51
|
Hemschemeier A, Happe T. The plasticity of redox cofactors: from metalloenzymes to redox-active DNA. Nat Rev Chem 2018. [DOI: 10.1038/s41570-018-0029-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
52
|
Kertess L, Wittkamp F, Sommer C, Esselborn J, Rüdiger O, Reijerse EJ, Hofmann E, Lubitz W, Winkler M, Happe T, Apfel UP. Chalcogenide substitution in the [2Fe] cluster of [FeFe]-hydrogenases conserves high enzymatic activity. Dalton Trans 2018; 46:16947-16958. [PMID: 29177350 DOI: 10.1039/c7dt03785f] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
[FeFe]-Hydrogenases efficiently catalyze the uptake and evolution of H2 due to the presence of an inorganic [6Fe-6S]-cofactor (H-cluster). This cofactor is comprised of a [4Fe-4S] cluster coupled to a unique [2Fe] cluster where the catalytic turnover of H2/H+ takes place. We herein report on the synthesis of a selenium substituted [2Fe] cluster [Fe2{μ(SeCH2)2NH}(CO)4(CN)2]2- (ADSe) and its successful in vitro integration into the native protein scaffold of [FeFe]-hydrogenases HydA1 from Chlamydomonas reinhardtii and CpI from Clostridium pasteurianum yielding fully active enzymes (HydA1-ADSe and CpI-ADSe). FT-IR spectroscopy and X-ray structure analysis confirmed the presence of structurally intact ADSe at the active site. Electrochemical assays reveal that the selenium containing enzymes are more biased towards hydrogen production than their native counterparts. In contrast to previous chalcogenide exchange studies, the S to Se exchange herein is not based on a simple reconstitution approach using ionic cluster constituents but on the in vitro maturation with a pre-synthesized selenium-containing [2Fe] mimic. The combination of biological and chemical methods allowed for the creation of a novel [FeFe]-hydrogenase with a [2Fe2Se]-active site which confers individual catalytic features.
Collapse
Affiliation(s)
- L Kertess
- Ruhr-Universität Bochum, Lehrstuhl für Biochemie der Pflanzen, AG Photobiotechnologie, Universitätsstraße 150, 44801 Bochum, Germany.
| | - F Wittkamp
- Ruhr-Universität Bochum, Anorganische Chemie I/Bioanorganische Chemie, Universitätsstraße 150, 44801 Bochum, Germany.
| | - C Sommer
- Max-Planck-Institut für Chemische Energiekonversion, Stiftstraße 34-36, 45470 Mülheim an der Ruhr, Germany
| | - J Esselborn
- Ruhr-Universität Bochum, Lehrstuhl für Biochemie der Pflanzen, AG Photobiotechnologie, Universitätsstraße 150, 44801 Bochum, Germany.
| | - O Rüdiger
- Max-Planck-Institut für Chemische Energiekonversion, Stiftstraße 34-36, 45470 Mülheim an der Ruhr, Germany
| | - E J Reijerse
- Max-Planck-Institut für Chemische Energiekonversion, Stiftstraße 34-36, 45470 Mülheim an der Ruhr, Germany
| | - E Hofmann
- Ruhr-Universität Bochum, Lehrstuhl für Biophysik, AG Röntgenstrukturanalyse an Proteinen, Universitätsstraße 150, 44801 Bochum, Germany
| | - W Lubitz
- Max-Planck-Institut für Chemische Energiekonversion, Stiftstraße 34-36, 45470 Mülheim an der Ruhr, Germany
| | - M Winkler
- Ruhr-Universität Bochum, Lehrstuhl für Biochemie der Pflanzen, AG Photobiotechnologie, Universitätsstraße 150, 44801 Bochum, Germany.
| | - T Happe
- Ruhr-Universität Bochum, Lehrstuhl für Biochemie der Pflanzen, AG Photobiotechnologie, Universitätsstraße 150, 44801 Bochum, Germany.
| | - U-P Apfel
- Ruhr-Universität Bochum, Anorganische Chemie I/Bioanorganische Chemie, Universitätsstraße 150, 44801 Bochum, Germany.
| |
Collapse
|
53
|
Ratzloff MW, Artz JH, Mulder DW, Collins RT, Furtak TE, King PW. CO-Bridged H-Cluster Intermediates in the Catalytic Mechanism of [FeFe]-Hydrogenase CaI. J Am Chem Soc 2018; 140:7623-7628. [PMID: 29792026 DOI: 10.1021/jacs.8b03072] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The [FeFe]-hydrogenases ([FeFe] H2ases) catalyze reversible H2 activation at the H-cluster, which is composed of a [4Fe-4S]H subsite linked by a cysteine thiolate to a bridged, organometallic [2Fe-2S] ([2Fe]H) subsite. Profoundly different geometric models of the H-cluster redox states that orchestrate the electron/proton transfer steps of H2 bond activation have been proposed. We have examined this question in the [FeFe] H2ase I from Clostridium acetobutylicum (CaI) by Fourier-transform infrared (FTIR) spectroscopy with temperature annealing and H/D isotope exchange to identify the relevant redox states and define catalytic transitions. One-electron reduction of Hox led to formation of HredH+ ([4Fe-4S]H2+-FeI-FeI) and Hred' ([4Fe-4S]H1+-FeII-FeI), with both states characterized by low frequency μ-CO IR modes consistent with a fully bridged [2Fe]H. Similar μ-CO IR modes were also identified for HredH+ of the [FeFe] H2ase from Chlamydomonas reinhardtii (CrHydA1). The CaI proton-transfer variant C298S showed enrichment of an H/D isotope-sensitive μ-CO mode, a component of the hydride bound H-cluster IR signal, Hhyd. Equilibrating CaI with increasing amounts of NaDT, and probed at cryogenic temperatures, showed HredH+ was converted to Hhyd. Over an increasing temperature range from 10 to 260 K catalytic turnover led to loss of Hhyd and appearance of Hox, consistent with enzymatic turnover and H2 formation. The results show for CaI that the μ-CO of [2Fe]H remains bridging for all of the "Hred" states and that HredH+ is on pathway to Hhyd and H2 evolution in the catalytic mechanism. These results provide a blueprint for designing small molecule catalytic analogs.
Collapse
Affiliation(s)
- Michael W Ratzloff
- Biosciences Center , National Renewable Energy Laboratory , Golden , Colorado 80401 , United States
| | - Jacob H Artz
- Biosciences Center , National Renewable Energy Laboratory , Golden , Colorado 80401 , United States
| | - David W Mulder
- Biosciences Center , National Renewable Energy Laboratory , Golden , Colorado 80401 , United States
| | - Reuben T Collins
- Physics Department , Colorado School of Mines , Golden , Colorado 80401 , United States
| | - Thomas E Furtak
- Physics Department , Colorado School of Mines , Golden , Colorado 80401 , United States
| | - Paul W King
- Biosciences Center , National Renewable Energy Laboratory , Golden , Colorado 80401 , United States
| |
Collapse
|
54
|
Keller SG, Probst B, Heinisch T, Alberto R, Ward TR. Photo-Driven Hydrogen Evolution by an Artificial Hydrogenase Utilizing the Biotin-Streptavidin Technology. Helv Chim Acta 2018. [DOI: 10.1002/hlca.201800036] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Sascha G. Keller
- Department of Chemistry; University of Basel; Mattenstrasse 24a 4002 Basel Switzerland
| | - Benjamin Probst
- Department of Chemistry; University of Zürich; Winterthurerstrasse 190 8057 Zürich Switzerland
| | - Tillmann Heinisch
- Department of Chemistry; University of Basel; Mattenstrasse 24a 4002 Basel Switzerland
| | - Roger Alberto
- Department of Chemistry; University of Zürich; Winterthurerstrasse 190 8057 Zürich Switzerland
| | - Thomas R. Ward
- Department of Chemistry; University of Basel; Mattenstrasse 24a 4002 Basel Switzerland
| |
Collapse
|
55
|
Spectroscopic investigations of a semi-synthetic [FeFe] hydrogenase with propane di-selenol as bridging ligand in the binuclear subsite: comparison to the wild type and propane di-thiol variants. J Biol Inorg Chem 2018; 23:481-491. [PMID: 29627860 PMCID: PMC5940705 DOI: 10.1007/s00775-018-1558-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 03/30/2018] [Indexed: 11/25/2022]
Abstract
[FeFe] Hydrogenases catalyze the reversible conversion of H2 into electrons and protons. Their catalytic site, the H-cluster, contains a generic [4Fe–4S]H cluster coupled to a [2Fe]H subsite [Fe2(ADT)(CO)3(CN)2]2−, ADT = µ(SCH2)2NH. Heterologously expressed [FeFe] hydrogenases (apo-hydrogenase) lack the [2Fe]H unit, but this can be incorporated through artificial maturation with a synthetic precursor [Fe2(ADT)(CO)4(CN)2]2−. Maturation with a [2Fe] complex in which the essential ADT amine moiety has been replaced by CH2 (PDT = propane-dithiolate) results in a low activity enzyme with structural and spectroscopic properties similar to those of the native enzyme, but with simplified redox behavior. Here, we study the effect of sulfur-to-selenium (S-to-Se) substitution in the bridging PDT ligand incorporated in the [FeFe] hydrogenase HydA1 from Chlamydomonas reinhardtii using magnetic resonance (EPR, NMR), FTIR and spectroelectrochemistry. The resulting HydA1-PDSe enzyme shows the same redox behavior as the parent HydA1-PDT. In addition, a state is observed in which extraneous CO is bound to the open coordination site of the [2Fe]H unit. This state was previously observed only in the native enzyme HydA1-ADT and not in HydA1-PDT. The spectroscopic features and redox behavior of HydA1-PDSe, resulting from maturation with [Fe2(PDSe)(CO)4(CN)2]2−, are discussed in terms of spin and charge density shifts and provide interesting insight into the electronic structure of the H-cluster. We also studied the effect of S-to-Se substitution in the [4Fe–4S] subcluster. The reduced form of HydA1 containing only the [4Fe–4Se]H cluster shows a characteristic S = 7/2 spin state which converts back into the S = 1/2 spin state upon maturation with a [2Fe]–PDT/ADT complex.
Collapse
|
56
|
Esmieu C, Raleiras P, Berggren G. From protein engineering to artificial enzymes - biological and biomimetic approaches towards sustainable hydrogen production. SUSTAINABLE ENERGY & FUELS 2018; 2:724-750. [PMID: 31497651 PMCID: PMC6695573 DOI: 10.1039/c7se00582b] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 01/31/2018] [Indexed: 06/09/2023]
Abstract
Hydrogen gas is used extensively in industry today and is often put forward as a suitable energy carrier due its high energy density. Currently, the main source of molecular hydrogen is fossil fuels via steam reforming. Consequently, novel production methods are required to improve the sustainability of hydrogen gas for industrial processes, as well as paving the way for its implementation as a future solar fuel. Nature has already developed an elaborate hydrogen economy, where the production and consumption of hydrogen gas is catalysed by hydrogenase enzymes. In this review we summarize efforts on engineering and optimizing these enzymes for biological hydrogen gas production, with an emphasis on their inorganic cofactors. Moreover, we will describe how our understanding of these enzymes has been applied for the preparation of bio-inspired/-mimetic systems for efficient and sustainable hydrogen production.
Collapse
Affiliation(s)
- C Esmieu
- Department of Chemistry , Ångström Laboratory , Uppsala University , Box 523 , SE-75120 Uppsala , Sweden .
| | - P Raleiras
- Department of Chemistry , Ångström Laboratory , Uppsala University , Box 523 , SE-75120 Uppsala , Sweden .
| | - G Berggren
- Department of Chemistry , Ångström Laboratory , Uppsala University , Box 523 , SE-75120 Uppsala , Sweden .
| |
Collapse
|
57
|
Sommer C, Richers CP, Lubitz W, Rauchfuss TB, Reijerse EJ. A [RuRu] Analogue of an [FeFe]-Hydrogenase Traps the Key Hydride Intermediate of the Catalytic Cycle. Angew Chem Int Ed Engl 2018; 57:5429-5432. [PMID: 29577535 DOI: 10.1002/anie.201801914] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Indexed: 12/15/2022]
Abstract
The active site of the [FeFe]-hydrogenases features a binuclear [2Fe]H sub-cluster that contains a unique bridging amine moiety close to an exposed iron center. Heterolytic splitting of H2 results in the formation of a transient terminal hydride at this iron site, which, however is difficult to stabilize. We show that the hydride intermediate forms immediately when [2Fe]H is replaced with [2Ru]H analogues through artificial maturation. Outside the protein, the [2Ru]H analogues form bridging hydrides, which rearrange to terminal hydrides after insertion into the apo-protein. H/D exchange of the hydride only occurs for [2Ru]H analogues containing the bridging amine moiety.
Collapse
Affiliation(s)
- Constanze Sommer
- Max-Planck-Institut für Chemische Energiekonversion, Stiftstrasse 34-36, 45470, Mülheim an der Ruhr, Germany
| | - Casseday P Richers
- School of Chemical Sciences, University of Illinois at Urbana-Champaign, 600 S. Goodwin Ave., Urbana, IL, 61801, USA
| | - Wolfgang Lubitz
- Max-Planck-Institut für Chemische Energiekonversion, Stiftstrasse 34-36, 45470, Mülheim an der Ruhr, Germany
| | - Thomas B Rauchfuss
- School of Chemical Sciences, University of Illinois at Urbana-Champaign, 600 S. Goodwin Ave., Urbana, IL, 61801, USA
| | - Edward J Reijerse
- Max-Planck-Institut für Chemische Energiekonversion, Stiftstrasse 34-36, 45470, Mülheim an der Ruhr, Germany
| |
Collapse
|
58
|
Sommer C, Richers CP, Lubitz W, Rauchfuss TB, Reijerse EJ. A [RuRu] Analogue of an [FeFe]-Hydrogenase Traps the Key Hydride Intermediate of the Catalytic Cycle. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201801914] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Constanze Sommer
- Max-Planck-Institut für Chemische Energiekonversion; Stiftstrasse 34-36 45470 Mülheim an der Ruhr Germany
| | - Casseday P. Richers
- School of Chemical Sciences; University of Illinois at Urbana-Champaign; 600 S. Goodwin Ave. Urbana IL 61801 USA
| | - Wolfgang Lubitz
- Max-Planck-Institut für Chemische Energiekonversion; Stiftstrasse 34-36 45470 Mülheim an der Ruhr Germany
| | - Thomas B. Rauchfuss
- School of Chemical Sciences; University of Illinois at Urbana-Champaign; 600 S. Goodwin Ave. Urbana IL 61801 USA
| | - Edward J. Reijerse
- Max-Planck-Institut für Chemische Energiekonversion; Stiftstrasse 34-36 45470 Mülheim an der Ruhr Germany
| |
Collapse
|
59
|
Mészáros LS, Németh B, Esmieu C, Ceccaldi P, Berggren G. In Vivo EPR Characterization of Semi-Synthetic [FeFe] Hydrogenases. Angew Chem Int Ed Engl 2018; 57:2596-2599. [PMID: 29334424 PMCID: PMC6282530 DOI: 10.1002/anie.201710740] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 12/18/2018] [Indexed: 01/18/2023]
Abstract
EPR spectroscopy reveals the formation of two different semi-synthetic hydrogenases in vivo. [FeFe] hydrogenases are metalloenzymes that catalyze the interconversion of molecular hydrogen and protons. The reaction is catalyzed by the H-cluster, consisting of a canonical iron-sulfur cluster and an organometallic [2Fe] subsite. It was recently shown that the enzyme can be reconstituted with synthetic cofactors mimicking the composition of the [2Fe] subsite, resulting in semi-synthetic hydrogenases. Herein, we employ EPR spectroscopy to monitor the formation of two such semi-synthetic enzymes in whole cells. The study provides the first spectroscopic characterization of semi-synthetic hydrogenases in vivo, and the observation of two different oxidized states of the H-cluster under intracellular conditions. Moreover, these findings underscore how synthetic chemistry can be a powerful tool for manipulation and examination of the hydrogenase enzyme under in vivo conditions.
Collapse
Affiliation(s)
- Lívia S. Mészáros
- Department of Chemistry—Uppsala UniversityLägerhyddsvägen 175120UppsalaSweden
| | - Brigitta Németh
- Department of Chemistry—Uppsala UniversityLägerhyddsvägen 175120UppsalaSweden
| | - Charlène Esmieu
- Department of Chemistry—Uppsala UniversityLägerhyddsvägen 175120UppsalaSweden
| | - Pierre Ceccaldi
- Department of Chemistry—Uppsala UniversityLägerhyddsvägen 175120UppsalaSweden
| | - Gustav Berggren
- Department of Chemistry—Uppsala UniversityLägerhyddsvägen 175120UppsalaSweden
| |
Collapse
|
60
|
Senger M, Mebs S, Duan J, Shulenina O, Laun K, Kertess L, Wittkamp F, Apfel UP, Happe T, Winkler M, Haumann M, Stripp ST. Protonation/reduction dynamics at the [4Fe-4S] cluster of the hydrogen-forming cofactor in [FeFe]-hydrogenases. Phys Chem Chem Phys 2018; 20:3128-3140. [PMID: 28884175 DOI: 10.1039/c7cp04757f] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The [FeFe]-hydrogenases of bacteria and algae are the most efficient hydrogen conversion catalysts in nature. Their active-site cofactor (H-cluster) comprises a [4Fe-4S] cluster linked to a unique diiron site that binds three carbon monoxide (CO) and two cyanide (CN-) ligands. Understanding microbial hydrogen conversion requires elucidation of the interplay of proton and electron transfer events at the H-cluster. We performed real-time spectroscopy on [FeFe]-hydrogenase protein films under controlled variation of atmospheric gas composition, sample pH, and reductant concentration. Attenuated total reflection Fourier-transform infrared spectroscopy was used to monitor shifts of the CO/CN- vibrational bands in response to redox and protonation changes. Three different [FeFe]-hydrogenases and several protein and cofactor variants were compared, including element and isotopic exchange studies. A protonated equivalent (HoxH) of the oxidized state (Hox) was found, which preferentially accumulated at acidic pH and under reducing conditions. We show that the one-electron reduced state Hred' represents an intrinsically protonated species. Interestingly, the formation of HoxH and Hred' was independent of the established proton pathway to the diiron site. Quantum chemical calculations of the respective CO/CN- infrared band patterns favored a cysteine ligand of the [4Fe-4S] cluster as the protonation site in HoxH and Hred'. We propose that proton-coupled electron transfer facilitates reduction of the [4Fe-4S] cluster and prevents premature formation of a hydride at the catalytic diiron site. Our findings imply that protonation events both at the [4Fe-4S] cluster and at the diiron site of the H-cluster are important in the hydrogen conversion reaction of [FeFe]-hydrogenases.
Collapse
Affiliation(s)
- Moritz Senger
- Department of Physics, Experimental Molecular Biophysics, Freie Universität Berlin, Fachbereich Physik, Arnimallee 14, 14195 Berlin, Germany.
| | - Stefan Mebs
- Department of Physics, Biophysics of Metalloenzymes, Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany.
| | - Jifu Duan
- Faculty of Biology and Biotechnology, Photobiotechnology, Ruhr-Universität Bochum, 44801 Bochum, Germany.
| | - Olga Shulenina
- Faculty of Physics, St. Petersburg State University, 198504 St. Petersburg, Russian Federation
| | - Konstantin Laun
- Department of Physics, Experimental Molecular Biophysics, Freie Universität Berlin, Fachbereich Physik, Arnimallee 14, 14195 Berlin, Germany.
| | - Leonie Kertess
- Faculty of Biology and Biotechnology, Photobiotechnology, Ruhr-Universität Bochum, 44801 Bochum, Germany.
| | - Florian Wittkamp
- Faculty of Chemistry and Biochemistry, Inorganic Chemistry I, Ruhr-Universität Bochum, 44801 Bochum, Germany
| | - Ulf-Peter Apfel
- Faculty of Chemistry and Biochemistry, Inorganic Chemistry I, Ruhr-Universität Bochum, 44801 Bochum, Germany
| | - Thomas Happe
- Faculty of Biology and Biotechnology, Photobiotechnology, Ruhr-Universität Bochum, 44801 Bochum, Germany.
| | - Martin Winkler
- Faculty of Biology and Biotechnology, Photobiotechnology, Ruhr-Universität Bochum, 44801 Bochum, Germany.
| | - Michael Haumann
- Department of Physics, Biophysics of Metalloenzymes, Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany.
| | - Sven T Stripp
- Department of Physics, Experimental Molecular Biophysics, Freie Universität Berlin, Fachbereich Physik, Arnimallee 14, 14195 Berlin, Germany.
| |
Collapse
|
61
|
Mészáros LS, Németh B, Esmieu C, Ceccaldi P, Berggren G. In Vivo EPR Characterization of Semi-Synthetic [FeFe] Hydrogenases. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201710740] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Lívia S. Mészáros
- Department of Chemistry-; Uppsala University; Lägerhyddsvägen 1 75120 Uppsala Sweden
| | - Brigitta Németh
- Department of Chemistry-; Uppsala University; Lägerhyddsvägen 1 75120 Uppsala Sweden
| | - Charlène Esmieu
- Department of Chemistry-; Uppsala University; Lägerhyddsvägen 1 75120 Uppsala Sweden
| | - Pierre Ceccaldi
- Department of Chemistry-; Uppsala University; Lägerhyddsvägen 1 75120 Uppsala Sweden
| | - Gustav Berggren
- Department of Chemistry-; Uppsala University; Lägerhyddsvägen 1 75120 Uppsala Sweden
| |
Collapse
|
62
|
Chongdar N, Birrell JA, Pawlak K, Sommer C, Reijerse EJ, Rüdiger O, Lubitz W, Ogata H. Unique Spectroscopic Properties of the H-Cluster in a Putative Sensory [FeFe] Hydrogenase. J Am Chem Soc 2018; 140:1057-1068. [PMID: 29251926 DOI: 10.1021/jacs.7b11287] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Sensory type [FeFe] hydrogenases are predicted to play a role in transcriptional regulation by detecting the H2 level of the cellular environment. These hydrogenases contain the hydrogenase domain with distinct modifications in the active site pocket, followed by a Per-Arnt-Sim (PAS) domain. As yet, neither the physiological function nor the biochemical or spectroscopic properties of these enzymes have been explored. Here, we present the characterization of an artificially maturated, putative sensory [FeFe] hydrogenase from Thermotoga maritima (HydS). This enzyme shows lower hydrogen conversion activity than prototypical [FeFe] hydrogenases and a reduced inhibition by CO. Using FTIR spectroelectrochemistry and EPR spectroscopy, three redox states of the active site were identified. The spectroscopic signatures of the most oxidized state closely resemble those of the Hox state from the prototypical [FeFe] hydrogenases, while the FTIR spectra of both singly and doubly reduced states show large differences. The FTIR bands of both the reduced states are strongly red-shifted relative to the Hox state, indicating reduction at the diiron site, but with retention of the bridging CO ligand. The unique functional and spectroscopic features of HydS are discussed with regard to the possible role of altered amino acid residues influencing the electronic properties of the H-cluster.
Collapse
Affiliation(s)
- Nipa Chongdar
- Max Planck Institute for Chemical Energy Conversion , Stiftstrasse 34-36, D45470 Mülheim an der Ruhr, Germany
| | - James A Birrell
- Max Planck Institute for Chemical Energy Conversion , Stiftstrasse 34-36, D45470 Mülheim an der Ruhr, Germany
| | - Krzysztof Pawlak
- Max Planck Institute for Chemical Energy Conversion , Stiftstrasse 34-36, D45470 Mülheim an der Ruhr, Germany
| | - Constanze Sommer
- Max Planck Institute for Chemical Energy Conversion , Stiftstrasse 34-36, D45470 Mülheim an der Ruhr, Germany
| | - Edward J Reijerse
- Max Planck Institute for Chemical Energy Conversion , Stiftstrasse 34-36, D45470 Mülheim an der Ruhr, Germany
| | - Olaf Rüdiger
- Max Planck Institute for Chemical Energy Conversion , Stiftstrasse 34-36, D45470 Mülheim an der Ruhr, Germany
| | - Wolfgang Lubitz
- Max Planck Institute for Chemical Energy Conversion , Stiftstrasse 34-36, D45470 Mülheim an der Ruhr, Germany
| | - Hideaki Ogata
- Max Planck Institute for Chemical Energy Conversion , Stiftstrasse 34-36, D45470 Mülheim an der Ruhr, Germany.,Institute of Low Temperature Science, Hokkaido University , Kita19 Nishi8, Kita-ku, 060-0819 Sapporo, Japan
| |
Collapse
|
63
|
|
64
|
Wittkamp F, Senger M, Stripp ST, Apfel UP. [FeFe]-Hydrogenases: recent developments and future perspectives. Chem Commun (Camb) 2018; 54:5934-5942. [DOI: 10.1039/c8cc01275j] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
[FeFe]-Hydrogenases are the most efficient enzymes for catalytic hydrogen turnover.
Collapse
Affiliation(s)
- F. Wittkamp
- Faculty of Chemistry and Biochemistry
- Ruhr-Universität Bochum
- 44801 Bochum
- Germany
| | - M. Senger
- Department of Physics
- Freie Universität Berlin
- 1495 Berlin
- Germany
| | - S. T. Stripp
- Department of Physics
- Freie Universität Berlin
- 1495 Berlin
- Germany
| | - U.-P. Apfel
- Faculty of Chemistry and Biochemistry
- Ruhr-Universität Bochum
- 44801 Bochum
- Germany
- Fraunhofer UMSICHT
| |
Collapse
|
65
|
|
66
|
Lampret O, Adamska-Venkatesh A, Konegger H, Wittkamp F, Apfel UP, Reijerse EJ, Lubitz W, Rüdiger O, Happe T, Winkler M. Interplay between CN - Ligands and the Secondary Coordination Sphere of the H-Cluster in [FeFe]-Hydrogenases. J Am Chem Soc 2017; 139:18222-18230. [PMID: 29179539 DOI: 10.1021/jacs.7b08735] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The catalytic cofactor of [FeFe]-hydrogenses (H-cluster) is composed of a generic cubane [4Fe-4S]-cluster (4FeH) linked to a binuclear iron-sulfur cluster (2FeH) that has an open coordination site at which the reversible conversion of protons to molecular hydrogen occurs. The (2FeH) subsite features a diatomic coordination sphere composed of three CO and two CN- ligands affecting its redox properties and providing excellent probes for FTIR spectroscopy. The CO stretch vibrations are very sensitive to the redox changes within the H-cluster occurring during the catalytic cycle, whereas the CN- signals seem to be relatively inert to these effects. This could be due to the more structural role of the CN- ligands tightly anchoring the (2FeH) unit to the protein environment through hydrogen bonding. In this work we explore the effects of structural changes within the secondary ligand sphere affecting the CN- ligands on FTIR spectroscopy and catalysis. By comparing the FTIR spectra of wild-type enzyme and two mutagenesis variants, we are able to assign the IR signals of the individual CN- ligands of the (2FeH) site for different redox states of the H-cluster. Moreover, protein film electrochemistry reveals that targeted manipulation of the secondary coordination sphere of the proximal CN- ligand (i.e., closest to the (4FeH) site) can affect the catalytic bias. These findings highlight the importance of the protein environment for re-adjusting the catalytic features of the H-cluster in individual enzymes and provide valuable information for the design of artificial hydrogenase mimics.
Collapse
Affiliation(s)
- Oliver Lampret
- Fakultät für Biologie und Biotechnologie, Lehrstuhl für Biochemie der Pflanzen, AG Photobiotechnologie, Ruhr Universität Bochum , Universitätsstraße 150, 44801 Bochum, Germany
| | - Agnieszka Adamska-Venkatesh
- Max-Planck-Institut für Chemische Energiekonversion , Stiftstrasse 34-36, 45470 Mülheim an der Ruhr, Germany
| | - Hannes Konegger
- Fakultät für Biologie und Biotechnologie, Lehrstuhl für Biochemie der Pflanzen, AG Photobiotechnologie, Ruhr Universität Bochum , Universitätsstraße 150, 44801 Bochum, Germany
| | - Florian Wittkamp
- Fakultät für Chemie und Biochemie, Lehrstuhl für Anorganische Chemie I-Bioanorganische Chemie, Ruhr Universität Bochum , Universitätsstraße 150, 44801 Bochum, Germany
| | - Ulf-Peter Apfel
- Fakultät für Chemie und Biochemie, Lehrstuhl für Anorganische Chemie I-Bioanorganische Chemie, Ruhr Universität Bochum , Universitätsstraße 150, 44801 Bochum, Germany
| | - Edward J Reijerse
- Max-Planck-Institut für Chemische Energiekonversion , Stiftstrasse 34-36, 45470 Mülheim an der Ruhr, Germany
| | - Wolfgang Lubitz
- Max-Planck-Institut für Chemische Energiekonversion , Stiftstrasse 34-36, 45470 Mülheim an der Ruhr, Germany
| | - Olaf Rüdiger
- Max-Planck-Institut für Chemische Energiekonversion , Stiftstrasse 34-36, 45470 Mülheim an der Ruhr, Germany
| | - Thomas Happe
- Fakultät für Biologie und Biotechnologie, Lehrstuhl für Biochemie der Pflanzen, AG Photobiotechnologie, Ruhr Universität Bochum , Universitätsstraße 150, 44801 Bochum, Germany
| | - Martin Winkler
- Fakultät für Biologie und Biotechnologie, Lehrstuhl für Biochemie der Pflanzen, AG Photobiotechnologie, Ruhr Universität Bochum , Universitätsstraße 150, 44801 Bochum, Germany
| |
Collapse
|
67
|
Kertess L, Adamska-Venkatesh A, Rodríguez-Maciá P, Rüdiger O, Lubitz W, Happe T. Influence of the [4Fe-4S] cluster coordinating cysteines on active site maturation and catalytic properties of C. reinhardtii [FeFe]-hydrogenase. Chem Sci 2017; 8:8127-8137. [PMID: 29568461 PMCID: PMC5855289 DOI: 10.1039/c7sc03444j] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 10/05/2017] [Indexed: 11/24/2022] Open
Abstract
Alteration of the [4Fe–4S] cluster coordinating cysteines reveals their individual importance for [4Fe–4S] cluster binding, [2Fe] insertion and catalytic turnover.
[FeFe]-Hydrogenases catalyze the evolution and oxidation of hydrogen using a characteristic cofactor, termed the H-cluster. This comprises an all cysteine coordinated [4Fe–4S] cluster and a unique [2Fe] moiety, coupled together via a single cysteine. The coordination of the [4Fe–4S] cluster in HydA1 from Chlamydomonas reinhardtii was altered by single exchange of each cysteine (C115, C170, C362, and C366) with alanine, aspartate, or serine using site-directed mutagenesis. In contrast to cysteine 115, the other three cysteines were found to be dispensable for stable [4Fe–4S] cluster incorporation based on iron determination, UV/vis spectroscopy and electron paramagnetic resonance. However, the presence of a preformed [4Fe–4S] cluster alone does not guarantee stable incorporation of the [2Fe] cluster. Only variants C170D, C170S, C362D, and C362S showed characteristic signals for an inserted [2Fe] cluster in Fourier-transform infrared spectroscopy. Hydrogen evolution and oxidation were observed for these variants in solution based assays and protein-film electrochemistry. Catalytic activity was lowered for all variants and the ability to operate in either direction was also influenced.
Collapse
Affiliation(s)
- Leonie Kertess
- AG Photobiotechnologie , Lehrstuhl für Biochemie der Pflanzen , Ruhr Universität Bochum , Universitätsstr. 150 , 44801 Bochum , Germany .
| | - Agnieszka Adamska-Venkatesh
- Max Planck Institute for Chemical Energy Conversion , Stiftstrasse 34-36 , 45470 Mülheim an der Ruhr , Germany
| | - Patricia Rodríguez-Maciá
- Max Planck Institute for Chemical Energy Conversion , Stiftstrasse 34-36 , 45470 Mülheim an der Ruhr , Germany
| | - Olaf Rüdiger
- Max Planck Institute for Chemical Energy Conversion , Stiftstrasse 34-36 , 45470 Mülheim an der Ruhr , Germany
| | - Wolfgang Lubitz
- Max Planck Institute for Chemical Energy Conversion , Stiftstrasse 34-36 , 45470 Mülheim an der Ruhr , Germany
| | - Thomas Happe
- AG Photobiotechnologie , Lehrstuhl für Biochemie der Pflanzen , Ruhr Universität Bochum , Universitätsstr. 150 , 44801 Bochum , Germany .
| |
Collapse
|
68
|
Ghosh P, Ding S, Chupik RB, Quiroz M, Hsieh CH, Bhuvanesh N, Hall MB, Darensbourg MY. A matrix of heterobimetallic complexes for interrogation of hydrogen evolution reaction electrocatalysts. Chem Sci 2017; 8:8291-8300. [PMID: 29619175 PMCID: PMC5858031 DOI: 10.1039/c7sc03378h] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 10/11/2017] [Indexed: 11/21/2022] Open
Abstract
Experimental and computational studies address key questions in a structure-function analysis of bioinspired electrocatalysts for the HER. Combinations of NiN2S2 or [(NO)Fe]N2S2 as donors to (η5-C5H5)Fe(CO)+ or [Fe(NO)2]+/0 generate a series of four bimetallics, gradually "softened" by increasing nitrosylation, from 0 to 3, by the non-innocent NO ligands. The nitrosylated NiFe complexes are isolated and structurally characterized in two redox levels, demonstrating required features of electrocatalysis. Computational modeling of experimental structures and likely transient intermediates that connect the electrochemical events find roles for electron delocalization by NO, as well as Fe-S bond dissociation that produce a terminal thiolate as pendant base well positioned to facilitate proton uptake and transfer. Dihydrogen formation is via proton/hydride coupling by internal S-H+···-H-Fe units of the "harder" bimetallic arrangements with more localized electron density, while softer units convert H-···H-via reductive elimination from two Fe-H deriving from the highly delocalized, doubly reduced [Fe2(NO)3]- derivative. Computational studies also account for the inactivity of a Ni2Fe complex resulting from entanglement of added H+ in a pinched -S δ-···H+··· δ-S- arrangement.
Collapse
Affiliation(s)
- Pokhraj Ghosh
- Department of Chemistry , Texas A & M University , College Station , TX 77843 , USA .
| | - Shengda Ding
- Department of Chemistry , Texas A & M University , College Station , TX 77843 , USA .
| | - Rachel B Chupik
- Department of Chemistry , Texas A & M University , College Station , TX 77843 , USA .
| | - Manuel Quiroz
- Department of Chemistry , Texas A & M University , College Station , TX 77843 , USA .
| | - Chung-Hung Hsieh
- Department of Chemistry , Tamkang University , New Taipei City , Taiwan 25157
| | - Nattami Bhuvanesh
- Department of Chemistry , Texas A & M University , College Station , TX 77843 , USA .
| | - Michael B Hall
- Department of Chemistry , Texas A & M University , College Station , TX 77843 , USA .
| | | |
Collapse
|
69
|
Senger M, Laun K, Wittkamp F, Duan J, Haumann M, Happe T, Winkler M, Apfel UP, Stripp ST. Protonengekoppelte Reduktion des katalytischen [4Fe-4S]-Zentrums in [FeFe]-Hydrogenasen. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201709910] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Moritz Senger
- Fakultät für Physik; Freie Universität Berlin; Arnimallee 14 1495 Berlin Deutschland
| | - Konstantin Laun
- Fakultät für Physik; Freie Universität Berlin; Arnimallee 14 1495 Berlin Deutschland
| | - Florian Wittkamp
- Fakultät für Chemie und Biochemie; Ruhr-Universität Bochum; Universitätstraße 150 44801 Bochum Deutschland
| | - Jifu Duan
- Fakultät für Biologie und Biotechnologie; Ruhr-Universität Bochum; Universitätsstraße 150 44801 Bochum Deutschland
| | - Michael Haumann
- Fakultät für Physik; Freie Universität Berlin; Arnimallee 14 1495 Berlin Deutschland
| | - Thomas Happe
- Fakultät für Biologie und Biotechnologie; Ruhr-Universität Bochum; Universitätsstraße 150 44801 Bochum Deutschland
| | - Martin Winkler
- Fakultät für Biologie und Biotechnologie; Ruhr-Universität Bochum; Universitätsstraße 150 44801 Bochum Deutschland
| | - Ulf-Peter Apfel
- Fakultät für Chemie und Biochemie; Ruhr-Universität Bochum; Universitätstraße 150 44801 Bochum Deutschland
| | - Sven T. Stripp
- Fakultät für Physik; Freie Universität Berlin; Arnimallee 14 1495 Berlin Deutschland
| |
Collapse
|
70
|
Senger M, Laun K, Wittkamp F, Duan J, Haumann M, Happe T, Winkler M, Apfel UP, Stripp ST. Proton-Coupled Reduction of the Catalytic [4Fe-4S] Cluster in [FeFe]-Hydrogenases. Angew Chem Int Ed Engl 2017; 56:16503-16506. [PMID: 29072356 DOI: 10.1002/anie.201709910] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 10/23/2017] [Indexed: 12/25/2022]
Abstract
In nature, [FeFe]-hydrogenases catalyze the uptake and release of molecular hydrogen (H2 ) at a unique iron-sulfur cofactor. The absence of an electrochemical overpotential in the H2 release reaction makes [FeFe]-hydrogenases a prime example of efficient biocatalysis. However, the molecular details of hydrogen turnover are not yet fully understood. Herein, we characterize the initial one-electron reduction of [FeFe]-hydrogenases by infrared spectroscopy and electrochemistry and present evidence for proton-coupled electron transport during the formation of the reduced state Hred'. Charge compensation stabilizes the excess electron at the [4Fe-4S] cluster and maintains a conservative configuration of the diiron site. The role of Hred' in hydrogen turnover and possible implications on the catalytic mechanism are discussed. We propose that regulation of the electronic properties in the periphery of metal cofactors is key to orchestrating multielectron processes.
Collapse
Affiliation(s)
- Moritz Senger
- Department of Physics, Freie Universität Berlin, Arnimallee 14, 1495, Berlin, Germany
| | - Konstantin Laun
- Department of Physics, Freie Universität Berlin, Arnimallee 14, 1495, Berlin, Germany
| | - Florian Wittkamp
- Faculty of Chemistry and Biochemistry, Ruhr-Universität Bochum, Universitätstrasse 150, 44801, Bochum, Germany
| | - Jifu Duan
- Faculty of Biology and Biotechnology, Ruhr-Universität Bochum, Universitätsstrasse 150, 44801, Bochum, Germany
| | - Michael Haumann
- Department of Physics, Freie Universität Berlin, Arnimallee 14, 1495, Berlin, Germany
| | - Thomas Happe
- Faculty of Biology and Biotechnology, Ruhr-Universität Bochum, Universitätsstrasse 150, 44801, Bochum, Germany
| | - Martin Winkler
- Faculty of Biology and Biotechnology, Ruhr-Universität Bochum, Universitätsstrasse 150, 44801, Bochum, Germany
| | - Ulf-Peter Apfel
- Faculty of Chemistry and Biochemistry, Ruhr-Universität Bochum, Universitätstrasse 150, 44801, Bochum, Germany
| | - Sven T Stripp
- Department of Physics, Freie Universität Berlin, Arnimallee 14, 1495, Berlin, Germany
| |
Collapse
|
71
|
Pelmenschikov V, Birrell JA, Pham CC, Mishra N, Wang H, Sommer C, Reijerse E, Richers CP, Tamasaku K, Yoda Y, Rauchfuss TB, Lubitz W, Cramer SP. Reaction Coordinate Leading to H 2 Production in [FeFe]-Hydrogenase Identified by Nuclear Resonance Vibrational Spectroscopy and Density Functional Theory. J Am Chem Soc 2017; 139:16894-16902. [PMID: 29054130 PMCID: PMC5699932 DOI: 10.1021/jacs.7b09751] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
[FeFe]-hydrogenases are metalloenzymes that reversibly reduce protons to molecular hydrogen at exceptionally high rates. We have characterized the catalytically competent hydride state (Hhyd) in the [FeFe]-hydrogenases from both Chlamydomonas reinhardtii and Desulfovibrio desulfuricans using 57Fe nuclear resonance vibrational spectroscopy (NRVS) and density functional theory (DFT). H/D exchange identified two Fe-H bending modes originating from the binuclear iron cofactor. DFT calculations show that these spectral features result from an iron-bound terminal hydride, and the Fe-H vibrational frequencies being highly dependent on interactions between the amine base of the catalytic cofactor with both hydride and the conserved cysteine terminating the proton transfer chain to the active site. The results indicate that Hhyd is the catalytic state one step prior to H2 formation. The observed vibrational spectrum, therefore, provides mechanistic insight into the reaction coordinate for H2 bond formation by [FeFe]-hydrogenases.
Collapse
Affiliation(s)
- Vladimir Pelmenschikov
- Institut für Chemie, Technische Universität Berlin , Strasse des 17 Juni 135, 10623 Berlin, Germany
| | - James A Birrell
- Max-Planck-Institut für Chemische Energiekonversion , Stiftstrasse 34-36, 45470 Mülheim an der Ruhr, Germany
| | - Cindy C Pham
- Department of Chemistry, University of California, Davis , One Shields Avenue, Davis, California 95616, United States
| | - Nakul Mishra
- Department of Chemistry, University of California, Davis , One Shields Avenue, Davis, California 95616, United States
| | - Hongxin Wang
- Department of Chemistry, University of California, Davis , One Shields Avenue, Davis, California 95616, United States
| | - Constanze Sommer
- Max-Planck-Institut für Chemische Energiekonversion , Stiftstrasse 34-36, 45470 Mülheim an der Ruhr, Germany
| | - Edward Reijerse
- Max-Planck-Institut für Chemische Energiekonversion , Stiftstrasse 34-36, 45470 Mülheim an der Ruhr, Germany
| | - Casseday P Richers
- School of Chemical Sciences, University of Illinois , 600 S. Mathews Avenue, Urbana, Illinois 61801, United States
| | - Kenji Tamasaku
- JASRI , Spring-8, 1-1-1 Kouto, Mikazuki-cho, Sayo-gun, Hyogo 679-5198, Japan
| | - Yoshitaka Yoda
- JASRI , Spring-8, 1-1-1 Kouto, Mikazuki-cho, Sayo-gun, Hyogo 679-5198, Japan
| | - Thomas B Rauchfuss
- School of Chemical Sciences, University of Illinois , 600 S. Mathews Avenue, Urbana, Illinois 61801, United States
| | - Wolfgang Lubitz
- Max-Planck-Institut für Chemische Energiekonversion , Stiftstrasse 34-36, 45470 Mülheim an der Ruhr, Germany
| | - Stephen P Cramer
- Department of Chemistry, University of California, Davis , One Shields Avenue, Davis, California 95616, United States
| |
Collapse
|
72
|
Rodríguez-Maciá P, Pawlak K, Rüdiger O, Reijerse EJ, Lubitz W, Birrell JA. Intercluster Redox Coupling Influences Protonation at the H-cluster in [FeFe] Hydrogenases. J Am Chem Soc 2017; 139:15122-15134. [DOI: 10.1021/jacs.7b08193] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Patricia Rodríguez-Maciá
- Max Planck Institute for Chemical Energy Conversion, Stiftstraße 34-36, D-45470 Mülheim an der Ruhr, Germany
| | - Krzysztof Pawlak
- Max Planck Institute for Chemical Energy Conversion, Stiftstraße 34-36, D-45470 Mülheim an der Ruhr, Germany
| | - Olaf Rüdiger
- Max Planck Institute for Chemical Energy Conversion, Stiftstraße 34-36, D-45470 Mülheim an der Ruhr, Germany
| | - Edward J. Reijerse
- Max Planck Institute for Chemical Energy Conversion, Stiftstraße 34-36, D-45470 Mülheim an der Ruhr, Germany
| | - Wolfgang Lubitz
- Max Planck Institute for Chemical Energy Conversion, Stiftstraße 34-36, D-45470 Mülheim an der Ruhr, Germany
| | - James A. Birrell
- Max Planck Institute for Chemical Energy Conversion, Stiftstraße 34-36, D-45470 Mülheim an der Ruhr, Germany
| |
Collapse
|
73
|
Kositzki R, Mebs S, Schuth N, Leidel N, Schwartz L, Karnahl M, Wittkamp F, Daunke D, Grohmann A, Apfel UP, Gloaguen F, Ott S, Haumann M. Electronic and molecular structure relations in diiron compounds mimicking the [FeFe]-hydrogenase active site studied by X-ray spectroscopy and quantum chemistry. Dalton Trans 2017; 46:12544-12557. [PMID: 28905949 DOI: 10.1039/c7dt02720f] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Synthetic diiron compounds of the general formula Fe2(μ-S2R)(CO)n(L)6-n (R = alkyl or aromatic groups; L = CN- or phosphines) are versatile models for the active-site cofactor of hydrogen turnover in [FeFe]-hydrogenases. A series of 18 diiron compounds, containing mostly a dithiolate bridge and terminal ligands of increasing complexity, was characterized by X-ray absorption and emission spectroscopy in combination with density functional theory. Fe K-edge absorption and Kβ main-line emission spectra revealed the varying geometry and the low-spin state of the Fe(i) centers. Good agreement between experimental and calculated core-to-valence-excitation absorption and radiative valence-to-core-decay emission spectra revealed correlations between spectroscopic and structural features and provided access to the electronic configuration. Four main effects on the diiron core were identified, which were preferentially related to variation either of the dithiolate or of the terminal ligands. Alteration of the dithiolate bridge affected mainly the Fe-Fe bond strength, while more potent donor substitution and ligand field asymmetrization changed the metal charge and valence level localization. In contrast, cyanide ligation altered all relevant properties and, in particular, the frontier molecular orbital energies of the diiron core. Mutual benchmarking of experimental and theoretical parameters provides guidelines to verify the electronic properties of related diiron compounds.
Collapse
Affiliation(s)
- Ramona Kositzki
- Freie Universität Berlin, Fachbereich Physik, 14195 Berlin, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
74
|
Ratzloff MW, Wilker MB, Mulder DW, Lubner CE, Hamby H, Brown KA, Dukovic G, King PW. Activation Thermodynamics and H/D Kinetic Isotope Effect of the Hox to HredH+ Transition in [FeFe] Hydrogenase. J Am Chem Soc 2017; 139:12879-12882. [DOI: 10.1021/jacs.7b04216] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Michael W. Ratzloff
- Biosciences
Center, National Renewable Energy Laboratory, Golden, Colorado 80401, United States
| | - Molly B. Wilker
- Department
of Chemistry and Biochemistry, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - David W. Mulder
- Biosciences
Center, National Renewable Energy Laboratory, Golden, Colorado 80401, United States
| | - Carolyn E. Lubner
- Biosciences
Center, National Renewable Energy Laboratory, Golden, Colorado 80401, United States
| | - Hayden Hamby
- Department
of Chemistry and Biochemistry, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Katherine A. Brown
- Biosciences
Center, National Renewable Energy Laboratory, Golden, Colorado 80401, United States
| | - Gordana Dukovic
- Department
of Chemistry and Biochemistry, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Paul W. King
- Biosciences
Center, National Renewable Energy Laboratory, Golden, Colorado 80401, United States
| |
Collapse
|
75
|
Rodríguez-Maciá P, Reijerse E, Lubitz W, Birrell JA, Rüdiger O. Spectroscopic Evidence of Reversible Disassembly of the [FeFe] Hydrogenase Active Site. J Phys Chem Lett 2017; 8:3834-3839. [PMID: 28759237 DOI: 10.1021/acs.jpclett.7b01608] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
[FeFe] hydrogenases are extremely active and efficient H2-converting biocatalysts. Their active site comprises a unique [2Fe] subcluster bonded to a canonical [4Fe-4S] cluster. The [2Fe] subsite can be introduced into hydrogenases lacking an assembled H-cluster through incubation with a synthesized [2Fe]H precursor, which initially produces the CO-inhibited state of the enzyme. We present FTIR spectroelectrochemical studies on the CO-inhibited state of the [FeFe] hydrogenase from Desulfovibrio desulfuricans, DdHydAB. At very negative potentials, disassembly of the H-cluster and dissociation of the [2Fe] subcluster is observed. Subsequently raising the potential allows cofactor rebinding and H-cluster reassembly. This demonstrates how the stability of the [2Fe]-[4Fe-4S] intercluster bond depends on the applied potential and the presence of an inhibiting CO ligand on the [2Fe] subcluster. These results provide insight into the mechanisms of CO inhibition and H-cluster assembly in [FeFe] hydrogenases. A fundamental understanding of these properties will provide clues for designing better H2-converting catalysts.
Collapse
Affiliation(s)
- Patricia Rodríguez-Maciá
- Max Planck Institute for Chemical Energy Conversion , Stiftstrasse 34-36, 45470 Mülheim an der Ruhr, Germany
| | - Edward Reijerse
- Max Planck Institute for Chemical Energy Conversion , Stiftstrasse 34-36, 45470 Mülheim an der Ruhr, Germany
| | - Wolfgang Lubitz
- Max Planck Institute for Chemical Energy Conversion , Stiftstrasse 34-36, 45470 Mülheim an der Ruhr, Germany
| | - James A Birrell
- Max Planck Institute for Chemical Energy Conversion , Stiftstrasse 34-36, 45470 Mülheim an der Ruhr, Germany
| | - Olaf Rüdiger
- Max Planck Institute for Chemical Energy Conversion , Stiftstrasse 34-36, 45470 Mülheim an der Ruhr, Germany
| |
Collapse
|
76
|
Winkler M, Senger M, Duan J, Esselborn J, Wittkamp F, Hofmann E, Apfel UP, Stripp ST, Happe T. Accumulating the hydride state in the catalytic cycle of [FeFe]-hydrogenases. Nat Commun 2017; 8:16115. [PMID: 28722011 PMCID: PMC5524980 DOI: 10.1038/ncomms16115] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2017] [Accepted: 05/30/2017] [Indexed: 01/07/2023] Open
Abstract
H2 turnover at the [FeFe]-hydrogenase cofactor (H-cluster) is assumed to follow a reversible heterolytic mechanism, first yielding a proton and a hydrido-species which again is double-oxidized to release another proton. Three of the four presumed catalytic intermediates (Hox, Hred/Hred and Hsred) were characterized, using various spectroscopic techniques. However, in catalytically active enzyme, the state containing the hydrido-species, which is eponymous for the proposed heterolytic mechanism, has yet only been speculated about. We use different strategies to trap and spectroscopically characterize this transient hydride state (Hhyd) for three wild-type [FeFe]-hydrogenases. Applying a novel set-up for real-time attenuated total-reflection Fourier-transform infrared spectroscopy, we monitor compositional changes in the state-specific infrared signatures of [FeFe]-hydrogenases, varying buffer pH and gas composition. We selectively enrich the equilibrium concentration of Hhyd, applying Le Chatelier’s principle by simultaneously increasing substrate and product concentrations (H2/H+). Site-directed manipulation, targeting either the proton-transfer pathway or the adt ligand, significantly enhances Hhyd accumulation independent of pH. Of the four intermediates in the catalytic cycle of [FeFe]-hydrogenases, the hydride state still has eluded characterization. Here, the authors shift the reaction equilibrium for three hydrogenases and enrich the hydride-bound species, characterizing them using a real-time IR spectroscopic technique.
Collapse
Affiliation(s)
- Martin Winkler
- AG Photobiotechnologie, Lehrstuhl für Biochemie der Pflanzen, Fakultät für Biologie und Biotechnologie, Ruhr-Universität Bochum, Universitätsstraße 150, 44801 Bochum, Germany
| | - Moritz Senger
- Experimental Molecular Biophysics, Department of Physics, Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany
| | - Jifu Duan
- AG Photobiotechnologie, Lehrstuhl für Biochemie der Pflanzen, Fakultät für Biologie und Biotechnologie, Ruhr-Universität Bochum, Universitätsstraße 150, 44801 Bochum, Germany
| | - Julian Esselborn
- AG Photobiotechnologie, Lehrstuhl für Biochemie der Pflanzen, Fakultät für Biologie und Biotechnologie, Ruhr-Universität Bochum, Universitätsstraße 150, 44801 Bochum, Germany
| | - Florian Wittkamp
- Fakultät für Chemie und Biochemie, Lehrstuhl für Anorganische Chemie I/Bioanorganische Chemie, Ruhr-Universität Bochum, Universitätsstraße 150, 44801 Bochum, Germany
| | - Eckhard Hofmann
- AG Proteinkristallographie, Lehrstuhl für Biophysik, Fakultät für Biologie und Biotechnologie, Ruhr-Universität Bochum, Universitätsstraße 150, 44801 Bochum, Germany
| | - Ulf-Peter Apfel
- Fakultät für Chemie und Biochemie, Lehrstuhl für Anorganische Chemie I/Bioanorganische Chemie, Ruhr-Universität Bochum, Universitätsstraße 150, 44801 Bochum, Germany
| | - Sven Timo Stripp
- Experimental Molecular Biophysics, Department of Physics, Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany
| | - Thomas Happe
- AG Photobiotechnologie, Lehrstuhl für Biochemie der Pflanzen, Fakultät für Biologie und Biotechnologie, Ruhr-Universität Bochum, Universitätsstraße 150, 44801 Bochum, Germany
| |
Collapse
|
77
|
Schwizer F, Okamoto Y, Heinisch T, Gu Y, Pellizzoni MM, Lebrun V, Reuter R, Köhler V, Lewis JC, Ward TR. Artificial Metalloenzymes: Reaction Scope and Optimization Strategies. Chem Rev 2017; 118:142-231. [PMID: 28714313 DOI: 10.1021/acs.chemrev.7b00014] [Citation(s) in RCA: 509] [Impact Index Per Article: 72.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The incorporation of a synthetic, catalytically competent metallocofactor into a protein scaffold to generate an artificial metalloenzyme (ArM) has been explored since the late 1970's. Progress in the ensuing years was limited by the tools available for both organometallic synthesis and protein engineering. Advances in both of these areas, combined with increased appreciation of the potential benefits of combining attractive features of both homogeneous catalysis and enzymatic catalysis, led to a resurgence of interest in ArMs starting in the early 2000's. Perhaps the most intriguing of potential ArM properties is their ability to endow homogeneous catalysts with a genetic memory. Indeed, incorporating a homogeneous catalyst into a genetically encoded scaffold offers the opportunity to improve ArM performance by directed evolution. This capability could, in turn, lead to improvements in ArM efficiency similar to those obtained for natural enzymes, providing systems suitable for practical applications and greater insight into the role of second coordination sphere interactions in organometallic catalysis. Since its renaissance in the early 2000's, different aspects of artificial metalloenzymes have been extensively reviewed and highlighted. Our intent is to provide a comprehensive overview of all work in the field up to December 2016, organized according to reaction class. Because of the wide range of non-natural reactions catalyzed by ArMs, this was done using a functional-group transformation classification. The review begins with a summary of the proteins and the anchoring strategies used to date for the creation of ArMs, followed by a historical perspective. Then follows a summary of the reactions catalyzed by ArMs and a concluding critical outlook. This analysis allows for comparison of similar reactions catalyzed by ArMs constructed using different metallocofactor anchoring strategies, cofactors, protein scaffolds, and mutagenesis strategies. These data will be used to construct a searchable Web site on ArMs that will be updated regularly by the authors.
Collapse
Affiliation(s)
- Fabian Schwizer
- Department of Chemistry, Spitalstrasse 51, University of Basel , CH-4056 Basel, Switzerland
| | - Yasunori Okamoto
- Department of Chemistry, Spitalstrasse 51, University of Basel , CH-4056 Basel, Switzerland
| | - Tillmann Heinisch
- Department of Chemistry, Spitalstrasse 51, University of Basel , CH-4056 Basel, Switzerland
| | - Yifan Gu
- Searle Chemistry Laboratory, University of Chicago , 5735 S. Ellis Ave., Chicago, Illinois 60637, United States
| | - Michela M Pellizzoni
- Department of Chemistry, Spitalstrasse 51, University of Basel , CH-4056 Basel, Switzerland
| | - Vincent Lebrun
- Department of Chemistry, Spitalstrasse 51, University of Basel , CH-4056 Basel, Switzerland
| | - Raphael Reuter
- Department of Chemistry, Spitalstrasse 51, University of Basel , CH-4056 Basel, Switzerland
| | - Valentin Köhler
- Department of Chemistry, Spitalstrasse 51, University of Basel , CH-4056 Basel, Switzerland
| | - Jared C Lewis
- Searle Chemistry Laboratory, University of Chicago , 5735 S. Ellis Ave., Chicago, Illinois 60637, United States
| | - Thomas R Ward
- Department of Chemistry, Spitalstrasse 51, University of Basel , CH-4056 Basel, Switzerland
| |
Collapse
|
78
|
Artz JH, Mulder DW, Ratzloff MW, Lubner CE, Zadvornyy OA, LeVan AX, Williams SG, Adams MWW, Jones AK, King PW, Peters JW. Reduction Potentials of [FeFe]-Hydrogenase Accessory Iron-Sulfur Clusters Provide Insights into the Energetics of Proton Reduction Catalysis. J Am Chem Soc 2017. [PMID: 28635269 DOI: 10.1021/jacs.7b02099] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
An [FeFe]-hydrogenase from Clostridium pasteurianum, CpI, is a model system for biological H2 activation. In addition to the catalytic H-cluster, CpI contains four accessory iron-sulfur [FeS] clusters in a branched series that transfer electrons to and from the active site. In this work, potentiometric titrations have been employed in combination with electron paramagnetic resonance (EPR) spectroscopy at defined electrochemical potentials to gain insights into the role of the accessory clusters in catalysis. EPR spectra collected over a range of potentials were deconvoluted into individual components attributable to the accessory [FeS] clusters and the active site H-cluster, and reduction potentials for each cluster were determined. The data suggest a large degree of magnetic coupling between the clusters. The distal [4Fe-4S] cluster is shown to have a lower reduction potential (∼ < -450 mV) than the other clusters, and molecular docking experiments indicate that the physiological electron donor, ferredoxin (Fd), most favorably interacts with this cluster. The low reduction potential of the distal [4Fe-4S] cluster thermodynamically restricts the Fdox/Fdred ratio at which CpI can operate, consistent with the role of CpI in recycling Fdred that accumulates during fermentation. Subsequent electron transfer through the additional accessory [FeS] clusters to the H-cluster is thermodynamically favorable.
Collapse
Affiliation(s)
- Jacob H Artz
- Institute of Biological Chemistry, Washington State University , 258 Clark Hall, Pullman, Washington 99163, United States
| | - David W Mulder
- Biosciences Center, National Renewable Energy Laboratory , 15013 Denver West Parkway, Golden, Colorado 80401, United States
| | - Michael W Ratzloff
- Biosciences Center, National Renewable Energy Laboratory , 15013 Denver West Parkway, Golden, Colorado 80401, United States
| | - Carolyn E Lubner
- Biosciences Center, National Renewable Energy Laboratory , 15013 Denver West Parkway, Golden, Colorado 80401, United States
| | - Oleg A Zadvornyy
- Institute of Biological Chemistry, Washington State University , 258 Clark Hall, Pullman, Washington 99163, United States
| | - Axl X LeVan
- Department of Chemistry and Biochemistry, Montana State University , 224 Chemistry and Biochemistry Building, Bozeman, Montana 59717, United States
| | - S Garrett Williams
- School of Molecular Sciences, Arizona State University , P.O. Box 871604, Tempe, Arizona 85287, United States
| | - Michael W W Adams
- B216B Life Sciences Complex, Department of Biochemistry, The University of Georgia , Athens, Georgia 30602, United States
| | - Anne K Jones
- School of Molecular Sciences, Arizona State University , P.O. Box 871604, Tempe, Arizona 85287, United States
| | - Paul W King
- Biosciences Center, National Renewable Energy Laboratory , 15013 Denver West Parkway, Golden, Colorado 80401, United States
| | - John W Peters
- Institute of Biological Chemistry, Washington State University , 258 Clark Hall, Pullman, Washington 99163, United States
| |
Collapse
|
79
|
Reijerse EJ, Pham CC, Pelmenschikov V, Gilbert-Wilson R, Adamska-Venkatesh A, Siebel JF, Gee LB, Yoda Y, Tamasaku K, Lubitz W, Rauchfuss TB, Cramer SP. Direct Observation of an Iron-Bound Terminal Hydride in [FeFe]-Hydrogenase by Nuclear Resonance Vibrational Spectroscopy. J Am Chem Soc 2017; 139:4306-4309. [PMID: 28291336 PMCID: PMC5545132 DOI: 10.1021/jacs.7b00686] [Citation(s) in RCA: 130] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
[FeFe]-hydrogenases catalyze the reversible reduction of protons to molecular hydrogen with extremely high efficiency. The active site ("H-cluster") consists of a [4Fe-4S]H cluster linked through a bridging cysteine to a [2Fe]H subsite coordinated by CN- and CO ligands featuring a dithiol-amine moiety that serves as proton shuttle between the protein proton channel and the catalytic distal iron site (Fed). Although there is broad consensus that an iron-bound terminal hydride species must occur in the catalytic mechanism, such a species has never been directly observed experimentally. Here, we present FTIR and nuclear resonance vibrational spectroscopy (NRVS) experiments in conjunction with density functional theory (DFT) calculations on an [FeFe]-hydrogenase variant lacking the amine proton shuttle which is stabilizing a putative hydride state. The NRVS spectra unequivocally show the bending modes of the terminal Fe-H species fully consistent with widely accepted models of the catalytic cycle.
Collapse
Affiliation(s)
- Edward J. Reijerse
- Max-Planck-Institut für Chemische Energiekonversion, Stitstrasse 34-36, 45470 Mülheim, Germany
| | - Cindy C. Pham
- Department of Chemistry, University of California, Davis, California 95616, United States
| | | | - Ryan Gilbert-Wilson
- School of Chemical Sciences, University of Illinois at Urbana—Champaign, Urbana, Illinois 61801, United States
| | | | - Judith F. Siebel
- Max-Planck-Institut für Chemische Energiekonversion, Stitstrasse 34-36, 45470 Mülheim, Germany
| | - Leland B. Gee
- Department of Chemistry, University of California, Davis, California 95616, United States
| | - Yoshitaka Yoda
- Materials Dynamics Laboratory, RIKEN SPring-8, Hyogo 679-5148, Japan
| | - Kenji Tamasaku
- Materials Dynamics Laboratory, RIKEN SPring-8, Hyogo 679-5148, Japan
| | - Wolfgang Lubitz
- Max-Planck-Institut für Chemische Energiekonversion, Stitstrasse 34-36, 45470 Mülheim, Germany
| | - Thomas B. Rauchfuss
- School of Chemical Sciences, University of Illinois at Urbana—Champaign, Urbana, Illinois 61801, United States
| | - Stephen P. Cramer
- Department of Chemistry, University of California, Davis, California 95616, United States
| |
Collapse
|
80
|
Brooke EJ, Evans RM, Islam STA, Roberts GM, Wehlin SAM, Carr SB, Phillips SEV, Armstrong FA. Importance of the Active Site “Canopy” Residues in an O2-Tolerant [NiFe]-Hydrogenase. Biochemistry 2016; 56:132-142. [DOI: 10.1021/acs.biochem.6b00868] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
| | | | | | - Gerri M. Roberts
- Division
of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | | | - Stephen B. Carr
- Research
Complex at Harwell, Rutherford Appleton Laboratory, Harwell Campus, Didcot, U.K
- Department
of Biochemistry, University of Oxford, Oxford, U.K
| | - Simon E. V. Phillips
- Research
Complex at Harwell, Rutherford Appleton Laboratory, Harwell Campus, Didcot, U.K
- Department
of Biochemistry, University of Oxford, Oxford, U.K
| | | |
Collapse
|
81
|
Ding S, Ghosh P, Lunsford AM, Wang N, Bhuvanesh N, Hall MB, Darensbourg MY. Hemilabile Bridging Thiolates as Proton Shuttles in Bioinspired H2 Production Electrocatalysts. J Am Chem Soc 2016; 138:12920-12927. [DOI: 10.1021/jacs.6b06461] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Shengda Ding
- Department of Chemistry, Texas A & M University, College Station, Texas 77843, United States
| | - Pokhraj Ghosh
- Department of Chemistry, Texas A & M University, College Station, Texas 77843, United States
| | - Allen M. Lunsford
- Department of Chemistry, Texas A & M University, College Station, Texas 77843, United States
| | - Ning Wang
- Department of Chemistry, Texas A & M University, College Station, Texas 77843, United States
| | - Nattamai Bhuvanesh
- Department of Chemistry, Texas A & M University, College Station, Texas 77843, United States
| | - Michael B. Hall
- Department of Chemistry, Texas A & M University, College Station, Texas 77843, United States
| | - Marcetta Y. Darensbourg
- Department of Chemistry, Texas A & M University, College Station, Texas 77843, United States
| |
Collapse
|
82
|
Schilter D, Camara JM, Huynh MT, Hammes-Schiffer S, Rauchfuss TB. Hydrogenase Enzymes and Their Synthetic Models: The Role of Metal Hydrides. Chem Rev 2016; 116:8693-749. [PMID: 27353631 PMCID: PMC5026416 DOI: 10.1021/acs.chemrev.6b00180] [Citation(s) in RCA: 409] [Impact Index Per Article: 51.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Hydrogenase enzymes efficiently process H2 and protons at organometallic FeFe, NiFe, or Fe active sites. Synthetic modeling of the many H2ase states has provided insight into H2ase structure and mechanism, as well as afforded catalysts for the H2 energy vector. Particularly important are hydride-bearing states, with synthetic hydride analogues now known for each hydrogenase class. These hydrides are typically prepared by protonation of low-valent cores. Examples of FeFe and NiFe hydrides derived from H2 have also been prepared. Such chemistry is more developed than mimicry of the redox-inactive monoFe enzyme, although functional models of the latter are now emerging. Advances in physical and theoretical characterization of H2ase enzymes and synthetic models have proven key to the study of hydrides in particular, and will guide modeling efforts toward more robust and active species optimized for practical applications.
Collapse
Affiliation(s)
- David Schilter
- Center for Multidimensional Carbon Materials, Institute for Basic Science (IBS), Ulsan 44919, Republic of Korea
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - James M. Camara
- Department of Chemistry, Yeshiva University, 500 West 185th Street, New York, New York 10033, United States
| | - Mioy T. Huynh
- Department of Chemistry, University of Illinois at Urbana–Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, United States
| | - Sharon Hammes-Schiffer
- Department of Chemistry, University of Illinois at Urbana–Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, United States
| | - Thomas B. Rauchfuss
- Department of Chemistry, University of Illinois at Urbana–Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, United States
| |
Collapse
|
83
|
Birrell JA, Wrede K, Pawlak K, Rodriguez-Maciá P, Rüdiger O, Reijerse EJ, Lubitz W. Artificial Maturation of the Highly Active Heterodimeric [FeFe] Hydrogenase from Desulfovibrio desulfuricans
ATCC 7757. Isr J Chem 2016. [DOI: 10.1002/ijch.201600035] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- James A. Birrell
- Max Planck Institute for Chemical Energy Conversion; Stiftstraße 34-36 D-45470 Mülheim an der Ruhr Germany
| | - Kathrin Wrede
- Max Planck Institute for Chemical Energy Conversion; Stiftstraße 34-36 D-45470 Mülheim an der Ruhr Germany
| | - Krzysztof Pawlak
- Max Planck Institute for Chemical Energy Conversion; Stiftstraße 34-36 D-45470 Mülheim an der Ruhr Germany
| | - Patricia Rodriguez-Maciá
- Max Planck Institute for Chemical Energy Conversion; Stiftstraße 34-36 D-45470 Mülheim an der Ruhr Germany
| | - Olaf Rüdiger
- Max Planck Institute for Chemical Energy Conversion; Stiftstraße 34-36 D-45470 Mülheim an der Ruhr Germany
| | - Edward J. Reijerse
- Max Planck Institute for Chemical Energy Conversion; Stiftstraße 34-36 D-45470 Mülheim an der Ruhr Germany
| | - Wolfgang Lubitz
- Max Planck Institute for Chemical Energy Conversion; Stiftstraße 34-36 D-45470 Mülheim an der Ruhr Germany
| |
Collapse
|
84
|
Stepwise isotope editing of [FeFe]-hydrogenases exposes cofactor dynamics. Proc Natl Acad Sci U S A 2016; 113:8454-9. [PMID: 27432985 DOI: 10.1073/pnas.1606178113] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
The six-iron cofactor of [FeFe]-hydrogenases (H-cluster) is the most efficient H2-forming catalyst in nature. It comprises a diiron active site with three carbon monoxide (CO) and two cyanide (CN(-)) ligands in the active oxidized state (Hox) and one additional CO ligand in the inhibited state (Hox-CO). The diatomic ligands are sensitive reporter groups for structural changes of the cofactor. Their vibrational dynamics were monitored by real-time attenuated total reflection Fourier-transform infrared spectroscopy. Combination of (13)CO gas exposure, blue or red light irradiation, and controlled hydration of three different [FeFe]-hydrogenase proteins produced 8 Hox and 16 Hox-CO species with all possible isotopic exchange patterns. Extensive density functional theory calculations revealed the vibrational mode couplings of the carbonyl ligands and uniquely assigned each infrared spectrum to a specific labeling pattern. For Hox-CO, agreement between experimental and calculated infrared frequencies improved by up to one order of magnitude for an apical CN(-) at the distal iron ion of the cofactor as opposed to an apical CO. For Hox, two equally probable isomers with partially rotated ligands were suggested. Interconversion between these structures implies dynamic ligand reorientation at the H-cluster. Our experimental protocol for site-selective (13)CO isotope editing combined with computational species assignment opens new perspectives for characterization of functional intermediates in the catalytic cycle.
Collapse
|
85
|
Caserta G, Adamska-Venkatesh A, Pecqueur L, Atta M, Artero V, Roy S, Reijerse E, Lubitz W, Fontecave M. Chemical assembly of multiple metal cofactors: The heterologously expressed multidomain [FeFe]-hydrogenase from Megasphaera elsdenii. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2016; 1857:1734-1740. [PMID: 27421233 DOI: 10.1016/j.bbabio.2016.07.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Revised: 07/03/2016] [Accepted: 07/10/2016] [Indexed: 10/21/2022]
Abstract
[FeFe]-hydrogenases are unique and fascinating enzymes catalyzing the reversible reduction of protons into hydrogen. These metalloenzymes display extremely large catalytic reaction rates at very low overpotential values and are, therefore, studied as potential catalysts for bioelectrodes of electrolyzers and fuel cells. Since they contain multiple metal cofactors whose biosynthesis depends on complex protein machineries, their preparation is difficult. As a consequence still few have been purified to homogeneity allowing spectroscopic and structural characterization. As part of a program aiming at getting easy access to new hydrogenases we report here a methodology based on a purely chemical assembly of their metal cofactors. This methodology is applied to the preparation and characterization of the hydrogenase from the fermentative anaerobic rumen bacterium Megasphaera elsdenii, which has only been incompletely characterized in the past.
Collapse
Affiliation(s)
- Giorgio Caserta
- Laboratoire de Chimie des Processus Biologiques, Collège de France, Université Pierre et Marie Curie, CNRS UMR 8229, 11 place Marcelin Berthelot, 75005 Paris, France
| | | | - Ludovic Pecqueur
- Laboratoire de Chimie des Processus Biologiques, Collège de France, Université Pierre et Marie Curie, CNRS UMR 8229, 11 place Marcelin Berthelot, 75005 Paris, France
| | - Mohamed Atta
- Laboratoire de Chimie et Biologie des Métaux, Université Grenoble Alpes, CEA/BIG, CNRS, 17 rue des martyrs, 38000 Grenoble, France
| | - Vincent Artero
- Laboratoire de Chimie et Biologie des Métaux, Université Grenoble Alpes, CEA/BIG, CNRS, 17 rue des martyrs, 38000 Grenoble, France
| | - Souvik Roy
- Laboratoire de Chimie et Biologie des Métaux, Université Grenoble Alpes, CEA/BIG, CNRS, 17 rue des martyrs, 38000 Grenoble, France
| | - Edward Reijerse
- Max-Planck-Institut für Chemische Energiekonversion, Stiftstrasse 34-36, 45470 Mülheim an der Ruhr, Germany
| | - Wolfgang Lubitz
- Max-Planck-Institut für Chemische Energiekonversion, Stiftstrasse 34-36, 45470 Mülheim an der Ruhr, Germany
| | - Marc Fontecave
- Laboratoire de Chimie des Processus Biologiques, Collège de France, Université Pierre et Marie Curie, CNRS UMR 8229, 11 place Marcelin Berthelot, 75005 Paris, France.
| |
Collapse
|
86
|
Noth J, Esselborn J, Güldenhaupt J, Brünje A, Sawyer A, Apfel UP, Gerwert K, Hofmann E, Winkler M, Happe T. [FeFe]-Hydrogenase with Chalcogenide Substitutions at the H-Cluster Maintains Full H2
Evolution Activity. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201511896] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Jens Noth
- Ruhr Universität Bochum; Lehrstuhl für Biochemie der Pflanzen; AG Photobiotechnologie; Universitätsstrasse 150 44801 Bochum Germany
| | - Julian Esselborn
- Ruhr Universität Bochum; Lehrstuhl für Biochemie der Pflanzen; AG Photobiotechnologie; Universitätsstrasse 150 44801 Bochum Germany
| | - Jörn Güldenhaupt
- Ruhr Universität Bochum; Lehrstuhl für Biophysik, AG Spektroskopie; Universitätsstrasse 150 44801 Bochum Germany
| | - Annika Brünje
- Ruhr Universität Bochum; Lehrstuhl für Biochemie der Pflanzen; AG Photobiotechnologie; Universitätsstrasse 150 44801 Bochum Germany
| | - Anne Sawyer
- Ruhr Universität Bochum; Lehrstuhl für Biochemie der Pflanzen; AG Photobiotechnologie; Universitätsstrasse 150 44801 Bochum Germany
| | - Ulf-Peter Apfel
- Ruhr Universität Bochum; Fakultät für Chemie und Biochemie; Lehrstuhl für Anorganische Chemie I/ Bioanorganische Chemie; Universitätsstrasse 150 44801 Bochum Germany
| | - Klaus Gerwert
- Ruhr Universität Bochum; Lehrstuhl für Biophysik, AG Spektroskopie; Universitätsstrasse 150 44801 Bochum Germany
| | - Eckhard Hofmann
- Ruhr Universität Bochum; Lehrstuhl für Biophysik; AG Röntgenstrukturanalyse an Proteinen; Universitätsstrasse 150 44801 Bochum Germany
| | - Martin Winkler
- Ruhr Universität Bochum; Lehrstuhl für Biochemie der Pflanzen; AG Photobiotechnologie; Universitätsstrasse 150 44801 Bochum Germany
| | - Thomas Happe
- Ruhr Universität Bochum; Lehrstuhl für Biochemie der Pflanzen; AG Photobiotechnologie; Universitätsstrasse 150 44801 Bochum Germany
| |
Collapse
|
87
|
Noth J, Esselborn J, Güldenhaupt J, Brünje A, Sawyer A, Apfel UP, Gerwert K, Hofmann E, Winkler M, Happe T. [FeFe]-Hydrogenase with Chalcogenide Substitutions at the H-Cluster Maintains Full H2 Evolution Activity. Angew Chem Int Ed Engl 2016; 55:8396-400. [PMID: 27214763 DOI: 10.1002/anie.201511896] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 03/27/2016] [Indexed: 01/08/2023]
Abstract
The [FeFe]-hydrogenase HYDA1 from Chlamydomonas reinhardtii is particularly amenable to biochemical and biophysical characterization because the H-cluster in the active site is the only inorganic cofactor present. Herein, we present the complete chemical incorporation of the H-cluster into the HYDA1-apoprotein scaffold and, furthermore, the successful replacement of sulfur in the native [4FeH ] cluster with selenium. The crystal structure of the reconstituted pre-mature HYDA1[4Fe4Se]H protein was determined, and a catalytically intact artificial H-cluster variant was generated upon in vitro maturation. Full hydrogen evolution activity as well as native-like composition and behavior of the redesigned enzyme were verified through kinetic assays, FTIR spectroscopy, and X-ray structure analysis. These findings reveal that even a bioinorganic active site with exceptional complexity can exhibit a surprising level of compositional plasticity.
Collapse
Affiliation(s)
- Jens Noth
- Ruhr Universität Bochum, Lehrstuhl für Biochemie der Pflanzen, AG Photobiotechnologie, Universitätsstrasse 150, 44801, Bochum, Germany
| | - Julian Esselborn
- Ruhr Universität Bochum, Lehrstuhl für Biochemie der Pflanzen, AG Photobiotechnologie, Universitätsstrasse 150, 44801, Bochum, Germany
| | - Jörn Güldenhaupt
- Ruhr Universität Bochum, Lehrstuhl für Biophysik, AG Spektroskopie, Universitätsstrasse 150, 44801, Bochum, Germany
| | - Annika Brünje
- Ruhr Universität Bochum, Lehrstuhl für Biochemie der Pflanzen, AG Photobiotechnologie, Universitätsstrasse 150, 44801, Bochum, Germany
| | - Anne Sawyer
- Ruhr Universität Bochum, Lehrstuhl für Biochemie der Pflanzen, AG Photobiotechnologie, Universitätsstrasse 150, 44801, Bochum, Germany
| | - Ulf-Peter Apfel
- Ruhr Universität Bochum, Fakultät für Chemie und Biochemie, Lehrstuhl für Anorganische Chemie I/ Bioanorganische Chemie, Universitätsstrasse 150, 44801, Bochum, Germany.
| | - Klaus Gerwert
- Ruhr Universität Bochum, Lehrstuhl für Biophysik, AG Spektroskopie, Universitätsstrasse 150, 44801, Bochum, Germany
| | - Eckhard Hofmann
- Ruhr Universität Bochum, Lehrstuhl für Biophysik, AG Röntgenstrukturanalyse an Proteinen, Universitätsstrasse 150, 44801, Bochum, Germany
| | - Martin Winkler
- Ruhr Universität Bochum, Lehrstuhl für Biochemie der Pflanzen, AG Photobiotechnologie, Universitätsstrasse 150, 44801, Bochum, Germany
| | - Thomas Happe
- Ruhr Universität Bochum, Lehrstuhl für Biochemie der Pflanzen, AG Photobiotechnologie, Universitätsstrasse 150, 44801, Bochum, Germany.
| |
Collapse
|
88
|
Lunsford AM, Beto CC, Ding S, Erdem ÖF, Wang N, Bhuvanesh N, Hall MB, Darensbourg MY. Cyanide-bridged iron complexes as biomimetics of tri-iron arrangements in maturases of the H cluster of the di-iron hydrogenase. Chem Sci 2016; 7:3710-3719. [PMID: 30009000 PMCID: PMC6008931 DOI: 10.1039/c6sc00213g] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Accepted: 02/18/2016] [Indexed: 01/13/2023] Open
Abstract
Concepts from organometallic chemistry are used to define possibilities of cyanide as a docking unit for bioassembly processes.
Developing from certain catalytic processes required for ancient life forms, the H2 processing enzymes [NiFe]- and [FeFe]-hydrogenase (H2ase) have active sites that are organometallic in composition, possessing carbon monoxide and cyanide as ligands. Simple synthetic analogues of the 2Fe portion of the active site of [FeFe]-H2ase have been shown to dock into the empty carrier (maturation) protein, apo-Hyd-F, via the bridging ability of a terminal cyanide ligand from a low valent FeIFeI unit to the iron of a 4Fe4S cluster of Hyd-F, with spectral evidence indicating CN isomerization during the coupling process (Berggren, et al., Nature, 2013, 499, 66–70). To probe the requirements for such cyanide couplings, we have prepared and characterized four cyanide-bridged analogues of 3-Fe systems with features related to the organoiron moiety within the loaded HydF protein. As in classical organometallic chemistry, the orientation of the CN bridge in the biomimetics is determined by the precursor reagents; no cyanide flipping or linkage isomerization was observed. Density functional theory computations evaluated the energetics of cyanide isomerization in such [FeFe]–CN–Fe ⇌ [FeFe]–NC–Fe units, and found excessively high barriers account for the failure to observe the alternative isomers. These results highlight roles for cyanide as an unusual ligand in biology that may stabilize low spin iron in [FeFe]-hydrogenase, and can act as a bridge connecting multi-iron units during bioassembly of the active site.
Collapse
Affiliation(s)
- Allen M Lunsford
- Department of Chemistry , Texas A & M University , College Station , TX 77843 , USA .
| | - Christopher C Beto
- Department of Chemistry , Texas A & M University , College Station , TX 77843 , USA .
| | - Shengda Ding
- Department of Chemistry , Texas A & M University , College Station , TX 77843 , USA .
| | - Özlen F Erdem
- Department of Physics , Middle East Technical University , 06800 Ankara , Turkey
| | - Ning Wang
- Department of Chemistry , Texas A & M University , College Station , TX 77843 , USA .
| | - Nattamai Bhuvanesh
- Department of Chemistry , Texas A & M University , College Station , TX 77843 , USA .
| | - Michael B Hall
- Department of Chemistry , Texas A & M University , College Station , TX 77843 , USA .
| | | |
Collapse
|
89
|
Esmieu C, Berggren G. Characterization of a monocyanide model of FeFe hydrogenases – highlighting the importance of the bridgehead nitrogen for catalysis. Dalton Trans 2016; 45:19242-19248. [DOI: 10.1039/c6dt02061e] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A cyanide containing mimic of the [FeFe]-hydrogenase cofactor has been characterized, highlighting the importance of the bridgehead nitrogen for proton reduction catalysis.
Collapse
Affiliation(s)
- C. Esmieu
- Molecular Biomimetics
- Department of Chemistry – Ångström Laboratory
- Uppsala University
- 75120 Uppsala
- Sweden
| | - G. Berggren
- Molecular Biomimetics
- Department of Chemistry – Ångström Laboratory
- Uppsala University
- 75120 Uppsala
- Sweden
| |
Collapse
|
90
|
Wang Z, Armstrong FA. Catalysis of solar hydrogen production by iron atoms on the surface of Fe-doped silicon carbide. Catal Sci Technol 2016. [DOI: 10.1039/c6cy01465h] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Fe atoms located on the hydrated surface of SiC provide a 100-fold enhancement in the rate of photodriven H2 evolution.
Collapse
Affiliation(s)
- Zhijiang Wang
- Department of Chemistry
- University of Oxford
- Oxford OX1 3QR
- UK
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage
| | | |
Collapse
|
91
|
Shima S, Chen D, Xu T, Wodrich MD, Fujishiro T, Schultz KM, Kahnt J, Ataka K, Hu X. Reconstitution of [Fe]-hydrogenase using model complexes. Nat Chem 2015; 7:995-1002. [DOI: 10.1038/nchem.2382] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Accepted: 09/23/2015] [Indexed: 11/09/2022]
|
92
|
Esselborn J, Muraki N, Klein K, Engelbrecht V, Metzler-Nolte N, Apfel UP, Hofmann E, Kurisu G, Happe T. A structural view of synthetic cofactor integration into [FeFe]-hydrogenases. Chem Sci 2015; 7:959-968. [PMID: 29896366 PMCID: PMC5954619 DOI: 10.1039/c5sc03397g] [Citation(s) in RCA: 104] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Accepted: 10/26/2015] [Indexed: 12/20/2022] Open
Abstract
Crystal structures of semisynthetic [FeFe]-hydrogenases with variations in the [2Fe] cluster show little structural differences despite strong effects on activity.
[FeFe]-hydrogenases are nature's fastest catalysts for the evolution or oxidation of hydrogen. Numerous synthetic model complexes for the [2Fe] subcluster (2FeH) of their active site are known, but so far none of these could compete with the enzymes. The complex Fe2[μ-(SCH2)2X](CN)2(CO)42– with X = NH was shown to integrate into the apo-form of [FeFe]-hydrogenases to yield a fully active enzyme. Here we report the first crystal structures of the apo-form of the bacterial [FeFe]-hydrogenase CpI from Clostridium pasteurianum at 1.60 Å and the active semisynthetic enzyme, CpIADT, at 1.63 Å. The structures illustrate the significant changes in ligand coordination upon integration and activation of the [2Fe] complex. These changes are induced by a rigid 2FeH cavity as revealed by the structure of apoCpI, which is remarkably similar to CpIADT. Additionally we present the high resolution crystal structures of the semisynthetic bacterial [FeFe]-hydrogenases CpIPDT (X = CH2), CpIODT (X = O) and CpISDT (X = S) with changes in the headgroup of the dithiolate bridge in the 2FeH cofactor. The structures of these inactive enzymes demonstrate that the 2FeH-subcluster and its protein environment remain largely unchanged when compared to the active enzyme CpIADT. As the active site shows an open coordination site in all structures, the absence of catalytic activity is probably not caused by steric obstruction. This demonstrates that the chemical properties of the dithiolate bridge are essential for enzyme activity.
Collapse
Affiliation(s)
- J Esselborn
- AG Photobiotechnologie , Fakultät für Biologie und Biotechnologie , Ruhr-Universität Bochum , Universitätsstraße 150 , 44801 Bochum , Germany .
| | - N Muraki
- Laboratory of Protein Crystallography , Institute for Protein Research , Osaka University , Suita , Osaka 565-0871 , Japan .
| | - K Klein
- Lehrstuhl für Anorganische Chemie I-Bioanorganische Chemie , Fakultät für Chemie und Biochemie , Ruhr-Universität Bochum , Universitätsstraße 150 , 44801 Bochum , Germany .
| | - V Engelbrecht
- AG Photobiotechnologie , Fakultät für Biologie und Biotechnologie , Ruhr-Universität Bochum , Universitätsstraße 150 , 44801 Bochum , Germany .
| | - N Metzler-Nolte
- Lehrstuhl für Anorganische Chemie I-Bioanorganische Chemie , Fakultät für Chemie und Biochemie , Ruhr-Universität Bochum , Universitätsstraße 150 , 44801 Bochum , Germany .
| | - U-P Apfel
- Lehrstuhl für Anorganische Chemie I-Bioanorganische Chemie , Fakultät für Chemie und Biochemie , Ruhr-Universität Bochum , Universitätsstraße 150 , 44801 Bochum , Germany .
| | - E Hofmann
- AG Proteinkristallographie , Fakultät für Biologie und Biotechnologie , Ruhr-Universität Bochum , Universitätsstraße 150 , 44801 Bochum , Germany
| | - G Kurisu
- Laboratory of Protein Crystallography , Institute for Protein Research , Osaka University , Suita , Osaka 565-0871 , Japan .
| | - T Happe
- AG Photobiotechnologie , Fakultät für Biologie und Biotechnologie , Ruhr-Universität Bochum , Universitätsstraße 150 , 44801 Bochum , Germany .
| |
Collapse
|
93
|
Bourrez M, Gloaguen F. Electrochemical and Computational Study of the Reactivity of a Diiron Azadithiolate Complex towards Protons in the Presence of Coordinating Anions. Eur J Inorg Chem 2015. [DOI: 10.1002/ejic.201500675] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Marc Bourrez
- UMR 6521, CNRS, Université de Bretagne Occidentale, CS 93837 Brest, France, http://www.umr6521.cnrs.fr/
| | - Frederic Gloaguen
- UMR 6521, CNRS, Université de Bretagne Occidentale, CS 93837 Brest, France, http://www.umr6521.cnrs.fr/
| |
Collapse
|
94
|
Artero V, Berggren G, Atta M, Caserta G, Roy S, Pecqueur L, Fontecave M. From enzyme maturation to synthetic chemistry: the case of hydrogenases. Acc Chem Res 2015; 48:2380-7. [PMID: 26165393 DOI: 10.1021/acs.accounts.5b00157] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Water splitting into oxygen and hydrogen is one of the most attractive strategies for storing solar energy and electricity. Because the processes at work are multielectronic, there is a crucial need for efficient and stable catalysts, which in addition have to be cheap for future industrial developments (electrolyzers, photoelectrochemicals, and fuel cells). Specifically for the water/hydrogen interconversion, Nature is an exquisite source of inspiration since this chemistry contributes to the bioenergetic metabolism of a number of living organisms via the activity of fascinating metalloenzymes, the hydrogenases. In this Account, we first briefly describe the structure of the unique dinuclear organometallic active sites of the two classes of hydrogenases as well as the complex protein machineries involved in their biosynthesis, their so-called maturation processes. This knowledge allows for the development of a fruitful bioinspired chemistry approach, which has already led to a number of interesting and original catalysts mimicking the natural active sites. More specifically, we describe our own attempts to prepare artificial hydrogenases. This can be achieved via the standard bioinspired approach using the combination of a synthetic bioinspired catalyst and a polypeptide scaffold. Such hybrid complexes provide the opportunity to optimize the system by manipulating both the catalyst through chemical synthesis and the protein component through mutagenesis. We also raise the possibility to reach such artificial systems via an original strategy based on mimicking the enzyme maturation pathways. This is illustrated in this Account by two examples developed in our laboratory. First, we show how the preparation of a lysozyme-{Mn(I)(CO)3} hybrid and its clean reaction with a nickel complex led us to generate a new class of binuclear Ni-Mn H2-evolving catalysts mimicking the active site of [NiFe]-hydrogenases. Then we describe how we were able to rationally design and prepare a hybrid system, displaying remarkable structural similarities to an [FeFe]-hydrogenase, and we show here for the first time that it is catalytically active for proton reduction. This system is based on the combination of HydF, a protein involved in the maturation of [FeFe]-hydrogenase (HydA), and a close mimic of the active site of this class of enzymes. Moreover, the synthetic [Fe2(adt)(CO)4(CN)2](2-) (adt(2-)= aza-propanedithiol) mimic, alone or within a HydF hybrid system, was shown to be able to maturate and activate a form of HydA itself lacking its diiron active site. We discuss the exciting perspectives this "synthetic maturation" opens regarding the "invention" of novel hydrogenases by the chemists.
Collapse
Affiliation(s)
- Vincent Artero
- Laboratory of Chemistry and Biology of Metals, Univ. Grenoble Alpes, CNRS, CEA, 17 rue des Martyrs, 38000 Grenoble, France
| | - Gustav Berggren
- Department of Chemistry−the
Ångström Laboratory, Uppsala University, Lägerhyddsvägen
1, 751 20 Uppsala, Sweden
| | - Mohamed Atta
- Laboratory of Chemistry and Biology of Metals, Univ. Grenoble Alpes, CNRS, CEA, 17 rue des Martyrs, 38000 Grenoble, France
| | - Giorgio Caserta
- Laboratoire de Chimie des Processus Biologiques,
Collège de France, CNRS, Université Pierre et Marie Curie, 11 Place Marcelin Berthelot, 75005 Paris, France
| | - Souvik Roy
- Laboratory of Chemistry and Biology of Metals, Univ. Grenoble Alpes, CNRS, CEA, 17 rue des Martyrs, 38000 Grenoble, France
| | - Ludovic Pecqueur
- Laboratoire de Chimie des Processus Biologiques,
Collège de France, CNRS, Université Pierre et Marie Curie, 11 Place Marcelin Berthelot, 75005 Paris, France
| | - Marc Fontecave
- Laboratory of Chemistry and Biology of Metals, Univ. Grenoble Alpes, CNRS, CEA, 17 rue des Martyrs, 38000 Grenoble, France
- Laboratoire de Chimie des Processus Biologiques,
Collège de France, CNRS, Université Pierre et Marie Curie, 11 Place Marcelin Berthelot, 75005 Paris, France
| |
Collapse
|
95
|
Gilbert-Wilson R, Siebel JF, Adamska-Venkatesh A, Pham CC, Reijerse E, Wang H, Cramer SP, Lubitz W, Rauchfuss TB. Spectroscopic Investigations of [FeFe] Hydrogenase Maturated with [(57)Fe2(adt)(CN)2(CO)4](2-). J Am Chem Soc 2015; 137:8998-9005. [PMID: 26091969 DOI: 10.1021/jacs.5b03270] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The preparation and spectroscopic characterization of a CO-inhibited [FeFe] hydrogenase with a selectively (57)Fe-labeled binuclear subsite is described. The precursor [(57)Fe2(adt)(CN)2(CO)4](2-) was synthesized from the (57)Fe metal, S8, CO, (NEt4)CN, NH4Cl, and CH2O. (Et4N)2[(57)Fe2(adt)(CN)2(CO)4] was then used for the maturation of the [FeFe] hydrogenase HydA1 from Chlamydomonas reinhardtii, to yield the enzyme selectively labeled at the [2Fe]H subcluster. Complementary (57)Fe enrichment of the [4Fe-4S]H cluster was realized by reconstitution with (57)FeCl3 and Na2S. The Hox-CO state of [2(57)Fe]H and [4(57)Fe-4S]H HydA1 was characterized by Mössbauer, HYSCORE, ENDOR, and nuclear resonance vibrational spectroscopy.
Collapse
Affiliation(s)
- Ryan Gilbert-Wilson
- †School of Chemical Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Judith F Siebel
- ‡Max-Planck-Institut für Chemische Energiekonversion, Stiftstrasse 34-36, 45470 Mülheim an der Ruhr, Germany
| | - Agnieszka Adamska-Venkatesh
- ‡Max-Planck-Institut für Chemische Energiekonversion, Stiftstrasse 34-36, 45470 Mülheim an der Ruhr, Germany
| | - Cindy C Pham
- §Department of Chemistry, University of California, Davis, California 95616, United States
| | - Edward Reijerse
- ‡Max-Planck-Institut für Chemische Energiekonversion, Stiftstrasse 34-36, 45470 Mülheim an der Ruhr, Germany
| | - Hongxin Wang
- §Department of Chemistry, University of California, Davis, California 95616, United States.,∥Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Stephen P Cramer
- §Department of Chemistry, University of California, Davis, California 95616, United States.,∥Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Wolfgang Lubitz
- ‡Max-Planck-Institut für Chemische Energiekonversion, Stiftstrasse 34-36, 45470 Mülheim an der Ruhr, Germany
| | - Thomas B Rauchfuss
- †School of Chemical Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
96
|
Angamuthu R, Chen CS, Cochrane TR, Gray DL, Schilter D, Ulloa OA, Rauchfuss TB. N-Substituted Derivatives of the Azadithiolate Cofactor from the [FeFe] Hydrogenases: Stability and Complexation. Inorg Chem 2015; 54:5717-24. [PMID: 26000618 PMCID: PMC4475577 DOI: 10.1021/acs.inorgchem.5b00290] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Experiments are described that probe the stability of N-substituted derivatives of the azadithiolate cofactor recently confirmed in the [FeFe] hydrogenases (Berggren, G., et al. Nature 2013, 499, 66). Acid-catalyzed hydrolysis of bis(thioester) BnN(CH2SAc)2 gives [BnNCH2SCH2]2 rather than azadithiol BnN(CH2SH)2. Treatment of BnN(CH2SAc)2 with NaO(t)Bu generates BnN(CH2SNa)2, which was trapped with NiCl2(diphos) (diphos = 1,2-C2H4(PR2)2; R = Ph (dppe) and Cy (dcpe)) to give fully characterized complexes Ni[(SCH2)2NBn](diphos). The related N-aryl derivative Ni[(SCH2)2NC6H4Cl](diphos) was prepared analogously from 4-ClC6H4N(CH2SAc)2, NaO(t)Bu, and NiCl2(dppe). Crystallographic analysis confirmed that these rare nonbridging [adt(R)](2-) complexes feature distorted square planar Ni centers. The analogue Pd[(SCH2)2NBn](dppe) was also prepared. (31)P NMR analysis indicates that Ni[(SCH2)2NBn](dppe) has basicity comparable to typical amines. As shown by cyclic voltammetry, the couple [M[(SCH2)2NBn](dppe)](+/0) is reversible near -2.0 V versus Fc(+/0). The wave shifts to -1.78 V upon N-protonation. In the presence of CF3CO2H, Ni[(SCH2)2NBn](dppe) catalyzes hydrogen evolution at rate of 22 s(-1) in the acid-independent regime, at room temperature in CH2Cl2 solution. In contrast to the instability of RN(CH2SH)2 (R = alkyl, aryl), the dithiol of tosylamide TsN(CH2SH)2 proved sufficiently stable to allow full characterization. This dithiol reacts with Fe3(CO)12 and, in the presence of base, NiCl2(dppe) to give Fe2[(SCH2)2NTs](CO)6 and Ni[(SCH2)2NTs](dppe), respectively.
Collapse
Affiliation(s)
| | - Chi-Shian Chen
- School of Chemical Sciences, University of Illinois at Urbana–Champaign, Urbana, Illinois 61801, United States
| | - Tyler R. Cochrane
- School of Chemical Sciences, University of Illinois at Urbana–Champaign, Urbana, Illinois 61801, United States
| | - Danielle L. Gray
- School of Chemical Sciences, University of Illinois at Urbana–Champaign, Urbana, Illinois 61801, United States
| | - David Schilter
- School of Chemical Sciences, University of Illinois at Urbana–Champaign, Urbana, Illinois 61801, United States
| | - Olbelina A. Ulloa
- School of Chemical Sciences, University of Illinois at Urbana–Champaign, Urbana, Illinois 61801, United States
| | - Thomas B. Rauchfuss
- School of Chemical Sciences, University of Illinois at Urbana–Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
97
|
Bachmeier A, Esselborn J, Hexter SV, Krämer T, Klein K, Happe T, McGrady JE, Myers WK, Armstrong FA. How Formaldehyde Inhibits Hydrogen Evolution by [FeFe]-Hydrogenases: Determination by ¹³C ENDOR of Direct Fe-C Coordination and Order of Electron and Proton Transfers. J Am Chem Soc 2015; 137:5381-9. [PMID: 25871921 DOI: 10.1021/ja513074m] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Formaldehyde (HCHO), a strong electrophile and a rapid and reversible inhibitor of hydrogen production by [FeFe]-hydrogenases, is used to identify the point in the catalytic cycle at which a highly reactive metal-hydrido species is formed. Investigations of the reaction of Chlamydomonas reinhardtii [FeFe]-hydrogenase with formaldehyde using pulsed-EPR techniques including electron-nuclear double resonance spectroscopy establish that formaldehyde binds close to the active site. Density functional theory calculations support an inhibited super-reduced state having a short Fe-(13)C bond in the 2Fe subsite. The adduct forms when HCHO is available to compete with H(+) transfer to a vacant, nucleophilic Fe site: had H(+) transfer already occurred, the reaction of HCHO with the Fe-hydrido species would lead to methanol, release of which is not detected. Instead, Fe-bound formaldehyde is a metal-hydrido mimic, a locked, inhibited form analogous to that in which two electrons and only one proton have transferred to the H-cluster. The results provide strong support for a mechanism in which the fastest pathway for H2 evolution involves two consecutive proton transfer steps to the H-cluster following transfer of a second electron to the active site.
Collapse
Affiliation(s)
- Andreas Bachmeier
- †Inorganic Chemistry Laboratory and ‡Centre for Advanced Electron Spin Resonance, Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QR, United Kingdom.,§Lehrstuhl für Biochemie der Pflanzen, AG Photobiotechnologie and ∥Lehrstuhl für Anorganische Chemie I, Ruhr-Universität Bochum, 44801 Bochum, Germany
| | - Julian Esselborn
- †Inorganic Chemistry Laboratory and ‡Centre for Advanced Electron Spin Resonance, Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QR, United Kingdom.,§Lehrstuhl für Biochemie der Pflanzen, AG Photobiotechnologie and ∥Lehrstuhl für Anorganische Chemie I, Ruhr-Universität Bochum, 44801 Bochum, Germany
| | - Suzannah V Hexter
- †Inorganic Chemistry Laboratory and ‡Centre for Advanced Electron Spin Resonance, Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QR, United Kingdom.,§Lehrstuhl für Biochemie der Pflanzen, AG Photobiotechnologie and ∥Lehrstuhl für Anorganische Chemie I, Ruhr-Universität Bochum, 44801 Bochum, Germany
| | - Tobias Krämer
- †Inorganic Chemistry Laboratory and ‡Centre for Advanced Electron Spin Resonance, Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QR, United Kingdom.,§Lehrstuhl für Biochemie der Pflanzen, AG Photobiotechnologie and ∥Lehrstuhl für Anorganische Chemie I, Ruhr-Universität Bochum, 44801 Bochum, Germany
| | - Kathrin Klein
- †Inorganic Chemistry Laboratory and ‡Centre for Advanced Electron Spin Resonance, Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QR, United Kingdom.,§Lehrstuhl für Biochemie der Pflanzen, AG Photobiotechnologie and ∥Lehrstuhl für Anorganische Chemie I, Ruhr-Universität Bochum, 44801 Bochum, Germany
| | - Thomas Happe
- †Inorganic Chemistry Laboratory and ‡Centre for Advanced Electron Spin Resonance, Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QR, United Kingdom.,§Lehrstuhl für Biochemie der Pflanzen, AG Photobiotechnologie and ∥Lehrstuhl für Anorganische Chemie I, Ruhr-Universität Bochum, 44801 Bochum, Germany
| | - John E McGrady
- †Inorganic Chemistry Laboratory and ‡Centre for Advanced Electron Spin Resonance, Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QR, United Kingdom.,§Lehrstuhl für Biochemie der Pflanzen, AG Photobiotechnologie and ∥Lehrstuhl für Anorganische Chemie I, Ruhr-Universität Bochum, 44801 Bochum, Germany
| | - William K Myers
- †Inorganic Chemistry Laboratory and ‡Centre for Advanced Electron Spin Resonance, Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QR, United Kingdom.,§Lehrstuhl für Biochemie der Pflanzen, AG Photobiotechnologie and ∥Lehrstuhl für Anorganische Chemie I, Ruhr-Universität Bochum, 44801 Bochum, Germany
| | - Fraser A Armstrong
- †Inorganic Chemistry Laboratory and ‡Centre for Advanced Electron Spin Resonance, Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QR, United Kingdom.,§Lehrstuhl für Biochemie der Pflanzen, AG Photobiotechnologie and ∥Lehrstuhl für Anorganische Chemie I, Ruhr-Universität Bochum, 44801 Bochum, Germany
| |
Collapse
|