51
|
The conformational response to Zn(II) and Ni(II) binding of Sporosarcina pasteurii UreG, an intrinsically disordered GTPase. J Biol Inorg Chem 2014; 19:1341-54. [PMID: 25200810 DOI: 10.1007/s00775-014-1191-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Accepted: 08/25/2014] [Indexed: 10/24/2022]
Abstract
Urease is an essential Ni(II) enzyme involved in the nitrogen metabolism of bacteria, plants and fungi. Ni(II) delivery into the enzyme active site requires the presence of four accessory proteins, named UreD, UreF, UreG and UreE, acting through a complex protein network regulated by metal binding and GTP hydrolysis. The GTPase activity is catalyzed by UreG, which couples this function to a non-enzymatic role as a molecular chaperone. This moonlighting activity is reflected in a flexible fold that makes UreG the first discovered intrinsically disordered enzyme. UreG binds Ni(II) and Zn(II),which in turn modulate the interactions with other urease chaperones. The aim of this study is to understand the structural implications of metal binding to Sporosarcina pasteurii UreG (SpUreG). A combination of light scattering, calorimetry, mass spectrometry, and NMR spectroscopy revealed that SpUreG exists in monomer-dimer equilibrium (K(d)= 45 µM), sampling three distinct folding populations with different degrees of compactness. Binding of Zn(II) ions, occurring in two distinct sites (K(d1) = 3 nM, K(d2) = 0.53 µM), shifts the protein conformational landscape toward the more compact population, while maintaining the overall protein structural plasticity. Differently, binding of Ni(II) ions occurs in three binding sites (K(d1(= 14 µM; K(d2) = 270 µM; K(d3)= 160 µM), with much weaker influence on the protein conformational equilibrium. These distinct conformational responses of SpUreG to Ni(II) and Zn(II) binding suggest that selective metal binding modulates protein plasticity, possibly having an impact on the protein-protein interactions and the enzymatic activity of UreG.
Collapse
|
52
|
Richard JP, Zhai X, Malabanan MM. Reflections on the catalytic power of a TIM-barrel. Bioorg Chem 2014; 57:206-212. [PMID: 25092608 DOI: 10.1016/j.bioorg.2014.07.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2014] [Revised: 07/03/2014] [Accepted: 07/04/2014] [Indexed: 12/14/2022]
Abstract
The TIM-barrel fold is described and its propagation throughout the enzyme universe noted. The functions of the individual front loops of the eponymous TIM-barrel of triosephosphate isomerase are presented in a discussion of: (a) electrophilic catalysis, by amino acid side chains from loops 1 and 4, of abstraction of an α-carbonyl hydrogen from substrate dihydroxyacetone phosphate (DHAP) or d-glyceraldehyde 3-phosphate (DGAP). (b) The engineering of loop 3 to give the monomeric variant monoTIM and the structure and catalytic properties of this monomer. (c) The interaction between loops 6, 7 and 8 and the phosphodianion of DHAP or DGAP. (d) The mechanism by which a ligand-gated conformational change, dominated by motion of loops 6 and 7, activates TIM for catalysis of deprotonation of DHAP or DGAP. (e) The conformational plasticity of TIM, and the utilization of substrate binding energy to "mold" the distorted active site loops of TIM mutants into catalytically active enzymes. The features of the TIM-barrel fold that favor effective protein catalysis are discussed.
Collapse
Affiliation(s)
- John P Richard
- Department of Chemistry, University at Buffalo, SUNY, Buffalo, NY 14260, United States.
| | - Xiang Zhai
- Department of Chemistry, University at Buffalo, SUNY, Buffalo, NY 14260, United States
| | - M Merced Malabanan
- Department of Chemistry, University at Buffalo, SUNY, Buffalo, NY 14260, United States
| |
Collapse
|
53
|
Martinez Cuesta S, Furnham N, Rahman SA, Sillitoe I, Thornton JM. The evolution of enzyme function in the isomerases. Curr Opin Struct Biol 2014; 26:121-30. [PMID: 25000289 PMCID: PMC4139412 DOI: 10.1016/j.sbi.2014.06.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Revised: 06/02/2014] [Accepted: 06/10/2014] [Indexed: 01/14/2023]
Abstract
The advent of computational approaches to measure functional similarity between enzymes adds a new dimension to existing evolutionary studies based on sequence and structure. This paper reviews research efforts aiming to understand the evolution of enzyme function in superfamilies, presenting a novel strategy to provide an overview of the evolution of enzymes belonging to an individual EC class, using the isomerases as an exemplar.
Collapse
Affiliation(s)
- Sergio Martinez Cuesta
- European Molecular Biology Laboratory, European Bioinformatics Institute EMBL-EBI, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SD, United Kingdom.
| | - Nicholas Furnham
- Department of Pathogen Molecular Biology, London School of Hygiene & Tropical Medicine, Keppel Street, London, WC1E 7HT, United Kingdom
| | - Syed Asad Rahman
- European Molecular Biology Laboratory, European Bioinformatics Institute EMBL-EBI, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SD, United Kingdom
| | - Ian Sillitoe
- Institute of Structural and Molecular Biology, Division of Biosciences, University College London, Gower Street, London, WC1E 6BT, United Kingdom
| | - Janet M Thornton
- European Molecular Biology Laboratory, European Bioinformatics Institute EMBL-EBI, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SD, United Kingdom.
| |
Collapse
|
54
|
Natarajan A, Schwans JP, Herschlag D. Using unnatural amino acids to probe the energetics of oxyanion hole hydrogen bonds in the ketosteroid isomerase active site. J Am Chem Soc 2014; 136:7643-54. [PMID: 24787954 PMCID: PMC4046884 DOI: 10.1021/ja413174b] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2013] [Indexed: 02/04/2023]
Abstract
Hydrogen bonds are ubiquitous in enzyme active sites, providing binding interactions and stabilizing charge rearrangements on substrate groups over the course of a reaction. But understanding the origin and magnitude of their catalytic contributions relative to hydrogen bonds made in aqueous solution remains difficult, in part because of complexities encountered in energetic interpretation of traditional site-directed mutagenesis experiments. It has been proposed for ketosteroid isomerase and other enzymes that active site hydrogen bonding groups provide energetic stabilization via "short, strong" or "low-barrier" hydrogen bonds that are formed due to matching of their pKa or proton affinity to that of the transition state. It has also been proposed that the ketosteroid isomerase and other enzyme active sites provide electrostatic environments that result in larger energetic responses (i.e., greater "sensitivity") to ground-state to transition-state charge rearrangement, relative to aqueous solution, thereby providing catalysis relative to the corresponding reaction in water. To test these models, we substituted tyrosine with fluorotyrosines (F-Tyr's) in the ketosteroid isomerase (KSI) oxyanion hole to systematically vary the proton affinity of an active site hydrogen bond donor while minimizing steric or structural effects. We found that a 40-fold increase in intrinsic F-Tyr acidity caused no significant change in activity for reactions with three different substrates. F-Tyr substitution did not change the solvent or primary kinetic isotope effect for proton abstraction, consistent with no change in mechanism arising from these substitutions. The observed shallow dependence of activity on the pKa of the substituted Tyr residues suggests that the KSI oxyanion hole does not provide catalysis by forming an energetically exceptional pKa-matched hydrogen bond. In addition, the shallow dependence provides no indication of an active site electrostatic environment that greatly enhances the energetic response to charge accumulation, consistent with prior experimental results.
Collapse
Affiliation(s)
- Aditya Natarajan
- Department of Biochemistry, Stanford University School of Medicine, Stanford, California 94305, United States
| | | | - Daniel Herschlag
- Department of Biochemistry, Stanford University School of Medicine, Stanford, California 94305, United States
| |
Collapse
|
55
|
Zhai X, Malabanan MM, Amyes TL, Richard JP. Mechanistic Imperatives for Deprotonation of Carbon Catalyzed by Triosephosphate Isomerase: Enzyme-Activation by Phosphite Dianion. J PHYS ORG CHEM 2014; 27:269-276. [PMID: 24729658 PMCID: PMC3979633 DOI: 10.1002/poc.3195] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The mechanistic imperatives for catalysis of deprotonation of α-carbonyl carbon by triosephosphate isomerase (TIM) are discussed. There is a strong imperative to reduce the large thermodynamic barrier for deprotonation of carbon to form an enediolate reaction intermediate; and, a strong imperative for specificity in the expression of the intrinsic phosphodianion binding energy at the transition state for the enzyme-catalyzed reaction. Binding energies of 2 and 6 kcal/mol, respectively, have been determined for formation of phosphite dianion complexes to TIM and to the transition state for TIM-catalyzed deprotonation of the truncated substrate glycolaldehyde [T. L. Amyes, J. P. Richard, Biochemistry2007, 46, 5841]. We propose that the phosphite dianion binding energy, which is specifically expressed at the transition state complex, is utilized to stabilize a rare catalytically active loop-closed form of TIM. The results of experiments to probe the role of the side chains of Ile172 and Leu232 in activating the loop-closed form of TIM for catalysis of substrate deprotonation are discussed. Evidence is presented that the hydrophobic side chain of Ile172 assists in activating TIM for catalysis of substrate deprotonation through an enhancement of the basicity of the carboxylate side-chain of Glu167. Our experiments link the two imperatives for TIM-catalyzed deprotonation of carbon by providing evidence that the phosphodianion binding energy is utilized to drive an enzyme conformational change, which results in a reduction in the thermodynamic barrier to deprotonation of the carbon acid substrate at TIM compared with the barrier for deprotonation in water. The effects of a P168A mutation on the kinetic parameters for the reactions of whole and truncated substrates are discussed.
Collapse
Affiliation(s)
- Xiang Zhai
- Department of Chemistry, University at Buffalo, SUNY, Buffalo, NY 14260, USA
| | - M Merced Malabanan
- Department of Chemistry, University at Buffalo, SUNY, Buffalo, NY 14260, USA
| | - Tina L Amyes
- Department of Chemistry, University at Buffalo, SUNY, Buffalo, NY 14260, USA
| | - John P Richard
- Department of Chemistry, University at Buffalo, SUNY, Buffalo, NY 14260, USA
| |
Collapse
|
56
|
Yahashiri A, Rubach JK, Plapp BV. Effects of cavities at the nicotinamide binding site of liver alcohol dehydrogenase on structure, dynamics and catalysis. Biochemistry 2014; 53:881-94. [PMID: 24437493 PMCID: PMC3969020 DOI: 10.1021/bi401583f] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
![]()
A role
for protein dynamics in enzymatic catalysis of hydrogen
transfer has received substantial scientific support, but the connections
between protein structure and catalysis remain to be established.
Valine residues 203 and 207 are at the binding site for the nicotinamide
ring of the coenzyme in liver alcohol dehydrogenase and have been
suggested to facilitate catalysis with “protein-promoting vibrations”
(PPV). We find that the V207A substitution has small effects on steady-state
kinetic constants and the rate of hydrogen transfer; the introduced
cavity is empty and is tolerated with minimal effects on structure
(determined at 1.2 Å for the complex with NAD+ and
2,3,4,5,6-pentafluorobenzyl alcohol). Thus, no evidence is found to
support a role for Val-207 in the dynamics of catalysis. The protein
structures and ligand geometries (including donor–acceptor
distances) in the V203A enzyme complexed with NAD+ and
2,3,4,5,6-pentafluorobenzyl alcohol or 2,2,2-trifluoroethanol (determined
at 1.1 Å) are very similar to those for the wild-type enzyme,
except that the introduced cavity accommodates a new water molecule
that contacts the nicotinamide ring. The structures of the V203A enzyme
complexes suggest, in contrast to previous studies, that the diminished
tunneling and decreased rate of hydride transfer (16-fold, relative
to that of the wild-type enzyme) are not due to differences in ground-state
ligand geometries. The V203A substitution may alter the PPV and the
reorganization energy for hydrogen transfer, but the protein scaffold
and equilibrium thermal motions within the Michaelis complex may be
more significant for enzyme catalysis.
Collapse
Affiliation(s)
- Atsushi Yahashiri
- Department of Biochemistry, The University of Iowa , Iowa City, Iowa 52242-1109, United States
| | | | | |
Collapse
|
57
|
Affiliation(s)
- John P Richard
- Department of Chemistry, University at Buffalo , SUNY, Buffalo, New York 14260-3000, United States
| |
Collapse
|