51
|
Boehm M. Virtual Screening of Chemical Space: From Generic Compound Collections to Tailored Screening Libraries. ACTA ACUST UNITED AC 2011. [DOI: 10.1002/9783527633326.ch1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2023]
|
52
|
Koeppen H, Kriegl J, Lessel U, Tautermann CS, Wellenzohn B. Ligand-Based Virtual Screening. METHODS AND PRINCIPLES IN MEDICINAL CHEMISTRY 2011. [DOI: 10.1002/9783527633326.ch3] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
53
|
Hartenfeller M, Schneider G. Enabling future drug discovery by
de novo
design. WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL MOLECULAR SCIENCE 2011. [DOI: 10.1002/wcms.49] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Markus Hartenfeller
- Computer‐Assisted Drug Design, Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH), Zürich, Switzerland
| | - Gisbert Schneider
- Computer‐Assisted Drug Design, Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH), Zürich, Switzerland
| |
Collapse
|
54
|
Glick M, Jacoby E. The role of computational methods in the identification of bioactive compounds. Curr Opin Chem Biol 2011; 15:540-6. [PMID: 21411361 DOI: 10.1016/j.cbpa.2011.02.021] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2011] [Revised: 02/01/2011] [Accepted: 02/21/2011] [Indexed: 10/18/2022]
Abstract
Computational methods play an ever increasing role in lead finding. A vast repertoire of molecular design and virtual screening methods emerged in the past two decades and are today routinely used. There is increasing awareness that there is no single best computational protocol and correspondingly there is a shift recommending the combination of complementary methods. A promising trend for the application of computational methods in lead finding is to take advantage of the vast amounts of HTS (High Throughput Screening) data to allow lead assessment by detailed systems-based data analysis, especially for phenotypic screens where the identification of compound-target pairs is the primary goal. Herein, we review trends and provide examples of successful applications of computational methods in lead finding.
Collapse
Affiliation(s)
- Meir Glick
- Novartis Institutes for BioMedical Research, Inc., 250 Massachusetts Avenue, Cambridge, MA 02139, USA
| | | |
Collapse
|
55
|
Abstract
Computer-assisted molecular design supports drug discovery by suggesting novel chemotypes and compound modifications for lead structure optimization. While the aspect of synthetic feasibility of the automatically designed compounds has been neglected for a long time, we are currently witnessing an increased interest in this topic. Here, we review state-of-the-art software for de novo drug design with a special emphasis on fragment-based techniques that generate druglike, synthetically accessible compounds. The importance of scoring functions that can be used to predict compound reactivity and potency is highlighted, and several promising solutions are discussed. Recent practical validation studies are presented that have already demonstrated that rule-based fragment assembly can result in novel synthesizable compounds with druglike properties and a desired biological activity.
Collapse
|
56
|
Hu Q, Peng Z, Kostrowicki J, Kuki A. LEAP into the Pfizer Global Virtual Library (PGVL) space: creation of readily synthesizable design ideas automatically. Methods Mol Biol 2011; 685:253-276. [PMID: 20981528 DOI: 10.1007/978-1-60761-931-4_13] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Pfizer Global Virtual Library (PGVL) of 10(13) readily synthesizable molecules offers a tremendous opportunity for lead optimization and scaffold hopping in drug discovery projects. However, mining into a chemical space of this size presents a challenge for the concomitant design informatics due to the fact that standard molecular similarity searches against a collection of explicit molecules cannot be utilized, since no chemical information system could create and manage more than 10(8) explicit molecules. Nevertheless, by accepting a tolerable level of false negatives in search results, we were able to bypass the need for full 10(13) enumeration and enabled the efficient similarity search and retrieval into this huge chemical space for practical usage by medicinal chemists. In this report, two search methods (LEAP1 and LEAP2) are presented. The first method uses PGVL reaction knowledge to disassemble the incoming search query molecule into a set of reactants and then uses reactant-level similarities into actual available starting materials to focus on a much smaller sub-region of the full virtual library compound space. This sub-region is then explicitly enumerated and searched via a standard similarity method using the original query molecule. The second method uses a fuzzy mapping onto candidate reactions and does not require exact disassembly of the incoming query molecule. Instead Basis Products (or capped reactants) are mapped into the query molecule and the resultant asymmetric similarity scores are used to prioritize the corresponding reactions and reactant sets. All sets of Basis Products are inherently indexed to specific reactions and specific starting materials. This again allows focusing on a much smaller sub-region for explicit enumeration and subsequent standard product-level similarity search. A set of validation studies were conducted. The results have shown that the level of false negatives for the disassembly-based method is acceptable when the query molecule can be recognized for exact disassembly, and the fuzzy reaction mapping method based on Basis Products has an even better performance in terms of lower false-negative rate because it is not limited by the requirement that the query molecule needs to be recognized by any disassembly algorithm. Both search methods have been implemented and accessed through a powerful desktop molecular design tool (see ref. (33) for details). The chapter will end with a comparison of published search methods against large virtual chemical space.
Collapse
Affiliation(s)
- Qiyue Hu
- Pfizer Global Research and Development, La Jolla Laboratories, San Diego, CA, USA
| | | | | | | |
Collapse
|
57
|
Bienstock RJ. Overview: Fragment-Based Drug Design. LIBRARY DESIGN, SEARCH METHODS, AND APPLICATIONS OF FRAGMENT-BASED DRUG DESIGN 2011. [DOI: 10.1021/bk-2011-1076.ch001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Rachelle J. Bienstock
- National Institute of Environmental Health Sciences, P.O. Box 12233, MD F0-011, Research Triangle Park, North Carolina 27709
| |
Collapse
|
58
|
Computational medicinal chemistry in fragment-based drug discovery: what, how and when. Future Med Chem 2011; 3:95-134. [DOI: 10.4155/fmc.10.277] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The use of fragment-based drug discovery (FBDD) has increased in the last decade due to the encouraging results obtained to date. In this scenario, computational approaches, together with experimental information, play an important role to guide and speed up the process. By default, FBDD is generally considered as a constructive approach. However, such additive behavior is not always present, therefore, simple fragment maturation will not always deliver the expected results. In this review, computational approaches utilized in FBDD are reported together with real case studies, where applicability domains are exemplified, in order to analyze them, and then, maximize their performance and reliability. Thus, a proper use of these computational tools can minimize misleading conclusions, keeping the credit on FBDD strategy, as well as achieve higher impact in the drug-discovery process. FBDD goes one step beyond a simple constructive approach. A broad set of computational tools: docking, R group quantitative structure–activity relationship, fragmentation tools, fragments management tools, patents analysis and fragment-hopping, for example, can be utilized in FBDD, providing a clear positive impact if they are utilized in the proper scenario – what, how and when. An initial assessment of additive/non-additive behavior is a critical point to define the most convenient approach for fragments elaboration.
Collapse
|
59
|
Khanna V, Ranganathan S. Molecular similarity and diversity approaches in chemoinformatics. Drug Dev Res 2010. [DOI: 10.1002/ddr.20404] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Varun Khanna
- Department of Chemistry and Biomolecular Sciences and ARC Centre of Excellence in Bioinformatics, Macquarie University, Sydney, Australia
| | - Shoba Ranganathan
- Department of Chemistry and Biomolecular Sciences and ARC Centre of Excellence in Bioinformatics, Macquarie University, Sydney, Australia
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| |
Collapse
|
60
|
Varin T, Gubler H, Parker CN, Zhang JH, Raman P, Ertl P, Schuffenhauer A. Compound Set Enrichment: A Novel Approach to Analysis of Primary HTS Data. J Chem Inf Model 2010; 50:2067-78. [DOI: 10.1021/ci100203e] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Thibault Varin
- Novartis Institutes for BioMedical Research, Novartis Pharma AG, Forum 1, Novartis Campus, CH-4056 Basel, Switzerland, and 250 Massachusetts Avenue, Cambridge, Massachusetts 02139
| | - Hanspeter Gubler
- Novartis Institutes for BioMedical Research, Novartis Pharma AG, Forum 1, Novartis Campus, CH-4056 Basel, Switzerland, and 250 Massachusetts Avenue, Cambridge, Massachusetts 02139
| | - Christian N. Parker
- Novartis Institutes for BioMedical Research, Novartis Pharma AG, Forum 1, Novartis Campus, CH-4056 Basel, Switzerland, and 250 Massachusetts Avenue, Cambridge, Massachusetts 02139
| | - Ji-Hu Zhang
- Novartis Institutes for BioMedical Research, Novartis Pharma AG, Forum 1, Novartis Campus, CH-4056 Basel, Switzerland, and 250 Massachusetts Avenue, Cambridge, Massachusetts 02139
| | - Pichai Raman
- Novartis Institutes for BioMedical Research, Novartis Pharma AG, Forum 1, Novartis Campus, CH-4056 Basel, Switzerland, and 250 Massachusetts Avenue, Cambridge, Massachusetts 02139
| | - Peter Ertl
- Novartis Institutes for BioMedical Research, Novartis Pharma AG, Forum 1, Novartis Campus, CH-4056 Basel, Switzerland, and 250 Massachusetts Avenue, Cambridge, Massachusetts 02139
| | - Ansgar Schuffenhauer
- Novartis Institutes for BioMedical Research, Novartis Pharma AG, Forum 1, Novartis Campus, CH-4056 Basel, Switzerland, and 250 Massachusetts Avenue, Cambridge, Massachusetts 02139
| |
Collapse
|
61
|
Shahid M, Kasam V, Hofmann-Apitius M. An Improved Weighted-Residue Profile Based Method of Using Protein-Ligand Interaction Information in Increasing Hits Selection from Virtual Screening: A Study on Virtual Screening of Human GPCR A2A Receptor Antagonists. Mol Inform 2010; 29:781-91. [DOI: 10.1002/minf.201000068] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2010] [Accepted: 09/03/2010] [Indexed: 11/06/2022]
|