51
|
Chapter 1 Genotoxicity of Chromate. ACTA ACUST UNITED AC 2008. [DOI: 10.1016/s1872-0854(07)02001-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
52
|
Krishnamurthy N, Haraguchi K, Greenberg MM, David SS. Efficient removal of formamidopyrimidines by 8-oxoguanine glycosylases. Biochemistry 2007; 47:1043-50. [PMID: 18154319 DOI: 10.1021/bi701619u] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Under conditions of oxidative stress, the formamidopyrimidine lesions (FapyG and FapyA) are formed in competition with the corresponding 8-oxopurines (OG and OA) from a common intermediate. In order to reveal features of the repair of these lesions, and the potential contribution of repair in mitigating or exacerbating the mutagenic properties of Fapy lesions, their excision by three glycosylases, Fpg, hOGG1 and Ntg1, was examined in various base pair contexts under single-turnover conditions. FapyG was removed at least as efficiently as OG by all three glycosylases. In addition, the rates of removal of FapyG by Fpg and hOGG1 were influenced by their base pair partner, with preference for removal when base paired with the correct Watson-Crick partner C. With the FapyA lesion, Fpg and Ntg1 catalyze its removal more readily than OG opposite all four natural bases. In contrast, the removal of FapyA by hOGG1 was not as robust as FapyG or OG, and was only significant when the lesion was paired with C. The discrimination by the various glycosylases with respect to the opposing base was highly dependent on the identity of the lesion. OG induced the greatest selectivity against its removal when part of a promutagenic base pair. The superb activity of the various OG glycosylases toward removal of FapyG and FapyA in vitro suggests that these enzymes may act upon these oxidized lesions in vivo. The differences in the activity of the various glycosylases for removal of FapyG and FapyA compared to OG in nonmutagenic versus promutagenic base pair contexts may serve to alter the mutagenic profiles of these lesions in vivo.
Collapse
Affiliation(s)
- Nirmala Krishnamurthy
- Department of Chemistry, University of Utah, 315 South, 1400 East, Salt Lake City, Utah 84112, USA
| | | | | | | |
Collapse
|
53
|
Krishnamurthy N, Muller JG, Burrows CJ, David SS. Unusual structural features of hydantoin lesions translate into efficient recognition by Escherichia coli Fpg. Biochemistry 2007; 46:9355-65. [PMID: 17655276 PMCID: PMC2442889 DOI: 10.1021/bi602459v] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Oxidation of guanine (G) and 8-oxoguanine (OG) with a wide variety of oxidants yields the hydantoin lesions, guanidinohydantoin (Gh) and spiroiminodihydantoin (Sp). These two lesions have garnered much recent attention due to their unusual structures and high mutagenic potential. We have previously shown that duplexes containing Gh and Sp are substrates for the base excision repair glycosylase Escherichia coli Fpg (EcFpg). To evaluate the recognition features of these unusual lesions, binding and footprinting experiments were performed using a glycosylase inactive variant, E3Q EcFpg, and 30 bp duplexes containing the embedded lesions. Surprisingly, E3Q EcFpg was found to bind significantly more tightly ( approximately 1000-fold) to duplexes containing Gh or Sp over the corresponding duplexes containing OG. This may be a consequence of the helix-destabilizing nature of the hydantoin lesions that facilitates their recognition within duplex DNA. Though DNA binding affinities of E3Q EcFpg with Gh- and Sp-containing duplexes were found to be similar to each other, hydroxyl radical footprinting using methidium-propyl-EDTA (MPE)-Fe(II) revealed subtle differences between binding of E3Q EcFpg to the two lesions. Most notably, in the presence of E3Q EcFpg, the Sp nucleotide (nt) is hyperreactive toward cleavage by MPE-Fe(II)-generated hydroxyl radicals, suggestive of the formation of an intercalation site for the MPE-Fe(II) reagent at the Sp nt. Interestingly, increasing the duplex length from 18 to 30 bp enhanced the excision efficiency of Gh and Sp paired with C, G, or T by EcFpg such that these substrates are processed as efficiently as the signature substrate lesion, OG. Moreover, the base removal activity with these two lesions was more efficient than removal of OG when in a base pairing context opposite A. The high affinity and efficient activity of EcFpg toward the hydantoin lesions suggest that EcFpg mediates repair of the lesions in vivo. Notably, the facile activity of EcFpg toward Gh and Sp in base pairing contexts with G and A, which are likely to be present after DNA replication, would be detrimental and enhance mutagenesis.
Collapse
Affiliation(s)
| | | | | | - Sheila S. David
- *Corresponding Author: SSD: telephone: (530)-752-4830; fax: (530)-752-8995, Email address:
| |
Collapse
|
54
|
Hah SS, Mundt JM, Kim HM, Sumbad RA, Turteltaub KW, Henderson PT. Measurement of 7,8-dihydro-8-oxo-2'-deoxyguanosine metabolism in MCF-7 cells at low concentrations using accelerator mass spectrometry. Proc Natl Acad Sci U S A 2007; 104:11203-8. [PMID: 17592118 PMCID: PMC2040877 DOI: 10.1073/pnas.0701733104] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2007] [Indexed: 11/18/2022] Open
Abstract
Growing evidence suggests that oxidative damage to cells generates mutagenic 7,8-dihydro-8-oxo-2'-deoxyguanosine (8-oxodG), which may initiate diseases related to aging and carcinogenesis. Kinetic measurement of 8-oxodG metabolism and repair in cells has been hampered by poor assay sensitivity and by difficulty characterizing the flux of oxidized nucleotides through the relevant metabolic pathways. We report here the development of a sensitive and quantitative approach to characterizing the kinetics and metabolic sources of 8-oxodG in MCF-7 human breast cancer cells by accelerator mass spectrometry. We observed that [(14)C]8-oxodG at medium concentrations of up to 2 pmol/ml was taken up by MCF-7 cells, phosphorylated to mono-, di-, and triphosphate derivatives, and incorporated into DNA. Oxidative stress caused by exposure of the cells to 17beta-estradiol resulted in a reduction in the rate of [(14)C]8-oxodG incorporation into DNA and an increase in the ratio of 8-oxodG monophosphate (8-oxodGMP) to 8-oxodG triphosphate (8-oxodGTP) in the nucleotide pool. 17beta-Estradiol-induced oxidative stress up-regulated the nucleotide pool cleansing enzyme MTH1 and possibly other Nudix-related pyrophosphohydrolases. These data support the conclusion that 8-oxodGTP is formed in the nucleotide pool by both 8-oxodG metabolism and endogenous reactive oxygen species. The metabolism of 8-oxodG to 8-oxodGTP, followed by incorporation into DNA is a mechanism by which the cellular presence of this oxidized nucleoside can lead to mutations.
Collapse
Affiliation(s)
- Sang Soo Hah
- Chemistry, Materials, and Life Sciences Directorate and Center for Accelerator Mass Spectrometry, Lawrence Livermore National Laboratory, 7000 East Avenue, L-452, Livermore, CA 94551
| | - Janna M. Mundt
- Chemistry, Materials, and Life Sciences Directorate and Center for Accelerator Mass Spectrometry, Lawrence Livermore National Laboratory, 7000 East Avenue, L-452, Livermore, CA 94551
| | - Hyung M. Kim
- Chemistry, Materials, and Life Sciences Directorate and Center for Accelerator Mass Spectrometry, Lawrence Livermore National Laboratory, 7000 East Avenue, L-452, Livermore, CA 94551
| | - Rhoda A. Sumbad
- Chemistry, Materials, and Life Sciences Directorate and Center for Accelerator Mass Spectrometry, Lawrence Livermore National Laboratory, 7000 East Avenue, L-452, Livermore, CA 94551
| | - Kenneth W. Turteltaub
- Chemistry, Materials, and Life Sciences Directorate and Center for Accelerator Mass Spectrometry, Lawrence Livermore National Laboratory, 7000 East Avenue, L-452, Livermore, CA 94551
| | - Paul T. Henderson
- Chemistry, Materials, and Life Sciences Directorate and Center for Accelerator Mass Spectrometry, Lawrence Livermore National Laboratory, 7000 East Avenue, L-452, Livermore, CA 94551
| |
Collapse
|
55
|
Abstract
Maintaining the chemical integrity of DNA in the face of assault by oxidizing agents is a constant challenge for living organisms. Base-excision repair has an important role in preventing mutations associated with a common product of oxidative damage to DNA, 8-oxoguanine. Recent structural studies have shown that 8-oxoguanine DNA glycosylases use an intricate series of steps to locate and excise 8-oxoguanine lesions efficiently against a high background of undamaged bases. The importance of preventing mutations associated with 8-oxoguanine is shown by a direct association between defects in the DNA glycosylase MUTYH and colorectal cancer. The properties of other guanine oxidation products and the associated DNA glycosylases that remove them are now also being revealed.
Collapse
Affiliation(s)
- Sheila S David
- Department of Chemistry, University of California at Davis, 1 Shields Avenue, Davis, California 95616, USA.
| | | | | |
Collapse
|
56
|
Hamm ML, Gill TJ, Nicolson SC, Summers MR. Substrate specificity of Fpg (MutM) and hOGG1, two repair glycosylases. J Am Chem Soc 2007; 129:7724-5. [PMID: 17536801 DOI: 10.1021/ja0716453] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Michelle L Hamm
- Department of Chemistry, University of Richmond, Gottwald B-100, Richmond, Virginia 23173, USA.
| | | | | | | |
Collapse
|
57
|
Lee YA, Yun BH, Kim SK, Margolin Y, Dedon PC, Geacintov NE, Shafirovich V. Mechanisms of Oxidation of Guanine in DNA by Carbonate Radical Anion, a Decomposition Product of Nitrosoperoxycarbonate. Chemistry 2007; 13:4571-81. [PMID: 17335089 DOI: 10.1002/chem.200601434] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Peroxynitrite is produced during inflammation and combines rapidly with carbon dioxide to yield the unstable nitrosoperoxycarbonate, which decomposes (in part) to CO(3) (.-) and (.)NO(2) radicals. The CO(3) (.-) radicals oxidize guanine bases in DNA through a one-electron transfer reaction process that ultimately results in the formation of stable guanine oxidation products. Here we have explored these mechanisms, starting with a spectroscopic study of the kinetics of electron transfer from 20-22mer double-stranded oligonucleotides to CO(3) (.-) radicals, together with the effects of base sequence on the formation of the end-products in runs of one, two, or three contiguous guanines. The distributions of these alkali-labile lesions were determined by gel electrophoresis methods. The cascade of events was initiated through the use of 308 nm XeCl excimer laser pulses to generate CO(3) (.-) radicals by an established method based on the photodissociation of persulfate to sulfate radicals and the oxidation of bicarbonate. Although the Saito model (Saito et al., J. Am. Chem. Soc. 1995, 117, 6406-6407) predicts relative ease of one-electron oxidations in DNA, following the trend 5'-GGG > 5'-GG > 5'-G, we found that the rate constants for CO(3) (.-)-mediated oxidation of guanines in these sequence contexts (k(5)) showed only small variation within a narrow range [(1.5-3.0)x10(7) M(-1) s(-1)]. In contrast, the distributions of the end-products are dependent on the base sequence context and are higher at the 5'-G in 5'-GG sequences and at the first two 5'-guanines in the 5'-GGG sequences. These effects are attributed to a combination of initial hole distributions among the contiguous guanines and the subsequent differences in chemical reaction yields at each guanine. The lack of dependence of k(5) on sequence context indicates that the one-electron oxidation of guanine in DNA by CO(3) (.-) radicals occurs by an inner-sphere mechanism.
Collapse
Affiliation(s)
- Young Ae Lee
- Chemistry Department, New York University, 31 Washington Place, New York, NY 10003-5180, USA
| | | | | | | | | | | | | |
Collapse
|
58
|
Stover JS, Ciobanu M, Cliffel DE, Rizzo CJ. Chemical and electrochemical oxidation of C8-arylamine adducts of 2'-deoxyguanosine. J Am Chem Soc 2007; 129:2074-81. [PMID: 17256856 PMCID: PMC2526121 DOI: 10.1021/ja066404u] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The electrochemical and chemical oxidation of a series of C8-arylamine adducts of 2'-deoxyguanosine has been examined. The oxidations were found to be reversible by cyclic and square-wave voltammetry in both aqueous buffer and aprotic organic solvent. The mechanism of the oxidation in protic media was either one- or two-electron, depending on the aryl group. The chemical oxidation resulted in guanidinohydantoin and spiroiminodihydantoin rearrangement products similar to those observed for 8-oxo-7,8-dihydro-2'-deoxyguanosine.
Collapse
Affiliation(s)
| | | | - David E. Cliffel
- Corresponding author: Prof. Carmelo J. Rizzo, Department of Chemistry, Vanderbilt University, VU Station B 351822, Nashville, TN 37235-1822, Telephone: 615-322-6100, FAX: 615-343-1234,
| | - Carmelo J. Rizzo
- Corresponding author: Prof. Carmelo J. Rizzo, Department of Chemistry, Vanderbilt University, VU Station B 351822, Nashville, TN 37235-1822, Telephone: 615-322-6100, FAX: 615-343-1234,
| |
Collapse
|
59
|
Sokhansanj BA, Wilson DM. Estimating the effect of human base excision repair protein variants on the repair of oxidative DNA base damage. Cancer Epidemiol Biomarkers Prev 2006; 15:1000-8. [PMID: 16702383 DOI: 10.1158/1055-9965.epi-05-0817] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Epidemiologic studies have revealed a complex association between human genetic variance and cancer risk. Quantitative biological modeling based on experimental data can play a critical role in interpreting the effect of genetic variation on biochemical pathways relevant to cancer development and progression. Defects in human DNA base excision repair (BER) proteins can reduce cellular tolerance to oxidative DNA base damage caused by endogenous and exogenous sources, such as exposure to toxins and ionizing radiation. If not repaired, DNA base damage leads to cell dysfunction and mutagenesis, consequently leading to cancer, disease, and aging. Population screens have identified numerous single-nucleotide polymorphism variants in many BER proteins and some have been purified and found to exhibit mild kinetic defects. Epidemiologic studies have led to conflicting conclusions on the association between single-nucleotide polymorphism variants in BER proteins and cancer risk. Using experimental data for cellular concentration and the kinetics of normal and variant BER proteins, we apply a previously developed and tested human BER pathway model to (i) estimate the effect of mild variants on BER of abasic sites and 8-oxoguanine, a prominent oxidative DNA base modification, (ii) identify ranges of variation associated with substantial BER capacity loss, and (iii) reveal nonintuitive consequences of multiple simultaneous variants. Our findings support previous work suggesting that mild BER variants have a minimal effect on pathway capacity whereas more severe defects and simultaneous variation in several BER proteins can lead to inefficient repair and potentially deleterious consequences of cellular damage.
Collapse
Affiliation(s)
- Bahrad A Sokhansanj
- School of Biomedical Engineering, Science and Health Systems, Drexel University, 3141 Chestnut Street, Philadelphia, PA 19104, USA.
| | | |
Collapse
|
60
|
Abstract
Guanine bases in DNA are the most sensitive to oxidation. A lot of effort has been devoted to the understanding of the chemical modifications of guanine under different oxidizing conditions, the final goal being to know which lesions in DNA can be expected in vivo and their biological consequences. This article analyses the mechanisms underlying guanine oxidation by the comparison between one- and two-electron transfer processes. The different oxidants used in vitro give complementary answers. This overview presents a choice of some key intermediates and the predictive description of G-oxidation products that can be generated from these intermediates depending on the reaction conditions.
Collapse
Affiliation(s)
- Geneviève Pratviel
- Laboratoire de Chimie de Coordination du CNRS, 205 route de Narbonne, 31077 Toulouse cedex 4, France.
| | | |
Collapse
|
61
|
DeFedericis HC, Patrzyc HB, Rajecki MJ, Budzinski EE, Iijima H, Dawidzik JB, Evans MS, Greene KF, Box HC. Singlet oxygen-induced DNA damage. Radiat Res 2006; 165:445-51. [PMID: 16579657 DOI: 10.1667/rr3533.1] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Singlet oxygen, hydrogen peroxide, hydroxyl radical and hydrogen peroxide are the reactive oxygen species (ROS) considered most responsible for producing oxidative stress in cells and organisms. Singlet oxygen interacts preferentially with guanine to produce 8-oxo-7,8-dihydroguanine and spiroiminodihydantoin. DNA damage due to the latter lesion has not been detected directly in the DNA of cells exposed to singlet oxygen. In this study, the singlet oxygen-induced lesion was isolated from a short synthetic oligomer after exposure to UVA radiation in the presence of methylene blue. The lesion could be enzymatically excised from the oligomer in the form of a modified dinucleoside monophosphate. Using liquid chromatography-tandem mass spectrometry (LC-MS/MS), the singlet oxygen lesion was detected in the form of modified dinucleoside monophosphates in double-stranded DNA and in the DNA of HeLa cells exposed to singlet oxygen. Pentamer containing the singlet oxygen-induced lesion and an isotopic label was synthesized as an internal standard for quantifying the lesion and served as well as for correcting for losses of product during sample preparation.
Collapse
Affiliation(s)
- Han-Chun DeFedericis
- Department of Cellular Stress Biology, Roswell Park Cancer Institute, Buffalo, New York 14263, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
62
|
Gimisis T, Cismaş C. Isolation, Characterization, and Independent Synthesis of Guanine Oxidation Products. European J Org Chem 2006. [DOI: 10.1002/ejoc.200500581] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Thanasis Gimisis
- Department of Chemistry, University of Athens, Panepistimiopolis, 15771 Athens, Greece
| | - Crina Cismaş
- Department of Chemistry, University of Athens, Panepistimiopolis, 15771 Athens, Greece
| |
Collapse
|
63
|
Vongsamphanh R, Wagner JR, Ramotar D. Saccharomyces cerevisiae Ogg1 prevents poly(GT) tract instability in the mitochondrial genome. DNA Repair (Amst) 2005; 5:235-42. [PMID: 16293446 DOI: 10.1016/j.dnarep.2005.10.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2005] [Revised: 10/03/2005] [Accepted: 10/06/2005] [Indexed: 01/10/2023]
Abstract
Reactive oxygen species can attack the mitochondrial genome to produce a vast array of oxidative DNA lesions including 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxo-dGuo). We assess the role of the Saccharomyces cerevisiae 8-oxo-dGuo DNA glycosylase, Ogg1, in the maintenance of a poly(GT) tract reporter system present in the mitochondrial genome. Deletion in the poly(GT) tract causes the reporter system to produce arginine-independent (Arg+) colonies. We show that the mitochondrial form of Ogg1 is functionally active at processing 8-oxo-dGuo lesions and that Ogg1-deficient cells exhibit nearly six-fold elevated rate of Arg+ mutants under normal growth condition, as compared to the parent. Overexpression of Ogg1 completely suppressed the high rate of Arg+ mutations to levels lower than the parental, suggesting that Ogg1 function could be limited in the mitochondria. Further analysis revealed that the Arg+ mutations can be prevented if the cells are grown under anaerobic conditions. These findings provide in vivo evidence that oxidative stress induces the formation of lesions, most likely 8-oxo-dGuo, which must be repaired by Ogg1, otherwise the lesions can trigger poly(GT) tract instability in the mitochondrial genome. We also demonstrate that overproduction of the major apurinic/apyrimidinic (AP) endonuclease Apn1, a nuclear and mitochondrial enzyme with multiple DNA repair activities, substantially elevated the rate of Arg+ mutants, but which was counteracted by Ogg1 overexpression. We suggest that Ogg1 might bind to AP sites and protect this lesion from the spurious action of Apn1 overproduction. Thus, cleavage of AP site located within or in the vicinity of the poly(GT) tract could destabilize this repeat.
Collapse
Affiliation(s)
- Ratsavarinh Vongsamphanh
- University of Montreal, Maisonneuve-Rosemont Hospital, Guy-Bernier Research Centre, 5415 de l'Assomption, Montreal, Que., Canada H1T 2M4
| | | | | |
Collapse
|
64
|
Macpherson P, Barone F, Maga G, Mazzei F, Karran P, Bignami M. 8-oxoguanine incorporation into DNA repeats in vitro and mismatch recognition by MutSalpha. Nucleic Acids Res 2005; 33:5094-105. [PMID: 16174844 PMCID: PMC1233161 DOI: 10.1093/nar/gki813] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
DNA 8-oxoguanine (8-oxoG) causes transversions and is also implicated in frameshifts. We previously identified the dNTP pool as a likely source of mutagenic DNA 8-oxoG and demonstrated that DNA mismatch repair prevented oxidation-related frameshifts in mononucleotide repeats. Here, we show that both Klenow fragment and DNA polymerase α can utilize 8-oxodGTP and incorporate the oxidized purine into model frameshift targets. Both polymerases incorporated 8-oxodGMP opposite C and A in repetitive DNA sequences and efficiently extended a terminal 8-oxoG. The human MutSα mismatch repair factor recognized DNA 8-oxoG efficiently in some contexts that resembled frameshift intermediates in the same C or A repeats. DNA 8-oxoG in other slipped/mispaired structures in the same repeats adopted configurations that prevented recognition by MutSα and by the OGG1 DNA glycosylase thereby rendering it invisible to DNA repair. These findings are consistent with a contribution of oxidative DNA damage to frameshifts. They also suggest how mismatch repair might reduce the burden of DNA 8-oxoG and prevent frameshift formation.
Collapse
Affiliation(s)
| | - Flavia Barone
- Department of Environment and Primary Prevention, Istituto Superiore di Sanita'Viale Regina Elena 299, 00161 Roma, Italy
| | - Giovanni Maga
- Istituto di Genetica Molecolare, IGM-CNR, National Research CouncilVia Abbiategrasso 207, 27100 Pavia, Italy
| | - Filomena Mazzei
- Department of Environment and Primary Prevention, Istituto Superiore di Sanita'Viale Regina Elena 299, 00161 Roma, Italy
| | | | - Margherita Bignami
- Department of Environment and Primary Prevention, Istituto Superiore di Sanita'Viale Regina Elena 299, 00161 Roma, Italy
- To whom correspondence should be addressed. Tel: +39 06 49902355; Fax: +39 06 49903650;
| |
Collapse
|
65
|
McConnell TL, Wheaton CA, Hunter KC, Wetmore SD. Effects of Hydrogen Bonding on the Acidity of Adenine, Guanine, and Their 8-Oxo Derivatives. J Phys Chem A 2005; 109:6351-62. [PMID: 16833978 DOI: 10.1021/jp0509919] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Complexes between ammonia, water, or hydrogen fluoride and adenine, guanine, or their 8-oxo derivatives are investigated using density-functional theory. The binding strengths of the neutral and (N9) anionic complexes are considered for a variety of purine binding sites. The effects of hydrogen-bonding interactions on the (N9) acidity of the purine derivatives are considered as a function of the molecule bound and the binding site. It is found that hydrogen-bonding interactions with one molecule can increase the acidity of purine derivatives by up to 60 kJ mol(-1). The (calculated) simultaneous effects of up to four molecules on the acidity of the purine derivatives are also considered. Our data suggest that the effects of more than one molecule on the acidity of the purines are generally less than the sum of the individual (additive) effects, where the magnitude of the deviation from additivity increases with the number, as well as the acidity, of molecules bound. Nevertheless, the increase in the acidity due to additional hydrogen-bonding interactions is significant, where the effect of two, three, or four hydrogen-bonding interactions can be as large as approximately 95, 115, and 130 kJ mol(-1), respectively. The present study provides a greater fundamental understanding of hydrogen-bonding interactions involving the natural purines, as well as those generated through oxidative DNA damage, which may aid the understanding of important biological processes.
Collapse
Affiliation(s)
- Tom L McConnell
- Department of Chemistry, Mount Allison University, 63C York Street, Sackville, New Brunswick, E4L 1G8, Canada
| | | | | | | |
Collapse
|
66
|
Francis AW, Helquist SA, Kool ET, David SS. Probing the Requirements for Recognition and Catalysis in Fpg and MutY with Nonpolar Adenine Isosteres. J Am Chem Soc 2003; 125:16235-42. [PMID: 14692765 DOI: 10.1021/ja0374426] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The Escherichia coli DNA repair enzymes Fpg and MutY are involved in the prevention of mutations resulting from 7,8-dihydro-8-oxo-2'-deoxyguanosine (OG) in DNA. The nonpolar isosteres of 2'-deoxyadenosine, 4-methylbenzimidazole beta-deoxynucleoside (B), and 9-methyl-1H-imidazo[4,5-b]pyridine beta-deoxynucleoside (Q), were used to examine the importance of hydrogen bonding within the context of DNA repair. Specifically, the rate of base removal under single-turnover conditions by the MutY and Fpg glycosylases from duplexes containing OG:B and OG:Q mismatches, relative to OG:A mismatches, was evalulated. The reaction of Fpg revealed a 5- and 10-fold increase in rate of removal of OG from duplexes containing OG:B and OG:Q base pairs, respectively, relative to an OG:A mispair. These results suggest that the lack of the ability to hydrogen bond to the opposite base facilitates removal of OG. In contrast, adenine removal catalyzed by MutY was much more efficient from an OG:A mispair-containing duplex (k2 = 12 +/- 2 min(-1)) compared to the removal of B from an OG:B duplex (k(obs) < 0.002 min(-1)). Surprisingly, MutY was able to catalyze base removal from the OG:Q-containing substrate (k2 = 1.2 +/- 0.2 min(-1)). Importantly, the B and Q analogues are not deleterious to high-affinity DNA binding by MutY. In addition, the B and Q analogues are more susceptible to acid-catalyzed depurination illustrating that the enzyme-catalyzed mechanism is distinct from the nonenzymatic mechanism. Taken together, these results point to the importance of both N7 and N3 in the mechanism of adenine excision catalyzed by MutY.
Collapse
Affiliation(s)
- Anthony W Francis
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah, 84112, USA
| | | | | | | |
Collapse
|