51
|
Identification and characterization of a novel serine protease, VvpS, that contains two functional domains and is essential for autolysis of Vibrio vulnificus. J Bacteriol 2011; 193:3722-32. [PMID: 21642466 DOI: 10.1128/jb.00314-11] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Little is known about the molecular mechanism for autolysis of Gram-negative bacteria. In the present study, we identified the vvpS gene encoding a serine protease, VvpS, from Vibrio vulnificus, a Gram-negative food-borne pathogen. The amino acid sequence predicted that VvpS consists of two functional domains, an N-terminal protease catalytic domain (PCD) and a C-terminal carbohydrate binding domain (CBD). A null mutation of vvpS significantly enhanced viability during stationary phase, as measured by enumerating CFU and differentially staining viable cells. The vvpS mutant reduced the release of cytoplasmic β-galactosidase and high-molecular-weight extracellular chromosomal DNA into the culture supernatants, indicating that VvpS contributes to the autolysis of V. vulnificus during stationary phase. VvpS is secreted via a type II secretion system (T2SS), and it exerts its effects on autolysis through intracellular accumulation during stationary phase. Consistent with this, a disruption of the T2SS accelerated intracellular accumulation of VvpS and thereby the autolysis of V. vulnificus. VvpS also showed peptidoglycan-hydrolyzing activity, indicating that the autolysis of V. vulnificus is attributed to the self-digestion of the cell wall by VvpS. The functions of the VvpS domains were assessed by C-terminal deletion analysis and demonstrated that the PCD indeed possesses a proteolytic activity and that the CBD is required for hydrolyzing peptidoglycan effectively. Finally, the vvpS mutant exhibited reduced virulence in the infection of mice. In conclusion, VvpS is a serine protease with a modular structure and plays an essential role in the autolysis and pathogenesis of V. vulnificus.
Collapse
|
52
|
Nicola G, Tomberg J, Pratt RF, Nicholas RA, Davies C. Crystal structures of covalent complexes of β-lactam antibiotics with Escherichia coli penicillin-binding protein 5: toward an understanding of antibiotic specificity. Biochemistry 2010; 49:8094-104. [PMID: 20726582 DOI: 10.1021/bi100879m] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Penicillin-binding proteins (PBPs) are the molecular targets for the widely used β-lactam class of antibiotics, but how these compounds act at the molecular level is not fully understood. We have determined crystal structures of Escherichia coli PBP 5 as covalent complexes with imipenem, cloxacillin, and cefoxitin. These antibiotics exhibit very different second-order rates of acylation for the enzyme. In all three structures, there is excellent electron density for the central portion of the β-lactam, but weak or absent density for the R1 or R2 side chains. Areas of contact between the antibiotics and PBP 5 do not correlate with the rates of acylation. The same is true for conformational changes, because although a shift of a loop leading to an electrostatic interaction between Arg248 and the β-lactam carboxylate, which occurs completely with cefoxitin and partially with imipenem and is absent with cloxacillin, is consistent with the different rates of acylation, mutagenesis of Arg248 decreased the level of cefoxitin acylation only 2-fold. Together, these data suggest that structures of postcovalent complexes of PBP 5 are unlikely to be useful vehicles for the design of new covalent inhibitors of PBPs. Finally, superimposition of the imipenem-acylated complex with PBP 5 in complex with a boronic acid peptidomimetic shows that the position corresponding to the hydrolytic water molecule is occluded by the ring nitrogen of the β-lactam. Because the ring nitrogen occupies a similar position in all three complexes, this supports the hypothesis that deacylation is blocked by the continued presence of the leaving group after opening of the β-lactam ring.
Collapse
Affiliation(s)
- George Nicola
- Department of Biochemistry, Medical University of South Carolina, Charleston, South Carolina 29425, USA
| | | | | | | | | |
Collapse
|
53
|
Global transcriptome analysis of the Escherichia coli O157 response to Houttuynia Cordata Thunb. BIOCHIP JOURNAL 2010. [DOI: 10.1007/s13206-010-4312-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
54
|
Dzhekieva L, Rocaboy M, Kerff F, Charlier P, Sauvage E, Pratt RF. Crystal Structure of a Complex between the Actinomadura R39 dd-Peptidase and a Peptidoglycan-mimetic Boronate Inhibitor: Interpretation of a Transition State Analogue in Terms of Catalytic Mechanism. Biochemistry 2010; 49:6411-9. [DOI: 10.1021/bi100757c] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Liudmila Dzhekieva
- Department of Chemistry, Wesleyan University, Lawn Avenue, Middletown, Connecticut 06459
| | - Mathieu Rocaboy
- Centre d’Ingéniere des Proteines, Université de Liège, B-4000 Sart Tilman, Liège, Belgium
| | - Frédéric Kerff
- Centre d’Ingéniere des Proteines, Université de Liège, B-4000 Sart Tilman, Liège, Belgium
| | - Paulette Charlier
- Centre d’Ingéniere des Proteines, Université de Liège, B-4000 Sart Tilman, Liège, Belgium
| | - Eric Sauvage
- Centre d’Ingéniere des Proteines, Université de Liège, B-4000 Sart Tilman, Liège, Belgium
| | - R. F. Pratt
- Department of Chemistry, Wesleyan University, Lawn Avenue, Middletown, Connecticut 06459
| |
Collapse
|
55
|
O'Daniel PI, Zajicek J, Zhang W, Shi Q, Fisher JF, Mobashery S. Elucidation of the structure of the membrane anchor of penicillin-binding protein 5 of Escherichia coli. J Am Chem Soc 2010; 132:4110-8. [PMID: 20192190 DOI: 10.1021/ja9094445] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Penicillin-binding protein 5 (PBP 5) of Escherichia coli is a membrane-bound cell wall dd-carboxypeptidase, localized in the outer leaflet of the cytosolic membrane of this Gram-negative bacterium. Not only is it the most abundant PBP of E. coli, but it is as well a target for penicillins and is the most studied of the PBP enzymes. PBP 5, as a representative peripheral membrane protein, is anchored to the cytoplasmic membrane by the 21 amino acids of its C-terminus. Although the importance of this terminus as a membrane anchor is well recognized, the structure of this anchor was previously unknown. Using natural isotope abundance NMR, the structure of the PBP 5 anchor peptide within a micelle was determined. The structure conforms to a helix-bend-helix-turn-helix motif and reveals that the anchor enters the membrane so as to form an amphiphilic structure within the interface of the hydrophilic/hydrophobic boundary regions near the lipid head groups. The bend and the turn within the motif allow the C-terminus to exit from the same side of the membrane that is penetrated. The PBP anchor sequences represent extraordinary diversity, encompassing both N-terminal and C-terminal anchoring domains. This study establishes a surface adherence mechanism for the PBP 5 C-terminus anchor peptide, as the structural basis for further study toward understanding the role of these domains in selecting membrane environments and in the assembly of the multienzyme hyperstructures of bacterial cell wall biosynthesis.
Collapse
Affiliation(s)
- Peter I O'Daniel
- Department of Chemistry and Biochemistry, 423 Nieuwland Science Hall, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | | | | | | | | | | |
Collapse
|
56
|
NagZ inactivation prevents and reverts beta-lactam resistance, driven by AmpD and PBP 4 mutations, in Pseudomonas aeruginosa. Antimicrob Agents Chemother 2010; 54:3557-63. [PMID: 20566764 DOI: 10.1128/aac.00385-10] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AmpC hyperproduction is the most frequent mechanism of resistance to penicillins and cephalosporins in Pseudomonas aeruginosa and is driven by ampD mutations or the recently described inactivation of dacB, which encodes the nonessential penicillin-binding protein (PBP) PBP 4. Recent work showed that nagZ inactivation attenuates beta-lactam resistance in ampD mutants. Here we explored whether the same could be true for the dacB mutants with dacB mutations alone or in combination with ampD mutations. The inactivation of nagZ restored the wild-type beta-lactam MICs and ampC expression of PAO1 dacB and ampD mutants and dramatically reduced the MICs (for example, the MIC for ceftazidime dropped from 96 to 4 microg/ml) and the level of ampC expression (from ca. 1,000-fold to ca. 50-fold higher than that for PAO1) in the dacB-ampD double mutant. On the other hand, nagZ inactivation had little effect on the inducibility of AmpC. The NagZ inhibitor O-(2-acetamido-2-deoxy-D-glucopyranosylidene)amino-N-phenylcarbamate attenuated the beta-lactam resistance of the AmpC-hyperproducing strains, showing a greater effect on the dacB mutant (reducing the ceftazidime MICs from 24 to 6 microg/ml) than the ampD mutant (reducing the MICs from 8 to 4 microg/ml). Additionally, nagZ inactivation in the dacB mutant blocked the overexpression of creD (blrD), which is a marker of the activation of the CreBC (BlrAB) regulator involved in the resistance phenotype. Finally, through population analysis, we show that the inactivation of nagZ dramatically reduces the capacity of P. aeruginosa to develop ceftazidime resistance, since spontaneous mutants were not obtained at concentrations > or = 8 microg/ml (the susceptibility breakpoint) for the nagZ mutant but were obtained with wild-type PAO1. Therefore, NagZ is envisaged to be a candidate target for preventing and reverting beta-lactam resistance in P. aeruginosa.
Collapse
|
57
|
Kawai F, Clarke TB, Roper DI, Han GJ, Hwang KY, Unzai S, Obayashi E, Park SY, Tame JR. Crystal Structures of Penicillin-Binding Proteins 4 and 5 from Haemophilus influenzae. J Mol Biol 2010; 396:634-45. [DOI: 10.1016/j.jmb.2009.11.055] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2009] [Revised: 11/20/2009] [Accepted: 11/22/2009] [Indexed: 10/20/2022]
|
58
|
Clarke TB, Kawai F, Park SY, Tame JRH, Dowson CG, Roper DI. Mutational analysis of the substrate specificity of Escherichia coli penicillin binding protein 4. Biochemistry 2009; 48:2675-83. [PMID: 19209901 DOI: 10.1021/bi801993x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Escherichia coli PBP4 is the archetypal class C, low molecular mass penicillin binding protein (LMM-PBP) and possesses both dd-carboxypeptidase and dd-endopeptidase activity. In contrast to other classes of PBP, class C LMM-PBPs show high dd-carboxypeptidase activity and rapidly hydrolyze synthetic fragments of peptidoglycan. The recently solved X-ray crystal structures of three class C LMM-PBPs (E. coli PBP4, Bacillus subtilis PBP4a, and Actinomadura R39 dd-peptidase) have identified several residues that form a pocket in the active site unique to this class of PBP. The X-ray cocrystal structure of the Actinomadura R39 DD-peptidase with a cephalosporin bearing a peptidoglycan-mimetic side chain showed that residues of this pocket interact with the third position meso-2,6-diaminopimelic acid residue of the peptidoglycan stem peptide. Equivalent residues of E. coli PBP4 (Asp155, Phe160, Arg361, and Gln422) were mutated, and the effect on both DD-carboxypeptidase and DD-endopeptidase activities was determined. Using N-acetylmuramyl-L-alanyl-gamma-D-glutamyl-meso-2,6-diaminopimelyl-D-alanyl-D-alanine as substrate, mutation of Asp155, Phe160, Arg361, and Gln422 to alanine reduced k(cat)/K(m) by 12.7-, 1.9-, 24.5-, and 13.8-fold, respectively. None of the k(cat) values deviated significantly from wild-type PBP4. PBP4 DD-endopeptidase activity was also affected, with substitution of Asp155, Arg361, and Gln422 reducing specific activity by 22%, 56%, and 40%, respectively. This provides the first direct demonstration of the importance of residues forming a subsite to accommodate meso-2,6-diaminopimelic acid in both the DD-carboxypeptidase and DD-endopeptidase activities of a class C LMM-PBP.
Collapse
Affiliation(s)
- Thomas B Clarke
- Department of Biological Sciences, University of Warwick, Coventry, UK.
| | | | | | | | | | | |
Collapse
|
59
|
Chen Y, Zhang W, Shi Q, Hesek D, Lee M, Mobashery S, Shoichet BK. Crystal structures of penicillin-binding protein 6 from Escherichia coli. J Am Chem Soc 2009; 131:14345-54. [PMID: 19807181 PMCID: PMC3697005 DOI: 10.1021/ja903773f] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Penicillin-binding protein 6 (PBP6) is one of the two main DD-carboxypeptidases in Escherichia coli, which are implicated in maturation of bacterial cell wall and formation of cell shape. Here, we report the first X-ray crystal structures of PBP6, capturing its apo state (2.1 A), an acyl-enzyme intermediate with the antibiotic ampicillin (1.8 A), and for the first time for a PBP, a preacylation complex (a "Michaelis complex", determined at 1.8 A) with a peptidoglycan substrate fragment containing the full pentapeptide, NAM-(L-Ala-D-isoGlu-L-Lys-D-Ala-D-Ala). These structures illuminate the molecular interactions essential for ligand recognition and catalysis by DD-carboxypeptidases, and suggest a coupling of conformational flexibility of active site loops to the reaction coordinate. The substrate fragment complex structure, in particular, provides templates for models of cell wall recognition by PBPs, as well as substantiating evidence for the molecular mimicry by beta-lactam antibiotics of the peptidoglycan acyl-D-Ala-D-Ala moiety.
Collapse
Affiliation(s)
- Yu Chen
- Department of Pharmaceutical Chemistry, University of California San Francisco, Byers Hall, Room 508D, 1700 Fourth Street, San Francisco, California 94158-2550
| | - Weilie Zhang
- Department of Chemistry and Biochemistry, 423 Nieuwland Science Center, UniVersity of Notre Dame, Notre Dame, Indiana 46556
| | - Qicun Shi
- Department of Chemistry and Biochemistry, 423 Nieuwland Science Center, UniVersity of Notre Dame, Notre Dame, Indiana 46556
| | - Dusan Hesek
- Department of Chemistry and Biochemistry, 423 Nieuwland Science Center, UniVersity of Notre Dame, Notre Dame, Indiana 46556
| | - Mijoon Lee
- Department of Chemistry and Biochemistry, 423 Nieuwland Science Center, UniVersity of Notre Dame, Notre Dame, Indiana 46556
| | - Shahriar Mobashery
- Department of Chemistry and Biochemistry, 423 Nieuwland Science Center, UniVersity of Notre Dame, Notre Dame, Indiana 46556
| | - Brian K. Shoichet
- Department of Pharmaceutical Chemistry, University of California San Francisco, Byers Hall, Room 508D, 1700 Fourth Street, San Francisco, California 94158-2550
| |
Collapse
|
60
|
Marciano DC, Brown NG, Palzkill T. Analysis of the plasticity of location of the Arg244 positive charge within the active site of the TEM-1 beta-lactamase. Protein Sci 2009; 18:2080-9. [PMID: 19672877 PMCID: PMC2786972 DOI: 10.1002/pro.220] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2009] [Revised: 06/16/2009] [Accepted: 07/28/2009] [Indexed: 11/11/2022]
Abstract
A large number of beta-lactamases have emerged that are capable of conferring bacterial resistance to beta-lactam antibiotics. Comparison of the structural and functional features of this family has refined understanding of the catalytic properties of these enzymes. An arginine residue present at position 244 in TEM-1 beta-lactamase interacts with the carboxyl group common to penicillin and cephalosporin antibiotics and thereby stabilizes both the substrate and transition state complexes. A comparison of class A beta-lactamase sequences reveals that arginine at position 244 is not conserved, although a positive charge at this structural location is conserved and is provided by an arginine at positions 220 or 276 for those enzymes lacking arginine at position 244. The plasticity of the location of positive charge in the beta-lactamase active site was experimentally investigated by relocating the arginine at position 244 in TEM-1 beta-lactamase to positions 220, 272, and 276 by site-directed mutagenesis. Kinetic analysis of the engineered beta-lactamases revealed that removal of arginine 244 by alanine mutation reduced catalytic efficiency against all substrates tested and restoration of an arginine at positions 272 or 276 partially suppresses the catalytic defect of the Arg244Ala substitution. These results suggest an evolutionary mechanism for the observed divergence of the position of positive charge in the active site of class A beta-lactamases.
Collapse
Affiliation(s)
- David C Marciano
- Department of Molecular Virology and Microbiology, Baylor College of MedicineHouston, Texas 77030
| | - Nicholas G Brown
- Department of Biochemistry and Molecular Biology, Baylor College of MedicineHouston, Texas 77030
| | - Timothy Palzkill
- Department of Molecular Virology and Microbiology, Baylor College of MedicineHouston, Texas 77030
- Department of Biochemistry and Molecular Biology, Baylor College of MedicineHouston, Texas 77030
- Department of Pharmacology, Baylor College of MedicineHouston, Texas 77030
| |
Collapse
|
61
|
Peddi S, Nicholas RA, Gutheil WG. Neisseria gonorrhoeae penicillin-binding protein 3 demonstrates a pronounced preference for N(epsilon)-acylated substrates. Biochemistry 2009; 48:5731-7. [PMID: 19413336 DOI: 10.1021/bi9003099] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Penicillin-binding proteins (PBPs) are bacterial enzymes involved in the final stages of cell wall biosynthesis and are the lethal targets of beta-lactam antibiotics. Despite their importance, their roles in cell wall biosynthesis remain enigmatic. A series of eight substrates, based on variation of the pentapeptide Boc-l-Ala-gamma-d-Glu-l-Lys-d-Ala-d-Ala, were synthesized to test specificity for three features of PBP substrates: (1) the presence or absence of an N(epsilon)-acyl group, (2) the presence of d-IsoGln in place of gamma-d-Glu, and (3) the presence or absence of the N-terminal l-Ala residue. The capacity of these peptides to serve as substrates for Neisseria gonorrhoeae (NG) PBP3 was assessed. NG PBP3 demonstrated good catalytic efficiency (2.5 x 10(5) M(-1) s(-1)) with the best of these substrates, with a pronounced preference (50-fold) for N(epsilon)-acylated substrates over N(epsilon)-nonacylated substrates. This observation suggests that NG PBP3 is specific for the approximately d-Ala-d-Ala moiety of pentapeptides engaged in cross-links in the bacterial cell wall, such that NG PBP3 would act after transpeptidase-catalyzed reactions generate the acylated amino group required for its specificity. NG PBP3 demonstrated low selectivity for gamma-d-Glu vs d-IsoGln and for the presence or absence of the terminal l-Ala residue. The implications of this substrate specificity of NG PBP3 with respect to its possible role in cell wall biosynthesis, and for understanding the substrate specificity of the LMM PBPs in general, are discussed.
Collapse
Affiliation(s)
- Sridhar Peddi
- Division of Pharmaceutical Sciences, University of Missouri-Kansas City, 5005 Rockhill Road, Kansas City, Missouri 64110, USA
| | | | | |
Collapse
|
62
|
Sadeghian H, Sadeghian A, Pordel M, Rahimizadeh M, Jahandari P, Orafaie A, Bakavoli M. Design, synthesis, and structure–activity relationship study of 5-amido-1-(2,4-dinitrophenyl)-1H-4-pyrazolecarbonitrils as DD-carboxypeptidase/penicillin-binding protein inhibitors with Gram-positive antibacterial activity. Med Chem Res 2009. [DOI: 10.1007/s00044-009-9175-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
63
|
Moya B, Dötsch A, Juan C, Blázquez J, Zamorano L, Haussler S, Oliver A. Beta-lactam resistance response triggered by inactivation of a nonessential penicillin-binding protein. PLoS Pathog 2009; 5:e1000353. [PMID: 19325877 PMCID: PMC2654508 DOI: 10.1371/journal.ppat.1000353] [Citation(s) in RCA: 214] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2008] [Accepted: 02/26/2009] [Indexed: 02/01/2023] Open
Abstract
It has long been recognized that the modification of penicillin-binding proteins (PBPs) to reduce their affinity for β-lactams is an important mechanism (target modification) by which Gram-positive cocci acquire antibiotic resistance. Among Gram-negative rods (GNR), however, this mechanism has been considered unusual, and restricted to clinically irrelevant laboratory mutants for most species. Using as a model Pseudomonas aeruginosa, high up on the list of pathogens causing life-threatening infections in hospitalized patients worldwide, we show that PBPs may also play a major role in β-lactam resistance in GNR, but through a totally distinct mechanism. Through a detailed genetic investigation, including whole-genome analysis approaches, we demonstrate that high-level (clinical) β-lactam resistance in vitro, in vivo, and in the clinical setting is driven by the inactivation of the dacB-encoded nonessential PBP4, which behaves as a trap target for β-lactams. The inactivation of this PBP is shown to determine a highly efficient and complex β-lactam resistance response, triggering overproduction of the chromosomal β-lactamase AmpC and the specific activation of the CreBC (BlrAB) two-component regulator, which in turn plays a major role in resistance. These findings are a major step forward in our understanding of β-lactam resistance biology, and, more importantly, they open up new perspectives on potential antibiotic targets for the treatment of infectious diseases. Decades after their discovery, β-lactams remain key components of our antimicrobial armamentarium for the treatment of infectious diseases. Nevertheless, resistance to these antibiotics is increasing alarmingly. There are two major bacterial strategies to develop resistance to β-lactam antibiotics: the production of enzymes that inactivate them (β-lactamases), or the modification of their targets in the cell wall (the essential penicillin-binding proteins, PBPs). Using the pathogen Pseudomonas aeruginosa as a model microorganism, we show that high-level (clinical) β-lactam resistance in vitro and in vivo frequently occurs through a previously unrecognized, totally distinct resistance pathway, driven by the mutational inactivation of a nonessential PBP (PBP4) that behaves as a trap target for β-lactams. We show that mutation of this PBP determines a highly efficient and complex β-lactam resistance response, triggering overproduction of the chromosomal β-lactamase AmpC and the specific activation of a two-component regulator, which in turn plays a key role in resistance. These findings are a major step forward in our understanding of β-lactam resistance biology, and, more importantly, they open up new perspectives on potential antibiotic targets for the treatment of infectious diseases.
Collapse
Affiliation(s)
- Bartolomé Moya
- Servicio de Microbiología and Unidad de Investigación, Hospital Son Dureta, Instituto Universitario de Investigación en Ciencias de la Salud (IUNICS) Palma de Mallorca, Spain
| | - Andreas Dötsch
- Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Carlos Juan
- Servicio de Microbiología and Unidad de Investigación, Hospital Son Dureta, Instituto Universitario de Investigación en Ciencias de la Salud (IUNICS) Palma de Mallorca, Spain
| | - Jesús Blázquez
- Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CSIC), Campus UAM, Madrid, Spain
| | - Laura Zamorano
- Servicio de Microbiología and Unidad de Investigación, Hospital Son Dureta, Instituto Universitario de Investigación en Ciencias de la Salud (IUNICS) Palma de Mallorca, Spain
| | | | - Antonio Oliver
- Servicio de Microbiología and Unidad de Investigación, Hospital Son Dureta, Instituto Universitario de Investigación en Ciencias de la Salud (IUNICS) Palma de Mallorca, Spain
- * E-mail:
| |
Collapse
|
64
|
Powell AJ, Tomberg J, Deacon AM, Nicholas RA, Davies C. Crystal structures of penicillin-binding protein 2 from penicillin-susceptible and -resistant strains of Neisseria gonorrhoeae reveal an unexpectedly subtle mechanism for antibiotic resistance. J Biol Chem 2009; 284:1202-12. [PMID: 18986991 PMCID: PMC2613624 DOI: 10.1074/jbc.m805761200] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2008] [Revised: 10/23/2008] [Indexed: 11/06/2022] Open
Abstract
Penicillin-binding protein 2 (PBP2) from N. gonorrhoeae is the major molecular target for beta-lactam antibiotics used to treat gonococcal infections. PBP2 from penicillin-resistant strains of N. gonorrhoeae harbors an aspartate insertion after position 345 (Asp-345a) and 4-8 additional mutations, but how these alter the architecture of the protein is unknown. We have determined the crystal structure of PBP2 derived from the penicillin-susceptible strain FA19, which shows that the likely effect of Asp-345a is to alter a hydrogen-bonding network involving Asp-346 and the SXN triad at the active site. We have also solved the crystal structure of PBP2 derived from the penicillin-resistant strain FA6140 that contains four mutations near the C terminus of the protein. Although these mutations lower the second order rate of acylation for penicillin by 5-fold relative to wild type, comparison of the two structures shows only minor structural differences, with the positions of the conserved residues in the active site essentially the same in both. Kinetic analyses indicate that two mutations, P551S and F504L, are mainly responsible for the decrease in acylation rate. Melting curves show that the four mutations lower the thermal stability of the enzyme. Overall, these data suggest that the molecular mechanism underlying antibiotic resistance contributed by the four mutations is subtle and involves a small but measurable disordering of residues in the active site region that either restricts the binding of antibiotic or impedes conformational changes that are required for acylation by beta-lactam antibiotics.
Collapse
Affiliation(s)
- Ailsa J Powell
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina 29425, USA
| | | | | | | | | |
Collapse
|
65
|
Sauvage E, Powell AJ, Heilemann J, Josephine HR, Charlier P, Davies C, Pratt RF. Crystal structures of complexes of bacterial DD-peptidases with peptidoglycan-mimetic ligands: the substrate specificity puzzle. J Mol Biol 2008; 381:383-93. [PMID: 18602645 DOI: 10.1016/j.jmb.2008.06.012] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2008] [Revised: 05/28/2008] [Accepted: 06/01/2008] [Indexed: 10/22/2022]
Abstract
The X-ray crystal structures of covalent complexes of the Actinomadura R39 dd-peptidase and Escherichia coli penicillin-binding protein (PBP) 5 with beta-lactams bearing peptidoglycan-mimetic side chains have been determined. The structure of the hydrolysis product of an analogous peptide bound noncovalently to the former enzyme has also been obtained. The R39 DD-peptidase structures reveal the presence of a specific binding site for the D-alpha-aminopimelyl side chain, characteristic of the stem peptide of Actinomadura R39. This binding site features a hydrophobic cleft for the pimelyl methylene groups and strong hydrogen bonding to the polar terminus. Both of these active site elements are provided by amino acid side chains from two separate domains of the protein. In contrast, no clear electron density corresponding to the terminus of the peptidoglycan-mimetic side chains is present when these beta-lactams are covalently bound to PBP5. There is, therefore, no indication of a specific side-chain binding site in this enzyme. These results are in agreement with those from kinetics studies published earlier and support the general prediction made at the time of a direct correlation between kinetics and structural evidence. The essential high-molecular-mass PBPs have demonstrated, to date, no specific reactivity with peptidoglycan-mimetic peptide substrates and beta-lactam inhibitors and, thus, probably do not possess a specific substrate-binding site of the type demonstrated here with the R39 DD-peptidase. This striking deficiency may represent a sophisticated defense mechanism against low-molecular-mass substrate-analogue inhibitors/antibiotics; its discovery should focus new inhibitor design.
Collapse
Affiliation(s)
- Eric Sauvage
- Centre d'Ingéniere des Proteines, Université de Liège, B-4000 Sart Tilman, Liège, Belgium
| | | | | | | | | | | | | |
Collapse
|
66
|
Ghosh AS, Chowdhury C, Nelson DE. Physiological functions of D-alanine carboxypeptidases in Escherichia coli. Trends Microbiol 2008; 16:309-17. [PMID: 18539032 DOI: 10.1016/j.tim.2008.04.006] [Citation(s) in RCA: 120] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2008] [Revised: 04/09/2008] [Accepted: 04/30/2008] [Indexed: 11/16/2022]
Abstract
Bacterial cell shape is, in part, mediated by the peptidoglycan (murein) sacculus. Penicillin-binding proteins (PBPs) catalyze the final stages of murein biogenesis and are the targets of beta-lactam antibiotics. Several low molecular mass PBPs including PBP4, PBP5, PBP6 and DacD seem to possess DD-carboxypeptidase (DD-CPase) activity, but these proteins are dispensable for survival in laboratory culture. The physiological functions of DD-CPases in vivo are unresolved and it is unclear why bacteria retain these seemingly non-essential and enzymatically redundant enzymes. However, PBP5 clearly contributes to maintenance of cell shape in some PBP mutant backgrounds. In this review, we focus on recent findings concerning the physiological functions of the DD-CPases in vivo, identify gaps in the current knowledge of these proteins and suggest some possible courses for future study that might help reconcile current models of bacterial cell morphology.
Collapse
Affiliation(s)
- Anindya S Ghosh
- Department of Biotechnology, Indian Institute of Technology, Kharagpur, District-West Midnapore, West Bengal, PIN-721302, India.
| | | | | |
Collapse
|
67
|
Sauvage E, Kerff F, Terrak M, Ayala JA, Charlier P. The penicillin-binding proteins: structure and role in peptidoglycan biosynthesis. FEMS Microbiol Rev 2008; 32:234-58. [PMID: 18266856 DOI: 10.1111/j.1574-6976.2008.00105.x] [Citation(s) in RCA: 882] [Impact Index Per Article: 55.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Affiliation(s)
- Eric Sauvage
- Centre d'Ingénierie des Protéines, Institut de Physique B5a et Institut de Chimie B6a, University of Liège, Sart Tilman, Belgium.
| | | | | | | | | |
Collapse
|
68
|
Vollmer W, Joris B, Charlier P, Foster S. Bacterial peptidoglycan (murein) hydrolases. FEMS Microbiol Rev 2008; 32:259-86. [PMID: 18266855 DOI: 10.1111/j.1574-6976.2007.00099.x] [Citation(s) in RCA: 624] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Most bacteria have multiple peptidoglycan hydrolases capable of cleaving covalent bonds in peptidoglycan sacculi or its fragments. An overview of the different classes of peptidoglycan hydrolases and their cleavage sites is provided. The physiological functions of these enzymes include the regulation of cell wall growth, the turnover of peptidoglycan during growth, the separation of daughter cells during cell division and autolysis. Specialized hydrolases enlarge the pores in the peptidoglycan for the assembly of large trans-envelope complexes (pili, flagella, secretion systems), or they specifically cleave peptidoglycan during sporulation or spore germination. Moreover, peptidoglycan hydrolases are involved in lysis phenomena such as fratricide or developmental lysis occurring in bacterial populations. We will also review the current view on the regulation of autolysins and on the role of cytoplasm hydrolases in peptidoglycan recycling and induction of beta-lactamase.
Collapse
Affiliation(s)
- Waldemar Vollmer
- Institute for Cell and Molecular Biosciences, University of Newcastle upon Tyne, Newcastle upon Tyne, UK.
| | | | | | | |
Collapse
|
69
|
Kumar I, Josephine HR, Pratt R. Reactions of peptidoglycan-mimetic beta-lactams with penicillin-binding proteins in vivo and in membranes. ACS Chem Biol 2007; 2:620-4. [PMID: 17894439 PMCID: PMC2536641 DOI: 10.1021/cb7001347] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The membrane-bound bacterial D-alanyl- D-alanine peptidases or penicillin-binding proteins (PBPs) catalyze the final transpeptidation reaction of bacterial cell wall biosynthesis and are the targets of beta-lactam antibiotics. Rather surprisingly, the substrate specificity of these enzymes is not well understood. In this paper, we present measurements of the reactivity of typical examples of these enzymes with peptidoglycan-mimetic beta-lactams under in vivo conditions. The minimum inhibitory concentrations of beta-lactams with Escherichia coli-specific side chains were determined against E. coli cells. Analogous measurements were made with Streptococcus pneumoniae R6. The reactivity of the relevant beta-lactams with E. coli PBPs in membrane preparations was also determined. The results show that under none of the above protocols were beta-lactams with peptidoglycan-mimetic side chains more reactive than generic analogues. This suggests that in vivo, as in vitro, these enzymes do not specifically recognize elements of peptidoglycan structure local to the reaction center. Substrate recognition must thus involve extended structure.
Collapse
Affiliation(s)
| | | | - R.F. Pratt
- To whom correspondence should be addressed.
| |
Collapse
|
70
|
Abstract
Bacterial peptidoglycan amidases are a large and diverse group of enzymes. During the last few years, genomic sequence information has accumulated to an extent such that lists of proven or predicted peptidoglycan amidases can now be expected to be fairly complete. Moreover, representative crystal structures for most groups of phylogenetically related peptidoglycan amidases have been solved. Here, sequence and structural information is combined with published biochemical findings to demonstrate that (a) peptidoglycan amidases have evolved for almost every bond that occurs in peptidoglycan, (b) there are enzymes that share the fold, yet cleave different bonds and (c) there are enzymes that have entirely different folds and must have evolved independently, and yet cleave the same peptide bond. It is shown that despite these complications, some rules can be deduced from the available biochemical and structural information that can be useful to predict the specificity of hypothetical peptidoglycan hydrolases, for which only sequence information is available.
Collapse
Affiliation(s)
- Małgorzata Firczuk
- International Institute of Molecular and Cell Biology, Warsaw, Poland; and Max-Planck-Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | | |
Collapse
|
71
|
Vollmer W, Bertsche U. Murein (peptidoglycan) structure, architecture and biosynthesis in Escherichia coli. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2007; 1778:1714-34. [PMID: 17658458 DOI: 10.1016/j.bbamem.2007.06.007] [Citation(s) in RCA: 311] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2007] [Revised: 06/11/2007] [Accepted: 06/11/2007] [Indexed: 10/23/2022]
Abstract
The periplasmic murein (peptidoglycan) sacculus is a giant macromolecule made of glycan strands cross-linked by short peptides completely surrounding the cytoplasmic membrane to protect the cell from lysis due to its internal osmotic pressure. More than 50 different muropeptides are released from the sacculus by treatment with a muramidase. Escherichia coli has six murein synthases which enlarge the sacculus by transglycosylation and transpeptidation of lipid II precursor. A set of twelve periplasmic murein hydrolases (autolysins) release murein fragments during cell growth and division. Recent data on the in vitro murein synthesis activities of the murein synthases and on the interactions between murein synthases, hydrolases and cell cycle related proteins are being summarized. There are different models for the architecture of murein and for the incorporation of new precursor into the sacculus. We present a model in which morphogenesis of the rod-shaped E. coli is driven by cytoskeleton elements competing for the control over the murein synthesis multi-enzyme complexes.
Collapse
Affiliation(s)
- Waldemar Vollmer
- Institute for Cell and Molecular Biosciences, Medical School, University of Newcastle upon Tyne, Catherine Cookson Building, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK.
| | | |
Collapse
|
72
|
Sauvage E, Duez C, Herman R, Kerff F, Petrella S, Anderson JW, Adediran SA, Pratt RF, Frère JM, Charlier P. Crystal structure of the Bacillus subtilis penicillin-binding protein 4a, and its complex with a peptidoglycan mimetic peptide. J Mol Biol 2007; 371:528-39. [PMID: 17582436 DOI: 10.1016/j.jmb.2007.05.071] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2007] [Revised: 05/22/2007] [Accepted: 05/24/2007] [Indexed: 11/18/2022]
Abstract
The genome of Bacillus subtilis encodes 16 penicillin-binding proteins (PBPs) involved in the synthesis and/or remodelling of the peptidoglycan during the complex life cycle of this sporulating Gram-positive rod-shaped bacterium. PBP4a (encoded by the dacC gene) is a low-molecular mass PBP clearly exhibiting in vitro DD-carboxypeptidase activity. We have solved the crystal structure of this protein alone and in complex with a peptide (D-alpha-aminopymelyl-epsilon-D-alanyl-D-alanine) that mimics the C-terminal end of the Bacillus peptidoglycan stem peptide. PBP4a is composed of three domains: the penicillin-binding domain with a fold similar to the class A beta-lactamase structure and two domains inserted between the conserved motifs 1 and 2 characteristic of the penicillin-recognizing enzymes. The soaking of PBP4a in a solution of D-alpha-aminopymelyl-epsilon-D-alanyl-D-alanine resulted in an adduct between PBP4a and a D-alpha-aminopimelyl-epsilon-D-alanine dipeptide and an unbound D-alanine, i.e. the products of acylation of PBP4a by D-alpha-aminopymelyl-epsilon-D-alanyl-D-alanine with the release of a D-alanine. The adduct also reveals a binding pocket specific to the diaminopimelic acid, the third residue of the peptidoglycan stem pentapeptide of B. subtilis. This pocket is specific for this class of PBPs.
Collapse
Affiliation(s)
- Eric Sauvage
- Centre d'Ingénierie des Protéines, Université de Liège, Institut de Physique B5 et Institut de Chimie B6a, Sart Tilman, B-4000 Liège, Belgium.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
73
|
Macheboeuf P, Contreras-Martel C, Job V, Dideberg O, Dessen A. Penicillin binding proteins: key players in bacterial cell cycle and drug resistance processes. FEMS Microbiol Rev 2006; 30:673-91. [PMID: 16911039 DOI: 10.1111/j.1574-6976.2006.00024.x] [Citation(s) in RCA: 320] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Bacterial cell division and daughter cell formation are complex mechanisms whose details are orchestrated by at least a dozen different proteins. Penicillin-binding proteins (PBPs), membrane-associated macromolecules which play key roles in the cell wall synthesis process, have been exploited for over 70 years as the targets of the highly successful beta-lactam antibiotics. The increasing incidence of beta-lactam resistant microorganisms, coupled to progress made in genomics, genetics and immunofluorescence microscopy techniques, have encouraged the intensive study of PBPs from a variety of bacterial species. In addition, the recent publication of high-resolution structures of PBPs from pathogenic organisms have shed light on the complex intertwining of drug resistance and cell division processes. In this review, we discuss structural, functional and biological features of such enzymes which, albeit having initially been identified several decades ago, are now being aggressively pursued as highly attractive targets for the development of novel antibiotherapies.
Collapse
Affiliation(s)
- Pauline Macheboeuf
- Institut de Biologie Structurale Jean-Pierre Ebel (CNRS/CEA/UJF), UMR 5075, Laboratoire des Protéines Membranaires, Grenoble, France
| | | | | | | | | |
Collapse
|