51
|
Uzarska MA, Dutkiewicz R, Freibert SA, Lill R, Mühlenhoff U. The mitochondrial Hsp70 chaperone Ssq1 facilitates Fe/S cluster transfer from Isu1 to Grx5 by complex formation. Mol Biol Cell 2013; 24:1830-41. [PMID: 23615440 PMCID: PMC3681689 DOI: 10.1091/mbc.e12-09-0644] [Citation(s) in RCA: 103] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The monothiol glutaredoxin Grx5 is defined as a core member of mitochondrial Fe/S protein biogenesis. Grx5 undergoes a highly specific protein interaction with the dedicated Hsp70 chaperone Ssq1. The simultaneous presence of the scaffold protein Isu1 and Grx5 on Ssq1 facilitates the transfer of newly synthesized Fe/S clusters from Isu1 to Grx5. The mitochondrial Hsp70 chaperone Ssq1 plays a dedicated role in the maturation of iron–sulfur (Fe/S) proteins, an essential process of mitochondria. Similar to its bacterial orthologue HscA, Ssq1 binds to the scaffold protein Isu1, thereby facilitating dissociation of the newly synthesized Fe/S cluster on Isu1 and its transfer to target apoproteins. Here we use in vivo and in vitro approaches to show that Ssq1 also interacts with the monothiol glutaredoxin 5 (Grx5) at a binding site different from that of Isu1. Grx5 binding does not stimulate the ATPase activity of Ssq1 and is most pronounced for the ADP-bound form of Ssq1, which interacts with Isu1 most tightly. The vicinity of Isu1 and Grx5 on the Hsp70 chaperone facilitates rapid Fe/S cluster transfer from Isu1 to Grx5. Grx5 and its bound Fe/S cluster are required for maturation of all cellular Fe/S proteins, regardless of the type of bound Fe/S cofactor and subcellular localization. Hence Grx5 functions as a late-acting component of the core Fe/S cluster (ISC) assembly machinery linking the Fe/S cluster synthesis reaction on Isu1 with late assembly steps involving Fe/S cluster targeting to dedicated apoproteins.
Collapse
Affiliation(s)
- Marta A Uzarska
- Institut für Zytobiologie und Zytopathologie, Philipps-Universität Marburg, 35032 Marburg, Germany
| | | | | | | | | |
Collapse
|
52
|
Landry AP, Cheng Z, Ding H. Iron binding activity is essential for the function of IscA in iron-sulphur cluster biogenesis. Dalton Trans 2013; 42:3100-6. [PMID: 23258274 PMCID: PMC3569480 DOI: 10.1039/c2dt32000b] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Iron-sulphur cluster biogenesis requires coordinated delivery of iron and sulphur to scaffold proteins, followed by transfer of the assembled clusters from scaffold proteins to target proteins. This complex process is accomplished by a group of dedicated iron-sulphur cluster assembly proteins that are conserved from bacteria to humans. While sulphur in iron-sulphur clusters is provided by L-cysteine via cysteine desulfurase, the iron donor(s) for iron-sulphur cluster assembly remains largely elusive. Here we report that among the primary iron-sulphur cluster assembly proteins, IscA has a unique and strong binding activity for mononuclear iron in vitro and in vivo. Furthermore, the ferric iron centre tightly bound in IscA can be readily extruded by l-cysteine, followed by reduction to ferrous iron for iron-sulphur cluster biogenesis. Substitution of the highly conserved residue tyrosine 40 with phenylalanine (Y40F) in IscA results in a mutant protein that has a diminished iron binding affinity but retains the iron-sulphur cluster binding activity. Genetic complementation studies show that the IscA Y40F mutant is inactive in vivo, suggesting that the iron binding activity is essential for the function of IscA in iron-sulphur cluster biogenesis.
Collapse
Affiliation(s)
- Aaron P Landry
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| | | | | |
Collapse
|
53
|
Roche B, Aussel L, Ezraty B, Mandin P, Py B, Barras F. Iron/sulfur proteins biogenesis in prokaryotes: formation, regulation and diversity. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2013; 1827:455-69. [PMID: 23298813 DOI: 10.1016/j.bbabio.2012.12.010] [Citation(s) in RCA: 212] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2012] [Revised: 12/21/2012] [Accepted: 12/27/2012] [Indexed: 12/17/2022]
Abstract
Iron/sulfur centers are key cofactors of proteins intervening in multiple conserved cellular processes, such as gene expression, DNA repair, RNA modification, central metabolism and respiration. Mechanisms allowing Fe/S centers to be assembled, and inserted into polypeptides have attracted much attention in the last decade, both in eukaryotes and prokaryotes. Basic principles and recent advances in our understanding of the prokaryotic Fe/S biogenesis ISC and SUF systems are reviewed in the present communication. Most studies covered stem from investigations in Escherichia coli and Azotobacter vinelandii. Remarkable insights were brought about by complementary structural, spectroscopic, biochemical and genetic studies. Highlights of the recent years include scaffold mediated assembly of Fe/S cluster, A-type carriers mediated delivery of clusters and regulatory control of Fe/S homeostasis via a set of interconnected genetic regulatory circuits. Also, the importance of Fe/S biosynthesis systems in mediating soft metal toxicity was documented. A brief account of the Fe/S biosynthesis systems diversity as present in current databases is given here. Moreover, Fe/S biosynthesis factors have themselves been the object of molecular tailoring during evolution and some examples are discussed here. An effort was made to provide, based on the E. coli system, a general classification associating a given domain with a given function such as to help next search and annotation of genomes. This article is part of a Special Issue entitled: Metals in Bioenergetics and Biomimetics Systems.
Collapse
Affiliation(s)
- Béatrice Roche
- Institut de Microbiologie de la Méditerranée, Marseille, France
| | | | | | | | | | | |
Collapse
|
54
|
Miethke M. Molecular strategies of microbial iron assimilation: from high-affinity complexes to cofactor assembly systems. Metallomics 2013. [DOI: 10.1039/c2mt20193c] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
55
|
Py B, Gerez C, Angelini S, Planel R, Vinella D, Loiseau L, Talla E, Brochier-Armanet C, Garcia Serres R, Latour JM, Ollagnier-de Choudens S, Fontecave M, Barras F. Molecular organization, biochemical function, cellular role and evolution of NfuA, an atypical Fe-S carrier. Mol Microbiol 2012; 86:155-71. [PMID: 22966982 DOI: 10.1111/j.1365-2958.2012.08181.x] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Biosynthesis of iron-sulphur (Fe-S) proteins is catalysed by multi-protein systems, ISC and SUF. However, 'non-ISC, non-SUF' Fe-S biosynthesis factors have been described, both in prokaryotes and eukaryotes. Here we report in vitro and in vivo investigations of such a 'non-ISC, non SUF' component, the Nfu proteins. Phylogenomic analysis allowed us to define four subfamilies. Escherichia coli NfuA is within subfamily II. Most members of this subfamily have a Nfu domain fused to a 'degenerate' A-type carrier domain (ATC*) lacking Fe-S cluster co-ordinating Cys ligands. The Nfu domain binds a [4Fe-4S] cluster while the ATC* domain interacts with NuoG (a complex I subunit) and aconitase B (AcnB). In vitro, holo-NfuA promotes maturation of AcnB. In vivo, NfuA is necessary for full activity of complex I under aerobic growth conditions, and of AcnB in the presence of superoxide. NfuA receives Fe-S clusters from IscU/HscBA and SufBCD scaffolds and eventually transfers them to the ATCs IscA and SufA. This study provides significant information on one of the Fe-S biogenesis factors that has been often used as a building block by ISC and/or SUF synthesizing organisms, including bacteria, plants and animals.
Collapse
Affiliation(s)
- Béatrice Py
- Laboratoire de Chimie Bactérienne, UMR 7283 Aix-Marseille Université-CNRS, Institut de Microbiologie de la Méditerranée, 31 Chemin Joseph Aiguier, 13009 Marseille, France
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
56
|
Lill R, Hoffmann B, Molik S, Pierik AJ, Rietzschel N, Stehling O, Uzarska MA, Webert H, Wilbrecht C, Mühlenhoff U. The role of mitochondria in cellular iron-sulfur protein biogenesis and iron metabolism. BIOCHIMICA ET BIOPHYSICA ACTA 2012; 1823:1491-508. [PMID: 22609301 DOI: 10.1016/j.bbamcr.2012.05.009] [Citation(s) in RCA: 364] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2012] [Revised: 05/07/2012] [Accepted: 05/09/2012] [Indexed: 12/21/2022]
Abstract
Mitochondria play a key role in iron metabolism in that they synthesize heme, assemble iron-sulfur (Fe/S) proteins, and participate in cellular iron regulation. Here, we review the latter two topics and their intimate connection. The mitochondrial Fe/S cluster (ISC) assembly machinery consists of 17 proteins that operate in three major steps of the maturation process. First, the cysteine desulfurase complex Nfs1-Isd11 as the sulfur donor cooperates with ferredoxin-ferredoxin reductase acting as an electron transfer chain, and frataxin to synthesize an [2Fe-2S] cluster on the scaffold protein Isu1. Second, the cluster is released from Isu1 and transferred toward apoproteins with the help of a dedicated Hsp70 chaperone system and the glutaredoxin Grx5. Finally, various specialized ISC components assist in the generation of [4Fe-4S] clusters and cluster insertion into specific target apoproteins. Functional defects of the core ISC assembly machinery are signaled to cytosolic or nuclear iron regulatory systems resulting in increased cellular iron acquisition and mitochondrial iron accumulation. In fungi, regulation is achieved by iron-responsive transcription factors controlling the expression of genes involved in iron uptake and intracellular distribution. They are assisted by cytosolic multidomain glutaredoxins which use a bound Fe/S cluster as iron sensor and additionally perform an essential role in intracellular iron delivery to target metalloproteins. In mammalian cells, the iron regulatory proteins IRP1, an Fe/S protein, and IRP2 act in a post-transcriptional fashion to adjust the cellular needs for iron. Thus, Fe/S protein biogenesis and cellular iron metabolism are tightly linked to coordinate iron supply and utilization. This article is part of a Special Issue entitled: Cell Biology of Metals.
Collapse
Affiliation(s)
- Roland Lill
- Institut für Zytobiologie und Zytopathologie, Philipps-Universität Marburg, Robert-Koch Str. 6, 35033 Marburg, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
57
|
Kim JH, Tonelli M, Frederick RO, Chow DCF, Markley JL. Specialized Hsp70 chaperone (HscA) binds preferentially to the disordered form, whereas J-protein (HscB) binds preferentially to the structured form of the iron-sulfur cluster scaffold protein (IscU). J Biol Chem 2012; 287:31406-13. [PMID: 22782893 PMCID: PMC3438969 DOI: 10.1074/jbc.m112.352617] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
The Escherichia coli protein IscU serves as the scaffold for Fe-S cluster assembly and the vehicle for Fe-S cluster transfer to acceptor proteins, such as apoferredoxin. IscU populates two conformational states in solution, a structured conformation (S) that resembles the conformation of the holoprotein IscU-[2Fe-2S] and a dynamically disordered conformation (D) that does not bind metal ions. NMR spectroscopic results presented here show that the specialized Hsp70 chaperone (HscA), alone or as the HscA-ADP complex, preferentially binds to and stabilizes the D-state of IscU. IscU is released when HscA binds ATP. By contrast, the J-protein HscB binds preferentially to the S-state of IscU. Consistent with these findings, we propose a mechanism in which cluster transfer is coupled to hydrolysis of ATP bound to HscA, conversion of IscU to the D-state, and release of HscB.
Collapse
Affiliation(s)
- Jin Hae Kim
- Department of Biochemistry, University of Wisconsin, Madison, Wisconsin 53706, USA
| | | | | | | | | |
Collapse
|
58
|
Chahal HK, Outten FW. Separate FeS scaffold and carrier functions for SufB₂C₂ and SufA during in vitro maturation of [2Fe2S] Fdx. J Inorg Biochem 2012; 116:126-34. [PMID: 23018275 DOI: 10.1016/j.jinorgbio.2012.06.008] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2012] [Revised: 06/08/2012] [Accepted: 06/10/2012] [Indexed: 11/19/2022]
Abstract
Iron-sulfur (FeS) clusters are inorganic cofactors required for a variety of biological processes. In vivo biogenesis of FeS clusters proceeds via complex pathways involving multiple protein complexes. In the Suf FeS cluster biogenesis system, SufB may be a scaffold for nascent FeS cluster assembly whereas SufA is proposed to act as either a scaffold or an FeS cluster carrier from the scaffold to target apo-proteins. However, SufB can form multiple stable complexes with other Suf proteins, such as SufB(2)C(2) and SufBC(2)D and the specific functions of these complexes in FeS cluster assembly are not clear. Here we compare the ability of the SufB(2)C(2) and SufBC(2)D complexes as well as SufA to promote in vitro maturation of the [2Fe2S] ferredoxin (Fdx). We found that SufB(2)C(2) was most proficient as a scaffold for de novo assembly of holo-Fdx using sulfide and iron as freely available building blocks while SufA was best at direct transfer of a pre-formed FeS cluster to Fdx. Furthermore, cluster transfer from [4Fe4S] SufB(2)C(2) or SufBC(2)D to Fdx will proceed through a SufA intermediate to Fdx if SufA is present. Finally, addition of ATP repressed cluster transfer from [4Fe4S] SufB(2)C(2) to Fdx and from SufBC(2)D to [2Fe2S] SufA or Fdx. These studies indicate that SufB(2)C(2) can serve as a terminal scaffold to load the SufA FeS cluster carrier for in vitro maturation of [2Fe2S] enzymes like Fdx. This work is the first to systematically compare the cluster transfer rates of a scaffold (SufB) to the transfer rates of a carrier (SufA) under the same conditions to the same target enzyme and is also the first to reconstitute the full transfer pathway (from scaffold to carrier to target enzyme) in a single reaction.
Collapse
Affiliation(s)
- Harsimranjit K Chahal
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, USA.
| | | |
Collapse
|
59
|
Peters JW, Broderick JB. Emerging paradigms for complex iron-sulfur cofactor assembly and insertion. Annu Rev Biochem 2012; 81:429-50. [PMID: 22482905 DOI: 10.1146/annurev-biochem-052610-094911] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
[FeFe]-hydrogenses and molybdenum (Mo)-nitrogenase are evolutionarily unrelated enzymes with unique complex iron-sulfur cofactors at their active sites. The H cluster of [FeFe]-hydrogenases and the FeMo cofactor of Mo-nitrogenase require specific maturation machinery for their proper synthesis and insertion into the structural enzymes. Recent insights reveal striking similarities in the biosynthetic pathways of these complex cofactors. For both systems, simple iron-sulfur cluster precursors are modified on assembly scaffolds by the activity of radical S-adenosylmethionine (SAM) enzymes. Radical SAM enzymes are responsible for the synthesis and insertion of the unique nonprotein ligands presumed to be key structural determinants for their respective catalytic activities. Maturation culminates in the transfer of the intact cluster assemblies to a cofactor-less structural protein recipient. Required roles for nucleotide binding and hydrolysis have been implicated in both systems, but the specific role for these requirements remain unclear. In this review, we highlight the progress on [FeFe]-hydrogenase H cluster and nitrogenase FeMo-cofactor assembly in the context of these emerging paradigms.
Collapse
Affiliation(s)
- John W Peters
- Department of Chemistry and Biochemistry and the Astrobiology Biogeocatalysis Research Center, Montana State University, Bozeman, Montana 59717, USA.
| | | |
Collapse
|
60
|
Shan Y, Cortopassi G. HSC20 interacts with frataxin and is involved in iron-sulfur cluster biogenesis and iron homeostasis. Hum Mol Genet 2012; 21:1457-69. [PMID: 22171070 PMCID: PMC3298274 DOI: 10.1093/hmg/ddr582] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2011] [Revised: 11/30/2011] [Accepted: 12/06/2011] [Indexed: 12/20/2022] Open
Abstract
Friedreich's ataxia is a neurodegenerative disorder caused by mutations in the frataxin gene that produces a predominantly mitochondrial protein whose primary function appears to be mitochondrial iron-sulfur cluster (ISC) biosynthesis. Previously we demonstrated that frataxin interacts with multiple components of the mammalian ISC assembly machinery. Here we demonstrate that frataxin interacts with the mammalian mitochondrial chaperone HSC20. We show that this interaction is iron-dependent. We also show that like frataxin, HSC20 interacts with multiple proteins involved in ISC biogenesis including the ISCU/Nfs1 ISC biogenesis complex and the GRP75 ISC chaperone. Furthermore, knockdown of HSC20 caused functional defects in activity of mitochondrial ISC-containing enzymes and also defects in ISC protein expression. Alterations up or down of frataxin expression caused compensatory changes in HSC20 expression inversely, as expected of two cooperating proteins operating in the same pathway and suggesting a potential therapeutic strategy for the disease. Knockdown of HSC20 altered cytosolic and mitochondrial iron pools and increased the expression of transferrin receptor 1 and iron regulatory protein 2 consistent with decreased iron bioavailability. These results indicate that HSC20 interacts with frataxin structurally and functionally and is important for ISC biogenesis and iron homeostasis in mammals. Furthermore, they suggest that HSC20 may act late in the ISC pathway as a chaperone in ISC delivery to apoproteins and that HSC20 should be included in multi-protein complex studies of mammalian ISC biogenesis.
Collapse
Affiliation(s)
| | - Gino Cortopassi
- School of Veterinary Medicine, Department of Molecular Biosciences, University of California, 1120 Haring Hall, Davis, CA 95616, USA
| |
Collapse
|
61
|
Netz DJA, Pierik AJ, Stümpfig M, Bill E, Sharma AK, Pallesen LJ, Walden WE, Lill R. A bridging [4Fe-4S] cluster and nucleotide binding are essential for function of the Cfd1-Nbp35 complex as a scaffold in iron-sulfur protein maturation. J Biol Chem 2012; 287:12365-78. [PMID: 22362766 DOI: 10.1074/jbc.m111.328914] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The essential P-loop NTPases Cfd1 and Nbp35 of the cytosolic iron-sulfur (Fe-S) protein assembly machinery perform a scaffold function for Fe-S cluster synthesis. Both proteins contain a nucleotide binding motif of unknown function and a C-terminal motif with four conserved cysteine residues. The latter motif defines the Mrp/Nbp35 subclass of P-loop NTPases and is suspected to be involved in transient Fe-S cluster binding. To elucidate the function of these two motifs, we first created cysteine mutant proteins of Cfd1 and Nbp35 and investigated the consequences of these mutations by genetic, cell biological, biochemical, and spectroscopic approaches. The two central cysteine residues (CPXC) of the C-terminal motif were found to be crucial for cell viability, protein function, coordination of a labile [4Fe-4S] cluster, and Cfd1-Nbp35 hetero-tetramer formation. Surprisingly, the two proximal cysteine residues were dispensable for all these functions, despite their strict evolutionary conservation. Several lines of evidence suggest that the C-terminal CPXC motifs of Cfd1-Nbp35 coordinate a bridging [4Fe-4S] cluster. Upon mutation of the nucleotide binding motifs Fe-S clusters could no longer be assembled on these proteins unless wild-type copies of Cfd1 and Nbp35 were present in trans. This result indicated that Fe-S cluster loading on these scaffold proteins is a nucleotide-dependent step. We propose that the bridging coordination of the C-terminal Fe-S cluster may be ideal for its facile assembly, labile binding, and efficient transfer to target Fe-S apoproteins, a step facilitated by the cytosolic iron-sulfur (Fe-S) protein assembly proteins Nar1 and Cia1 in vivo.
Collapse
Affiliation(s)
- Daili J A Netz
- Institut für Zytobiologie und Zytopathologie, Philipps-Universität Marburg, Robert-Koch Strasse 6, 35032 Marburg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
62
|
Maynard ND, Macklin DN, Kirkegaard K, Covert MW. Competing pathways control host resistance to virus via tRNA modification and programmed ribosomal frameshifting. Mol Syst Biol 2012; 8:567. [PMID: 22294093 PMCID: PMC3296357 DOI: 10.1038/msb.2011.101] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2011] [Accepted: 12/14/2011] [Indexed: 11/25/2022] Open
Abstract
Viral infection depends on a complex interplay between host and viral factors. Here, we link host susceptibility to viral infection to a network encompassing sulfur metabolism, tRNA modification, competitive binding, and programmed ribosomal frameshifting (PRF). We first demonstrate that the iron-sulfur cluster biosynthesis pathway in Escherichia coli exerts a protective effect during lambda phage infection, while a tRNA thiolation pathway enhances viral infection. We show that tRNA(Lys) uridine 34 modification inhibits PRF to influence the ratio of lambda phage proteins gpG and gpGT. Computational modeling and experiments suggest that the role of the iron-sulfur cluster biosynthesis pathway in infection is indirect, via competitive binding of the shared sulfur donor IscS. Based on the universality of many key components of this network, in both the host and the virus, we anticipate that these findings may have broad relevance to understanding other infections, including viral infection of humans.
Collapse
Affiliation(s)
| | - Derek N Macklin
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Karla Kirkegaard
- Department of Microbiology and Immunology, Stanford University, Stanford, CA, USA
| | - Markus W Covert
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| |
Collapse
|
63
|
Torchetti EM, Bonomi F, Galluccio M, Gianazza E, Giancaspero TA, Iametti S, Indiveri C, Barile M. Human FAD synthase (isoform 2): a component of the machinery that delivers FAD to apo-flavoproteins. FEBS J 2011; 278:4434-49. [PMID: 21951714 DOI: 10.1111/j.1742-4658.2011.08368.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
A soluble form of human FAD synthase (isoform 2; hFADS2) was produced and purified to homogeneity as a recombinant His-tagged protein. The enzyme binds 1 mole of the FAD product very tightly, although noncovalently. Complete release of FAD from the 'as isolated' protein requires extensive denaturation. A 75 : 25 mixture of apo/holoprotein could be prepared by treatment with mild chaotropes, allowing estimatation of the contribution made by bound FAD to the protein stability and evaluatation of whether structural rearrangements may be required for FAD release. Under turnover conditions, the enzyme catalyzes FAD assembly from ATP and FMN and, at a much lower rate, the pyrophosphorolytic hydrolysis of FAD. Several mechanistic features of both reactions were investigated in detail, along with their dependence on environmental conditions (pH, temperature, dependence on metals). Our data indicate that FAD release may represent the rate-limiting step of the whole catalytic cycle and that the process leading to FAD synthesis, and delivery to client apoproteins may be tightly controlled.
Collapse
Affiliation(s)
- Enza M Torchetti
- Dipartimento di Biochimica e Biologia Molecolare E. Quagliariello (DBBM), Università degli Studi di Bari, Bari, Italy
| | | | | | | | | | | | | | | |
Collapse
|
64
|
Bonomi F, Iametti S, Morleo A, Ta D, Vickery LE. Facilitated Transfer of IscU–[2Fe2S] Clusters by Chaperone-Mediated Ligand Exchange. Biochemistry 2011; 50:9641-50. [DOI: 10.1021/bi201123z] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Francesco Bonomi
- Section of Biochemistry, DISMA, University of Milan, Celoria 2, 20133 Milan, Italy
| | - Stefania Iametti
- Section of Biochemistry, DISMA, University of Milan, Celoria 2, 20133 Milan, Italy
| | - Anna Morleo
- Section of Biochemistry, DISMA, University of Milan, Celoria 2, 20133 Milan, Italy
| | - Dennis Ta
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, California 92617, United
States
| | - Larry E. Vickery
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, California 92617, United
States
| |
Collapse
|
65
|
Ewen KM, Hannemann F, Iametti S, Morleo A, Bernhardt R. Functional characterization of Fdx1: evidence for an evolutionary relationship between P450-type and ISC-type ferredoxins. J Mol Biol 2011; 413:940-51. [PMID: 21945528 DOI: 10.1016/j.jmb.2011.09.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2011] [Revised: 08/26/2011] [Accepted: 09/06/2011] [Indexed: 10/17/2022]
Abstract
Ferredoxins are ubiquitous proteins with electron transfer activity involved in a variety of biological processes. In this work, we investigated the characteristics and function of Fdx1 from Sorangium cellulosum So ce56 by using a combination of bioinformatics and of biochemical/biophysical approaches. We were able to experimentally confirm a role of Fdx1 in the iron-sulfur cluster biosynthesis by in vitro reduction studies with cluster-loaded So ce56 IscU and by transfer studies of the cluster from the latter protein to apo-aconitase A. Moreover, we found that Fdx1 can replace mammalian adrenodoxin in supporting the activity of bovine CYP11A1. This makes S. cellulosum Fdx1 the first prokaryotic ferredoxin reported to functionally interact with this mammalian enzyme. Although the interaction with CYP11A1 is non-physiological, this is-to the best of our knowledge-the first study to experimentally prove the activity of a postulated ISC-type ferredoxin in both the ISC assembly and a cytochrome P450 system. This proves that a single ferredoxin can be structurally able to provide electrons to both cytochromes P450 and IscU and thus support different biochemical processes. Combining this finding with phylogenetic and evolutionary trace analyses led us to propose the evolution of eukaryotic mitochondrial P450-type ferredoxins and ISC-type ferredoxins from a common prokaryotic ISC-type ancestor.
Collapse
Affiliation(s)
- Kerstin Maria Ewen
- Department of Biochemistry, Saarland University, D-66041 Saarbrücken, Germany
| | | | | | | | | |
Collapse
|
66
|
Xu XM, Møller SG. Iron-sulfur clusters: biogenesis, molecular mechanisms, and their functional significance. Antioxid Redox Signal 2011; 15:271-307. [PMID: 20812788 DOI: 10.1089/ars.2010.3259] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Iron-sulfur clusters [Fe-S] are small, ubiquitous inorganic cofactors representing one of the earliest catalysts during biomolecule evolution and are involved in fundamental biological reactions, including regulation of enzyme activity, mitochondrial respiration, ribosome biogenesis, cofactor biogenesis, gene expression regulation, and nucleotide metabolism. Although simple in structure, [Fe-S] biogenesis requires complex protein machineries and pathways for assembly. [Fe-S] are assembled from cysteine-derived sulfur and iron onto scaffold proteins followed by transfer to recipient apoproteins. Several predominant iron-sulfur biogenesis systems have been identified, including nitrogen fixation (NIF), sulfur utilization factor (SUF), iron-sulfur cluster (ISC), and cytosolic iron-sulfur protein assembly (CIA), and many protein components have been identified and characterized. In eukaryotes ISC is mainly localized to mitochondria, cytosolic iron-sulfur protein assembly to the cytosol, whereas plant sulfur utilization factor is localized mainly to plastids. Because of this spatial separation, evidence suggests cross-talk mediated by organelle export machineries and dual targeting mechanisms. Although research efforts in understanding iron-sulfur biogenesis has been centered on bacteria, yeast, and plants, recent efforts have implicated inappropriate [Fe-S] biogenesis to underlie many human diseases. In this review we detail our current understanding of [Fe-S] biogenesis across species boundaries highlighting evolutionary conservation and divergence and assembling our knowledge into a cellular context.
Collapse
Affiliation(s)
- Xiang Ming Xu
- Centre for Organelle Research CORE, University of Stavanger, Norway
| | | |
Collapse
|
67
|
Hidese R, Mihara H, Esaki N. Bacterial cysteine desulfurases: versatile key players in biosynthetic pathways of sulfur-containing biofactors. Appl Microbiol Biotechnol 2011; 91:47-61. [DOI: 10.1007/s00253-011-3336-x] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2011] [Revised: 04/13/2011] [Accepted: 04/13/2011] [Indexed: 11/29/2022]
|
68
|
|
69
|
Füzéry AK, Oh JJ, Ta DT, Vickery LE, Markley JL. Three hydrophobic amino acids in Escherichia coli HscB make the greatest contribution to the stability of the HscB-IscU complex. BMC BIOCHEMISTRY 2011; 12:3. [PMID: 21269500 PMCID: PMC3040723 DOI: 10.1186/1471-2091-12-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2010] [Accepted: 01/26/2011] [Indexed: 11/10/2022]
Abstract
BACKGROUND General iron-sulfur cluster biosynthesis proceeds through assembly of a transient cluster on IscU followed by its transfer to a recipient apo-protein. The efficiency of the second step is increased by the presence of HscA and HscB, but the reason behind this is poorly understood. To shed light on the function of HscB, we began a study on the nature of its interaction with IscU. Our work suggested that the binding site of IscU is in the C-terminal domain of HscB, and two different triple alanine substitutions ([L92A, M93A, F153A] and [E97A, E100A, E104A]) involving predicted binding site residues had detrimental effects on this interaction. However, the individual contribution of each substitution to the observed effect remains to be determined as well as the possible involvement of other residues in the proposed binding site. RESULTS In the work reported here, we used isothermal titration calorimetry to characterize the affinity of single alanine HscB mutants for IscU, and subsequently confirmed our results with nuclear magnetic resonance spectroscopy. Alanine substitutions of L92, L96, and F153 severely impaired the ability of HscB to form a complex with IscU; substitutions of R87, R99, and E100 had more modest effects; and substitutions of T89, M93, E97, D103, E104, R152, K156, and S160 had only minor or no detectable effects. CONCLUSIONS Our results show that the residues of HscB most important for strong interaction with IscU include three hydrophobic residues (L92, L96, and F153); in addition, we identified a number of other residues whose side chains contribute to a lesser extent to the interaction. Our results suggest that the triple alanine substitution at HscB positions 92, 96, and 153 will destabilize the HscB-IscU complex by ΔΔGb≅ 5.7 kcal/mol, equivalent to a ≅ 15000-fold reduction in the affinity of HscB for IscU. We propose that this triple mutant could provide a more definitive test of the functional importance of the HscB-IscU interaction in vivo than those used previously that yielded inconclusive results.
Collapse
Affiliation(s)
- Anna K Füzéry
- Department of Biochemistry, University of Wisconsin, Madison, WI 53706, USA
| | | | | | | | | |
Collapse
|
70
|
Bolstad HM, Wood MJ. An in vivo method for characterization of protein interactions within sulfur trafficking systems of E. coli. J Proteome Res 2010; 9:6740-51. [PMID: 20936830 DOI: 10.1021/pr100920r] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Sulfur trafficking systems are multiprotein systems that synthesize sulfur-containing cofactors such as iron-sulfur clusters. The sulfur is derived enzymatically from cysteine and transferred between nucleophilic cysteine residues within proteins until incorporation into the relevant cofactor. As these systems are poorly understood, we have developed an in vivo method for characterizing these interactions and have applied our method to the SUF system of Escherichia coli, which is responsible for iron-sulfur cluster biogenesis under oxidative stress and iron limitation. Proteins that interact covalently with SufE were trapped in vivo, purified, and identified by mass spectrometry. We identified SufE-SufS and SufE-SufB interactions, interactions previously demonstrated in vitro, indicating that our method has the ability to identify physiologically relevant interactions. The sulfur acceptor function of SufE is likely due to the low pK(a) of its active site C51, which we determined to be 6.3 ± 0.7. We found that SufE interacts with several Fe-S cluster proteins, further supporting the validity of the method, and with tryptophanase, glutaredoxin-3, and glutaredoxin-4, possibly suggesting a role for these enzymes in iron-sulfur biogenesis by the SUF system. Our results indicate that this method could serve as a general tool for the determination of sulfur trafficking mechanisms.
Collapse
Affiliation(s)
- Heather M Bolstad
- Department of Environmental Toxicology, University of California, Davis, California 95616, United States
| | | |
Collapse
|
71
|
Bolstad HM, Botelho DJ, Wood MJ. Proteomic analysis of protein-protein interactions within the Cysteine Sulfinate Desulfinase Fe-S cluster biogenesis system. J Proteome Res 2010; 9:5358-69. [PMID: 20734996 DOI: 10.1021/pr1006087] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Fe-S cluster biogenesis is of interest to many fields, including bioenergetics and gene regulation. The CSD system is one of three Fe-S cluster biogenesis systems in E. coli and is comprised of the cysteine desulfurase CsdA, the sulfur acceptor protein CsdE, and the E1-like protein CsdL. The biological role, biochemical mechanism, and protein targets of the system remain uncharacterized. Here we present that the active site CsdE C61 has a lowered pK(a) value of 6.5, which is nearly identical to that of C51 in the homologous SufE protein and which is likely critical for its function. We observed that CsdE forms disulfide bonds with multiple proteins and identified the proteins that copurify with CsdE. The identification of Fe-S proteins and both putative and established Fe-S cluster assembly (ErpA, glutaredoxin-3, glutaredoxin-4) and sulfur trafficking (CsdL, YchN) proteins supports the two-pathway model, in which the CSD system is hypothesized to synthesize both Fe-S clusters and other sulfur-containing cofactors. We suggest that the identified Fe-S cluster assembly proteins may be the scaffold and/or shuttle proteins for the CSD system. By comparison with previous analysis of SufE, we demonstrate that there is some overlap in the CsdE and SufE interactomes.
Collapse
Affiliation(s)
- Heather M Bolstad
- Department of Environmental Toxicology, University of California, Davis, California 95616, USA
| | | | | |
Collapse
|
72
|
Prischi F, Konarev PV, Iannuzzi C, Pastore C, Adinolfi S, Martin SR, Svergun DI, Pastore A. Structural bases for the interaction of frataxin with the central components of iron-sulphur cluster assembly. Nat Commun 2010; 1:95. [PMID: 20981023 PMCID: PMC2982165 DOI: 10.1038/ncomms1097] [Citation(s) in RCA: 142] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2010] [Accepted: 09/22/2010] [Indexed: 01/09/2023] Open
Abstract
Reduced levels of frataxin, an essential protein of as yet unknown function, are responsible for causing the neurodegenerative pathology Friedreich's ataxia. Independent reports have linked frataxin to iron-sulphur cluster assembly through interactions with the two central components of this machinery: desulphurase Nfs1/IscS and the scaffold protein Isu/IscU. In this study, we use a combination of biophysical methods to define the structural bases of the interaction of CyaY (the bacterial orthologue of frataxin) with the IscS/IscU complex. We show that CyaY binds IscS as a monomer in a pocket between the active site and the IscS dimer interface. Recognition does not require iron and occurs through electrostatic interactions of complementary charged residues. Mutations at the complex interface affect the rates of enzymatic cluster formation. CyaY binding strengthens the affinity of the IscS/IscU complex. Our data suggest a new paradigm for understanding the role of frataxin as a regulator of IscS functions.
Collapse
Affiliation(s)
- Filippo Prischi
- National Institute for Medical Research, The Ridgeway, London NW7 1AA, UK
| | - Petr V. Konarev
- European Molecular Biology Laboratory, EMBL c/o DESY, Notkestrasse 85, Hamburg D-22603, Germany
| | - Clara Iannuzzi
- National Institute for Medical Research, The Ridgeway, London NW7 1AA, UK
| | - Chiara Pastore
- National Institute for Medical Research, The Ridgeway, London NW7 1AA, UK
| | - Salvatore Adinolfi
- National Institute for Medical Research, The Ridgeway, London NW7 1AA, UK
| | - Stephen R. Martin
- National Institute for Medical Research, The Ridgeway, London NW7 1AA, UK
| | - Dmitri I. Svergun
- European Molecular Biology Laboratory, EMBL c/o DESY, Notkestrasse 85, Hamburg D-22603, Germany
| | - Annalisa Pastore
- National Institute for Medical Research, The Ridgeway, London NW7 1AA, UK
| |
Collapse
|
73
|
Kampinga HH, Craig EA. The HSP70 chaperone machinery: J proteins as drivers of functional specificity. Nat Rev Mol Cell Biol 2010; 11:579-92. [PMID: 20651708 PMCID: PMC3003299 DOI: 10.1038/nrm2941] [Citation(s) in RCA: 1208] [Impact Index Per Article: 86.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Heat shock 70 kDa proteins (HSP70s) are ubiquitous molecular chaperones that function in a myriad of biological processes, modulating polypeptide folding, degradation and translocation across membranes, and protein-protein interactions. This multitude of roles is not easily reconciled with the universality of the activity of HSP70s in ATP-dependent client protein-binding and release cycles. Much of the functional diversity of the HSP70s is driven by a diverse class of cofactors: J proteins. Often, multiple J proteins function with a single HSP70. Some target HSP70 activity to clients at precise locations in cells and others bind client proteins directly, thereby delivering specific clients to HSP70 and directly determining their fate.
Collapse
Affiliation(s)
- Harm H Kampinga
- Department of Cell Biology, University of Groningen, University Medical Center, 713 AV Groningen, The Netherlands.
| | | |
Collapse
|
74
|
Abstract
The broad range of cellular activities carried out by Fe-S proteins means that they have a central role in the life of most organisms. At the interface between biology and chemistry, studies of bacterial Fe-S protein biogenesis have taken advantage of the specific approaches of each field and have begun to reveal the molecular mechanisms involved. The multiprotein systems that are required to build Fe-S proteins have been identified, but the in vivo roles of some of the components remain to be clarified. The way in which cellular Fe-S cluster trafficking pathways are organized remains a key issue for future studies.
Collapse
|
75
|
In Vivo Fluorescent Detection of Fe-S Clusters Coordinated by Human GRX2. ACTA ACUST UNITED AC 2009; 16:1299-308. [DOI: 10.1016/j.chembiol.2009.11.011] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2009] [Revised: 10/28/2009] [Accepted: 11/02/2009] [Indexed: 11/20/2022]
|
76
|
Reyda MR, Fugate CJ, Jarrett JT. A complex between biotin synthase and the iron-sulfur cluster assembly chaperone HscA that enhances in vivo cluster assembly. Biochemistry 2009; 48:10782-92. [PMID: 19821612 DOI: 10.1021/bi901393t] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Biotin synthase (BioB) is an iron-sulfur enzyme that catalyzes the last step in biotin biosynthesis, the insertion of sulfur between the C6 and C9 atoms of dethiobiotin to complete the thiophane ring of biotin. Recent in vitro experiments suggest that the sulfur is derived from a [2Fe-2S](2+) cluster within BioB, and that the remnants of this cluster dissociate from the enzyme following each turnover. For BioB to catalyze multiple rounds of biotin synthesis, the [2Fe-2S](2+) cluster in BioB must be reassembled, a process that could be conducted in vivo by the ISC or SUF iron-sulfur cluster assembly systems. The bacterial ISC system includes HscA, an Hsp70 class molecular chaperone, whose yeast homologue has been shown to play an important but nonessential role in assembly of mitochondrial FeS clusters in Saccharomyces cerevisiae. In this work, we show that in Escherichia coli, HscA significantly improves the efficiency of the in vivo assembly of the [2Fe-2S](2+) cluster on BioB under conditions of low to moderate iron. In vitro, we show that HscA binds with increased affinity to BioB missing one or both FeS clusters, with a maximum of two HscA molecules per BioB dimer. BioB binds to HscA in an ATP/ADP-independent manner, and a high-affinity complex is also formed with a truncated form of HscA that lacks the nucleotide binding domain. Further, the BioB-HscA complex binds the FeS cluster scaffold protein IscU in a noncompetitive manner, generating a complex that contains all three proteins. We propose that HscA plays a role in facilitating the transfer of FeS clusters from IscU into the appropriate target apoproteins such as biotin synthase, perhaps by enhancing or prolonging the requisite protein-protein interaction.
Collapse
Affiliation(s)
- Michael R Reyda
- Department of Chemistry, University of Hawaii at Manoa, Honolulu, Hawaii 96822, USA
| | | | | |
Collapse
|
77
|
Kim JH, Füzéry AK, Tonelli M, Ta DT, Westler WM, Vickery LE, Markley JL. Structure and dynamics of the iron-sulfur cluster assembly scaffold protein IscU and its interaction with the cochaperone HscB. Biochemistry 2009; 48:6062-71. [PMID: 19492851 DOI: 10.1021/bi9002277] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
IscU is a scaffold protein that functions in iron-sulfur cluster assembly and transfer. Its critical importance has been recently underscored by the finding that a single intronic mutation in the human iscu gene is associated with a myopathy resulting from deficient succinate dehydrogenase and aconitase [Mochel, F., Knight, M. A., Tong, W. H., Hernandez, D., Ayyad, K., Taivassalo, T., Andersen, P. M., Singleton, A., Rouault, T. A., Fischbeck, K. H., and Haller, R. G. (2008) Am. J. Hum. Genet. 82, 652-660]. IscU functions through interactions with a chaperone protein HscA and a cochaperone protein HscB. To probe the molecular basis for these interactions, we have used NMR spectroscopy to investigate the solution structure of IscU from Escherichia coli and its interaction with HscB from the same organism. We found that wild-type apo-IscU in solution exists as two distinct conformations: one largely disordered and one largely ordered except for the metal binding residues. The two states interconvert on the millisecond time scale. The ordered conformation is stabilized by the addition of zinc or by the single-site IscU mutation, D39A. We used apo-IscU(D39A) as a surrogate for the folded state of wild-type IscU and assigned its NMR spectrum. These assignments made it possible to identify the region of IscU with the largest structural differences in the two conformational states. Subsequently, by following the NMR signals of apo-IscU(D39A) upon addition of HscB, we identified the most perturbed regions as the two N-terminal beta-strands and the C-terminal alpha-helix. On the basis of these results and analysis of IscU sequences from multiple species, we have identified the surface region of IscU that interacts with HscB. We conclude that the IscU-HscB complex exists as two (or more) distinct states that interconvert at a rate much faster than the rate of dissociation of the complex and that HscB binds to and stabilizes the ordered state of apo-IscU.
Collapse
Affiliation(s)
- Jin Hae Kim
- Biophysics Graduate Program, University of Wisconsin, Madison, Wisconsin 53706, USA
| | | | | | | | | | | | | |
Collapse
|
78
|
|
79
|
IscA/SufA paralogues are required for the [4Fe-4S] cluster assembly in enzymes of multiple physiological pathways in Escherichia coli under aerobic growth conditions. Biochem J 2009; 420:463-72. [PMID: 19309314 DOI: 10.1042/bj20090206] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
IscA/SufA paralogues are the members of the iron-sulfur cluster assembly machinery in Escherichia coli. Whereas deletion of either IscA or SufA has only a mild effect on cell growth, deletion of both IscA and SufA results in a null-growth phenotype in minimal medium under aerobic growth conditions. Here we report that cell growth of the iscA/sufA double mutant (E. coli strain in which both iscA and sufA had been in-frame-deleted) can be partially restored by supplementing with BCAAs (branched-chain amino acids) and thiamin. We further demonstrate that deletion of IscA/SufA paralogues blocks the [4Fe-4S] cluster assembly in IlvD (dihydroxyacid dehydratase) of the BCAA biosynthetic pathway in E. coli cells under aerobic conditions and that addition of the iron-bound IscA/SufA efficiently promotes the [4Fe-4S] cluster assembly in IlvD and restores the enzyme activity in vitro, suggesting that IscA/SufA may act as an iron donor for the [4Fe-4S] cluster assembly under aerobic conditions. Additional studies reveal that IscA/SufA are also required for the [4Fe-4S] cluster assembly in enzyme ThiC of the thiamin-biosynthetic pathway, aconitase B of the citrate acid cycle and endonuclease III of the DNA-base-excision-repair pathway in E. coli under aerobic conditions. Nevertheless, deletion of IscA/SufA does not significantly affect the [2Fe-2S] cluster assembly in the redox transcription factor SoxR, ferredoxin and the siderophore-iron reductase FhuF. The results suggest that the biogenesis of the [4Fe-4S] clusters and the [2Fe-2S] clusters may have distinct pathways and that IscA/SufA paralogues are essential for the [4Fe-4S] cluster assembly, but are dispensable for the [2Fe-2S] cluster assembly in E. coli under aerobic conditions.
Collapse
|