51
|
Glaser T, Fischer von Mollard G, Anselmetti D. Rational design of dinuclear complexes binding at two neighboring phosphate esters of DNA. Inorganica Chim Acta 2016. [DOI: 10.1016/j.ica.2016.02.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
52
|
Bím D, Svobodová E, Eigner V, Rulíšek L, Hodačová J. Copper(II) and Zinc(II) Complexes of Conformationally Constrained Polyazamacrocycles as Efficient Catalysts for RNA Model Substrate Cleavage in Aqueous Solution at Physiological pH. Chemistry 2016; 22:10426-37. [DOI: 10.1002/chem.201601175] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Indexed: 11/08/2022]
Affiliation(s)
- Daniel Bím
- Department of Organic Chemistry, Faculty of Chemical Technology; University of Chemistry and Technology; Technická 5 166 28 Prague 6 Czech Republic), Fax: (+420) 220-444-288
- Institute of Organic Chemistry and Biochemistry; v.v.i. and Gilead Sciences Research Center, Academy of Sciences of the Czech Republic; Flemingovo náměstí 2 166 10 Prague 6 Czech Republic
| | - Eva Svobodová
- Department of Organic Chemistry, Faculty of Chemical Technology; University of Chemistry and Technology; Technická 5 166 28 Prague 6 Czech Republic), Fax: (+420) 220-444-288
| | - Václav Eigner
- Department of Solid State Chemistry, Faculty of Chemical Technology; University of Chemistry and Technology; Technická 5 166 28 Prague 6 Czech Republic
| | - Lubomír Rulíšek
- Institute of Organic Chemistry and Biochemistry; v.v.i. and Gilead Sciences Research Center, Academy of Sciences of the Czech Republic; Flemingovo náměstí 2 166 10 Prague 6 Czech Republic
| | - Jana Hodačová
- Department of Organic Chemistry, Faculty of Chemical Technology; University of Chemistry and Technology; Technická 5 166 28 Prague 6 Czech Republic), Fax: (+420) 220-444-288
| |
Collapse
|
53
|
Agura K, Hayashi Y, Wada M, Nakatake D, Mashima K, Ohshima T. Studies of the Electronic Effects of Zinc Cluster Catalysts and Their Application to the Transesterification of β‐Keto Esters. Chem Asian J 2016; 11:1548-54. [DOI: 10.1002/asia.201600062] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Indexed: 12/15/2022]
Affiliation(s)
- Kazushi Agura
- Graduate School of Pharmaceutical Sciences Kyushu University, CREST Maidashi Higashi-ku Fukuoka 812-8582 Japan
| | - Yukiko Hayashi
- Department of Chemistry Graduate School of Engineering Science Osaka University, CREST Toyonaka Osaka 560-8631 Japan
| | - Mari Wada
- Graduate School of Pharmaceutical Sciences Kyushu University, CREST Maidashi Higashi-ku Fukuoka 812-8582 Japan
| | - Daiki Nakatake
- Graduate School of Pharmaceutical Sciences Kyushu University, CREST Maidashi Higashi-ku Fukuoka 812-8582 Japan
| | - Kazushi Mashima
- Department of Chemistry Graduate School of Engineering Science Osaka University, CREST Toyonaka Osaka 560-8631 Japan
| | - Takashi Ohshima
- Graduate School of Pharmaceutical Sciences Kyushu University, CREST Maidashi Higashi-ku Fukuoka 812-8582 Japan
| |
Collapse
|
54
|
Ji JN, Chen SL. μ3-Oxo stabilized by three metal cations is a sufficient nucleophile for enzymatic hydrolysis of phosphate monoesters. Dalton Trans 2016; 45:2517-22. [PMID: 26699843 DOI: 10.1039/c5dt03899e] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Diverse species have previously been proposed to be effective nucleophiles in the enzymatic hydrolysis of phosphate esters. A novel penta-metal cluster (two Fe(3+) and three Ca(2+)) was recently discovered in the active site of PhoX alkaline phosphatase, with the revelation of the architecture of μ3-oxo bridging one Ca(2+) and two antiferromagnetically coupled Fe(3+). In this work, using density functional theory calculations, the μ3-oxo stabilized by three cations has been demonstrated to be a new type of effective nucleophile. The calculations give strong support to the "ping-pong" mechanism involving the nucleophilic attack of the μ3-oxo on the substrate phosphor and the subsequent hydrolysis of the covalent phospho-enzyme intermediate. A base mechanism with the μ3-oxo acting as a general base to activate an additional water molecule has further been demonstrated to be inaccessible. The results advance the understanding of the enzymatic hydrolysis of phosphate esters and may give important inspiration for the exploration of multinuclear biomimetic catalysts.
Collapse
Affiliation(s)
- Jian-Nan Ji
- Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry, Beijing Institute of Technology, Beijing 100081, China.
| | | |
Collapse
|
55
|
Mendes LL, Englert D, Fernandes C, Gahan LR, Schenk G, Horn A. Metallohydrolase biomimetics with catalytic and structural flexibility. Dalton Trans 2016; 45:18510-18521. [DOI: 10.1039/c6dt03200a] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The phosphatase activity of zinc complexes containing six- and seven-dentate ligands was evaluated through kinetic and31P NMR studies.
Collapse
Affiliation(s)
- Luisa L. Mendes
- Laboratório de Ciências Químicas
- Universidade Estadual do Norte Fluminense
- Campos dos Goytacazes/RJ
- Brazil
| | - Daniel Englert
- Anorganisch-Chemisches Institut
- Universität Heidelberg
- 69120 Heidelberg
- Germany
| | - Christiane Fernandes
- Laboratório de Ciências Químicas
- Universidade Estadual do Norte Fluminense
- Campos dos Goytacazes/RJ
- Brazil
| | - Lawrence R. Gahan
- School of Chemistry and Molecular Biosciences
- The University of Queensland
- Brisbane
- Australia
| | - Gerhard Schenk
- School of Chemistry and Molecular Biosciences
- The University of Queensland
- Brisbane
- Australia
| | - Adolfo Horn
- Laboratório de Ciências Químicas
- Universidade Estadual do Norte Fluminense
- Campos dos Goytacazes/RJ
- Brazil
| |
Collapse
|
56
|
Sanyal R, Zhang X, Chakraborty P, Mautner FA, Zhao C, Das D. Role of para-substitution in controlling phosphatase activity of dinuclear NiII complexes of Mannich-base ligands: experimental and DFT studies. RSC Adv 2016. [DOI: 10.1039/c6ra08705a] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Five dinuclear NiII complexes synthesized by Mannich reaction portray remarkable phosphatase activity where the tert-butyl complex exhibits the maximum reactivity.
Collapse
Affiliation(s)
- Ria Sanyal
- Department of Chemistry
- University of Calcutta
- Kolkata 700009
- India
| | - Xuepeng Zhang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry
- School of Chemistry and Chemical Engineering
- Sun Yat-SenUniversity
- Guangzhou 510275
- P. R. China
| | | | - Franz A. Mautner
- Institutfuer Physikalische und Theoretische Chemie
- Technische Universitaet Graz
- A-8010 Graz
- Austria
| | - Cunyuan Zhao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry
- School of Chemistry and Chemical Engineering
- Sun Yat-SenUniversity
- Guangzhou 510275
- P. R. China
| | - Debasis Das
- Department of Chemistry
- University of Calcutta
- Kolkata 700009
- India
| |
Collapse
|
57
|
Paul TJ, Barman A, Ozbil M, Bora RP, Zhang T, Sharma G, Hoffmann Z, Prabhakar R. Mechanisms of peptide hydrolysis by aspartyl and metalloproteases. Phys Chem Chem Phys 2016; 18:24790-24801. [DOI: 10.1039/c6cp02097f] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Peptide hydrolysis has been involved in a wide range of biological, biotechnological, and industrial applications.
Collapse
Affiliation(s)
- Thomas J. Paul
- Department of Chemistry
- University of Miami
- Coral Gables
- USA
| | - Arghya Barman
- Department of Chemistry
- University of Miami
- Coral Gables
- USA
| | - Mehmet Ozbil
- Department of Chemistry
- University of Miami
- Coral Gables
- USA
| | | | - Tingting Zhang
- Department of Chemistry
- University of Miami
- Coral Gables
- USA
| | - Gaurav Sharma
- Department of Chemistry
- University of Miami
- Coral Gables
- USA
| | | | | |
Collapse
|
58
|
Zhang X, Liu X, Phillips DL, Zhao C. Hydrolysis mechanisms of BNPP mediated by facial copper(ii) complexes bearing single alkyl guanidine pendants: cooperation between the metal centers and the guanidine pendants. Dalton Trans 2016; 45:1593-603. [DOI: 10.1039/c5dt03949e] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The inter-complex and intra-complex nucleophilic attacks by metal-bound hydroxide were investigated by considering the second coordination spheres.
Collapse
Affiliation(s)
- Xuepeng Zhang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry
- School of Chemistry and Chemical Engineering
- Sun Yat-Sen University
- Guangzhou 510275
- P. R. China
| | - Xueping Liu
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry
- School of Chemistry and Chemical Engineering
- Sun Yat-Sen University
- Guangzhou 510275
- P. R. China
| | | | - Cunyuan Zhao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry
- School of Chemistry and Chemical Engineering
- Sun Yat-Sen University
- Guangzhou 510275
- P. R. China
| |
Collapse
|
59
|
Zhang X, Liu X, Phillips DL, Zhao C. Mechanistic Insights Into the Factors That Influence the DNA Nuclease Activity of Mononuclear Facial Copper Complexes Containing Hetero-Substituted Cyclens. ACS Catal 2015. [DOI: 10.1021/acscatal.5b01735] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Xuepeng Zhang
- MOE
Key Laboratory of Bioinorganic and Synthetic Chemistry, School of
Chemistry and Chemical Engineering, Sun Yat-Sen University, Guangzhou 510275, P. R. China
| | - Xueping Liu
- MOE
Key Laboratory of Bioinorganic and Synthetic Chemistry, School of
Chemistry and Chemical Engineering, Sun Yat-Sen University, Guangzhou 510275, P. R. China
| | - David Lee Phillips
- Department
of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, P. R. China
| | - Cunyuan Zhao
- MOE
Key Laboratory of Bioinorganic and Synthetic Chemistry, School of
Chemistry and Chemical Engineering, Sun Yat-Sen University, Guangzhou 510275, P. R. China
| |
Collapse
|
60
|
Rayón VM, Valdés H, Díaz N, Suárez D. Monoligand Zn(II) Complexes: Ab Initio Benchmark Calculations and Comparison with Density Functional Theory Methodologies. J Chem Theory Comput 2015; 4:243-56. [PMID: 26620656 DOI: 10.1021/ct700229e] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
A systematic theoretical study on several models of Zn(II) complexes has been carried out employing both ab initio correlated wave function and density functional methods. The performance of five different functionals namely PW91, PBE, B3LYP, MPWLYP1M, and TPSS in the prediction of metal-ligand bond distances, binding energies, and proton affinities has been assessed comparing the results to those obtained with the MP2 and CCSD(T) wave function methodologies. Several basis sets ranging from double-ζ up to quintuple-ζ quality have been used, including the recently developed all-electron correlation consistent basis sets for zinc. It is shown that all the tested functionals overestimate both the metal-ligand bond distances and the binding energies, being that the B3LYP and TPSS functionals are the ones that perform the best. An analysis of the metal-ligand interaction energy shows that induction and charge-transfer effects play a prominent role in the bonding of these systems, even for those complexes with the less polarizable ligands. This finding highlights the importance of a correct description of the polarization of the monomers' charge densities by any theoretical method which aims to be applied to the study of Zn(II) complexes.
Collapse
Affiliation(s)
- Víctor M Rayón
- Departamento de Química Física y Química Inorgánica, Facultad de Ciencias, Universidad de Valladolid, 47005 Valladolid, Spain, Center for Biomolecules and Complex Molecular Systems, Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, 16610 Prague 6, Czech Republic, and Departamento de Química Física y Analítica, Facultad de Química, Universidad de Oviedo, 33007 Oviedo, Spain
| | - Haydee Valdés
- Departamento de Química Física y Química Inorgánica, Facultad de Ciencias, Universidad de Valladolid, 47005 Valladolid, Spain, Center for Biomolecules and Complex Molecular Systems, Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, 16610 Prague 6, Czech Republic, and Departamento de Química Física y Analítica, Facultad de Química, Universidad de Oviedo, 33007 Oviedo, Spain
| | - Natalia Díaz
- Departamento de Química Física y Química Inorgánica, Facultad de Ciencias, Universidad de Valladolid, 47005 Valladolid, Spain, Center for Biomolecules and Complex Molecular Systems, Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, 16610 Prague 6, Czech Republic, and Departamento de Química Física y Analítica, Facultad de Química, Universidad de Oviedo, 33007 Oviedo, Spain
| | - Dimas Suárez
- Departamento de Química Física y Química Inorgánica, Facultad de Ciencias, Universidad de Valladolid, 47005 Valladolid, Spain, Center for Biomolecules and Complex Molecular Systems, Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, 16610 Prague 6, Czech Republic, and Departamento de Química Física y Analítica, Facultad de Química, Universidad de Oviedo, 33007 Oviedo, Spain
| |
Collapse
|
61
|
Lain L, Lönnberg H, Lönnberg TA. Buffer catalyzed cleavage of uridylyl-3',5'-uridine in aqueous DMSO: comparison to its activated analog, 2-hydroxypropyl 4-nitrophenyl phosphate. Org Biomol Chem 2015; 13:3484-92. [PMID: 25669674 DOI: 10.1039/c4ob02682a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Buffer catalysis of the cleavage and isomerization of uridylyl-3',5'-uridine (UpU) has been studied over a wide pH range in 80% aq. DMSO. The diminished hydroxide ion concentration in this solvent system made catalysis by amine buffers (morpholine, 4-hydroxypiperidine and piperidine) visible even at relatively low buffer concentrations (10-200 mmol L(-1)). The observed catalysis was, however, much weaker than what has been previously reported for the activated RNA model 2-hydroxypropyl 4-nitrophenyl phosphate (HPNP) in the same solvent system. In the case of morpholine, contribution of both the acidic and the basic buffer constituent was significant, whereas with 4-hydroxypiperidine and piperidine participation of the acidic constituent could not be established unambiguously. The results underline the importance of using realistic model compounds, along with activated ones, in the study of the general acid/base catalysis of RNA cleavage.
Collapse
Affiliation(s)
- L Lain
- Department of Chemistry, University of Turku, Vatselankatu 2, FIN-20014 Turku, Finland.
| | | | | |
Collapse
|
62
|
Li Z, Qiao J, Jia Z, Meng S. Synthesis of the Pyridine Hydrazones as Metal-free Artificial Nucleases. CHEM LETT 2015. [DOI: 10.1246/cl.150428] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Zhifen Li
- School of Chemical and Environmental Engineering, Datong University
| | - Jun Qiao
- School of Chemical and Environmental Engineering, Datong University
| | - Zhifang Jia
- School of Chemical and Environmental Engineering, Datong University
| | - Shuangming Meng
- School of Chemical and Environmental Engineering, Datong University
| |
Collapse
|
63
|
Sanyal R, Chakraborty P, Zangrando E, Das D. Phosphatase models: Synthesis, structure and catalytic activity of zinc complexes derived from a phenolic Mannich-base ligand. Polyhedron 2015. [DOI: 10.1016/j.poly.2015.05.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
64
|
Jany T, Horstmann née Gruschka C, Bögge H, Stammler A, Glaser T. A Series of Dinuclear Complexes with a Flexible Naphthalene-Spacer and MOM-Cleavage by Pre-coordinated Lewis Acids. Z Anorg Allg Chem 2015. [DOI: 10.1002/zaac.201500553] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
65
|
Use of magnetic circular dichroism to study dinuclear metallohydrolases and the corresponding biomimetics. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2015; 44:393-415. [DOI: 10.1007/s00249-015-1053-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2015] [Revised: 05/30/2015] [Accepted: 06/07/2015] [Indexed: 11/26/2022]
|
66
|
Dalle KE, Meyer F. Modelling Binuclear Metallobiosites: Insights from Pyrazole-Supported Biomimetic and Bioinspired Complexes. Eur J Inorg Chem 2015. [DOI: 10.1002/ejic.201500185] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
67
|
Brown RS. Bio-inspired approaches to accelerating metal ion-promoted reactions: enzyme-like rates for metal ion mediated phosphoryl and acyl transfer processes. PURE APPL CHEM 2015. [DOI: 10.1515/pac-2014-1008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Intense efforts by many research groups for more than 50 years have been directed at biomimetic approaches to understand how enzymes achieve their remarkable rate accelerations. Nevertheless, it was noted in 2003 that, despite numerous efforts to design models for catalyzing the cleavage of such species as phosphate diesters, “none of the several models so far described approaches the enormous catalytic efficiency of natural enzymes”. The same could be said for biomimetics of other enzymes promoting acyl or phosphoryl transfer reactions, particularly those mediated by metal ions such as Zn(II). Clearly other important factors were being overlooked or awaiting discovery. In this manuscript we describe two important effects that we have implemented to accelerate metal ion catayzed phosphoryl and acyl transfer reactions. The first of these relates to a medium effect where the polarity of the solution, as measured by dielectric constant, is reduced from that of water (ε = 78) to values of 31.5 and 24.3 when the solvent is changed to methanol or ethanol. Among organic solvents these light alcohols are closest to water in terms of structure and properties as well as retaining important H-bonding properties. The second important effect involves a known but difficult to demonstrate mode of catalysis where the leaving group (LG) in a solvolysis reaction is accelerated as it becomes progressively poorer. In the cases described herein, the LG’s propensity to depart from a substrate during the course of reaction is accelerated by coordination to a metal ion in a process known as leaving group assistance, or LGA. These two effects can each impart accelerations of 109–1017 for certain metal ion catalyzed reactions relative to the corresponding solvent, or base induced reactions.
Collapse
|
68
|
Brissos RF, Caubet A, Gamez P. Possible DNA-Interacting Pathways for Metal-Based Compounds Exemplified with Copper Coordination Compounds. Eur J Inorg Chem 2015. [DOI: 10.1002/ejic.201500175] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
69
|
Sanyal R, Zhang X, Kundu P, Chattopadhyay T, Zhao C, Mautner FA, Das D. Mechanistic Implications in the Phosphatase Activity of Mannich-Based Dinuclear Zinc Complexes with Theoretical Modeling. Inorg Chem 2015; 54:2315-24. [DOI: 10.1021/ic502937a] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Ria Sanyal
- Department
of Chemistry, University of Calcutta, 92 A.P.C. Road, Kolkata 700009, India
| | - Xuepeng Zhang
- MOE
Key Laboratory of Bioinorganic and Synthetic Chemistry, School of
Chemistry and Chemical Engineering, Sun Yat-Sen University, Guangzhou 510275, P. R. China
| | - Priyanka Kundu
- Department
of Chemistry, University of Calcutta, 92 A.P.C. Road, Kolkata 700009, India
| | - Tanmay Chattopadhyay
- Department
of Chemistry, Panchakot Mahavidyalaya, Sarbari, Purulia 723121, India
| | - Cunyuan Zhao
- MOE
Key Laboratory of Bioinorganic and Synthetic Chemistry, School of
Chemistry and Chemical Engineering, Sun Yat-Sen University, Guangzhou 510275, P. R. China
| | - Franz A. Mautner
- Institut
fuer Physikalische und Theoretische Chemie, Technische Universitaet Graz, A-8010 Graz, Austria
| | - Debasis Das
- Department
of Chemistry, University of Calcutta, 92 A.P.C. Road, Kolkata 700009, India
| |
Collapse
|
70
|
Zhang T, Ozbil M, Barman A, Paul TJ, Bora RP, Prabhakar R. Theoretical insights into the functioning of metallopeptidases and their synthetic analogues. Acc Chem Res 2015; 48:192-200. [PMID: 25607542 DOI: 10.1021/ar500301y] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
CONSPECTUS: The selective hydrolysis of a peptide or amide bond (-(O═)C-NH-) by a synthetic metallopeptidase is required in a wide range of biological, biotechnological, and industrial applications. In nature, highly specialized enzymes known as proteases and peptidases are used to accomplish this daunting task. Currently, many peptide bond cleaving enzymes and synthetic reagents have been utilized to achieve efficient peptide hydrolysis. However, they possess some serious limitations. To overcome these inadequacies, a variety of metal complexes have been developed that mimic the activities of natural enzymes (metallopeptidases). However, in comparison to metallopeptidases, the hydrolytic reactions facilitated by their existing synthetic analogues are considerably slower and occur with lower catalytic turnover. This could be due to the following reasons: (1) they lack chemical properties of amino acid residues found within enzyme active sites; (2) they contain a higher metal coordination number compared with naturally occurring enzymes; and (3) they do not have access to second coordination shell residues that provide substantial rate enhancements in enzymes. Additionally, the critical structural and mechanistic information required for the development of the next generation of synthetic metallopeptidases cannot be readily obtained through existing experimental techniques. This is because most experimental techniques cannot follow the individual chemical steps in the catalytic cycle due to the fast rate of enzymes. They are also limited by the fact that the diamagnetic d(10) Zn(II) center is silent to electronic, electron spin resonance, and (67)Zn NMR spectroscopies. Therefore, we have employed molecular dynamics (MD), quantum mechanics (QM), and hybrid quantum mechanics/molecular mechanics (QM/MM) techniques to derive this information. In particular, the role of the metal ions, ligands, and microenvironment in the functioning of mono- and binuclear metal center containing enzymes such as insulin degrading enzyme (IDE) and bovine lens leucine aminopeptidase (BILAP), respectively, and their synthetic analogues have been investigated. Our results suggested that in the functioning of IDE, the chemical nature of the peptide bond played a role in the energetics of the reaction and the peptide bond cleavage occurred in the rate-limiting step of the mechanism. In the cocatalytic mechanism used by BILAP, one metal center polarized the scissile peptide bond through the formation of a bond between the metal and the carbonyl group of the substrate, while the second metal center delivered the hydroxyl nucleophile. The Zn(N3) [Zn(His, His, His)] core of matrix metalloproteinase was better than the Zn(N2O) [Zn(His, His, Glu)] core of IDE for peptide hydrolysis. Due to the synergistic interaction between the two metal centers, the binuclear metal center containing Pd2(μ-OH)([18]aneN6)](4+) complex was found to be ∼100 times faster than the mononuclear [Pd(H2O)4](2+) complex. A successful small-molecule synthetic analogue of a mononuclear metallopeptidase must contain a metal with a strong Lewis acidity capable of reducing the pKa of its water ligand to less than 7. Ideally, the metal center should include three ligands with low basicity. The steric effects or strain exerted by the microenvironment could be used to weaken the metal-ligand interactions and increase the activity of the metallopeptidase.
Collapse
Affiliation(s)
- Tingting Zhang
- Department
of Chemistry, University of Miami, Coral Gables, Florida 33146, United States
| | - Mehmet Ozbil
- Department of Chemistry, Yale University, New Haven, Connecticut 06520-8107, United States
| | - Arghya Barman
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30302-3965, United States
| | - Thomas J. Paul
- Department
of Chemistry, University of Miami, Coral Gables, Florida 33146, United States
| | - Ram Prasad Bora
- Department of Chemistry, University of Southern California, Los Angeles, California 90089-1062, United States
| | - Rajeev Prabhakar
- Department
of Chemistry, University of Miami, Coral Gables, Florida 33146, United States
| |
Collapse
|
71
|
Jany T, Moreth A, Gruschka C, Sischka A, Spiering A, Dieding M, Wang Y, Samo SH, Stammler A, Bögge H, Fischer von Mollard G, Anselmetti D, Glaser T. Rational Design of a Cytotoxic Dinuclear Cu2 Complex That Binds by Molecular Recognition at Two Neighboring Phosphates of the DNA Backbone. Inorg Chem 2015; 54:2679-90. [DOI: 10.1021/ic5028465] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Thomas Jany
- Lehrstuhl für Anorganische
Chemie I, Chemistry Department, ‡Lehrstuhl für Biochemie III, Chemistry
Department, and §Experimentelle Biophysik, Physics Department, Bielefeld University, Universitätsstrasse 25, 33615 Bielefeld, Germany
| | - Alexander Moreth
- Lehrstuhl für Anorganische
Chemie I, Chemistry Department, ‡Lehrstuhl für Biochemie III, Chemistry
Department, and §Experimentelle Biophysik, Physics Department, Bielefeld University, Universitätsstrasse 25, 33615 Bielefeld, Germany
| | - Claudia Gruschka
- Lehrstuhl für Anorganische
Chemie I, Chemistry Department, ‡Lehrstuhl für Biochemie III, Chemistry
Department, and §Experimentelle Biophysik, Physics Department, Bielefeld University, Universitätsstrasse 25, 33615 Bielefeld, Germany
| | - Andy Sischka
- Lehrstuhl für Anorganische
Chemie I, Chemistry Department, ‡Lehrstuhl für Biochemie III, Chemistry
Department, and §Experimentelle Biophysik, Physics Department, Bielefeld University, Universitätsstrasse 25, 33615 Bielefeld, Germany
| | - Andre Spiering
- Lehrstuhl für Anorganische
Chemie I, Chemistry Department, ‡Lehrstuhl für Biochemie III, Chemistry
Department, and §Experimentelle Biophysik, Physics Department, Bielefeld University, Universitätsstrasse 25, 33615 Bielefeld, Germany
| | - Mareike Dieding
- Lehrstuhl für Anorganische
Chemie I, Chemistry Department, ‡Lehrstuhl für Biochemie III, Chemistry
Department, and §Experimentelle Biophysik, Physics Department, Bielefeld University, Universitätsstrasse 25, 33615 Bielefeld, Germany
| | - Ying Wang
- Lehrstuhl für Anorganische
Chemie I, Chemistry Department, ‡Lehrstuhl für Biochemie III, Chemistry
Department, and §Experimentelle Biophysik, Physics Department, Bielefeld University, Universitätsstrasse 25, 33615 Bielefeld, Germany
| | - Susan Haji Samo
- Lehrstuhl für Anorganische
Chemie I, Chemistry Department, ‡Lehrstuhl für Biochemie III, Chemistry
Department, and §Experimentelle Biophysik, Physics Department, Bielefeld University, Universitätsstrasse 25, 33615 Bielefeld, Germany
| | - Anja Stammler
- Lehrstuhl für Anorganische
Chemie I, Chemistry Department, ‡Lehrstuhl für Biochemie III, Chemistry
Department, and §Experimentelle Biophysik, Physics Department, Bielefeld University, Universitätsstrasse 25, 33615 Bielefeld, Germany
| | - Hartmut Bögge
- Lehrstuhl für Anorganische
Chemie I, Chemistry Department, ‡Lehrstuhl für Biochemie III, Chemistry
Department, and §Experimentelle Biophysik, Physics Department, Bielefeld University, Universitätsstrasse 25, 33615 Bielefeld, Germany
| | - Gabriele Fischer von Mollard
- Lehrstuhl für Anorganische
Chemie I, Chemistry Department, ‡Lehrstuhl für Biochemie III, Chemistry
Department, and §Experimentelle Biophysik, Physics Department, Bielefeld University, Universitätsstrasse 25, 33615 Bielefeld, Germany
| | - Dario Anselmetti
- Lehrstuhl für Anorganische
Chemie I, Chemistry Department, ‡Lehrstuhl für Biochemie III, Chemistry
Department, and §Experimentelle Biophysik, Physics Department, Bielefeld University, Universitätsstrasse 25, 33615 Bielefeld, Germany
| | - Thorsten Glaser
- Lehrstuhl für Anorganische
Chemie I, Chemistry Department, ‡Lehrstuhl für Biochemie III, Chemistry
Department, and §Experimentelle Biophysik, Physics Department, Bielefeld University, Universitätsstrasse 25, 33615 Bielefeld, Germany
| |
Collapse
|
72
|
Xu B, Jiang W, Liu F, Yu Y, Dong J. Reactivity of Dinuclear Copper(II) Complexes with
N
-Salicylidene Glycine Schiff Bases as Carboxylesterase Models. INT J CHEM KINET 2015. [DOI: 10.1002/kin.20904] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Bin Xu
- School of Chemical and Pharmaceutical Engineering; Sichuan University of Science & Engineering; Sichuan Zigong 643000 People's Republic of China
- Key Laboratory of Green Catalysis of Sichuan Institute of High Education; Sicuan Zigong 643000 People's Republic of China
| | - Weidong Jiang
- School of Chemical and Pharmaceutical Engineering; Sichuan University of Science & Engineering; Sichuan Zigong 643000 People's Republic of China
- Key Laboratory of Green Catalysis of Sichuan Institute of High Education; Sicuan Zigong 643000 People's Republic of China
| | - Fuan Liu
- Key Laboratory of Green Catalysis of Sichuan Institute of High Education; Sicuan Zigong 643000 People's Republic of China
| | - Yongde Yu
- School of Chemical and Pharmaceutical Engineering; Sichuan University of Science & Engineering; Sichuan Zigong 643000 People's Republic of China
| | - Juan Dong
- School of Chemical and Pharmaceutical Engineering; Sichuan University of Science & Engineering; Sichuan Zigong 643000 People's Republic of China
| |
Collapse
|
73
|
Phosphate ester hydrolysis catalyzed by a dinuclear cobalt(II) complex equipped with intramolecular β-cyclodextrins. ACTA ACUST UNITED AC 2015. [DOI: 10.1016/j.molcata.2014.10.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
74
|
Brown RS. Metal Ion-Promoted Leaving Group Assistance in the Light Alcohols. ADVANCES IN PHYSICAL ORGANIC CHEMISTRY 2015. [DOI: 10.1016/bs.apoc.2015.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
75
|
Zhang X, Zhu Y, Gao H, Zhao C. Solvolysis Mechanisms of RNA Phosphodiester Analogues Promoted by Mononuclear Zinc(II) Complexes: Mechanisic Determination upon Solvent Medium and Ligand Effects. Inorg Chem 2014; 53:11903-12. [DOI: 10.1021/ic501084a] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Xuepeng Zhang
- MOE
Key Laboratory of Bioinorganic and Synthetic Chemistry, School of
Chemistry and Chemical Engineering, Sun Yat-Sen University, Guangzhou 510275, P. R. China
| | - Yajie Zhu
- MOE
Key Laboratory of Bioinorganic and Synthetic Chemistry, School of
Chemistry and Chemical Engineering, Sun Yat-Sen University, Guangzhou 510275, P. R. China
| | - Hui Gao
- Key
Laboratory of Renewable Energy and Gas Hydrate, Guangzhou Institute
of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, P. R. China
| | - Cunyuan Zhao
- MOE
Key Laboratory of Bioinorganic and Synthetic Chemistry, School of
Chemistry and Chemical Engineering, Sun Yat-Sen University, Guangzhou 510275, P. R. China
| |
Collapse
|
76
|
Wang J, Liu B, Liu X, Panzner M, Wesdemiotis C, Pang Y. A binuclear Zn(II)-Zn(II) complex from a 2-hydroxybenzohydrazide-derived Schiff base for selective detection of pyrophosphate. Dalton Trans 2014; 43:14142-6. [PMID: 25135613 PMCID: PMC4161210 DOI: 10.1039/c4dt01799d] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A hydroxybenzohydrazide-based Schiff base ligand was conveniently synthesized. Upon addition of Zn(2+) cations, the ligand exhibited a high tendency to form a binuclear structure with a 2 : 2 ligand-to-zinc ratio, which was accompanied by a large fluorescence turn-on (λem = 507 nm, ϕfl≈ 0.28). The reactivity of the zinc complex was examined using different phosphate anions, which reveals a higher response to acid pyrophosphate anions. Detailed spectroscopic studies show that the pyrophosphate response is based on the ligand displacement mechanism.
Collapse
Affiliation(s)
- Junfeng Wang
- Department of Chemistry, The University of Akron, Akron, Ohio 44325 U.S.A
| | - Bin Liu
- Department of Chemistry, The University of Akron, Akron, Ohio 44325 U.S.A
| | - Xiumin Liu
- Department of Chemistry, The University of Akron, Akron, Ohio 44325 U.S.A
| | - Matt Panzner
- Department of Chemistry, The University of Akron, Akron, Ohio 44325 U.S.A
| | - Chrys Wesdemiotis
- Department of Chemistry, The University of Akron, Akron, Ohio 44325 U.S.A
| | - Yi Pang
- Department of Chemistry, The University of Akron, Akron, Ohio 44325 U.S.A
- Maurice Morton Institute of Polymer Science, The University of Akron, Akron, Ohio 44325 U.S.A
| |
Collapse
|
77
|
Bosch S, Comba P, Gahan LR, Schenk G. Dinuclear Zinc(II) Complexes with Hydrogen Bond Donors as Structural and Functional Phosphatase Models. Inorg Chem 2014; 53:9036-51. [DOI: 10.1021/ic5009945] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Simone Bosch
- Anorganisch-Chemisches Institut, Universität Heidelberg, INF 270, D-69120, Heidelberg, Germany
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, QLD 4072, Australia
| | - Peter Comba
- Anorganisch-Chemisches Institut, Universität Heidelberg, INF 270, D-69120, Heidelberg, Germany
| | - Lawrence R. Gahan
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, QLD 4072, Australia
| | - Gerhard Schenk
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, QLD 4072, Australia
| |
Collapse
|
78
|
Zhang X, Zheng X, Phillips DL, Zhao C. Mechanistic investigation of the cleavage of phosphodiester catalyzed by a symmetrical oxyimine-based macrocyclic dinuclear zinc complex: a DFT study. Dalton Trans 2014; 43:16289-99. [DOI: 10.1039/c4dt01491j] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
79
|
Zulkefeli M, Hisamatsu Y, Suzuki A, Miyazawa Y, Shiro M, Aoki S. Supramolecular Phosphatases Formed by the Self-Assembly of the Bis(Zn2+-Cyclen) Complex, Copper(II), and Barbital Derivatives in Water. Chem Asian J 2014; 9:2831-41. [DOI: 10.1002/asia.201402513] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Revised: 06/05/2014] [Indexed: 01/19/2023]
|
80
|
Zinc hydroxides and oxides supported by organic ligands: Synthesis and structural diversity. Coord Chem Rev 2014. [DOI: 10.1016/j.ccr.2013.12.003] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
81
|
Montagner D, Gandin V, Marzano C, Erxleben A. Phosphate Diester Cleavage, DNA Interaction and Cytotoxic Activity of a Bimetallic Bis(1,4,7-triazacyclononane) Zinc Complex. Eur J Inorg Chem 2014. [DOI: 10.1002/ejic.201402319] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
82
|
Daumann LJ, Schenk G, Gahan LR. Metallo-β-lactamases and Their Biomimetic Complexes. Eur J Inorg Chem 2014. [DOI: 10.1002/ejic.201402203] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
83
|
|
84
|
Modak R, Sikdar Y, Mandal S, Chatterjee S, Bieńko A, Mroziński J, Goswami S. Syntheses, crystallographic characterization, catecholase activity and magnetic properties of three novel aqua bridged dinuclear nickel(II) complexes. Inorganica Chim Acta 2014. [DOI: 10.1016/j.ica.2014.03.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
85
|
Zhang T, Zhu X, Prabhakar R. Peptide Hydrolysis by Metal-Cyclen Complexes and Their Analogues: Insights from Theoretical Studies. Organometallics 2014. [DOI: 10.1021/om400903r] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Tingting Zhang
- Department of Chemistry, University of Miami, Coral Gables, Florida 33146, United States
| | - Xiaoxia Zhu
- Department of Chemistry, University of Miami, Coral Gables, Florida 33146, United States
| | - Rajeev Prabhakar
- Department of Chemistry, University of Miami, Coral Gables, Florida 33146, United States
| |
Collapse
|
86
|
Yu F, Cangelosi VM, Zastrow ML, Tegoni M, Plegaria JS, Tebo AG, Mocny CS, Ruckthong L, Qayyum H, Pecoraro VL. Protein design: toward functional metalloenzymes. Chem Rev 2014; 114:3495-578. [PMID: 24661096 PMCID: PMC4300145 DOI: 10.1021/cr400458x] [Citation(s) in RCA: 329] [Impact Index Per Article: 32.9] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Fangting Yu
- University of Michigan, Ann Arbor, Michigan 48109, United States
| | | | | | | | | | - Alison G. Tebo
- University of Michigan, Ann Arbor, Michigan 48109, United States
| | | | - Leela Ruckthong
- University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Hira Qayyum
- University of Michigan, Ann Arbor, Michigan 48109, United States
| | | |
Collapse
|
87
|
Zhang T, Zhu X, Prabhakar R. Mechanistic Insights into Metal (Pd2+, Co2+, and Zn2+)−β-Cyclodextrin Catalyzed Peptide Hydrolysis: A QM/MM Approach. J Phys Chem B 2014; 118:4106-14. [DOI: 10.1021/jp502229s] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Tingting Zhang
- Department of Chemistry, University of Miami, 1301 Memorial Drive, Coral Gables, Florida 33146, United States
| | - Xiaoxia Zhu
- Department of Chemistry, University of Miami, 1301 Memorial Drive, Coral Gables, Florida 33146, United States
| | - Rajeev Prabhakar
- Department of Chemistry, University of Miami, 1301 Memorial Drive, Coral Gables, Florida 33146, United States
| |
Collapse
|
88
|
Zhu LN, Gao HR, Wang HX, Xu MY, Li XZ. Synthesis, Crystal Structures, and DNA Cleavage Activities of Manganese(II) Complexes: A Good Example of the Synergy between Metal Ions Prompting DNA Cleavage. Eur J Inorg Chem 2014. [DOI: 10.1002/ejic.201400044] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
89
|
Zhang X, Xu X, Xu H, Zhang X, Phillips DL, Zhao C. Mechanistic Investigation into the Cleavage of a Phosphomonoester Mediated by a Symmetrical Oxyimine-Based Macrocyclic Zinc(II) Complex. Chemphyschem 2014; 15:1887-98. [DOI: 10.1002/cphc.201301216] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Revised: 01/24/2014] [Indexed: 11/08/2022]
|
90
|
Chen SL, Liao RZ. Phosphate monoester hydrolysis by trinuclear alkaline phosphatase; DFT study of transition States and reaction mechanism. Chemphyschem 2014; 15:2321-30. [PMID: 24683174 DOI: 10.1002/cphc.201402016] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Revised: 02/25/2014] [Indexed: 12/23/2022]
Abstract
Alkaline phosphatase (AP) is a trinuclear metalloenzyme that catalyzes the hydrolysis of a broad range of phosphate monoesters to form inorganic phosphate and alcohol (or phenol). In this paper, by using density functional theory with a model based on a crystal structure, the AP-catalyzed hydrolysis of phosphate monoesters is investigated by calculating two substrates, that is, methyl and p-nitrophenyl phosphates, which represent alkyl and aryl phosphates, respectively. The calculations confirm that the AP reaction employs a "ping-pong" mechanism involving two chemical displacement steps, that is, the displacement of the substrate leaving group by a Ser102 alkoxide and the hydrolysis of the phosphoseryl intermediate by a Zn2-bound hydroxide. Both displacement steps proceed via a concerted associative pathway no matter which substrate is used. Other mechanistic aspects are also studied. Comparison of our calculations with linear free energy relationships experiments shows good agreement.
Collapse
Affiliation(s)
- Shi-Lu Chen
- Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic, Conversion Materials, School of Chemistry, Beijing Institute of Technology, Beijing 100081 (China), Fax: (+86) 01-6891-1354.
| | | |
Collapse
|
91
|
Zhang X, Zhu Y, Zheng X, Phillips DL, Zhao C. Mechanismic Investigation on the Cleavage of Phosphate Monoester Catalyzed by Unsymmetrical Macrocyclic Dinuclear Complexes: The Selection of Metal Centers and the Intrinsic Flexibility of the Ligand. Inorg Chem 2014; 53:3354-61. [DOI: 10.1021/ic402717x] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Xuepeng Zhang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry/KLGHEI
of Environment and Energy Chemistry, School of Chemistry and Chemical
Engineering, Sun Yat-Sen University, Guangzhou 510275, People’s Republic of China
| | - Yajie Zhu
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry/KLGHEI
of Environment and Energy Chemistry, School of Chemistry and Chemical
Engineering, Sun Yat-Sen University, Guangzhou 510275, People’s Republic of China
| | - Xiaowei Zheng
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry/KLGHEI
of Environment and Energy Chemistry, School of Chemistry and Chemical
Engineering, Sun Yat-Sen University, Guangzhou 510275, People’s Republic of China
| | - David Lee Phillips
- Department
of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, People’s Republic of China
| | - Cunyuan Zhao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry/KLGHEI
of Environment and Energy Chemistry, School of Chemistry and Chemical
Engineering, Sun Yat-Sen University, Guangzhou 510275, People’s Republic of China
| |
Collapse
|
92
|
|
93
|
Das B, Daver H, Pyrkosz-Bulska M, Persch E, Barman SK, Mukherjee R, Gumienna-Kontecka E, Jarenmark M, Himo F, Nordlander E. A dinuclear zinc(II) complex of a new unsymmetric ligand with an N(5)O(2) donor set: a structural and functional model for the active site of zinc phosphoesterases. J Inorg Biochem 2014; 132:6-17. [PMID: 24001510 DOI: 10.1016/j.jinorgbio.2013.08.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Revised: 08/01/2013] [Accepted: 08/01/2013] [Indexed: 02/03/2023]
Abstract
The dinuclear complex [Zn(2)(DPCPMP)(pivalate)](ClO4), where DPCPMP is the new unsymmetrical ligand [2-(N-(3-((bis((pyridin-2-yl)methyl)amino)methyl)-2-hydroxy-5-methylbenzyl)-N-((pyridin-2-yl)methyl)amino)acetic acid], has been synthesized and characterized. The complex is a functional model for zinc phosphoesterases with dinuclear active sites. The hydrolytic efficacy of the complex has been investigated using bis-(2,4-dinitrophenyl)phosphate (BDNPP), a DNA analog, as substrate. Speciation studies using potentiometric titrations have been performed for both the ligand and the corresponding dizinc complex to elucidate the formation of the active hydrolysis catalyst; they reveals that the dinuclear zinc(II) complexes, [Zn(2)(DPCPMP)](2+) and [Zn(2)(DPCPMP)(OH)](+) predominate the solution above pH4. The relatively high pK(a) of 8.38 for water deprotonation suggests that a terminal hydroxide complex is formed. Kinetic investigations of BDNPP hydrolysis over the pH range 5.5-11.0 and with varying metal to ligand ratio (metal salt:ligand=0.5:1 to 3:1) have been performed. Variable temperature studies gave the activation parameters ΔH(‡)=95.6kJmol(-1), ΔS(‡)=-44.8Jmol(-1)K(-1), and ΔG(‡)=108.0 kJmol(-1). The cumulative results indicate the hydroxido-bridged dinuclear Zn(II) complex [Zn(2)(DPCPMP)(μ-OH)](+) as the effective catalyst. The mechanism of hydrolysis has been probed by computational modeling using density functional theory (DFT). Calculations show that the reaction goes through one concerted step (S(N)2 type) in which the bridging hydroxide in the transition state becomes terminal and performs a nucleophilic attack on the BDNPP phosphorus; the leaving group dissociates simultaneously in an overall inner sphere type activation. The calculated free energy barrier is in good agreement with the experimentally determined activation parameters.
Collapse
Affiliation(s)
- Biswanath Das
- Inorganic Chemistry Research Group, Chemical Physics, Center for Chemistry and Chemical Engineering, Lund University, P.O. Box 124, SE-22100 Lund, Sweden
| | - Henrik Daver
- Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Monika Pyrkosz-Bulska
- Faculty of Chemistry, University of Wroclaw, F. Joliot-Curie Street 14, 50-383 Wroclaw, Poland
| | - Elke Persch
- Inorganic Chemistry Research Group, Chemical Physics, Center for Chemistry and Chemical Engineering, Lund University, P.O. Box 124, SE-22100 Lund, Sweden
| | - Suman K Barman
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208 016, India
| | | | | | - Martin Jarenmark
- Inorganic Chemistry Research Group, Chemical Physics, Center for Chemistry and Chemical Engineering, Lund University, P.O. Box 124, SE-22100 Lund, Sweden
| | - Fahmi Himo
- Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Ebbe Nordlander
- Inorganic Chemistry Research Group, Chemical Physics, Center for Chemistry and Chemical Engineering, Lund University, P.O. Box 124, SE-22100 Lund, Sweden.
| |
Collapse
|
94
|
Rosta E, Yang W, Hummer G. Calcium inhibition of ribonuclease H1 two-metal ion catalysis. J Am Chem Soc 2014; 136:3137-44. [PMID: 24499076 PMCID: PMC3985467 DOI: 10.1021/ja411408x] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2013] [Indexed: 01/05/2023]
Abstract
Most phosphate-processing enzymes require Mg(2+) as a cofactor to catalyze nucleotide cleavage and transfer reactions. Ca(2+) ions inhibit many of these enzymatic activities, despite Ca(2+) and Mg(2+) having comparable binding affinities and overall biological abundances. Here we study the molecular details of the calcium inhibition mechanism for phosphodiester cleavage, an essential reaction in the metabolism of nucleic acids and nucleotides, by comparing Ca(2+)- and Mg(2+) catalyzed reactions. We study the functional roles of the specific metal ion sites A and B in enabling the catalytic cleavage of an RNA/DNA hybrid substrate by B. halodurans ribonuclease (RNase) H1 using hybrid quantum-mechanics/molecular mechanics (QM/MM) free energy calculations. We find that Ca(2+) substitution of either of the two active-site Mg(2+) ions substantially increases the height of the reaction barrier and thereby abolishes the catalytic activity. Remarkably, Ca(2+) at the A site is inactive also in Mg(2+)-optimized active-site structures along the reaction path, whereas Mg(2+) substitution recovers activity in Ca(2+)-optimized structures. Geometric changes resulting from Ca(2+) substitution at metal ion site A may thus be a secondary factor in the loss of catalytic activity. By contrast, at metal ion site B geometry plays a more important role, with only a partial recovery of activity after Mg(2+) substitution in Ca(2+)-optimized structures. Ca(2+)-substitution also leads to a change in mechanism, with deprotonation of the water nucleophile requiring a closer approach to the scissile phosphate, which in turn increases the barrier. As a result, Ca(2+) is less efficient in activating the water. As a likely cause for the different reactivities of Mg(2+) and Ca(2+) ions in site A, we identify differences in charge transfer to the ions and the associated decrease in the pKa of the oxygen nucleophile attacking the phosphate group.
Collapse
Affiliation(s)
- Edina Rosta
- Laboratory
of Chemical Physics, National Institute of
Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892-0520, United States
- Department
of Chemistry, King’s College London, London SE1 1DB, United Kingdom
| | - Wei Yang
- Laboratory
of Molecular Biology, National Institute
of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Gerhard Hummer
- Laboratory
of Chemical Physics, National Institute of
Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892-0520, United States
- Department
of Theoretical Biophysics, Max Planck Institute
of Biophysics, 60438 Frankfurt am Main, Germany
| |
Collapse
|
95
|
Blomberg MRA, Borowski T, Himo F, Liao RZ, Siegbahn PEM. Quantum chemical studies of mechanisms for metalloenzymes. Chem Rev 2014; 114:3601-58. [PMID: 24410477 DOI: 10.1021/cr400388t] [Citation(s) in RCA: 441] [Impact Index Per Article: 44.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Margareta R A Blomberg
- Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University , SE-106 91 Stockholm, Sweden
| | | | | | | | | |
Collapse
|
96
|
Abstract
Important biomimetic steps in natural product synthesis have been promoted by transition metals, as exemplified by this beautiful ruthenium-catalyzed rearrangement of an endoperoxide into elysiapyrone A. Such reactions are supposed to occur during the biosynthesis, yet under different catalysis conditions.
Collapse
Affiliation(s)
- Xu-Wen Li
- Muséum National d'Histoire Naturelle and Centre National de la Recherche Scientifique
- Unité “Molécules de Communication et Adaptation des Micro-organismes” (UMR 7245 CNRS-MNHN)
- 75005 Paris, France
| | - Bastien Nay
- Muséum National d'Histoire Naturelle and Centre National de la Recherche Scientifique
- Unité “Molécules de Communication et Adaptation des Micro-organismes” (UMR 7245 CNRS-MNHN)
- 75005 Paris, France
| |
Collapse
|
97
|
Nanostructured and/or Nanoscale Lanthanide Metal-Organic Frameworks. LANTHANIDE METAL-ORGANIC FRAMEWORKS 2014. [DOI: 10.1007/430_2014_167] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
98
|
Karsisiotis AI, Damblon CF, Roberts GCK. A variety of roles for versatile zinc in metallo-β-lactamases. Metallomics 2014; 6:1181-97. [DOI: 10.1039/c4mt00066h] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
β-Lactamases inactivate the important β-lactam antibiotics by catalysing the hydrolysis of the β-lactam ring, thus. One class of these enzymes, the metallo-β-lactamases, bind two zinc ions at the active site and these play important roles in the catalytic mechanism.
Collapse
Affiliation(s)
| | - C. F. Damblon
- Chimie Biologique Structurale
- Institut de Chimie
- Université de Liège
- 4000 Liège, Belgium
| | - G. C. K. Roberts
- The Henry Wellcome Laboratories of Structural Biology
- Department of Biochemistry
- University of Leicester
- Leicester LE1 9HN, UK
| |
Collapse
|
99
|
Sanyal R, Guha A, Ghosh T, Mondal TK, Zangrando E, Das D. Influence of the Coordination Environment of Zinc(II) Complexes of Designed Mannich Ligands on Phosphatase Activity: A Combined Experimental and Theoretical Study. Inorg Chem 2013; 53:85-96. [DOI: 10.1021/ic4015493] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Ria Sanyal
- Department of Chemistry, University of Calcutta, 92, A. P. C. Road, Kolkata 700009, India
| | - Averi Guha
- Department of Chemistry, University of Calcutta, 92, A. P. C. Road, Kolkata 700009, India
| | - Totan Ghosh
- Department of Chemistry, University of Calcutta, 92, A. P. C. Road, Kolkata 700009, India
| | - Tapan Kumar Mondal
- Department
of Chemistry, Jadavpur University, Jadavpur, Kolkata 7000032, India
| | - Ennio Zangrando
- Dipartimento di Scienze Chimiche e Farmaceutiche, University of Trieste, Via L. Giorgieri 1, 34127 Trieste, Italy
| | - Debasis Das
- Department of Chemistry, University of Calcutta, 92, A. P. C. Road, Kolkata 700009, India
| |
Collapse
|
100
|
Navrátil V, Klusák V, Rulíšek L. Theoretical Aspects of Hydrolysis of Peptide Bonds by Zinc Metalloenzymes. Chemistry 2013; 19:16634-45. [DOI: 10.1002/chem.201302663] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Revised: 08/08/2013] [Indexed: 12/11/2022]
Affiliation(s)
- Václav Navrátil
- Institute of Organic Chemistry and Biochemistry, Gilead Sciences & IOCB Research Center, Academy of Sciences of the Czech Republic, Flemingovo náměstí 2, 166 10 Praha 6 (Czech Republic)
- Charles University in Prague, Faculty of Science, Department of Biochemistry, Hlavova 2030, 128 43 Praha 2 (Czech Republic)
| | - Vojtěch Klusák
- Institute of Organic Chemistry and Biochemistry, Gilead Sciences & IOCB Research Center, Academy of Sciences of the Czech Republic, Flemingovo náměstí 2, 166 10 Praha 6 (Czech Republic)
| | - Lubomír Rulíšek
- Institute of Organic Chemistry and Biochemistry, Gilead Sciences & IOCB Research Center, Academy of Sciences of the Czech Republic, Flemingovo náměstí 2, 166 10 Praha 6 (Czech Republic)
| |
Collapse
|