76. [PMID: 16638532 DOI: 10.1016/j.chembiol.2005.12.012] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2005] [Revised: 12/08/2005] [Accepted: 12/19/2005] [Indexed: 10/24/2022]
Abstract
Daptomycin is a lipopeptide antibiotic produced by a nonribosomal peptide synthetase (NRPS) in Streptomyces roseosporus. The holoenzyme is composed of three subunits, encoded by the dptA, dptBC, and dptD genes, each responsible for incorporating particular amino acids into the peptide. We introduced expression plasmids carrying dptD or NRPS genes encoding subunits from two related lipopeptide biosynthetic pathways into a daptomycin nonproducing strain of S. roseosporus harboring a deletion of dptD. All constructs successfully complemented the deletion in trans, generating three peptide cores related to daptomycin. When these were coupled with incomplete methylation of 1 amino acid and natural variation in the lipid side chain, 18 lipopeptides were generated. Substantial amounts of nine of these compounds were readily obtained by fermentation, and all displayed antibacterial activity against gram-positive pathogens.
Collapse
Affiliation(s)
- Vivian Miao
- Cubist Pharmaceuticals, Inc., 65 Hayden Avenue, Lexington, Massachusetts 02421, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
72
|
Abstract
Polyketide natural products such as erythromycin and rapamycin are assembled on polyketide synthases (PKSs), which consist of modular sets of catalytic activities distributed across multiple protein subunits. Correct protein-protein interactions among the PKS subunits which are critical to the fidelity of biosynthesis are mediated in part by "docking domains" at the termini of the proteins. The NMR solution structure of a representative docking domain complex from the erythromycin PKS (DEBS) was recently solved, and on this basis it has been proposed that PKS docking is mediated by the formation of an intermolecular four-alpha-helix bundle. Herein, we report the genetic engineering of such a docking domain complex by replacement of specific helical segments and analysis of triketide synthesis by mutant PKSs in vivo. The results of these helix swaps are fully consistent with the model and highlight residues in the docking domains that may be targeted to alter the efficiency or specificity of subunit-subunit docking in hybrid PKSs.
Collapse
Affiliation(s)
- Kira J Weissman
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, UK.
| |
Collapse
|
73
|
Moffet DA, Khosla C, Cane DE. Modular polyketide synthases: Investigating intermodular communication using 6 deoxyerythronolide B synthase module 2. Bioorg Med Chem Lett 2006; 16:213-6. [PMID: 16213712 DOI: 10.1016/j.bmcl.2005.09.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2005] [Revised: 09/01/2005] [Accepted: 09/06/2005] [Indexed: 11/18/2022]
Abstract
A novel variant of 6-deoxyerythronolide B synthase (DEBS) module 2 was constructed to explore the balance between protein-protein-mediated intermodular channeling and intrinsic substrate specificity within DEBS. This construct, termed (N3)Mod2+TE, was co-incubated with a complementary, donor form of the same module, (N5)Mod2(C2), as well as with a mutant of (N5)Mod2(C2) with an inactive ketosynthase domain, in order to determine the extent of intermediate channeling versus substrate diffusion into the downstream module.
Collapse
Affiliation(s)
- David A Moffet
- Department of Chemistry, Box H, Brown University, Providence, RI 02912-9108, USA
| | | | | |
Collapse
|
74
|
Thines E, Aguirre J, Foster AJ, Deising HB. Genetics of phytopathology: Secondary metabolites as virulence determinants of fungal plant pathogens. ACTA ACUST UNITED AC 2006. [DOI: 10.1007/3-540-27998-9_6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2023]
|
75
|
Hill AM. The biosynthesis, molecular genetics and enzymology of the polyketide-derived metabolites. Nat Prod Rep 2005; 23:256-320. [PMID: 16572230 DOI: 10.1039/b301028g] [Citation(s) in RCA: 121] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
This review covers the biosynthesis of aliphatic and aromatic polyketides as well as mixed polyketide/NRPS metabolites, and discusses the molecular genetics and enzymology of the proteins responsible for their formation.
Collapse
|
76
|
Abstract
The bacterial multienzyme polyketide synthases (PKSs) produce a diverse array of products that have been developed into medicines, including antibiotics and anticancer agents. The modular genetic architecture of these PKSs suggests that it might be possible to engineer the enzymes to produce novel drug candidates, a strategy known as 'combinatorial biosynthesis'. So far, directed engineering of modular PKSs has resulted in the production of more than 200 new polyketides, but key challenges remain before the potential of combinatorial biosynthesis can be fully realized.
Collapse
Affiliation(s)
- Kira J Weissman
- Department of Biochemistry, University of Cambridge, Cambridge, CB2 1GA, UK.
| | | |
Collapse
|
77
|
Baltz RH, Brian P, Miao V, Wrigley SK. Combinatorial biosynthesis of lipopeptide antibiotics in Streptomyces roseosporus. J Ind Microbiol Biotechnol 2005; 33:66-74. [PMID: 16193281 DOI: 10.1007/s10295-005-0030-y] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2005] [Accepted: 08/01/2005] [Indexed: 11/29/2022]
Abstract
Daptomycin is a cyclic lipopeptide antibiotic produced by Streptomyces roseosporus. Cubicin (daptomycin-for-injection) was approved in 2003 by the FDA to treat skin and skin structure infections caused by Gram-positive pathogens. Daptomycin is particularly significant in that it represents the first new natural product antibacterial structural class approved for clinical use in three decades. The daptomycin gene cluster contains three very large genes (dptA, dptBC, and dptD) that encode the nonribosomal peptide synthetase (NRPS). The related cyclic lipopeptide A54145 has four NRPS genes (lptA, lptB, lptC, and lptD), and calcium dependent antibiotic (CDA) has three (cdaPS1, cdaPS2, and cdaPS3). Mutants of S. roseosporus containing deletions of one or more of the NRPS genes have been trans-complemented with dptA, dptBC, and dptD by inserting these genes under the control of the ermEp* promoter into separate conjugal cloning vectors containing phiC31 or IS117 attachment (attP int) sites; delivering the plasmids into S. roseosporus by conjugation from Escherichia coli; and inserting the plasmids site-specifically into the chromosome at the corresponding attB sites. This trans-complementation system was used to generate subunit exchanges with lptD and cdaPS3 and the recombinants produced novel hybrid molecules. Module exchanges at positions D: -Ala(8) and D: -Ser(11) in the peptide have produced additional novel derivatives of daptomycin. The approaches of subunit exchanges and module exchanges were combined with amino acid modifications of Glu at position 12 and natural variations in lipid side chain starter units to generate a combinatorial library of antibiotics related to daptomycin. Many of the engineered strains produced levels of novel molecules amenable to isolation and antimicrobial testing, and most of the compounds displayed antibacterial activities.
Collapse
Affiliation(s)
- Richard H Baltz
- Cubist Pharmaceuticals, Inc., 65 Hayden Avenue, Lexington, MA 02421, USA.
| | | | | | | |
Collapse
|
78
|
Menzella HG, Reid R, Carney JR, Chandran SS, Reisinger SJ, Patel KG, Hopwood DA, Santi DV. Combinatorial polyketide biosynthesis by de novo design and rearrangement of modular polyketide synthase genes. Nat Biotechnol 2005; 23:1171-6. [PMID: 16116420 DOI: 10.1038/nbt1128] [Citation(s) in RCA: 258] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2005] [Accepted: 06/30/2005] [Indexed: 11/09/2022]
Abstract
Type I polyketide synthase (PKS) genes consist of modules approximately 3-6 kb long, which encode the structures of 2-carbon units in polyketide products. Alteration or replacement of individual PKS modules can lead to the biosynthesis of 'unnatural' natural products but existing techniques for this are time consuming. Here we describe a generic approach to the design of synthetic PKS genes where facile cassette assembly and interchange of modules and domains are facilitated by a repeated set of flanking restriction sites. To test the feasibility of this approach, we synthesized 14 modules from eight PKS clusters and associated them in 154 bimodular combinations spanning over 1.5-million bp of novel PKS gene sequences. Nearly half the combinations successfully mediated the biosynthesis of a polyketide in Escherichia coli, and all individual modules participated in productive bimodular combinations. This work provides a truly combinatorial approach for the production of polyketides.
Collapse
Affiliation(s)
- Hugo G Menzella
- Kosan Biosciences, Inc., 3832 Bay Center Place, Hayward, California 94545, USA
| | | | | | | | | | | | | | | |
Collapse
|
79
|
Affiliation(s)
- Robert McDaniel
- Kosan Biosciences, 3832 Bay Center Place, Hayward, California 94545, USA.
| | | | | |
Collapse
|
80
|
Vosburg DA, Walsh CT. Natural product biosynthetic assembly lines: prospects and challenges for reprogramming. ERNST SCHERING RESEARCH FOUNDATION WORKSHOP 2005:261-84. [PMID: 15645725 DOI: 10.1007/3-540-27055-8_12] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/01/2023]
Affiliation(s)
- D A Vosburg
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | | |
Collapse
|
81
|
Weissman KJ. Polyketide synthases: mechanisms and models. ERNST SCHERING RESEARCH FOUNDATION WORKSHOP 2005:43-78. [PMID: 15645716 DOI: 10.1007/3-540-27055-8_3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/01/2023]
Affiliation(s)
- K J Weissman
- Department of Biochemistry, University of Cambridge, UK.
| |
Collapse
|
82
|
Weissman KJ. Polyketide biosynthesis: understanding and exploiting modularity. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2004; 362:2671-2690. [PMID: 15539364 DOI: 10.1098/rsta.2004.1470] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Polyketide-based pharmaceuticals are some of our most important medicines. They are constructed in micro-organisms (typically bacteria and fungi) by gigantic enzyme catalysts called polyketide synthases (PKSs). The organization of PKSs into molecular assembly lines makes them particularly appealing targets for genetic engineering because, in principle, an alteration in the enzyme organization might translate into a predictable change in polyketide structure. Excitingly, this has been shown repeatedly to work in practice, but the efficiency of the engineered PKSs is frequently too low to be useful for large-scale drug synthesis. To reach this goal, researchers need a deeper understanding of the structure and function of these proteins, which are among the most complex in nature. This review highlights some recent experiments which are providing key information about the molecular organization, mechanism and orchestration of these magnificent catalysts, and opening up fresh prospects of truly combinatorial biosynthesis of novel polyketides as leads in drug discovery.
Collapse
Affiliation(s)
- Kira J Weissman
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, UK.
| |
Collapse
|
83
|
Liu F, Garneau S, Walsh CT. Hybrid Nonribosomal Peptide-Polyketide Interfaces in Epothilone Biosynthesis. ACTA ACUST UNITED AC 2004; 11:1533-42. [PMID: 15556004 DOI: 10.1016/j.chembiol.2004.08.017] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2004] [Revised: 08/14/2004] [Accepted: 08/23/2004] [Indexed: 11/21/2022]
Abstract
Epothilone (Epo) D, an antitumor agent currently in clinical trials, is a hybrid natural product produced by the combined action of nonribosomal peptide synthetases (NRPS) and polyketide synthases (PKS). In the epothilone biosynthetic pathway, EpoB, a 165 kDa NRPS is inserted into an otherwise entirely PKS assembly line, forming two hybrid NRPS-PKS interfaces. In light of the terminal linker effect previously identified in PKS, the N- and C-terminal sequences of EpoB were examined for their roles in propagating the incipient natural product. Eight amino acid residues at EpoB C terminus, in which six are positively charged, were found to be a key component of the C-terminal linker effect. A minimal sequence of 56 residues at EpoB N terminus was required for elongating the acetyl group from the acyl carrier protein (ACP) of EpoA to form methylthiazolyl-S-EpoB.
Collapse
Affiliation(s)
- Fei Liu
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115, USA
| | | | | |
Collapse
|
84
|
Kinoshita K, Pfeifer BA, Khosla C, Cane DE. Precursor-Directed polyketide biosynthesis in Escherichia coli. Bioorg Med Chem Lett 2004; 13:3701-4. [PMID: 14552761 DOI: 10.1016/j.bmcl.2003.08.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Precursor-directed polyketide biosynthesis was demonstrated in the heterologous host Escherichia coli. Several diketide and triketide substrates were fed to a recombinant E. coli strain containing a variant form of deoxyerythronolide B synthase (DEBS) from which the first elongation module was deleted resulting in successful macrolactone formation from the diketide, but not the triketide, substrates.
Collapse
Affiliation(s)
- Kenji Kinoshita
- Department of Chemistry, Box H, Brown University, Providence, RI 02912-9108, USA
| | | | | | | |
Collapse
|
85
|
Abstract
Combinatorial biosynthesis involves the genetic manipulation of natural product biosynthetic enzymes to produce potential new drug candidates that would otherwise be difficult to obtain. In either a theoretical or practical sense, the number of combinations possible from different types of natural product pathways ranges widely. Enzymes that have been the most amenable to this technology synthesize the polyketides, nonribosomal peptides, and hybrids of the two. The number of polyketide or peptide natural products theoretically possible is huge, but considerable work remains before these large numbers can be realized. Nevertheless, many analogs have been created by this technology, providing useful structure-activity relationship data and leading to a few compounds that may reach the clinic in the next few years. In this review the focus is on recent advances in our understanding of how different enzymes for natural product biosynthesis can be used successfully in this technology.
Collapse
|
86
|
Lu YJ, Zhang YM, Rock CO. Product diversity and regulation of type II fatty acid synthases. Biochem Cell Biol 2004; 82:145-55. [PMID: 15052334 DOI: 10.1139/o03-076] [Citation(s) in RCA: 113] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Fatty acid biosynthesis is catalyzed in most bacteria by a group of highly conserved proteins known as the type II fatty acid synthase (FAS II) system. FAS II has been extensively studied in the Escherichia coli model system, and the recent explosion of bioinformatic information has accelerated the investigation of the pathway in other organisms, mostly important human pathogens. All FAS II systems possess a basic set of enzymes for the initiation and elongation of acyl chains. This review focuses on the variations on this basic theme that give rise to the diversity of products produced by the pathway. These include multiple mechanisms to generate unsaturated fatty acids and the accessory components required for branched-chain fatty acid synthesis in Gram-positive bacteria. Most of the known mechanisms that regulate product distribution of the pathway arise from the fundamental biochemical properties of the expressed enzymes. However, newly identified transcriptional factors in bacterial fatty acid biosynthetic pathways are a fertile field for new investigation into the genetic control of the FAS II system. Much more work is needed to define the role of these factors and the mechanisms that regulate their DNA binding capability, but there appear to be fundamental differences in how the expression of the pathway genes is controlled in Gram-negative and in Gram-positive bacteria.Key words: fatty acid synthase, bacteria.
Collapse
Affiliation(s)
- Ying-Jie Lu
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | | | | |
Collapse
|
87
|
Affiliation(s)
- Pawan Kumar
- Department of Chemical Engineering, Stanford University, California 94305, USA
| | | | | |
Collapse
|
88
|
Cassady JM, Chan KK, Floss HG, Leistner E. Recent Developments in the Maytansinoid Antitumor Agents. Chem Pharm Bull (Tokyo) 2004; 52:1-26. [PMID: 14709862 DOI: 10.1248/cpb.52.1] [Citation(s) in RCA: 240] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Maytansine and its congeners have been isolated from higher plants, mosses and from an Actinomycete, Actinosynnema pretiosum. Many of these compounds are antitumor agents of extraordinary potency, yet phase II clinical trials with maytansine proved disappointing. The chemistry and biology of maytansinoids has been reviewed repeatedly in the late 1970s and early 1980s; the present review covers new developments in this field during the last two decades. These include the use of maytansinoids as "warheads" in tumor-specific antibodies, preliminary metabolism studies, investigations of their biosynthesis at the biochemical and genetic level, and ecological issues related to the occurrence of such typical microbial metabolites in higher plants.
Collapse
Affiliation(s)
- John M Cassady
- College of Pharmacy, The Ohio State University, 500 West 12th Avenue, Columbus, OH 43210, USA
| | | | | | | |
Collapse
|
89
|
Watanabe K, Wang CCC, Boddy CN, Cane DE, Khosla C. Understanding substrate specificity of polyketide synthase modules by generating hybrid multimodular synthases. J Biol Chem 2003; 278:42020-6. [PMID: 12923197 DOI: 10.1074/jbc.m305339200] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Modular polyketide biosynthesis can be harnessed to generate rationally designed complex natural products through bioengineering. A detailed understanding of the features that govern transfer and processing of polyketide biosynthetic intermediates is crucial to successfully engineer new polyketide pathways. Previous studies have shown that substrate stereochemistry and protein-protein interactions between polyketide synthase modules are both important factors in this process. Here we investigated the substrate tolerance of different polyketide modules and assessed the relative importance of inter-module chain transfer versus chain elongation activity of some of these modules. By constructing a variety of hybrid modular polyketide synthase systems and assaying their ability to generate polyketide products, it was determined that the substrate tolerance of each individual ketosynthase domain is an important parameter for the successful recombination of polyketide synthase modules. Surprisingly, however, failure by a module to process a candidate substrate was not due to its inability to bind to it. Rather, it appeared to result from a blockage in carbon-carbon bond formation, suggesting that proper orientation of the initially formed acyl thioester in the ketosynthase active site was important for the enzyme-catalyzed decarboxylative condensation reaction.
Collapse
Affiliation(s)
- Kenji Watanabe
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA
| | | | | | | | | |
Collapse
|
90
|
Watanabe K, Rude MA, Walsh CT, Khosla C. Engineered biosynthesis of an ansamycin polyketide precursor in Escherichia coli. Proc Natl Acad Sci U S A 2003; 100:9774-8. [PMID: 12888623 PMCID: PMC187841 DOI: 10.1073/pnas.1632167100] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Ansamycins such as rifamycin, ansamitocin, and geldanamycin are an important class of polyketide natural products. Their biosynthetic pathways are especially complex because they involve the formation of 3-amino-5-hydroxybenzoic acid (AHBA) followed by backbone assembly by a hybrid nonribosomal peptide synthetase/polyketide synthase. We have reconstituted the ability to synthesize 2,6-dimethyl-3,5,7-trihydroxy-7-(3'-amino-5'-hydroxyphenyl)-2,4-heptadienoic acid (P8/1-OG), an intermediate in rifamycin biosynthesis, in an extensively manipulated strain of Escherichia coli. The parent strain, BAP1, contains the sfp phosphopantetheinyl transferase gene from Bacillus subtilis, which posttranslationally modifies polyketide synthase and nonribosomal peptide synthetase modules. AHBA biosynthesis in this host required introduction of seven genes from Amycolatopsis mediterranei, which produces rifamycin, and Actinosynnema pretiosum, which produces ansamitocin. Because the four-module RifA protein (530 kDa) from the rifamycin synthetase could not be efficiently produced in an intact form in E. coli, it was genetically split into two bimodular proteins separated by matched linker pairs to facilitate efficient inter-polypeptide transfer of a biosynthetic intermediate. A derivative of BAP1 was engineered that harbors the AHBA biosynthetic operon, the bicistronic RifA construct and the pccB and accA1 genes from Streptomyces coelicolor, which enable methylmalonyl-CoA biosynthesis. Fermentation of this strain of E. coli yielded P8/1-OG, an N-acetyl P8/1-OG analog, and AHBA. In addition to providing a fundamentally new route to shikimate and ansamycin-type compounds, this result enables further genetic manipulation of AHBA-derived polyketide natural products with unprecedented power.
Collapse
Affiliation(s)
- Kenji Watanabe
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA
| | | | | | | |
Collapse
|
91
|
Broadhurst RW, Nietlispach D, Wheatcroft MP, Leadlay PF, Weissman KJ. The structure of docking domains in modular polyketide synthases. CHEMISTRY & BIOLOGY 2003; 10:723-31. [PMID: 12954331 DOI: 10.1016/s1074-5521(03)00156-x] [Citation(s) in RCA: 167] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Polyketides from actinomycete bacteria provide the basis for many valuable medicines, so engineering genes for their biosynthesis to produce variant molecules holds promise for drug discovery. The modular polyketide synthases are particularly amenable to this approach, because each cycle of chain extension is catalyzed by a different module of enzymes, and the modules are arranged within giant multienzyme subunits in the order in which they act. Protein-protein interactions between terminal docking domains of successive multienzymes promote their correct positioning within the assembly line, but because the overall complex is not stable in vitro, the key interactions have not been identified. We present here the NMR solution structure of a 120 residue polypeptide representing a typical pair of such domains, fused at their respective C and N termini: it adopts a stable dimeric structure which reveals the detailed role of these (predominantly helical) domains in docking and dimerization by modular polyketide synthases.
Collapse
Affiliation(s)
- R William Broadhurst
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, CB2 1GA, Cambridge, United Kingdom
| | | | | | | | | |
Collapse
|
92
|
Abstract
The multifunctional polypeptide cyclosporin synthetase (CySyn) remains one of the most complex nonribosomal peptide synthetase described. In this study we used a highly specific photoaffinity labeling procedure with the natural cofactor S-adenosyl-L-methionine (AdoMet), 14C-isotopically labeled at the Sdelta methyl group to probe the concerted AdoMet-binding interaction of the N-methyltransferase (N-MTase) centers of CySyn. The binding stoichiometry for the enzyme-AdoMet complex was determined to be 1:7, which is in agreement with inferences made from analysis of the complementary DNA sequence of the simA gene encoding the CySyn polypeptide. The photolabeling of the AdoMet-binding sites displayed homotropic negative cooperativity, characterized by a curvilinear Scatchard plot with upward concavity. Although, the process of N-methyl transfer is not a critical event for peptide elongation, the destabilizing homotropic interactions between N-MTase centers that were observed may represent a mechanism whereby the enzyme preserves the proficiency of the substrate-channeling process of cyclosporin peptide assembly over a broad range of cofactor concentrations. Furthermore, we demonstrated the utility of the photolabeling procedure for tracking the enzyme during purification.
Collapse
Affiliation(s)
- Tony Velkov
- Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, Monash University, Victoria, Australia
| | | |
Collapse
|
93
|
Olano C, Wilkinson B, Moss SJ, Braña AF, Méndez C, Leadlay PF, Salas JA. Evidence from engineered gene fusions for the repeated use of a module in a modular polyketide synthase. Chem Commun (Camb) 2003:2780-2. [PMID: 14651102 DOI: 10.1039/b310648a] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Functional evidence for programmed loss of co-linearity on the borrelidin modular polyketide synthase (PKS) is presented.
Collapse
Affiliation(s)
- Carlos Olano
- Departamento de Biología Funcional e Instituto Universitario de Oncologia del Principado de Asturias, Universidad de Oviedo, 33006 Oviedo, Spain
| | | | | | | | | | | | | |
Collapse
|
94
|
Velkov T, Lawen A. Non-ribosomal peptide synthetases as technological platforms for the synthesis of highly modified peptide bioeffectors – Cyclosporin synthetase as a complex example. BIOTECHNOLOGY ANNUAL REVIEW 2003; 9:151-97. [PMID: 14650927 DOI: 10.1016/s1387-2656(03)09002-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Many microbial peptide secondary metabolites possess important medicinal properties, of which the immunosuppressant cyclosporin A is an example. The enormous structural and functional diversity of these low-molecular weight peptides is attributable to their mode of biosynthesis. Peptide secondary metabolites are assembled non-ribosomally by multi-functional enzymes, termed non-ribosomal peptide synthetases. These systems consist of a multi-modular arrangement of the functional domains responsible for the catalysis of the partial reactions of peptide assembly. The extensive homology shared among NRPS systems allows for the generalisation of the knowledge garnered from studies of systems of diverse origins. In this review we shall focus the contemporary knowledge of non-ribosomal peptide biosynthesis on the structure and function of the cyclosporin biosynthetic system, with some emphasis on the re-direction of the biosynthetic potential of this system by combinatorial approaches.
Collapse
Affiliation(s)
- Tony Velkov
- Monash University, Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, P.O. Box 13D, Melbourne, Victoria 3800, Australia
| | | |
Collapse
|
95
|
Abstract
Polyketides are a large class of structurally diverse, biologically active natural products. Recent experiments add evidence that many of the enzymes involved in the biosynthesis of these natural products are intrinsically tolerant of nonnatural substrates. In addition, an increasing understanding of structure-function relationships in various enzyme-substrate systems is aiding efforts to begin engineering these proteins for even greater synthetic utility.
Collapse
Affiliation(s)
- Nicola L Pohl
- Department of Chemistry and the Plant Sciences Institute, 2756 Gilman Hall, Iowa State University, Ames, IA 50011-3111, USA.
| |
Collapse
|
96
|
Udwary DW, Merski M, Townsend CA. A method for prediction of the locations of linker regions within large multifunctional proteins, and application to a type I polyketide synthase. J Mol Biol 2002; 323:585-98. [PMID: 12381311 PMCID: PMC3400148 DOI: 10.1016/s0022-2836(02)00972-5] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Multifunctional proteins often appear to result from fusion of smaller proteins and in such cases typically can be separated into their ancestral components simply by cleaving the linker regions that separate the domains. Though possibly guided by sequence alignment, structural evidence, or light proteolysis, determination of the locations of linker regions remains empirical. We have developed an algorithm, named UMA, to predict the locations of linker regions in multifunctional proteins by quantification of the conservation of several properties within protein families, and the results agree well with structurally characterized proteins. This technique has been applied to a family of fungal type I iterative polyketide synthases (PKS), allowing prediction of the locations of all of the standard PKS domains, as well as two previously unidentified domains. Using these predictions, we report the cloning of the first fragment from the PKS norsolorinic acid synthase, responsible for biosynthesis of the first isolatable intermediate in aflatoxin production. The expression, light proteolysis and catalytic abilities of this acyl carrier protein-thioesterase didomain are discussed.
Collapse
|
97
|
Cane DE, Kudo F, Kinoshita K, Khosla C. Precursor-directed biosynthesis: biochemical basis of the remarkable selectivity of the erythromycin polyketide synthase toward unsaturated triketides. CHEMISTRY & BIOLOGY 2002; 9:131-42. [PMID: 11841945 DOI: 10.1016/s1074-5521(02)00089-3] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The structural basis for the striking stereochemical discrimination among triketide analogs has been investigated by incubating a series of N-acetyl cysteamine (-SNAC) esters of unsaturated triketides with DEBS module 2+TE. The triketide analogs were first screened under a standard set of short-term incubation conditions in the presence of the extender substrate methylmalonyl-CoA and NADPH. For those triketide analogs that served as substrates for module 2+TE, the relative specificity, represented by the k(cat)/K(M) values, was quantitated. Triketide diastereomers that were converted in precursor-directed biosynthesis experiments to unsaturated 16-membered ring macrolides by DEBS(KS1(0)) were good to excellent substrates for DEBS module 2+TE, whereas analogs that were converted to the 14-membered ring analogs of 10,11-dehydro-6-deoxyerythronolide B by DEBS(KS1(0)) were not turned over at all by module 2+TE.
Collapse
Affiliation(s)
- David E Cane
- Department of Chemistry, Box H, Brown University, Providence, RI 02912, USA.
| | | | | | | |
Collapse
|