51
|
Oliveras-González C, Linares M, Amabilino DB, Avarvari N. Large Synthetic Molecule that either Folds or Aggregates through Weak Supramolecular Interactions Determined by Solvent. ACS OMEGA 2019; 4:10108-10120. [PMID: 31460103 PMCID: PMC6648001 DOI: 10.1021/acsomega.9b01050] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 05/29/2019] [Indexed: 05/12/2023]
Abstract
Weak noncovalent interactions between large disclike molecules in poorly solvating media generally lead to the formation of fibers where the molecules stack atop one another. Here, we show that a particular chiral spacing group between large aromatic moieties, which usually lead to columnar stacks, in this case gives rise to an intramolecularly folded structure in relatively polar solvents, but in very apolar solvents forms finite aggregates. The molecule that displays this behavior has a C 3 symmetric benzene-1,3,5-tris(3,3'-diamido-2,2'-bipyridine) (BTAB) core with three metalloporphyrin units appended to it through short chiral spacers. Quite well-defined chromophore arrangements are evident by circular dichroism (CD) spectroscopy of this compound in solution, where clear exciton coupled bands of porphyrins are observed. In more polar solvents where the molecules are dispersed, a relatively weak CD signal is observed as a result of intramolecular folding, a feature confirmed by molecular modeling. The intramolecular folding was confirmed by measuring the CD of a C 2 symmetric analogue. The C 3 symmetric BTAB cores that would normally be expected to stack in a chiral arrangement in apolar solvents show no indication of CD, suggesting that there is no transfer of chirality through it (although the expected planar conformation of the 2,2'-bipyridine unit is confirmed by NMR spectroscopy). The incorporation of the porphyrins on the 3,3'-diamino-2,2'-bipyridine moiety spaced by a chiral unit leaves the latter incapable of assembling through supramolecular π-π stacking. Rather, modeling indicates that the three metalloporphyrin units interact, thanks to van der Waals interactions, favoring their close interactions over that of the BTAB units. Atomic force microscopy shows that, in contrast to other examples of molecules with the same core, disclike aggregates (rather than fibrillar one dimensional aggregates) are favored by the C 3 symmetric molecule. The closed structures are formed through nondirectional interlocking of porphyrin rings. The chiral spacer between the rigid core and the porphyrin moieties is undoubtedly important in determining the outcome in polar or less polar solvents, as modeling shows that this joint in the molecule has two favored conformations that render the molecule relatively flat or convex.
Collapse
Affiliation(s)
| | - Mathieu Linares
- Laboratory
of Organic Electronics, ITN, Campus Norrköping, Scientific Visualization
Group, ITN, Campus Norrköping, and Swedish e-Science Research Centre
(SeRC), Linköping University, SE-581 83 Linköping, Sweden
| | - David B. Amabilino
- School
of Chemistry, University of Nottingham, University Park, NG7 2RD Nottingham, U.K.
- GSK Carbon
Neutral Laboratories for Sustainable Chemistry, The University of Nottingham, Jubilee Campus, Triumph Road, NG7 2TU Nottingham, U.K.
| | - Narcis Avarvari
- MOLTECH-Anjou,
UMR 6200, CNRS, Univ. Angers, 2bd Lavoisier, 49045 Angers Cedex, France
| |
Collapse
|
52
|
Malde AK, Hill TA, Iyer A, Fairlie DP. Crystal Structures of Protein-Bound Cyclic Peptides. Chem Rev 2019; 119:9861-9914. [DOI: 10.1021/acs.chemrev.8b00807] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Alpeshkumar K. Malde
- Division of Chemistry and Structural Biology, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Timothy A. Hill
- Division of Chemistry and Structural Biology, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Abishek Iyer
- Division of Chemistry and Structural Biology, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
- Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - David P. Fairlie
- Division of Chemistry and Structural Biology, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
- Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| |
Collapse
|
53
|
Guarracino DA, Riordan JA, Barreto GM, Oldfield AL, Kouba CM, Agrinsoni D. Macrocyclic Control in Helix Mimetics. Chem Rev 2019; 119:9915-9949. [DOI: 10.1021/acs.chemrev.8b00623] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Danielle A. Guarracino
- Department of Chemistry, The College of New Jersey, Ewing, New Jersey 08628, United States
| | - Jacob A. Riordan
- Department of Chemistry, The College of New Jersey, Ewing, New Jersey 08628, United States
| | - Gianna M. Barreto
- Department of Chemistry, The College of New Jersey, Ewing, New Jersey 08628, United States
| | - Alexis L. Oldfield
- Department of Chemistry, The College of New Jersey, Ewing, New Jersey 08628, United States
| | - Christopher M. Kouba
- Department of Chemistry, The College of New Jersey, Ewing, New Jersey 08628, United States
| | - Desiree Agrinsoni
- Department of Chemistry, The College of New Jersey, Ewing, New Jersey 08628, United States
| |
Collapse
|
54
|
Reguera L, Rivera DG. Multicomponent Reaction Toolbox for Peptide Macrocyclization and Stapling. Chem Rev 2019; 119:9836-9860. [PMID: 30990310 DOI: 10.1021/acs.chemrev.8b00744] [Citation(s) in RCA: 188] [Impact Index Per Article: 37.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
In the past decade, multicomponent reactions have experienced a renaissance as powerful peptide macrocyclization tools enabling the rapid creation of skeletal complexity and diversity with low synthetic cost. This review provides both a historical and modern overview of the development of the peptide multicomponent macrocyclization as a strategy capable to compete with the classic peptide cyclization methods in terms of chemical efficiency and synthetic scope. We prove that the utilization of multicomponent reactions for cyclizing peptides by either their termini or side chains provides a key advantage over those more established methods; that is, the possibility to explore the cyclic peptide chemotype space not only at the amino acid sequence but also at the ring-forming moiety. Owing to its multicomponent nature, this type of peptide cyclization process is well-suited to generate diversity at both the endo- and exo-cyclic fragments formed during the ring-closing step, which stands as a distinctive and useful characteristic for the creation and screening of cyclic peptide libraries. Examples of the novel multicomponent peptide stapling approach and heterocycle ring-forming macrocyclizations are included, along with multicomponent methods incorporating macrocyclization handles and the one-pot syntheses of macromulticyclic peptide cages. Interesting applications of this strategy in the field of drug discovery and chemical biology are provided.
Collapse
Affiliation(s)
- Leslie Reguera
- Center for Natural Product Research, Faculty of Chemistry , University of Havana , Zapata y G , Havana 10400 , Cuba
| | - Daniel G Rivera
- Center for Natural Product Research, Faculty of Chemistry , University of Havana , Zapata y G , Havana 10400 , Cuba
| |
Collapse
|
55
|
Galasiti Kankanamalage AC, Weerawarna PM, Rathnayake AD, Kim Y, Mehzabeen N, Battaile KP, Lovell S, Chang KO, Groutas WC. Putative structural rearrangements associated with the interaction of macrocyclic inhibitors with norovirus 3CL protease. Proteins 2019; 87:579-587. [PMID: 30883881 DOI: 10.1002/prot.25682] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 02/12/2019] [Accepted: 03/13/2019] [Indexed: 12/17/2022]
Abstract
Human noroviruses are the primary cause of outbreaks of acute gastroenteritis worldwide. The problem is further compounded by the current lack of norovirus-specific antivirals or vaccines. Noroviruses have a single-stranded, positive sense 7 to 8 kb RNA genome which encodes a polyprotein precursor that is processed by a virus-encoded 3C-like cysteine protease (NV 3CLpro) to generate at least six mature nonstructural proteins. Processing of the polyprotein is essential for virus replication, consequently, NV 3CLpro has emerged as an attractive target for the discovery of norovirus therapeutics and prophylactics. We have recently described the structure-based design of macrocyclic transition state inhibitors of NV 3CLpro. In order to gain insight and understanding into the interaction of macrocyclic inhibitors with the enzyme, as well as probe the effect of ring size on pharmacological activity and cellular permeability, additional macrocyclic inhibitors were synthesized and high resolution cocrystal structures determined. The results of our studies tentatively suggest that the macrocyclic scaffold may hamper optimal binding to the active site by impeding concerted cross-talk between the S2 and S4 subsites.
Collapse
Affiliation(s)
| | | | | | - Yunjeong Kim
- Department of Diagnostic Medicine & Pathobiology, College of Veterinary Medicine, Kansas State University, Kansas
| | | | - Kevin P Battaile
- IMCA-CAT, Hauptman-Woodward Medical Research Institute, APS Argonne National Laboratory, Argonne, Illinois
| | - Scott Lovell
- Protein Structure Laboratory, The University of Kansas, Kansas
| | - Kyeong-Ok Chang
- Department of Diagnostic Medicine & Pathobiology, College of Veterinary Medicine, Kansas State University, Kansas
| | | |
Collapse
|
56
|
Cummings MD, Sekharan S. Structure-Based Macrocycle Design in Small-Molecule Drug Discovery and Simple Metrics To Identify Opportunities for Macrocyclization of Small-Molecule Ligands. J Med Chem 2019; 62:6843-6853. [DOI: 10.1021/acs.jmedchem.8b01985] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Maxwell D. Cummings
- Janssen Research and Development, LLC, Welsh and McKean Roads, Spring House, Pennsylvania 19477, United States
| | - Sivakumar Sekharan
- Cambridge Crystallographic Data Centre, 252 Nassau Street, Princeton, New Jersey 08542, United States
| |
Collapse
|
57
|
Ali AM, Atmaj J, Van Oosterwijk N, Groves MR, Dömling A. Stapled Peptides Inhibitors: A New Window for Target Drug Discovery. Comput Struct Biotechnol J 2019; 17:263-281. [PMID: 30867891 PMCID: PMC6396041 DOI: 10.1016/j.csbj.2019.01.012] [Citation(s) in RCA: 110] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 01/28/2019] [Accepted: 01/29/2019] [Indexed: 12/11/2022] Open
Abstract
Protein-protein interaction (PPI) is a hot topic in clinical research as protein networking has a major impact in human disease. Such PPIs are potential drugs targets, leading to the need to inhibit/block specific PPIs. While small molecule inhibitors have had some success and reached clinical trials, they have generally failed to address the flat and large nature of PPI surfaces. As a result, larger biologics were developed for PPI surfaces and they have successfully targeted PPIs located outside the cell. However, biologics have low bioavailability and cannot reach intracellular targets. A novel class -hydrocarbon-stapled α-helical peptides that are synthetic mini-proteins locked into their bioactive structure through site-specific introduction of a chemical linker- has shown promise. Stapled peptides show an ability to inhibit intracellular PPIs that previously have been intractable with traditional small molecule or biologics, suggesting that they offer a novel therapeutic modality. In this review, we highlight what stapling adds to natural-mimicking peptides, describe the revolution of synthetic chemistry techniques and how current drug discovery approaches have been adapted to stabilize active peptide conformations, including ring-closing metathesis (RCM), lactamisation, cycloadditions and reversible reactions. We provide an overview on the available stapled peptide high-resolution structures in the protein data bank, with four selected structures discussed in details due to remarkable interactions of their staple with the target surface. We believe that stapled peptides are promising drug candidates and open the doors for peptide therapeutics to reach currently "undruggable" space.
Collapse
Affiliation(s)
| | | | | | | | - Alexander Dömling
- Department of Drug Design, University of Groningen, Antonius Deusinglaan1, 9700AD Groningen, the Netherlands
| |
Collapse
|
58
|
Schumann NC, Bruning J, Marshall AC, Abell AD. The role of N-terminal heterocycles in hydrogen bonding to α-chymotrypsin. Bioorg Med Chem Lett 2019; 29:396-399. [PMID: 30579793 DOI: 10.1016/j.bmcl.2018.12.032] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 12/11/2018] [Accepted: 12/14/2018] [Indexed: 01/14/2023]
Abstract
A series of dipeptide aldehydes containing different N-terminal heterocycles was prepared and assayed in vitro against α-chymotrypsin to ascertain the importance of the heterocycle in maintaining a β-strand geometry while also providing a hydrogen bond donor equivalent to the backbone amide nitrogen of the surrogate amino acid. The dipeptide containing a pyrrole constraint (10) was the most potent inhibitor, with >30-fold improved activity over dipeptides which lacked a nitrogen hydrogen bond donor (namely thiophene 11, furan 12 and pyridine 13). Molecular docking studies of 10 bound to α-chymotrypsin demonstrates a hydrogen bond between the pyrrole nitrogen donor and the backbone carbonyl of Gly216 located in the S3 pocket which is proposed to be critical for overall binding.
Collapse
Affiliation(s)
- Nicholas C Schumann
- School of Chemistry & Physics, The University of Adelaide, North Terrace, Adelaide, SA 5005, Australia
| | - John Bruning
- School of Biological Sciences, The University of Adelaide, North Terrace, Adelaide, SA 5005, Australia
| | - Andrew C Marshall
- School of Biological Sciences, The University of Adelaide, North Terrace, Adelaide, SA 5005, Australia
| | - Andrew D Abell
- School of Chemistry & Physics, The University of Adelaide, North Terrace, Adelaide, SA 5005, Australia; ARC Centre of Excellence for Nanoscale BioPhotonics (CNBP) and Institute of Photonics and Advanced Sensing (IPAS), The University of Adelaide, Adelaide, South Australia 5005, Australia.
| |
Collapse
|
59
|
Windsor IW, Gold B, Raines RT. An n→ π* Interaction in the Bound Substrate of Aspartic Proteases Replicates the Oxyanion Hole. ACS Catal 2019; 9:1464-1471. [PMID: 31093467 DOI: 10.1021/acscatal.8b04142] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Aspartic proteases regulate many biological processes and are prominent targets for therapeutic intervention. Structural studies have captured intermediates along the reaction pathway, including the Michaelis complex and tetrahedral intermediate. Using a Ramachandran analysis of these structures, we discovered that residues occupying the P1 and P1' positions (which flank the scissile peptide bond) adopt the dihedral angle of an inverse γ-turn and polyproline type-II helix, respectively. Computational analyses reveal that the polyproline type-II helix engenders an n→π* interaction in which the oxygen of the scissile peptide bond is the donor. This interaction stabilizes the negative charge that develops in the tetrahedral intermediate, much like the oxyanion hole of serine proteases. The inverse γ-turn serves to twist the scissile peptide bond, vacating the carbonyl π* orbital and facilitating its hydration. These previously unappreciated interactions entail a form of substrate-assisted catalysis and offer opportunities for drug design.
Collapse
Affiliation(s)
- Ian W. Windsor
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Brian Gold
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Ronald T. Raines
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
60
|
Abstract
Signal peptidases are the membrane bound enzymes that cleave off the amino-terminal signal peptide from secretory preproteins . There are two types of bacterial signal peptidases . Type I signal peptidase utilizes a serine/lysine catalytic dyad mechanism and is the major signal peptidase in most bacteria. Type II signal peptidase is an aspartic protease specific for prolipoproteins. This chapter will review what is known about the structure, function and mechanism of these unique enzymes.
Collapse
Affiliation(s)
- Mark Paetzel
- Department of Molecular Biology and Biochemistry, Simon Fraser University, South Science Building 8888 University Drive, Burnaby, BC, V5A 1S6, Canada.
| |
Collapse
|
61
|
Jobin S, Beaumont C, Biron E. Development of a solid-phase traceless-Ugi multicomponent reaction for backbone anchoring and cyclic peptide synthesis. Pept Sci (Hoboken) 2019. [DOI: 10.1002/pep2.24044] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Steve Jobin
- Faculté de Pharmacie, Université Laval, Pavillon Ferdinand-Vandry, 1050 Avenue de la Médecine; Québec G1V 0A6 Canada
- Laboratoire de Chimie Médicinale, Centre de Recherche du Centre Hospitalier Universitaire de Québec, 2705 Boulevard Laurier; Québec G1V 4G2 Canada
| | - Catherine Beaumont
- Faculté de Pharmacie, Université Laval, Pavillon Ferdinand-Vandry, 1050 Avenue de la Médecine; Québec G1V 0A6 Canada
- Laboratoire de Chimie Médicinale, Centre de Recherche du Centre Hospitalier Universitaire de Québec, 2705 Boulevard Laurier; Québec G1V 4G2 Canada
| | - Eric Biron
- Faculté de Pharmacie, Université Laval, Pavillon Ferdinand-Vandry, 1050 Avenue de la Médecine; Québec G1V 0A6 Canada
- Laboratoire de Chimie Médicinale, Centre de Recherche du Centre Hospitalier Universitaire de Québec, 2705 Boulevard Laurier; Québec G1V 4G2 Canada
| |
Collapse
|
62
|
Data-driven supervised learning of a viral protease specificity landscape from deep sequencing and molecular simulations. Proc Natl Acad Sci U S A 2018; 116:168-176. [PMID: 30587591 DOI: 10.1073/pnas.1805256116] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Biophysical interactions between proteins and peptides are key determinants of molecular recognition specificity landscapes. However, an understanding of how molecular structure and residue-level energetics at protein-peptide interfaces shape these landscapes remains elusive. We combine information from yeast-based library screening, next-generation sequencing, and structure-based modeling in a supervised machine learning approach to report the comprehensive sequence-energetics-function mapping of the specificity landscape of the hepatitis C virus (HCV) NS3/4A protease, whose function-site-specific cleavages of the viral polyprotein-is a key determinant of viral fitness. We screened a library of substrates in which five residue positions were randomized and measured cleavability of ∼30,000 substrates (∼1% of the library) using yeast display and fluorescence-activated cell sorting followed by deep sequencing. Structure-based models of a subset of experimentally derived sequences were used in a supervised learning procedure to train a support vector machine to predict the cleavability of 3.2 million substrate variants by the HCV protease. The resulting landscape allows identification of previously unidentified HCV protease substrates, and graph-theoretic analyses reveal extensive clustering of cleavable and uncleavable motifs in sequence space. Specificity landscapes of known drug-resistant variants are similarly clustered. The described approach should enable the elucidation and redesign of specificity landscapes of a wide variety of proteases, including human-origin enzymes. Our results also suggest a possible role for residue-level energetics in shaping plateau-like functional landscapes predicted from viral quasispecies theory.
Collapse
|
63
|
Skowron KJ, Speltz TE, Moore TW. Recent structural advances in constrained helical peptides. Med Res Rev 2018; 39:749-770. [PMID: 30307621 DOI: 10.1002/med.21540] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2018] [Revised: 09/05/2018] [Accepted: 09/06/2018] [Indexed: 12/20/2022]
Abstract
Given the ubiquity of the ⍺-helix in the proteome, there has been much research in developing mimics of ⍺-helices, and most of this study has been toward developing protein-protein interaction inhibitors. A common strategy for mimicking ⍺-helices has been through the use of constrained, helical peptides. The addition of a constraint typically provides for conformational and proteolytic stability and, in some cases, cell permeability. Some of the most well-known strategies included are lactam formation and hydrocarbon "stapling." Beyond those strategies, there have been many recent advances in developing constrained peptides. The purpose of this review is to highlight recent advances in the development of new helix-stabilizing technologies, constraint diversification strategies, tether diversification strategies, and combination strategies that create new bicyclic helical peptides.
Collapse
Affiliation(s)
- Kornelia J Skowron
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois
| | - Thomas E Speltz
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois
| | - Terry W Moore
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois.,Translational Oncology Program, University of Illinois Cancer Center, Chicago, Illinois
| |
Collapse
|
64
|
Löser R, Bader M, Kuchar M, Wodtke R, Lenk J, Wodtke J, Kuhne K, Bergmann R, Haase-Kohn C, Urbanová M, Steinbach J, Pietzsch J. Synthesis, 18F-labelling and radiopharmacological characterisation of the C-terminal 30mer of Clostridium perfringens enterotoxin as a potential claudin-targeting peptide. Amino Acids 2018; 51:219-244. [PMID: 30264172 DOI: 10.1007/s00726-018-2657-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 09/17/2018] [Indexed: 12/26/2022]
Abstract
The cell surface receptor claudin-4 (Cld-4) is upregulated in various tumours and represents an important emerging target for both diagnosis and treatment of solid tumours of epithelial origin. The C-terminal fragment of the Clostridium perfringens enterotoxin cCPE290-319 appears as a suitable ligand for targeting Cld-4. The synthesis of this 30mer peptide was attempted via several approaches, which has revealed sequential SPPS using three pseudoproline dipeptide building blocks to be the most efficient one. Labelling with fluorine-18 was achieved on solid phase using N-succinimidyl 4-[18F]fluorobenzoate ([18F]SFB) and 4-[18F]fluorobenzoyl chloride as 18F-acylating agents, which was the most advantageous when [18F]SFB was reacted with the resin-bound 30mer containing an N-terminal 6-aminohexanoic spacer. Binding to Cld-4 was demonstrated via surface plasmon resonance using a protein construct containing both extracellular loops of Cld-4. In addition, cell binding experiments were performed for 18F-labelled cCPE290-319 with the Cld-4 expressing tumour cell lines HT-29 and A431 that were complemented by fluorescence microscopy studies using the corresponding fluorescein isothiocyanate-conjugated peptide. The 30mer peptide proved to be sufficiently stable in blood plasma. Studying the in vivo behaviour of 18F-labelled cCPE290-319 in healthy mice and rats by dynamic PET imaging and radiometabolite analyses has revealed that the peptide is subject to substantial liver uptake and rapid metabolic degradation in vivo, which limits its suitability as imaging probe for tumour-associated Cld-4.
Collapse
Affiliation(s)
- Reik Löser
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden Rossendorf, Bautzner Landstraße 400, 01328, Dresden, Germany.
- Faculty of Chemistry and Food Chemistry, School of Science, Technische Universität Dresden, Mommsenstraße 4, 01062, Dresden, Germany.
| | - Miriam Bader
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden Rossendorf, Bautzner Landstraße 400, 01328, Dresden, Germany
- Faculty of Chemistry and Food Chemistry, School of Science, Technische Universität Dresden, Mommsenstraße 4, 01062, Dresden, Germany
| | - Manuela Kuchar
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden Rossendorf, Bautzner Landstraße 400, 01328, Dresden, Germany
- Faculty of Chemistry and Food Chemistry, School of Science, Technische Universität Dresden, Mommsenstraße 4, 01062, Dresden, Germany
| | - Robert Wodtke
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden Rossendorf, Bautzner Landstraße 400, 01328, Dresden, Germany
- Faculty of Chemistry and Food Chemistry, School of Science, Technische Universität Dresden, Mommsenstraße 4, 01062, Dresden, Germany
| | - Jens Lenk
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden Rossendorf, Bautzner Landstraße 400, 01328, Dresden, Germany
- Faculty of Chemistry and Food Chemistry, School of Science, Technische Universität Dresden, Mommsenstraße 4, 01062, Dresden, Germany
| | - Johanna Wodtke
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden Rossendorf, Bautzner Landstraße 400, 01328, Dresden, Germany
| | - Konstantin Kuhne
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden Rossendorf, Bautzner Landstraße 400, 01328, Dresden, Germany
- Faculty of Chemistry and Food Chemistry, School of Science, Technische Universität Dresden, Mommsenstraße 4, 01062, Dresden, Germany
| | - Ralf Bergmann
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden Rossendorf, Bautzner Landstraße 400, 01328, Dresden, Germany
| | - Cathleen Haase-Kohn
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden Rossendorf, Bautzner Landstraße 400, 01328, Dresden, Germany
| | - Marie Urbanová
- Department of Physics and Measurements, University of Chemistry and Technology, 166 28, Prague, Czech Republic
| | - Jörg Steinbach
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden Rossendorf, Bautzner Landstraße 400, 01328, Dresden, Germany
- Faculty of Chemistry and Food Chemistry, School of Science, Technische Universität Dresden, Mommsenstraße 4, 01062, Dresden, Germany
| | - Jens Pietzsch
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden Rossendorf, Bautzner Landstraße 400, 01328, Dresden, Germany
- Faculty of Chemistry and Food Chemistry, School of Science, Technische Universität Dresden, Mommsenstraße 4, 01062, Dresden, Germany
| |
Collapse
|
65
|
Prior AM, Hori T, Fishman A, Sun D. Recent Reports of Solid-Phase Cyclohexapeptide Synthesis and Applications. Molecules 2018; 23:molecules23061475. [PMID: 29912160 PMCID: PMC6100019 DOI: 10.3390/molecules23061475] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 06/11/2018] [Accepted: 06/16/2018] [Indexed: 12/31/2022] Open
Abstract
Macrocyclic peptides are privileged scaffolds for drug development and constitute a significant portion of macrocyclic drugs on the market today in fields spanning from infectious disease to oncology. Developing orally bioavailable peptide-based drugs remains a challenging task; however, macrocyclization of linear peptides can be an effective strategy to improve membrane permeability, proteolytic stability, oral bioavailability, and overall drug-like characteristics for this class. Significant advances in solid-phase peptide synthesis (SPPS) have enabled the efficient construction of macrocyclic peptide and peptidomimetic libraries with macrolactamization being performed on-resin or in solution phase. The primary goal of this review is to summarize solid-phase cyclohexapeptide synthesis using the on-resin and solution-phase macrocyclization methodologies published since 2013. We also highlight their broad applications ranging from natural product total synthesis, synthetic methodology development, and medicinal chemistry, to drug development and analyses of conformational and physiochemical properties.
Collapse
Affiliation(s)
- Allan M Prior
- Department of Pharmaceutical Sciences, The Daniel K. Inouye College of Pharmacy, University of Hawaii at Hilo, 34 Rainbow Drive, Hilo, Hawaii, HI 96720, USA.
| | - Taylor Hori
- Department of Pharmaceutical Sciences, The Daniel K. Inouye College of Pharmacy, University of Hawaii at Hilo, 34 Rainbow Drive, Hilo, Hawaii, HI 96720, USA.
| | - Ashriel Fishman
- Department of Pharmaceutical Sciences, The Daniel K. Inouye College of Pharmacy, University of Hawaii at Hilo, 34 Rainbow Drive, Hilo, Hawaii, HI 96720, USA.
| | - Dianqing Sun
- Department of Pharmaceutical Sciences, The Daniel K. Inouye College of Pharmacy, University of Hawaii at Hilo, 34 Rainbow Drive, Hilo, Hawaii, HI 96720, USA.
| |
Collapse
|
66
|
Waldner BJ, Kraml J, Kahler U, Spinn A, Schauperl M, Podewitz M, Fuchs JE, Cruciani G, Liedl KR. Electrostatic recognition in substrate binding to serine proteases. J Mol Recognit 2018; 31:e2727. [PMID: 29785722 PMCID: PMC6175425 DOI: 10.1002/jmr.2727] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 04/11/2018] [Accepted: 04/11/2018] [Indexed: 12/16/2022]
Abstract
Serine proteases of the Chymotrypsin family are structurally very similar but have very different substrate preferences. This study investigates a set of 9 different proteases of this family comprising proteases that prefer substrates containing positively charged amino acids, negatively charged amino acids, and uncharged amino acids with varying degree of specificity. Here, we show that differences in electrostatic substrate preferences can be predicted reliably by electrostatic molecular interaction fields employing customized GRID probes. Thus, we are able to directly link protease structures to their electrostatic substrate preferences. Additionally, we present a new metric that measures similarities in substrate preferences focusing only on electrostatics. It efficiently compares these electrostatic substrate preferences between different proteases. This new metric can be interpreted as the electrostatic part of our previously developed substrate similarity metric. Consequently, we suggest, that substrate recognition in terms of electrostatics and shape complementarity are rather orthogonal aspects of substrate recognition. This is in line with a 2‐step mechanism of protein‐protein recognition suggested in the literature.
Collapse
Affiliation(s)
- Birgit J Waldner
- Institute of General, Inorganic and Theoretical Chemistry, and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innsbruck, Austria
| | - Johannes Kraml
- Institute of General, Inorganic and Theoretical Chemistry, and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innsbruck, Austria
| | - Ursula Kahler
- Institute of General, Inorganic and Theoretical Chemistry, and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innsbruck, Austria
| | - Alexander Spinn
- Institute of General, Inorganic and Theoretical Chemistry, and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innsbruck, Austria
| | - Michael Schauperl
- Institute of General, Inorganic and Theoretical Chemistry, and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innsbruck, Austria
| | - Maren Podewitz
- Institute of General, Inorganic and Theoretical Chemistry, and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innsbruck, Austria
| | - Julian E Fuchs
- Institute of General, Inorganic and Theoretical Chemistry, and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innsbruck, Austria
| | - Gabriele Cruciani
- Laboratory of Chemometrics, Department of Chemistry, University of Perugia, Perugia, Italy
| | - Klaus R Liedl
- Institute of General, Inorganic and Theoretical Chemistry, and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
67
|
James AM, Haywood J, Mylne JS. Macrocyclization by asparaginyl endopeptidases. THE NEW PHYTOLOGIST 2018; 218:923-928. [PMID: 28322452 DOI: 10.1111/nph.14511] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 01/24/2017] [Indexed: 05/18/2023]
Abstract
Contents Summary 923 I. Introduction 923 II. Plant AEPs with macrocyclizing ability 924 III. Mechanism of macrocyclization by AEPs 925 IV. Conclusions 927 Acknowledgements 927 References 927 SUMMARY: Plant asparaginyl endopeptidases (AEPs) are important for the post-translational processing of seed storage proteins via cleavage of precursor proteins. Some AEPs also function as peptide bond-makers during the biosynthesis of several unrelated classes of cyclic peptides, namely the kalata-type cyclic peptides, PawS-Derived Peptides and cyclic knottins. These three families of gene-encoded peptides have different evolutionary origins, but all have recruited AEPs for their maturation. In the last few years, the field has advanced rapidly, with the biochemical characterization of three plant AEPs capable of peptide macrocyclization, and insights have been gained from the first AEP crystal structures, albeit mammalian ones. Although the biochemical studies have improved our understanding of the mechanism of action, the focus now is to understand what changes in AEP sequence and structure enable some plant AEPs to perform macrocyclization reactions.
Collapse
Affiliation(s)
- Amy M James
- School of Molecular Sciences & The ARC Centre of Excellence in Plant Energy Biology, The University of Western Australia, 35 Stirling Highway, Crawley, Perth, 6009, Australia
| | - Joel Haywood
- School of Molecular Sciences & The ARC Centre of Excellence in Plant Energy Biology, The University of Western Australia, 35 Stirling Highway, Crawley, Perth, 6009, Australia
| | - Joshua S Mylne
- School of Molecular Sciences & The ARC Centre of Excellence in Plant Energy Biology, The University of Western Australia, 35 Stirling Highway, Crawley, Perth, 6009, Australia
| |
Collapse
|
68
|
Turk BE. Exceptionally Selective Substrate Targeting by the Metalloprotease Anthrax Lethal Factor. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1111:189-203. [PMID: 30267305 DOI: 10.1007/5584_2018_273] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The zinc-dependent metalloprotease anthrax lethal factor (LF) is the enzymatic component of a toxin thought to have a major role in Bacillus anthracis infections. Like many bacterial toxins, LF is a secreted protein that functions within host cells. LF is a highly selective protease that cleaves a limited number of substrates in a site-specific manner, thereby impacting host signal transduction pathways. The major substrates of LF are mitogen-activated protein kinase kinases (MKKs), which lie in the middle of three-component phosphorylation cascades mediating numerous functions in a variety of cells and tissues. How LF targets its limited substrate repertoire has been an active area of investigation. LF recognizes a specific sequence motif surrounding the scissile bonds of substrate proteins. X-ray crystallography of the protease in complex with peptide substrates has revealed the structural basis of selectivity for the LF cleavage site motif. In addition to having interactions proximal to the cleavage site, LF binds directly to a more distal region in its substrates through a so-called exosite interaction. This exosite has been mapped to a surface within a non-catalytic domain of LF with previously unknown function. A putative LF-binding site has likewise been identified on the catalytic domains of MKKs. Here we review our current state of understanding of LF-substrate interactions and discuss the implications for the design and discovery of inhibitors that may have utility as anthrax therapeutics.
Collapse
Affiliation(s)
- Benjamin E Turk
- Department of Pharmacology, Yale School of Medicine, New Haven, CT, USA.
| |
Collapse
|
69
|
Bueno AB, Agejas J, Broughton H, Dally R, Durham TB, Espinosa JF, González R, Hahn PJ, Marcos A, Rodríguez R, Sanz G, Soriano JF, Timm D, Vidal P, Yang HC, McCarthy JR. Optimization of Hydroxyethylamine Transition State Isosteres as Aspartic Protease Inhibitors by Exploiting Conformational Preferences. J Med Chem 2017; 60:9807-9820. [PMID: 29088532 DOI: 10.1021/acs.jmedchem.7b01304] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
NMR conformational analysis of a hydroxyethylamine peptide isostere developed as an aspartic protease inhibitor shows that it is a flexible architecture. Cyclization to form pyrrolidines, piperidines, or morpholines results in a preorganization of the whole system in solution. The resulting conformation is similar to the conformation of the inhibitor in the active site of BACE-1. This entropic gain results in increased affinity for the enzyme when compared with the acyclic system. For morpholines 27 and 29, the combination of steric and electronic factors is exploited to orient substituents toward S1, S1', and S2' pockets both in the solution and in the bound states. These highly preorganized molecules proved to be the most potent compounds of the series. Additionally, the morpholines, unlike the pyrrolidine and piperidine analogues, have been found to be brain penetrant BACE-1 inhibitors.
Collapse
Affiliation(s)
- Ana B Bueno
- Lilly SA , Avenida de la Industria 30, 28108 Alcobendas, Madrid, Spain
| | - Javier Agejas
- Lilly SA , Avenida de la Industria 30, 28108 Alcobendas, Madrid, Spain
| | - Howard Broughton
- Lilly SA , Avenida de la Industria 30, 28108 Alcobendas, Madrid, Spain
| | - Robert Dally
- Lilly Research Laboratories , Indianapolis, Indiana 46285, United States
| | - Timothy B Durham
- Lilly Research Laboratories , Indianapolis, Indiana 46285, United States
| | | | - Rosario González
- Lilly SA , Avenida de la Industria 30, 28108 Alcobendas, Madrid, Spain
| | - Patric J Hahn
- Lilly Research Laboratories , Indianapolis, Indiana 46285, United States
| | - Alicia Marcos
- Lilly SA , Avenida de la Industria 30, 28108 Alcobendas, Madrid, Spain
| | - Ramón Rodríguez
- Lilly SA , Avenida de la Industria 30, 28108 Alcobendas, Madrid, Spain
| | - Gema Sanz
- Lilly SA , Avenida de la Industria 30, 28108 Alcobendas, Madrid, Spain
| | - José F Soriano
- Lilly SA , Avenida de la Industria 30, 28108 Alcobendas, Madrid, Spain
| | - David Timm
- Lilly Research Laboratories , Indianapolis, Indiana 46285, United States
| | - Paloma Vidal
- Lilly SA , Avenida de la Industria 30, 28108 Alcobendas, Madrid, Spain
| | - Hsiu-Chiung Yang
- Lilly Research Laboratories , Indianapolis, Indiana 46285, United States
| | - James R McCarthy
- Lilly Research Laboratories , Indianapolis, Indiana 46285, United States
| |
Collapse
|
70
|
Agbowuro AA, Huston WM, Gamble AB, Tyndall JDA. Proteases and protease inhibitors in infectious diseases. Med Res Rev 2017; 38:1295-1331. [PMID: 29149530 DOI: 10.1002/med.21475] [Citation(s) in RCA: 108] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 09/10/2017] [Accepted: 10/17/2017] [Indexed: 12/31/2022]
Abstract
There are numerous proteases of pathogenic organisms that are currently targeted for therapeutic intervention along with many that are seen as potential drug targets. This review discusses the chemical and biological makeup of some key druggable proteases expressed by the five major classes of disease causing agents, namely bacteria, viruses, fungi, eukaryotes, and prions. While a few of these enzymes including HIV protease and HCV NS3-4A protease have been targeted to a clinically useful level, a number are yet to yield any clinical outcomes in terms of antimicrobial therapy. A significant aspect of this review discusses the chemical and pharmacological characteristics of inhibitors of the various proteases discussed. A total of 25 inhibitors have been considered potent and safe enough to be trialed in humans and are at different levels of clinical application. We assess the mechanism of action and clinical performance of the protease inhibitors against infectious agents with their developmental strategies and look to the next frontiers in the use of protease inhibitors as anti-infective agents.
Collapse
Affiliation(s)
| | - Wilhelmina M Huston
- School of Life Sciences, University of Technology Sydney, Ultimo, NSW, Australia
| | - Allan B Gamble
- School of Pharmacy, University of Otago, Dunedin, New Zealand
| | | |
Collapse
|
71
|
Oesterle S, Roberts TM, Widmer LA, Mustafa H, Panke S, Billerbeck S. Sequence-based prediction of permissive stretches for internal protein tagging and knockdown. BMC Biol 2017; 15:100. [PMID: 29084520 PMCID: PMC5661948 DOI: 10.1186/s12915-017-0440-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 10/11/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Internal tagging of proteins by inserting small functional peptides into surface accessible permissive sites has proven to be an indispensable tool for basic and applied science. Permissive sites are typically identified by transposon mutagenesis on a case-by-case basis, limiting scalability and their exploitation as a system-wide protein engineering tool. METHODS We developed an apporach for predicting permissive stretches (PSs) in proteins based on the identification of length-variable regions (regions containing indels) in homologous proteins. RESULTS We verify that a protein's primary structure information alone is sufficient to identify PSs. Identified PSs are predicted to be predominantly surface accessible; hence, the position of inserted peptides is likely suitable for diverse applications. We demonstrate the viability of this approach by inserting a Tobacco etch virus protease recognition site (TEV-tag) into several PSs in a wide range of proteins, from small monomeric enzymes (adenylate kinase) to large multi-subunit molecular machines (ATP synthase) and verify their functionality after insertion. We apply this method to engineer conditional protein knockdowns directly in the Escherichia coli chromosome and generate a cell-free platform with enhanced nucleotide stability. CONCLUSIONS Functional internally tagged proteins can be rationally designed and directly chromosomally implemented. Critical for the successful design of protein knockdowns was the incorporation of surface accessibility and secondary structure predictions, as well as the design of an improved TEV-tag that enables efficient hydrolysis when inserted into the middle of a protein. This versatile and portable approach can likely be adapted for other applications, and broadly adopted. We provide guidelines for the design of internally tagged proteins in order to empower scientists with little or no protein engineering expertise to internally tag their target proteins.
Collapse
Affiliation(s)
- Sabine Oesterle
- Department of Biosystems Science and Engineering, ETH Zürich, Mattenstrasse 26, 4058, Basel, Switzerland
| | - Tania Michelle Roberts
- Department of Biosystems Science and Engineering, ETH Zürich, Mattenstrasse 26, 4058, Basel, Switzerland
| | - Lukas Andreas Widmer
- Department of Biosystems Science and Engineering, ETH Zürich, Mattenstrasse 26, 4058, Basel, Switzerland
- Swiss Institute of Bioinformatics, Mattenstrasse 26, 4058, Basel, Switzerland
- Life Science Zürich Graduate School in Systems Biology, Zürich, Switzerland
| | - Harun Mustafa
- Department of Biosystems Science and Engineering, ETH Zürich, Mattenstrasse 26, 4058, Basel, Switzerland
- Department of Computer Science, ETH Zürich, Zürich, Switzerland
| | - Sven Panke
- Department of Biosystems Science and Engineering, ETH Zürich, Mattenstrasse 26, 4058, Basel, Switzerland
| | - Sonja Billerbeck
- Department of Biosystems Science and Engineering, ETH Zürich, Mattenstrasse 26, 4058, Basel, Switzerland.
- Present address: Chemistry Department, Columbia University, 550 West 120th Street, New York, NY, 10027, USA.
| |
Collapse
|
72
|
Antimicrobial activity and stability of stapled helices of polybia-MP1. Arch Pharm Res 2017; 40:1414-1419. [DOI: 10.1007/s12272-017-0963-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2017] [Accepted: 09/27/2017] [Indexed: 10/18/2022]
|
73
|
Jayasena AS, Fisher MF, Panero JL, Secco D, Bernath-Levin K, Berkowitz O, Taylor NL, Schilling EE, Whelan J, Mylne JS. Stepwise Evolution of a Buried Inhibitor Peptide over 45 My. Mol Biol Evol 2017; 34:1505-1516. [PMID: 28333296 DOI: 10.1093/molbev/msx104] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The de novo evolution of genes and the novel proteins they encode has stimulated much interest in the contribution such innovations make to the diversity of life. Most research on this de novo evolution focuses on transcripts, so studies on the biochemical steps that can enable completely new proteins to evolve and the time required to do so have been lacking. Sunflower Preproalbumin with SFTI-1 (PawS1) is an unusual albumin precursor because in addition to producing albumin it also yields a potent, bicyclic protease-inhibitor called SunFlower Trypsin Inhibitor-1 (SFTI-1). Here, we show how this inhibitor peptide evolved stepwise over tens of millions of years. To trace the origin of the inhibitor peptide SFTI-1, we assembled seed transcriptomes for 110 sunflower relatives whose evolution could be resolved by a chronogram, which allowed dates to be estimated for the various stages of molecular evolution. A genetic insertion event in an albumin precursor gene ∼45 Ma introduced two additional cleavage sites for protein maturation and conferred duality upon PawS1-Like genes such that they also encode a small buried macrocycle. Expansion of this region, including two Cys residues, enlarged the peptide ∼34 Ma and made the buried peptides bicyclic. Functional specialization into a protease inhibitor occurred ∼23 Ma. These findings document the evolution of a novel peptide inside a benign region of a pre-existing protein. We illustrate how a novel peptide can evolve without de novo gene evolution and, critically, without affecting the function of what becomes the protein host.
Collapse
Affiliation(s)
- Achala S Jayasena
- School of Molecular Sciences & ARC Centre of Excellence in Plant Energy Biology, The University of Western Australia, Perth, Australia
| | - Mark F Fisher
- School of Molecular Sciences & ARC Centre of Excellence in Plant Energy Biology, The University of Western Australia, Perth, Australia
| | - Jose L Panero
- Department of Integrative Biology, University of Texas, Austin, TX
| | - David Secco
- School of Molecular Sciences & ARC Centre of Excellence in Plant Energy Biology, The University of Western Australia, Perth, Australia
| | - Kalia Bernath-Levin
- School of Molecular Sciences & ARC Centre of Excellence in Plant Energy Biology, The University of Western Australia, Perth, Australia
| | - Oliver Berkowitz
- Department of Animal, Plant and Soil Sciences, School of Life Sciences & ARC Centre of Excellence in Plant Energy Biology, AgriBio, The Centre for AgriBioscience, La Trobe University, Bundoora, Victoria, Australia
| | - Nicolas L Taylor
- School of Molecular Sciences & ARC Centre of Excellence in Plant Energy Biology, The University of Western Australia, Perth, Australia
| | - Edward E Schilling
- Department of Ecology & Evolutionary Biology, University of Tennessee, Knoxville, TN
| | - James Whelan
- Department of Animal, Plant and Soil Sciences, School of Life Sciences & ARC Centre of Excellence in Plant Energy Biology, AgriBio, The Centre for AgriBioscience, La Trobe University, Bundoora, Victoria, Australia
| | - Joshua S Mylne
- School of Molecular Sciences & ARC Centre of Excellence in Plant Energy Biology, The University of Western Australia, Perth, Australia
| |
Collapse
|
74
|
Langosch D, Steiner H. Substrate processing in intramembrane proteolysis by γ-secretase - the role of protein dynamics. Biol Chem 2017; 398:441-453. [PMID: 27845877 DOI: 10.1515/hsz-2016-0269] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 11/08/2016] [Indexed: 01/31/2023]
Abstract
Intramembrane proteases comprise a number of different membrane proteins with different types of catalytic sites. Their common denominator is cleavage within the plane of the membrane, which usually results in peptide bond scission within the transmembrane helices of their substrates. Despite recent progress in the determination of high-resolution structures, as illustrated here for the γ-secretase complex and its substrate C99, it is still unknown how these enzymes function and how they distinguish between substrates and non-substrates. In principle, substrate/non-substrate discrimination could occur at the level of substrate binding and/or cleavage. Focusing on the γ-secretase/C99 pair, we will discuss recent observations suggesting that global motions within a substrate transmembrane helix may be much more important for defining a substrate than local unraveling at cleavage sites.
Collapse
|
75
|
Ghilarov D, Serebryakova M, Stevenson CEM, Hearnshaw SJ, Volkov DS, Maxwell A, Lawson DM, Severinov K. The Origins of Specificity in the Microcin-Processing Protease TldD/E. Structure 2017; 25:1549-1561.e5. [PMID: 28943336 PMCID: PMC5810440 DOI: 10.1016/j.str.2017.08.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 07/21/2017] [Accepted: 08/15/2017] [Indexed: 11/25/2022]
Abstract
TldD and TldE proteins are involved in the biosynthesis of microcin B17 (MccB17), an Escherichia coli thiazole/oxazole-modified peptide toxin targeting DNA gyrase. Using a combination of biochemical and crystallographic methods we show that E. coli TldD and TldE interact to form a heterodimeric metalloprotease. TldD/E cleaves the N-terminal leader sequence from the modified MccB17 precursor peptide, to yield mature antibiotic, while it has no effect on the unmodified peptide. Both proteins are essential for the activity; however, only the TldD subunit forms a novel metal-containing active site within the hollow core of the heterodimer. Peptide substrates are bound in a sequence-independent manner through β sheet interactions with TldD and are likely cleaved via a thermolysin-type mechanism. We suggest that TldD/E acts as a “molecular pencil sharpener”: unfolded polypeptides are fed through a narrow channel into the active site and processively truncated through the cleavage of short peptides from the N-terminal end. E. coli proteins TldD and TldE form a heterodimeric metalloprotease Binding of peptides within the active-site cleft is not sequence-specific Specificity is controlled through the access of substrates via a narrow channel Peptides enter the channel N-terminus first and are processively digested
Collapse
Affiliation(s)
- Dmitry Ghilarov
- Centre for Data-Intensive Biomedicine and Biotechnology, Skolkovo Institute of Science and Technology, 143026 Moscow, Russia; Institute of Gene Biology of the Russian Academy of Sciences, 119334 Moscow, Russia; Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK.
| | - Marina Serebryakova
- Institute of Gene Biology of the Russian Academy of Sciences, 119334 Moscow, Russia; Lomonosov Moscow State University, Department of Chemistry, A.N. Belozersky Institute of Physico-Chemical Biology, 119992 Moscow, Russia
| | - Clare E M Stevenson
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Stephen J Hearnshaw
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Dmitry S Volkov
- Lomonosov Moscow State University, Department of Chemistry, Analytical Chemistry Division, 119991 Moscow, Russia
| | - Anthony Maxwell
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - David M Lawson
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Konstantin Severinov
- Centre for Data-Intensive Biomedicine and Biotechnology, Skolkovo Institute of Science and Technology, 143026 Moscow, Russia; Bionano Institute, Peter the Great Saint Petersburg State Polytechnical University, Saint Petersburg 195251, Russia; Waksman Institute for Microbiology, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA.
| |
Collapse
|
76
|
Marshall GR, Ballante F. Limiting Assumptions in the Design of Peptidomimetics. Drug Dev Res 2017; 78:245-267. [DOI: 10.1002/ddr.21406] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Garland R. Marshall
- Department of Biochemistry and Molecular Biophysics; Washington University School of Medicine; St. Louis Missouri 63110
| | - Flavio Ballante
- Department of Biochemistry and Molecular Biophysics; Washington University School of Medicine; St. Louis Missouri 63110
| |
Collapse
|
77
|
Holub JM. Small Scaffolds, Big Potential: Developing Miniature Proteins as Therapeutic Agents. Drug Dev Res 2017; 78:268-282. [PMID: 28799168 DOI: 10.1002/ddr.21408] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 07/26/2017] [Indexed: 12/14/2022]
Abstract
Preclinical Research Miniature proteins are a class of oligopeptide characterized by their short sequence lengths and ability to adopt well-folded, three-dimensional structures. Because of their biomimetic nature and synthetic tractability, miniature proteins have been used to study a range of biochemical processes including fast protein folding, signal transduction, catalysis and molecular transport. Recently, miniature proteins have been gaining traction as potential therapeutic agents because their small size and ability to fold into defined tertiary structures facilitates their development as protein-based drugs. This research overview discusses emerging developments involving the use of miniature proteins as scaffolds to design novel therapeutics for the treatment and study of human disease. Specifically, this review will explore strategies to: (i) stabilize miniature protein tertiary structure; (ii) optimize biomolecular recognition by grafting functional epitopes onto miniature protein scaffolds; and (iii) enhance cytosolic delivery of miniature proteins through the use of cationic motifs that facilitate endosomal escape. These objectives are discussed not only to address challenges in developing effective miniature protein-based drugs, but also to highlight the tremendous potential miniature proteins hold for combating and understanding human disease. Drug Dev Res 78 : 268-282, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Justin M Holub
- Department of Chemistry and Biochemistry, Ohio University, Athens, OH, 45701, USA
| |
Collapse
|
78
|
Łepek T, Kwiatkowska A, Couture F, Ly K, Desjardins R, Dory Y, Prahl A, Day R. Macrocyclization of a potent PACE4 inhibitor: Benefits and limitations. Eur J Cell Biol 2017; 96:476-485. [DOI: 10.1016/j.ejcb.2017.04.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Revised: 03/29/2017] [Accepted: 04/13/2017] [Indexed: 01/09/2023] Open
|
79
|
Cao Z, Hutchison JM, Sanders CR, Bowie JU. Backbone Hydrogen Bond Strengths Can Vary Widely in Transmembrane Helices. J Am Chem Soc 2017; 139:10742-10749. [PMID: 28692798 PMCID: PMC5560243 DOI: 10.1021/jacs.7b04819] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
![]()
Although
backbone hydrogen bonds in transmembrane (TM) helices
have the potential to be very strong due to the low dielectric and
low water environment of the membrane, their strength has never been
assessed experimentally. Moreover, variations in hydrogen bond strength
might be necessary to facilitate the TM helix breaking and bending
that is often needed to satisfy functional imperatives. Here we employed
equilibrium hydrogen/deuterium fractionation factors to measure backbone
hydrogen bond strengths in the TM helix of the amyloid precursor protein
(APP). We find an enormous range of hydrogen bond free energies, with
some weaker than water–water hydrogen bonds and some over 6
kcal/mol stronger than water–water hydrogen bonds. We find
that weak hydrogen bonds are at or near preferred γ-secretase
cleavage sites, suggesting that the sequence of APP and possibly other
cleaved TM helices may be designed, in part, to make their backbones
accessible for cleavage. The finding that hydrogen bond strengths
in a TM helix can vary widely has implications for membrane protein
function, dynamics, evolution, and design.
Collapse
Affiliation(s)
- Zheng Cao
- Department of Chemistry and Biochemistry, UCLA-DOE Institute, Molecular Biology Institute, University of California , Los Angeles, California 90095, United States
| | - James M Hutchison
- Department of Biochemistry and Center for Structural Biology, Vanderbilt University , Nashville, Tennessee 37240, United States
| | - Charles R Sanders
- Department of Biochemistry and Center for Structural Biology, Vanderbilt University , Nashville, Tennessee 37240, United States
| | - James U Bowie
- Department of Chemistry and Biochemistry, UCLA-DOE Institute, Molecular Biology Institute, University of California , Los Angeles, California 90095, United States
| |
Collapse
|
80
|
Sawyer N, Watkins AM, Arora PS. Protein Domain Mimics as Modulators of Protein-Protein Interactions. Acc Chem Res 2017; 50:1313-1322. [PMID: 28561588 DOI: 10.1021/acs.accounts.7b00130] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Protein-protein interactions (PPIs) are ubiquitous in biological systems and often misregulated in disease. As such, specific PPI modulators are desirable to unravel complex PPI pathways and expand the number of druggable targets available for therapeutic intervention. However, the large size and relative flatness of PPI interfaces make them challenging molecular targets. This Account describes our systematic approach using secondary and tertiary protein domain mimics (PDMs) to specifically modulate PPIs. Our strategy focuses on mimicry of regular secondary and tertiary structure elements from one of the PPI partners to inspire rational PDM design. We have compiled three databases (HIPPDB, SIPPDB, and DIPPDB) of secondary and tertiary structures at PPI interfaces to guide our designs and better understand the energetics of PPI secondary and tertiary structures. Our efforts have focused on three of the most common secondary and tertiary structures: α-helices, β-strands, and helix dimers (e.g., coiled coils). To mimic α-helices, we designed the hydrogen bond surrogate (HBS) as an isosteric PDM and the oligooxopiperazine helix mimetic (OHM) as a topographical PDM. The nucleus of the HBS approach is a peptide macrocycle in which the N-terminal i, i + 4 main-chain hydrogen bond is replaced with a covalent carbon-carbon bond. In mimicking a main-chain hydrogen bond, the HBS approach stabilizes the α-helical conformation while leaving all helical faces available for functionalization to tune binding affinity and specificity. The OHM approach, in contrast, envisions a tetrapeptide to mimic one face of a two-turn helix. We anticipated that placement of ethylene bridges between adjacent amides constrains the tetrapeptide backbone to mimic the i, i + 4, and i + 7 side chains on one face of an α-helix. For β-strands, we developed triazolamers, a topographical PDM where the peptide bonds are replaced by triazoles. The triazoles simultaneously stabilize the extended, zigzag conformation of β-strands and transform an otherwise ideal protease substrate into a stable molecule by replacement of the peptide bonds. We turned to a salt bridge surrogate (SBS) approach as a means for stabilizing very short helix dimers. As with the HBS approach, the SBS strategy replaces a noncovalent interaction with a covalent bond. Specifically, we used a bis-triazole linkage that mimics a salt bridge interaction to drive helix association and folding. Using this approach, we were able to stabilize helix dimers that are less than half of the length required to form a coiled coil from two independent strands. In addition to demonstrating the stabilization of desired structures, we have also shown that our designed PDMs specifically modulate target PPIs in vitro and in vivo. Examples of PPIs successfully targeted include HIF1α/p300, p53/MDM2, Bcl-xL/Bak, Ras/Sos, and HIV gp41. The PPI databases and designed PDMs created in these studies will aid development of a versatile set of molecules to probe complex PPI functions and, potentially, PPI-based therapeutics.
Collapse
Affiliation(s)
- Nicholas Sawyer
- Department of Chemistry, New York University, 100 Washington Square East, New York, New York 10003, United States
| | - Andrew M. Watkins
- Department of Chemistry, New York University, 100 Washington Square East, New York, New York 10003, United States
| | - Paramjit S. Arora
- Department of Chemistry, New York University, 100 Washington Square East, New York, New York 10003, United States
| |
Collapse
|
81
|
Mono-substitution effects on antimicrobial activity of stapled heptapeptides. Arch Pharm Res 2017; 40:713-719. [PMID: 28547390 DOI: 10.1007/s12272-017-0922-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2017] [Accepted: 05/16/2017] [Indexed: 10/19/2022]
Abstract
We previously reported a de novo design of antimicrobial heptapeptide helices using Verdine's all-hydrocarbon peptide stapling system. One of the important structure-activity relationships we found from these previous studies was that extending of the hydrophobic face by replacing of alanine with leucine in positon 5 increases antimicrobial activity. In this study, to further improve the activity profile of this peptide series, we investigated the substitution effects of position 5 on conformational and proteolytic stability as well as antimicrobial and hemolytic activity. We found that antimicrobial activity and cell selectivity can differ depending on the physicochemical properties of the residue in that specific position. The results shown in this work suggest that the stapled amphipathic heptapeptide helix can serve as a promising platform for developing new antibiotics that can cope with antibiotic resistance problem.
Collapse
|
82
|
Chen CC, Wang SF, Su YY, Lin YA, Lin PC. Copper(I)-Mediated Denitrogenative Macrocyclization for the Synthesis of Cyclic α3
β-Tetrapeptide Analogues. Chem Asian J 2017; 12:1326-1337. [DOI: 10.1002/asia.201700339] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 03/23/2017] [Indexed: 12/23/2022]
Affiliation(s)
- Chun-Chi Chen
- Department of Chemistry; Nation Sun Yat-sen University; 70 Lienhai Rd. Kaohsiung 80424 Taiwan
| | - Sheng-Fu Wang
- Department of Chemistry; Nation Sun Yat-sen University; 70 Lienhai Rd. Kaohsiung 80424 Taiwan
| | - Yung-Yu Su
- Department of Chemistry; Nation Sun Yat-sen University; 70 Lienhai Rd. Kaohsiung 80424 Taiwan
| | - Yuya A. Lin
- Department of Chemistry; Nation Sun Yat-sen University; 70 Lienhai Rd. Kaohsiung 80424 Taiwan
| | - Po-Chiao Lin
- Department of Chemistry; Nation Sun Yat-sen University; 70 Lienhai Rd. Kaohsiung 80424 Taiwan
| |
Collapse
|
83
|
Johnson AM, Anslyn EV. Reversible Macrocyclization of Peptides with a Conjugate Acceptor. Org Lett 2017; 19:1654-1657. [DOI: 10.1021/acs.orglett.7b00451] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Amber M. Johnson
- Department of Chemistry, University of Texas, 1 University Station A1590, Austin, Texas 78712, United States
| | - Eric V. Anslyn
- Department of Chemistry, University of Texas, 1 University Station A1590, Austin, Texas 78712, United States
| |
Collapse
|
84
|
Silva RN, Oliveira LCG, Parise CB, Oliveira JR, Severino B, Corvino A, di Vaio P, Temussi PA, Caliendo G, Santagada V, Juliano L, Juliano MA. Activity of human kallikrein-related peptidase 6 (KLK6) on substrates containing sequences of basic amino acids. Is it a processing protease? BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2017; 1865:558-564. [PMID: 28254587 DOI: 10.1016/j.bbapap.2017.02.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Revised: 02/12/2017] [Accepted: 02/26/2017] [Indexed: 12/25/2022]
Abstract
Human kallikrein 6 (KLK6) is highly expressed in the central nervous system and with elevated level in demyelinating disease. KLK6 has a very restricted specificity for arginine (R) and hydrolyses myelin basic protein, protein activator receptors and human ionotropic glutamate receptor subunits. Here we report a previously unreported activity of KLK6 on peptides containing clusters of basic amino acids, as in synthetic fluorogenic peptidyl-Arg-7-amino-4-carbamoylmethylcoumarin (peptidyl-ACC) peptides and FRET peptides in the format of Abz-peptidyl-Q-EDDnp (where Abz=ortho-aminobenzoic acid and Q-EDDnp=glutaminyl-N-(2,4-dinitrophenyl) ethylenediamine), in which pairs or sequences of basic amino acids (R or K) were introduced. Surprisingly, KLK6 hydrolyzed the fluorogenic peptides Bz-A-R↓R-ACC and Z-R↓R-MCA between the two R groups, resulting in non-fluorescent products. FRET peptides containing furin processing sequences of human MMP-14, nerve growth factor (NGF), Neurotrophin-3 (NT-3) and Neurotrophin-4 (NT-4) were cleaved by KLK6 at the same position expected by furin. Finally, KLK6 cleaved FRET peptides derived from human proenkephalin after the KR, the more frequent basic residues flanking enkephalins in human proenkephalin sequence. This result suggests the ability of KLK6 to release enkephalin from proenkephalin precursors and resembles furin a canonical processing proteolytic enzyme. Molecular models of peptides were built into the KLK6 structure and the marked preference of the cut between the two R of the examined peptides was related to the extended conformation of the substrates.
Collapse
Affiliation(s)
- Roberta N Silva
- Department of Biophysics, Escola Paulista de Medicina, Universidade Federal de São Paulo, Brazil
| | - Lilian C G Oliveira
- Department of Biophysics, Escola Paulista de Medicina, Universidade Federal de São Paulo, Brazil
| | - Carolina B Parise
- Department of Biophysics, Escola Paulista de Medicina, Universidade Federal de São Paulo, Brazil
| | - Juliana R Oliveira
- Department of Biophysics, Escola Paulista de Medicina, Universidade Federal de São Paulo, Brazil
| | - Beatrice Severino
- Dipartimento di Farmacia, Università degli Studi di Napoli "Federico II", Via D. Montesano, 49, 80131 Napoli, Italy
| | - Angela Corvino
- Dipartimento di Farmacia, Università degli Studi di Napoli "Federico II", Via D. Montesano, 49, 80131 Napoli, Italy
| | - Paola di Vaio
- Dipartimento di Farmacia, Università degli Studi di Napoli "Federico II", Via D. Montesano, 49, 80131 Napoli, Italy
| | - Piero A Temussi
- The Wohl Institute, King's College London, 5 Cutcombe Rd, London SE5 9RT, UK; Dipartimento di Scienze Chimiche, Università di Napoli Federico II, Comp. Univ. Monte Sant'Angelo Via Cintia 21, 80126 Naples, Italy
| | - Giuseppe Caliendo
- Dipartimento di Farmacia, Università degli Studi di Napoli "Federico II", Via D. Montesano, 49, 80131 Napoli, Italy
| | - Vincenzo Santagada
- Dipartimento di Farmacia, Università degli Studi di Napoli "Federico II", Via D. Montesano, 49, 80131 Napoli, Italy
| | - Luiz Juliano
- Department of Biophysics, Escola Paulista de Medicina, Universidade Federal de São Paulo, Brazil
| | - Maria A Juliano
- Department of Biophysics, Escola Paulista de Medicina, Universidade Federal de São Paulo, Brazil.
| |
Collapse
|
85
|
Damalanka VC, Kim Y, Galasiti Kankanamalage AC, Lushington GH, Mehzabeen N, Battaile KP, Lovell S, Chang KO, Groutas WC. Design, synthesis, and evaluation of a novel series of macrocyclic inhibitors of norovirus 3CL protease. Eur J Med Chem 2017; 127:41-61. [PMID: 28038326 PMCID: PMC5296247 DOI: 10.1016/j.ejmech.2016.12.033] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Revised: 12/01/2016] [Accepted: 12/16/2016] [Indexed: 02/01/2023]
Abstract
Norovirus infections have a major impact on public health worldwide, yet there is a current dearth of norovirus-specific therapeutics and prophylactics. This report describes the discovery of a novel class of macrocyclic inhibitors of norovirus 3C-like protease, a cysteine protease that is essential for virus replication. SAR, structural, and biochemical studies were carried out to ascertain the effect of structure on pharmacological activity and permeability. Insights gained from these studies have laid a solid foundation for capitalizing on the therapeutic potential of the series of inhibitors described herein.
Collapse
Affiliation(s)
- Vishnu C Damalanka
- Department of Chemistry, Wichita State University, Wichita, KS 67260, USA
| | - Yunjeong Kim
- Department of Diagnostic Medicine & Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA
| | | | | | - Nurjahan Mehzabeen
- Protein Structure Laboratory, The University of Kansas, Lawrence, KS 66047, USA
| | - Kevin P Battaile
- IMCA-CAT, Hauptman-Woodward Medical Research Institute, APS Argonne National Laboratory, Argonne, IL 60439, USA
| | - Scott Lovell
- Protein Structure Laboratory, The University of Kansas, Lawrence, KS 66047, USA
| | - Kyeong-Ok Chang
- Department of Diagnostic Medicine & Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA.
| | - William C Groutas
- Department of Chemistry, Wichita State University, Wichita, KS 67260, USA.
| |
Collapse
|
86
|
Franke B, Jayasena AS, Fisher MF, Swedberg JE, Taylor NL, Mylne JS, Rosengren KJ. Diverse cyclic seed peptides in the Mexican zinnia (Zinnia haageana). Biopolymers 2017; 106:806-817. [PMID: 27352920 DOI: 10.1002/bip.22901] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Revised: 05/19/2016] [Accepted: 06/25/2016] [Indexed: 12/18/2022]
Abstract
A new family of small plant peptides was recently described and found to be widespread throughout the Millereae and Heliantheae tribes of the sunflower family Asteraceae. These peptides originate from the post-translational processing of unusual seed-storage albumin genes, and have been termed PawS-derived peptides (PDPs). The prototypic family member is a 14-residue cyclic peptide with potent trypsin inhibitory activity named SunFlower Trypsin Inhibitor (SFTI-1). In this study we present the features of three new PDPs discovered in the seeds of the sunflower species Zinnia haageana by a combination of de novo transcriptomics and liquid chromatography-mass spectrometry. Two-dimensional solution NMR spectroscopy was used to elucidate their structural characteristics. All three Z. haageana peptides have well-defined folds with a head-to-tail cyclized peptide backbone and a single disulfide bond. Although two possess an anti-parallel β-sheet structure, like SFTI-1, the Z. haageana peptide PDP-21 has a more irregular backbone structure. Despite structural similarities with SFTI-1, PDP-20 was not able to inhibit trypsin, thus the functional roles of these peptides is yet to be discovered. Defining the structural features of the small cyclic peptides found in the sunflower family will be useful for guiding the exploitation of these peptides as scaffolds for grafting and protein engineering applications.
Collapse
Affiliation(s)
- Bastian Franke
- School of Biomedical Sciences, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Achala S Jayasena
- School of Chemistry and Biochemistry & ARC Centre of Excellence in Plant Energy Biology, The University of Western Australia, Crawley, WA, 6009, Australia
| | - Mark F Fisher
- School of Chemistry and Biochemistry & ARC Centre of Excellence in Plant Energy Biology, The University of Western Australia, Crawley, WA, 6009, Australia
| | - Joakim E Swedberg
- The University of Queensland, Institute for Molecular Bioscience, St, Lucia, QLD, 4072, Australia
| | - Nicolas L Taylor
- School of Chemistry and Biochemistry & ARC Centre of Excellence in Plant Energy Biology, The University of Western Australia, Crawley, WA, 6009, Australia
| | - Joshua S Mylne
- School of Chemistry and Biochemistry & ARC Centre of Excellence in Plant Energy Biology, The University of Western Australia, Crawley, WA, 6009, Australia
| | - K Johan Rosengren
- School of Biomedical Sciences, The University of Queensland, St Lucia, QLD, 4072, Australia
| |
Collapse
|
87
|
da Silva RR. Bacterial and Fungal Proteolytic Enzymes: Production, Catalysis and Potential Applications. Appl Biochem Biotechnol 2017; 183:1-19. [DOI: 10.1007/s12010-017-2427-2] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Accepted: 01/24/2017] [Indexed: 11/29/2022]
|
88
|
Zhang J, Mulumba M, Ong H, Lubell WD. Diversity-Oriented Synthesis of Cyclic Azapeptides by A3-Macrocyclization Provides High-Affinity CD36-Modulating Peptidomimetics. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201611685] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Jinqiang Zhang
- Département de Chimie; Université de Montréal; C.P. 6128, Succursale Centre-Ville Montréal Québec H3C 3J7 Canada
- Present address: School of Pharmaceutical Science; Chongqing University; Chongqing 401331 China
| | - Mukandila Mulumba
- Faculté de Pharmacie; Université de Montréal; C.P. 6128, Succursale Centre-Ville Montréal Québec H3C 3J7 Canada
| | - Huy Ong
- Faculté de Pharmacie; Université de Montréal; C.P. 6128, Succursale Centre-Ville Montréal Québec H3C 3J7 Canada
| | - William D. Lubell
- Département de Chimie; Université de Montréal; C.P. 6128, Succursale Centre-Ville Montréal Québec H3C 3J7 Canada
| |
Collapse
|
89
|
Zhang J, Mulumba M, Ong H, Lubell WD. Diversity-Oriented Synthesis of Cyclic Azapeptides by A 3 -Macrocyclization Provides High-Affinity CD36-Modulating Peptidomimetics. Angew Chem Int Ed Engl 2017; 56:6284-6288. [PMID: 28090719 DOI: 10.1002/anie.201611685] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 12/14/2016] [Indexed: 11/11/2022]
Abstract
Macrocyclization has enabled the use of peptides in drug discovery creating a need for methods to synthesize diverse peptide macrocycles. Azapeptides have advanced to clinically used drugs, however, few cyclic azapeptides have been studied. A multiple component "A3 -macrocyclization" strategy is described for the preparation of diverse cyclic azapeptides and is demonstrated by the synthesis of 15 growth hormone releasing hormone-6 (GHRP-6) analogs. Certain cyclic aza-GHRP-6 analogs exhibited unprecedented affinity for the CD36 receptor, and capacity to modulate Toll-like receptor agonist-induced overproduction of nitric oxide, and reduce pro-inflammatory cytokine and chemokine production in macrophages.
Collapse
Affiliation(s)
- Jinqiang Zhang
- Département de Chimie, Université de Montréal, C.P. 6128, Succursale Centre-Ville, Montréal, Québec, H3C 3J7, Canada.,Present address: School of Pharmaceutical Science, Chongqing University, Chongqing, 401331, China
| | - Mukandila Mulumba
- Faculté de Pharmacie, Université de Montréal, C.P. 6128, Succursale Centre-Ville, Montréal, Québec, H3C 3J7, Canada
| | - Huy Ong
- Faculté de Pharmacie, Université de Montréal, C.P. 6128, Succursale Centre-Ville, Montréal, Québec, H3C 3J7, Canada
| | - William D Lubell
- Département de Chimie, Université de Montréal, C.P. 6128, Succursale Centre-Ville, Montréal, Québec, H3C 3J7, Canada
| |
Collapse
|
90
|
Fuchs JE, Schilling O, Liedl KR. Determinants of Macromolecular Specificity from Proteomics-Derived Peptide Substrate Data. Curr Protein Pept Sci 2017; 18:905-913. [PMID: 27455965 PMCID: PMC5898033 DOI: 10.2174/1389203717666160724211231] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2017] [Revised: 03/30/2017] [Accepted: 04/15/2017] [Indexed: 11/22/2022]
Abstract
BACKGROUND Recent advances in proteomics methodologies allow for high throughput profiling of proteolytic cleavage events. The resulting substrate peptide distributions provide deep insights in the underlying macromolecular recognition events, as determinants of biomolecular specificity identified by proteomics approaches may be compared to structure-based analysis of corresponding protein-protein interfaces. METHOD Here, we present an overview of experimental and computational methodologies and tools applied in the area and provide an outlook beyond the protein class of proteases. RESULTS AND CONCLUSION We discuss here future potential, synergies and needs of the emerging overlap disciplines of proteomics and structure-based modelling.
Collapse
Affiliation(s)
- Julian E. Fuchs
- Centre for Molecular Informatics, Department of Chemistry, University of Cambridge, Lensfield Road, CambridgeCB2 1EW, United Kingdom
| | - Oliver Schilling
- Institute of Molecular Medicine and Cell Research, University of Freiburg, Stefan-Meier-Str. 17, D-79104 Freiburg, Germany and BIOSS Centre for Biological Signaling Studies, University of Freiburg, D-79104Freiburg, Germany
| | - Klaus R. Liedl
- Institute of General, Inorganic and Theoretical Chemistry, Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80/82, A-6020Innsbruck, Austria
| |
Collapse
|
91
|
Pethe MA, Rubenstein AB, Khare SD. Large-Scale Structure-Based Prediction and Identification of Novel Protease Substrates Using Computational Protein Design. J Mol Biol 2016; 429:220-236. [PMID: 27932294 DOI: 10.1016/j.jmb.2016.11.031] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Revised: 11/23/2016] [Accepted: 11/30/2016] [Indexed: 12/16/2022]
Abstract
Characterizing the substrate specificity of protease enzymes is critical for illuminating the molecular basis of their diverse and complex roles in a wide array of biological processes. Rapid and accurate prediction of their extended substrate specificity would also aid in the design of custom proteases capable of selectively and controllably cleaving biotechnologically or therapeutically relevant targets. However, current in silico approaches for protease specificity prediction, rely on, and are therefore limited by, machine learning of sequence patterns in known experimental data. Here, we describe a general approach for predicting peptidase substrates de novo using protein structure modeling and biophysical evaluation of enzyme-substrate complexes. We construct atomic resolution models of thousands of candidate substrate-enzyme complexes for each of five model proteases belonging to the four major protease mechanistic classes-serine, cysteine, aspartyl, and metallo-proteases-and develop a discriminatory scoring function using enzyme design modules from Rosetta and AMBER's MMPBSA. We rank putative substrates based on calculated interaction energy with a modeled near-attack conformation of the enzyme active site. We show that the energetic patterns obtained from these simulations can be used to robustly rank and classify known cleaved and uncleaved peptides and that these structural-energetic patterns have greater discriminatory power compared to purely sequence-based statistical inference. Combining sequence and energetic patterns using machine-learning algorithms further improves classification performance, and analysis of structural models provides physical insight into the structural basis for the observed specificities. We further tested the predictive capability of the model by designing and experimentally characterizing the cleavage of four novel substrate motifs for the hepatitis C virus NS3/4 protease using an in vivo assay. The presented structure-based approach is generalizable to other protease enzymes with known or modeled structures, and complements existing experimental methods for specificity determination.
Collapse
Affiliation(s)
- Manasi A Pethe
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA; Center for Integrative Proteomics Research, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Aliza B Rubenstein
- Computational Biology & Molecular Biophysics Program, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA; Institute for Quantitative Biomedicine, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Sagar D Khare
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA; Center for Integrative Proteomics Research, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA; Computational Biology & Molecular Biophysics Program, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA; Institute for Quantitative Biomedicine, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA.
| |
Collapse
|
92
|
Bondar AN. Biophysical mechanism of rhomboid proteolysis: Setting a foundation for therapeutics. Semin Cell Dev Biol 2016; 60:46-51. [DOI: 10.1016/j.semcdb.2016.09.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2016] [Revised: 08/12/2016] [Accepted: 09/12/2016] [Indexed: 11/16/2022]
|
93
|
Abstract
Intramembrane serine proteases of the rhomboid family are widespread, and their gradually uncovered functions in different organisms already suggest medical relevance for infectious diseases and cancer. However, selective inhibitors that could serve as research tools for rhomboids, for validation of their disease relevance, or as templates for drug development are lacking. Here I summarize the current knowledge about rhomboid protease mechanism and specificity, overview the currently used inhibitors, and conclude by proposing avenues for future development of rhomboid protease inhibitors.
Collapse
Affiliation(s)
- K Strisovsky
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Prague, Czech Republic.
| |
Collapse
|
94
|
Structural and dynamic insights into the C-terminal extension of cysteine proteinase B from Leishmania amazonensis. J Mol Graph Model 2016; 70:30-39. [DOI: 10.1016/j.jmgm.2016.08.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Revised: 07/14/2016] [Accepted: 08/12/2016] [Indexed: 11/20/2022]
|
95
|
Natural structural diversity within a conserved cyclic peptide scaffold. Amino Acids 2016; 49:103-116. [PMID: 27695949 DOI: 10.1007/s00726-016-2333-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Accepted: 09/09/2016] [Indexed: 10/20/2022]
Abstract
We recently isolated and described the evolutionary origin of a diverse class of small single-disulfide bonded peptides derived from Preproalbumin with SFTI-1 (PawS1) proteins in the seeds of flowering plants (Asteraceae). The founding member of the PawS derived peptide (PDP) family is the potent trypsin inhibitor SFTI-1 (sunflower trypsin inhibitor-1) from Helianthus annuus, the common sunflower. Here we provide additional structures and describe the structural diversity of this new class of small peptides, derived from solution NMR studies, in detail. We show that although most have a similar backbone framework with a single disulfide bond and in many cases a head-to-tail cyclized backbone, they all have their own characteristics in terms of projections of side-chains, flexibility and physiochemical properties, attributed to the variety of their sequences. Small cyclic and constrained peptides are popular as drug scaffolds in the pharmaceutical industry and our data highlight how amino acid side-chains can fine-tune conformations in these promising peptides.
Collapse
|
96
|
Strisovsky K. Rhomboid protease inhibitors: Emerging tools and future therapeutics. Semin Cell Dev Biol 2016; 60:52-62. [PMID: 27567709 DOI: 10.1016/j.semcdb.2016.08.021] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Revised: 08/16/2016] [Accepted: 08/24/2016] [Indexed: 02/01/2023]
Abstract
Rhomboid-family intramembrane serine proteases are evolutionarily widespread. Their functions in different organisms are gradually being uncovered and already suggest medical relevance for infectious diseases and cancer. In contrast to these advances, selective inhibitors that could serve as efficient tools for investigation of physiological functions of rhomboids, validation of their disease relevance or as templates for drug development are lacking. In this review I extract what is known about rhomboid protease mechanism and specificity, examine the currently used inhibitors, their mechanism of action and limitations, and conclude by proposing routes for future development of rhomboid protease inhibitors.
Collapse
Affiliation(s)
- Kvido Strisovsky
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo n. 2, Prague 166 10, Czech Republic.
| |
Collapse
|
97
|
Oddo A, Thomsen TT, Britt HM, Løbner-Olesen A, Thulstrup PW, Sanderson JM, Hansen PR. Modulation of Backbone Flexibility for Effective Dissociation of Antibacterial and Hemolytic Activity in Cyclic Peptides. ACS Med Chem Lett 2016; 7:741-5. [PMID: 27563396 DOI: 10.1021/acsmedchemlett.5b00400] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Accepted: 05/24/2016] [Indexed: 12/12/2022] Open
Abstract
Bacterial resistance to antibiotic therapy is on the rise and threatens to evolve into a worldwide emergency: alternative solutions to current therapies are urgently needed. Cationic amphipathic peptides are potent membrane-active agents that hold promise as the next-generation therapy for multidrug-resistant infections. The peptides' behavior upon encountering the bacterial cell wall is crucial, and much effort has been dedicated to the investigation and optimization of this amphipathicity-driven interaction. In this study we examined the interaction of a novel series of nine-membered flexible cyclic AMPs with liposomes mimicking the characteristics of bacterial membranes. Employed techniques included circular dichroism and marker release assays, as well as microbiological experiments. Our analysis was aimed at correlating ring flexibility with their antimicrobial, hemolytic, and membrane activity. By doing so, we obtained useful insights to guide the optimization of cyclic antimicrobial peptides via modulation of their backbone flexibility without loss of activity.
Collapse
Affiliation(s)
- Alberto Oddo
- Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
- Department of Chemistry, Durham University, South Road, DH1 3LE Durham, United Kingdom
| | - Thomas T. Thomsen
- Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen, Denmark
| | - Hannah M. Britt
- Department of Chemistry, Durham University, South Road, DH1 3LE Durham, United Kingdom
| | - Anders Løbner-Olesen
- Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen, Denmark
| | - Peter W. Thulstrup
- Department of Chemistry, University of Copenhagen, Universitetsparken
5, 2100 Copenhagen, Denmark
| | - John M. Sanderson
- Department of Chemistry, Durham University, South Road, DH1 3LE Durham, United Kingdom
| | - Paul R. Hansen
- Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| |
Collapse
|
98
|
Zhang L, Navaratna T, Thurber GM. A Helix-Stabilizing Linker Improves Subcutaneous Bioavailability of a Helical Peptide Independent of Linker Lipophilicity. Bioconjug Chem 2016; 27:1663-72. [PMID: 27327034 DOI: 10.1021/acs.bioconjchem.6b00209] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Stabilized peptides address several limitations to peptide-based imaging agents and therapeutics such as poor stability and low affinity due to conformational flexibility. There is also active research in developing these compounds for intracellular drug targeting, and significant efforts have been invested to determine the effects of helix stabilization on intracellular delivery. However, much less is known about the impact on other pharmacokinetic parameters such as plasma clearance and bioavailability. We investigated the effect of different fluorescent helix-stabilizing linkers with varying lipophilicity on subcutaneous (sc) bioavailability using the glucagon-like peptide-1 (GLP-1) receptor ligand exendin as a model system. The stabilized peptides showed significantly higher protease resistance and increased bioavailability independent of linker hydrophilicity, and all subcutaneously delivered conjugates were able to successfully target the islets of Langerhans with high specificity. The lipophilic peptide variants had slower absorption and plasma clearance than their respective hydrophilic conjugates, and the absolute bioavailability was also lower likely due to the longer residence times in the skin. Their ease and efficiency make double-click helix stabilization chemistries a useful tool for increasing the bioavailability of peptide therapeutics, many of which suffer from rapid in vivo protease degradation. Helix stabilization using linkers of varying lipophilicity can further control sc absorption and clearance rates to customize plasma pharmacokinetics.
Collapse
Affiliation(s)
- Liang Zhang
- Department of Chemical Engineering, and ‡Department of Biomedical Engineering University of Michigan , Ann Arbor, Michigan 48109, United States
| | - Tejas Navaratna
- Department of Chemical Engineering, and ‡Department of Biomedical Engineering University of Michigan , Ann Arbor, Michigan 48109, United States
| | - Greg M Thurber
- Department of Chemical Engineering, and ‡Department of Biomedical Engineering University of Michigan , Ann Arbor, Michigan 48109, United States
| |
Collapse
|
99
|
Waldner B, Fuchs JE, Schauperl M, Kramer C, Liedl KR. Protease Inhibitors in View of Peptide Substrate Databases. J Chem Inf Model 2016; 56:1228-35. [PMID: 27247997 PMCID: PMC4926231 DOI: 10.1021/acs.jcim.6b00064] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Indexed: 01/11/2023]
Abstract
Protease substrate profiling has nowadays almost become a routine task for experimentalists, and the knowledge on protease peptide substrates is easily accessible via the MEROPS database. We present a shape-based virtual screening workflow using vROCS that applies the information about the specificity of the proteases to find new small-molecule inhibitors. Peptide substrate sequences for three to four substrate positions of each substrate from the MEROPS database were used to build the training set. Two-dimensional substrate sequences were converted to three-dimensional conformations through mutation of a template peptide substrate. The vROCS query was built from single amino acid queries for each substrate position considering the relative frequencies of the amino acids. The peptide-substrate-based shape-based virtual screening approach gives good performance for the four proteases thrombin, factor Xa, factor VIIa, and caspase-3 with the DUD-E data set. The results show that the method works for protease targets with different specificity profiles as well as for targets with different active-site mechanisms. As no structure of the target and no information on small-molecule inhibitors are required to use our approach, the method has significant advantages in comparison with conventional structure- and ligand-based methods.
Collapse
Affiliation(s)
- Birgit
J. Waldner
- Institute of General, Inorganic
and Theoretical Chemistry, University of
Innsbruck, Innrain 82, 6020 Innsbruck, Austria
| | - Julian E. Fuchs
- Institute of General, Inorganic
and Theoretical Chemistry, University of
Innsbruck, Innrain 82, 6020 Innsbruck, Austria
| | - Michael Schauperl
- Institute of General, Inorganic
and Theoretical Chemistry, University of
Innsbruck, Innrain 82, 6020 Innsbruck, Austria
| | | | - Klaus R. Liedl
- Institute of General, Inorganic
and Theoretical Chemistry, University of
Innsbruck, Innrain 82, 6020 Innsbruck, Austria
| |
Collapse
|
100
|
Guerra Y, Valiente PA, Pons T, Berry C, Rudiño-Piñera E. Structures of a bi-functional Kunitz-type STI family inhibitor of serine and aspartic proteases: Could the aspartic protease inhibition have evolved from a canonical serine protease-binding loop? J Struct Biol 2016; 195:259-271. [PMID: 27329566 DOI: 10.1016/j.jsb.2016.06.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2016] [Revised: 06/14/2016] [Accepted: 06/18/2016] [Indexed: 01/06/2023]
Abstract
Bi-functional inhibitors from the Kunitz-type soybean trypsin inhibitor (STI) family are glycosylated proteins able to inhibit serine and aspartic proteases. Here we report six crystal structures of the wild-type and a non-glycosylated mutant of the bifunctional inhibitor E3Ad obtained at different pH values and space groups. The crystal structures show that E3Ad adopts the typical β-trefoil fold of the STI family exhibiting some conformational changes due to pH variations and crystal packing. Despite the high sequence identity with a recently reported potato cathepsin D inhibitor (PDI), three-dimensional structures obtained in this work show a significant conformational change in the protease-binding loop proposed for aspartic protease inhibition. The E3Ad binding loop for serine protease inhibition is also proposed, based on structural similarity with a novel non-canonical conformation described for the double-headed inhibitor API-A from the Kunitz-type STI family. In addition, structural and sequence analyses suggest that bifunctional inhibitors of serine and aspartic proteases from the Kunitz-type STI family are more similar to double-headed inhibitor API-A than other inhibitors with a canonical protease-binding loop.
Collapse
Affiliation(s)
- Yasel Guerra
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Avenida Universidad 2001, Colonia Chamilpa, Cuernavaca, Morelos CP 62210, Mexico.
| | - Pedro A Valiente
- Laboratorio de Biología Computacional y Diseño de Proteínas, Centro de Estudios de Proteínas (CEP), Facultad de Biología, Universidad de La Habana, Cuba
| | - Tirso Pons
- Structural Biology and Biocomputing Programme, Spanish National Cancer Research Centre (CNIO), C/Melchor Fernández Almagro 3, Madrid 28029, Spain
| | - Colin Berry
- Cardiff School of Biosciences, Cardiff University, Cardiff CF10 3AT, Wales, UK
| | - Enrique Rudiño-Piñera
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Avenida Universidad 2001, Colonia Chamilpa, Cuernavaca, Morelos CP 62210, Mexico.
| |
Collapse
|