51
|
Esmieu C, Raleiras P, Berggren G. From protein engineering to artificial enzymes - biological and biomimetic approaches towards sustainable hydrogen production. SUSTAINABLE ENERGY & FUELS 2018; 2:724-750. [PMID: 31497651 PMCID: PMC6695573 DOI: 10.1039/c7se00582b] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 01/31/2018] [Indexed: 06/09/2023]
Abstract
Hydrogen gas is used extensively in industry today and is often put forward as a suitable energy carrier due its high energy density. Currently, the main source of molecular hydrogen is fossil fuels via steam reforming. Consequently, novel production methods are required to improve the sustainability of hydrogen gas for industrial processes, as well as paving the way for its implementation as a future solar fuel. Nature has already developed an elaborate hydrogen economy, where the production and consumption of hydrogen gas is catalysed by hydrogenase enzymes. In this review we summarize efforts on engineering and optimizing these enzymes for biological hydrogen gas production, with an emphasis on their inorganic cofactors. Moreover, we will describe how our understanding of these enzymes has been applied for the preparation of bio-inspired/-mimetic systems for efficient and sustainable hydrogen production.
Collapse
Affiliation(s)
- C Esmieu
- Department of Chemistry , Ångström Laboratory , Uppsala University , Box 523 , SE-75120 Uppsala , Sweden .
| | - P Raleiras
- Department of Chemistry , Ångström Laboratory , Uppsala University , Box 523 , SE-75120 Uppsala , Sweden .
| | - G Berggren
- Department of Chemistry , Ångström Laboratory , Uppsala University , Box 523 , SE-75120 Uppsala , Sweden .
| |
Collapse
|
52
|
Qiu S, Azofra LM, MacFarlane DR, Sun C. Hydrogen bonding effect between active site and protein environment on catalysis performance in H 2-producing [NiFe] hydrogenases. Phys Chem Chem Phys 2018; 20:6735-6743. [PMID: 29457815 DOI: 10.1039/c7cp07685a] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The interaction between the active site and the surrounding protein environment plays a fundamental role in the hydrogen evolution reaction (HER) in [NiFe] hydrogenases. Our density functional theory (DFT) findings demonstrate that the reaction Gibbs free energy required for the rate determining step decreases by 7.1 kcal mol-1 when the surrounding protein environment is taken into account, which is chiefly due to free energy decreases for the two H+/e- addition steps (the so-called Ni-SIa to I1, and Ni-C to Ni-R), being the largest thermodynamic impediments of the whole reaction. The variety of hydrogen bonds (H-bonds) between the amino acids and the active site is hypothesised to be the main reason for such stability: H-bonds not only work as electrostatic attractive forces that influence the charge redistribution, but more importantly, they act as an electron 'pull' taking electrons from the active site towards the amino acids. Moreover, the electron 'pull' effect through H-bonds via the S- in cysteine residues shows a larger influence on the energy profile than that via the CN- ligands on Fe.
Collapse
Affiliation(s)
- Siyao Qiu
- School of Chemistry, Faculty of Science, Monash University, Clayton, VIC 3800, Australia.
| | | | | | | |
Collapse
|
53
|
Zhang T, Zhang X, Chung LW. Computational Insights into the Reaction Mechanisms of Nickel-Catalyzed Hydrofunctionalizations and Nickel-Dependent Enzymes. ASIAN J ORG CHEM 2018. [DOI: 10.1002/ajoc.201700645] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Tonghuan Zhang
- Department of Chemistry; South University of Science and Technology of China (SUSTech); Shenzhen 518055 China
- Lab of Computational Chemistry and Drug Design; Key Laboratory of Chemical Genomics; Peking University Shenzhen Graduate School; Shenzhen 518055 China
| | - Xiaoyong Zhang
- Department of Chemistry; South University of Science and Technology of China (SUSTech); Shenzhen 518055 China
| | - Lung Wa Chung
- Department of Chemistry; South University of Science and Technology of China (SUSTech); Shenzhen 518055 China
| |
Collapse
|
54
|
Siegbahn PEM. A Major Structural Change of the Homocitrate Ligand of Probable Importance for the Nitrogenase Mechanism. Inorg Chem 2018; 57:1090-1095. [PMID: 29303565 DOI: 10.1021/acs.inorgchem.7b02493] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Mo-containing nitrogenase is the main enzyme that is able to take N2 from the air and form ammonia. The active-site cofactor of the enzyme, termed FeMoco, is unique in nature. It has seven Fe and one Mo atoms connected by S bridges, with a C atom in the center of the cofactor. Another unusual feature is that it has a large homocitrate ligand known to be of importance for catalysis. In the present computational study, the role of the homocitrate ligand is investigated. It is found that a large structural change, which makes MoIII five-coordinated, is energetically favorable in the more reduced states. This is of probable importance for the nitrogenase mechanism.
Collapse
Affiliation(s)
- Per E M Siegbahn
- Arrhenius Laboratory, Department of Organic Chemistry, Stockholm University , SE-106 91 Stockholm, Sweden
| |
Collapse
|
55
|
Qiu S, Olsen S, MacFarlane DR, Sun C. The oxygen reduction reaction on [NiFe] hydrogenases. Phys Chem Chem Phys 2018; 20:23528-23534. [DOI: 10.1039/c8cp04160a] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Oxygen tolerance capacity is critical for hydrogen oxidation/evolution catalysts.
Collapse
Affiliation(s)
- Siyao Qiu
- Science & Technology Innovation Institute
- Dongguan University of Technology
- Dongguan
- China
- School of Chemistry
| | - Seth Olsen
- School of Chemistry
- Faculty of Science
- Monash University
- Clayton
- VIC 3800
| | | | - Chenghua Sun
- Science & Technology Innovation Institute
- Dongguan University of Technology
- Dongguan
- China
- Department of Chemistry and Biotechnology
| |
Collapse
|
56
|
Wang WJ, Wei WJ, Liao RZ. Deciphering the chemoselectivity of nickel-dependent quercetin 2,4-dioxygenase. Phys Chem Chem Phys 2018; 20:15784-15794. [DOI: 10.1039/c8cp02683a] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
QM/MM calculations were performed to elucidate the reaction mechanism and chemoselectivity of 2,4-QueD. The protonation state of the first-shell ligand Glu74 plays an important role in dictating the selectivity.
Collapse
Affiliation(s)
- Wen-Juan Wang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage
- Ministry of Education
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica
- Hubei Key Laboratory of Materials Chemistry and Service Failure
- School of Chemistry and Chemical Engineering
| | - Wen-Jie Wei
- Key Laboratory of Material Chemistry for Energy Conversion and Storage
- Ministry of Education
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica
- Hubei Key Laboratory of Materials Chemistry and Service Failure
- School of Chemistry and Chemical Engineering
| | - Rong-Zhen Liao
- Key Laboratory of Material Chemistry for Energy Conversion and Storage
- Ministry of Education
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica
- Hubei Key Laboratory of Materials Chemistry and Service Failure
- School of Chemistry and Chemical Engineering
| |
Collapse
|
57
|
Dong G, Ryde U, Aa. Jensen HJ, Hedegård ED. Exploration of H2 binding to the [NiFe]-hydrogenase active site with multiconfigurational density functional theory. Phys Chem Chem Phys 2018; 20:794-801. [DOI: 10.1039/c7cp06767d] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The combination of density functional theory (DFT) with a multiconfigurational wave function is an efficient way to include dynamical correlation in calculations with multiconfiguration self-consistent field wave functions.
Collapse
Affiliation(s)
- Geng Dong
- Department of Theoretical Chemistry
- Lund University
- Chemical Centre
- SE-221 00 Lund
- Sweden
| | - Ulf Ryde
- Department of Theoretical Chemistry
- Lund University
- Chemical Centre
- SE-221 00 Lund
- Sweden
| | - Hans Jørgen Aa. Jensen
- Department of Physics, Chemistry and Pharmacy
- University of Southern Denmark
- DK-5230 Odense M
- Denmark
| | - Erik D. Hedegård
- Department of Theoretical Chemistry
- Lund University
- Chemical Centre
- SE-221 00 Lund
- Sweden
| |
Collapse
|
58
|
Meyer RL, Zhandosova AD, Biser TM, Heilweil EJ, Stromberg CJ. Photochemical Dynamics of a Trimethyl-Phosphine Derivatized [FeFe]-Hydrogenase Model Compound. Chem Phys 2018; 512. [PMID: 30983684 DOI: 10.1016/j.chemphys.2017.12.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Though there have been many studies on photosensitizers coupled to model complexes of the [FeFe]-hydrogenases, few have looked at how the models react upon exposure to light. To extract photoreaction information, ultrafast time-resolved UV/visible pump, IR probe spectroscopy was performed on Fe2(μ-S2C2H4)(CO)4(PMe3)2 (2b) dissolved in heptane and acetonitrile and the photochemical dynamics were determined. Excitation with 532 and 355 nm light produces bleaches and new absorptions that decay to half their original intensity with time constants of 300 ± 120 ps and 380 ± 210 ps in heptane and acetonitrile, respectively. These features persist to the microsecond timescale. The dynamics of 2b are assigned to formation of an initial set of photoproducts, which were a mixture of excited-state tricarbonyl isomers. These isomers decay into another set of long-lived photoproducts in which approximately half the excited-state tricarbonyl isomers recombine with CO to form another complex mixture of tricarbonyl and tetracarbonyl isomers.
Collapse
Affiliation(s)
- Rachel L Meyer
- Department of Chemistry and Physics, Hood College, 401 Rosemont Ave., Frederick, MD, 21701-8524, USA.,Department of Chemistry, University of Rochester, RC Box 270216, Rochester, NY 14627
| | - Annette D Zhandosova
- Department of Chemistry and Physics, Hood College, 401 Rosemont Ave., Frederick, MD, 21701-8524, USA.,Touro College of Osteopathic Medicine, 230 West 125 St., New York, NY 10027
| | - Tara M Biser
- Department of Chemistry and Physics, Hood College, 401 Rosemont Ave., Frederick, MD, 21701-8524, USA.,Bloomberg School of Public Health, Johns Hopkins University, 615 N. Wolfe St., Baltimore, MD 21205
| | - Edwin J Heilweil
- Radiation Physics Division, Physical Measurement Laboratory, National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, MD 20899-8443, USA
| | - Christopher J Stromberg
- Department of Chemistry and Physics, Hood College, 401 Rosemont Ave., Frederick, MD, 21701-8524, USA
| |
Collapse
|
59
|
Breglia R, Greco C, Fantucci P, De Gioia L, Bruschi M. Theoretical investigation of aerobic and anaerobic oxidative inactivation of the [NiFe]-hydrogenase active site. Phys Chem Chem Phys 2018; 20:1693-1706. [DOI: 10.1039/c7cp06228a] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The extraordinary capability of [NiFe]-hydrogenases to catalyse the reversible interconversion of protons and electrons into dihydrogen (H2) has stimulated numerous experimental and theoretical studies addressing the direct utilization of these enzymes in H2 production processes.
Collapse
Affiliation(s)
- Raffaella Breglia
- Department of Earth and Environmental Science
- University of Milano Bicocca
- 20126 Milan
- Italy
| | - Claudio Greco
- Department of Earth and Environmental Science
- University of Milano Bicocca
- 20126 Milan
- Italy
| | - Piercarlo Fantucci
- Department of Biotechnology and Biosciences
- University of Milano Bicocca
- 20126 Milan
- Italy
| | - Luca De Gioia
- Department of Biotechnology and Biosciences
- University of Milano Bicocca
- 20126 Milan
- Italy
| | - Maurizio Bruschi
- Department of Earth and Environmental Science
- University of Milano Bicocca
- 20126 Milan
- Italy
| |
Collapse
|
60
|
Tang H, Hall MB. Biomimetics of [NiFe]-Hydrogenase: Nickel- or Iron-Centered Proton Reduction Catalysis? J Am Chem Soc 2017; 139:18065-18070. [DOI: 10.1021/jacs.7b10425] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Hao Tang
- Department of Chemistry, Texas A&M University, College Station, Texas 77845, United States
| | - Michael B. Hall
- Department of Chemistry, Texas A&M University, College Station, Texas 77845, United States
| |
Collapse
|
61
|
Pelmenschikov V, Birrell JA, Pham CC, Mishra N, Wang H, Sommer C, Reijerse E, Richers CP, Tamasaku K, Yoda Y, Rauchfuss TB, Lubitz W, Cramer SP. Reaction Coordinate Leading to H 2 Production in [FeFe]-Hydrogenase Identified by Nuclear Resonance Vibrational Spectroscopy and Density Functional Theory. J Am Chem Soc 2017; 139:16894-16902. [PMID: 29054130 PMCID: PMC5699932 DOI: 10.1021/jacs.7b09751] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
[FeFe]-hydrogenases are metalloenzymes that reversibly reduce protons to molecular hydrogen at exceptionally high rates. We have characterized the catalytically competent hydride state (Hhyd) in the [FeFe]-hydrogenases from both Chlamydomonas reinhardtii and Desulfovibrio desulfuricans using 57Fe nuclear resonance vibrational spectroscopy (NRVS) and density functional theory (DFT). H/D exchange identified two Fe-H bending modes originating from the binuclear iron cofactor. DFT calculations show that these spectral features result from an iron-bound terminal hydride, and the Fe-H vibrational frequencies being highly dependent on interactions between the amine base of the catalytic cofactor with both hydride and the conserved cysteine terminating the proton transfer chain to the active site. The results indicate that Hhyd is the catalytic state one step prior to H2 formation. The observed vibrational spectrum, therefore, provides mechanistic insight into the reaction coordinate for H2 bond formation by [FeFe]-hydrogenases.
Collapse
Affiliation(s)
- Vladimir Pelmenschikov
- Institut für Chemie, Technische Universität Berlin , Strasse des 17 Juni 135, 10623 Berlin, Germany
| | - James A Birrell
- Max-Planck-Institut für Chemische Energiekonversion , Stiftstrasse 34-36, 45470 Mülheim an der Ruhr, Germany
| | - Cindy C Pham
- Department of Chemistry, University of California, Davis , One Shields Avenue, Davis, California 95616, United States
| | - Nakul Mishra
- Department of Chemistry, University of California, Davis , One Shields Avenue, Davis, California 95616, United States
| | - Hongxin Wang
- Department of Chemistry, University of California, Davis , One Shields Avenue, Davis, California 95616, United States
| | - Constanze Sommer
- Max-Planck-Institut für Chemische Energiekonversion , Stiftstrasse 34-36, 45470 Mülheim an der Ruhr, Germany
| | - Edward Reijerse
- Max-Planck-Institut für Chemische Energiekonversion , Stiftstrasse 34-36, 45470 Mülheim an der Ruhr, Germany
| | - Casseday P Richers
- School of Chemical Sciences, University of Illinois , 600 S. Mathews Avenue, Urbana, Illinois 61801, United States
| | - Kenji Tamasaku
- JASRI , Spring-8, 1-1-1 Kouto, Mikazuki-cho, Sayo-gun, Hyogo 679-5198, Japan
| | - Yoshitaka Yoda
- JASRI , Spring-8, 1-1-1 Kouto, Mikazuki-cho, Sayo-gun, Hyogo 679-5198, Japan
| | - Thomas B Rauchfuss
- School of Chemical Sciences, University of Illinois , 600 S. Mathews Avenue, Urbana, Illinois 61801, United States
| | - Wolfgang Lubitz
- Max-Planck-Institut für Chemische Energiekonversion , Stiftstrasse 34-36, 45470 Mülheim an der Ruhr, Germany
| | - Stephen P Cramer
- Department of Chemistry, University of California, Davis , One Shields Avenue, Davis, California 95616, United States
| |
Collapse
|
62
|
Yuki M, Sakata K, Nakajima K, Kikuchi S, Sekine S, Kawai H, Nishibayashi Y. Dicationic Thiolate-Bridged Diruthenium Complexes for Catalytic Oxidation of Molecular Dihydrogen. Organometallics 2017. [DOI: 10.1021/acs.organomet.7b00764] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Masahiro Yuki
- Department
of Systems Innovation, School of Engineering, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Ken Sakata
- Faculty
of Pharmaceutical Sciences, Hoshi University, Ebara, Shinagawa-ku, Tokyo 142-8501, Japan
| | - Kazunari Nakajima
- Department
of Systems Innovation, School of Engineering, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Syoma Kikuchi
- Faculty
of Pharmaceutical Sciences, Hoshi University, Ebara, Shinagawa-ku, Tokyo 142-8501, Japan
| | - Shinobu Sekine
- Fuel Cell System Engineering & Development Division, Toyota Motor Corporation, Mishuku, Susono, Shizuoka 410-1193, Japan
| | - Hiroyuki Kawai
- Fuel Cell System Engineering & Development Division, Toyota Motor Corporation, Mishuku, Susono, Shizuoka 410-1193, Japan
| | - Yoshiaki Nishibayashi
- Department
of Systems Innovation, School of Engineering, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| |
Collapse
|
63
|
Interplay of hemilability and redox activity in models of hydrogenase active sites. Proc Natl Acad Sci U S A 2017; 114:E9775-E9782. [PMID: 29087322 DOI: 10.1073/pnas.1710475114] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The hydrogen evolution reaction, as catalyzed by two electrocatalysts [M(N2S2)·Fe(NO)2]+, [Fe-Fe]+ (M = Fe(NO)) and [Ni-Fe]+ (M = Ni) was investigated by computational chemistry. As nominal models of hydrogenase active sites, these bimetallics feature two kinds of actor ligands: Hemilabile, MN2S2 ligands and redox-active, nitrosyl ligands, whose interplay guides the H2 production mechanism. The requisite base and metal open site are masked in the resting state but revealed within the catalytic cycle by cleavage of the MS-Fe(NO)2 bond from the hemilabile metallodithiolate ligand. Introducing two electrons and two protons to [Ni-Fe]+ produces H2 from coupling a hydride temporarily stored on Fe(NO)2 (Lewis acid) and a proton accommodated on the exposed sulfur of the MN2S2 thiolate (Lewis base). This Lewis acid-base pair is initiated and preserved by disrupting the dative donation through protonation on the thiolate or reduction on the thiolate-bound metal. Either manipulation modulates the electron density of the pair to prevent it from reestablishing the dative bond. The electron-buffering nitrosyl's role is subtler as a bifunctional electron reservoir. With more nitrosyls as in [Fe-Fe]+, accumulated electronic space in the nitrosyls' π*-orbitals makes reductions easier, but redirects the protonation and reduction to sites that postpone the actuation of the hemilability. Additionally, two electrons donated from two nitrosyl-buffered irons, along with two external electrons, reduce two protons into two hydrides, from which reductive elimination generates H2.
Collapse
|
64
|
Matsumoto T, Kishima T, Yatabe T, Yoon KS, Ogo S. Mechanistic Insight into Switching between H2- or O2-Activation by Simple Ligand Effects of [NiFe]hydrogenase Models. Organometallics 2017. [DOI: 10.1021/acs.organomet.7b00471] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Takahiro Matsumoto
- Center for Small Molecule Energy, ‡Department of Chemistry and Biochemistry,
Graduate School of Engineering, and §International Institute for Carbon-Neutral Energy
Research (WPI-I2CNER), Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Takahiro Kishima
- Center for Small Molecule Energy, ‡Department of Chemistry and Biochemistry,
Graduate School of Engineering, and §International Institute for Carbon-Neutral Energy
Research (WPI-I2CNER), Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Takeshi Yatabe
- Center for Small Molecule Energy, ‡Department of Chemistry and Biochemistry,
Graduate School of Engineering, and §International Institute for Carbon-Neutral Energy
Research (WPI-I2CNER), Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Ki-Seok Yoon
- Center for Small Molecule Energy, ‡Department of Chemistry and Biochemistry,
Graduate School of Engineering, and §International Institute for Carbon-Neutral Energy
Research (WPI-I2CNER), Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Seiji Ogo
- Center for Small Molecule Energy, ‡Department of Chemistry and Biochemistry,
Graduate School of Engineering, and §International Institute for Carbon-Neutral Energy
Research (WPI-I2CNER), Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan
| |
Collapse
|
65
|
Kositzki R, Mebs S, Schuth N, Leidel N, Schwartz L, Karnahl M, Wittkamp F, Daunke D, Grohmann A, Apfel UP, Gloaguen F, Ott S, Haumann M. Electronic and molecular structure relations in diiron compounds mimicking the [FeFe]-hydrogenase active site studied by X-ray spectroscopy and quantum chemistry. Dalton Trans 2017; 46:12544-12557. [PMID: 28905949 DOI: 10.1039/c7dt02720f] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Synthetic diiron compounds of the general formula Fe2(μ-S2R)(CO)n(L)6-n (R = alkyl or aromatic groups; L = CN- or phosphines) are versatile models for the active-site cofactor of hydrogen turnover in [FeFe]-hydrogenases. A series of 18 diiron compounds, containing mostly a dithiolate bridge and terminal ligands of increasing complexity, was characterized by X-ray absorption and emission spectroscopy in combination with density functional theory. Fe K-edge absorption and Kβ main-line emission spectra revealed the varying geometry and the low-spin state of the Fe(i) centers. Good agreement between experimental and calculated core-to-valence-excitation absorption and radiative valence-to-core-decay emission spectra revealed correlations between spectroscopic and structural features and provided access to the electronic configuration. Four main effects on the diiron core were identified, which were preferentially related to variation either of the dithiolate or of the terminal ligands. Alteration of the dithiolate bridge affected mainly the Fe-Fe bond strength, while more potent donor substitution and ligand field asymmetrization changed the metal charge and valence level localization. In contrast, cyanide ligation altered all relevant properties and, in particular, the frontier molecular orbital energies of the diiron core. Mutual benchmarking of experimental and theoretical parameters provides guidelines to verify the electronic properties of related diiron compounds.
Collapse
Affiliation(s)
- Ramona Kositzki
- Freie Universität Berlin, Fachbereich Physik, 14195 Berlin, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
66
|
Lebon A, Orain PY, Memboeuf A. Understanding the CO Dissociation in [Fe(CN) 2(CO) 2(dithiolate)] 2- Complexes with Quantum Chemical Topology Tools. J Phys Chem A 2017; 121:7031-7041. [PMID: 28850229 DOI: 10.1021/acs.jpca.7b05399] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The active site of the [NiFe]-hydrogenase contains a pentacoordinated iron atom; therefore, a vacant coordination site is available for substrate binding. Nonetheless, most organometallic models of the [NiFe]-hydrogenase failed to reproduce this key feature of the active site. In order to rationalize such behavior, quantum chemical calculations were carried out on a series of [Fe(CN)2(CO)n(dithiolate)]2- n = 1,2 complexes, where dithiolate denotes the ligands (CF3)2C2S22-, (CO2Me)2C2S22-, Ph2C2S22-, C6Cl2H2S22-, C6H4S22-, C2H4S22-, and C3H6S22-. Structural and energetic features are discussed, and a topological analysis based on two scalar fields, the one-electron density and the electron localization function (ELF), has been attempted to describe the nature of the metal-ligand bonds. The present approach contributes to better understand the ability of noninnocent dithiolene to strongly labilize one CO whereas innocent dithiolate cannot. The methodology developed throughout the paper could be useful in the field of the CO-releasing molecules.
Collapse
Affiliation(s)
- Alexandre Lebon
- Laboratoire de chimie électrochimie moléculaire et chimie analytique, UMR, CNRS 6521 , 6, Avenue Le Gorgeu, 29285 Brest Cedex, France
| | - Pierre-Yves Orain
- Laboratoire de chimie électrochimie moléculaire et chimie analytique, UMR, CNRS 6521 , 6, Avenue Le Gorgeu, 29285 Brest Cedex, France
| | - Antony Memboeuf
- Laboratoire de chimie électrochimie moléculaire et chimie analytique, UMR, CNRS 6521 , 6, Avenue Le Gorgeu, 29285 Brest Cedex, France
| |
Collapse
|
67
|
Yap CP, Hou K, Bengali AA, Fan WY. A Robust Pentacoordinated Iron(II) Proton Reduction Catalyst Stabilized by a Tripodal Phosphine. Inorg Chem 2017; 56:10926-10931. [DOI: 10.1021/acs.inorgchem.7b01079] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Chew Pheng Yap
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - Kaipeng Hou
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | | | - Wai Yip Fan
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| |
Collapse
|
68
|
Organophosphorous ligands in hydrogenase-inspired iron-based catalysts: A DFT study on the energetics of metal protonation as a function of P-atom substitution. J PHYS ORG CHEM 2017. [DOI: 10.1002/poc.3748] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
69
|
A comparative study of the electrochemical and proton-reduction behaviour of diphosphine-dithiolate complexes [M2(CO)4(μ-dppm){μ-S(CH2)
n
S}] (M = Fe, Ru; n = 2, 3). TRANSIT METAL CHEM 2017. [DOI: 10.1007/s11243-017-0164-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
70
|
Omann L, Königs CDF, Klare HFT, Oestreich M. Cooperative Catalysis at Metal-Sulfur Bonds. Acc Chem Res 2017; 50:1258-1269. [PMID: 28406290 DOI: 10.1021/acs.accounts.7b00089] [Citation(s) in RCA: 99] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Cooperative catalysis has attracted tremendous attention in recent years, emerging as a key strategy for the development of novel atom-economic and environmentally more benign catalytic processes. In particular, Noyori-type complexes with metal-nitrogen bonds have been extensively studied and evolved as privileged catalysts in hydrogenation chemistry. In contrast, catalysts containing metal-sulfur bonds as the reactive site are out of the ordinary, despite their abundance in living systems, where they are assumed to play a key role in biologically relevant processes. For instance, the heterolysis of dihydrogen catalyzed by [NiFe] hydrogenase is likely to proceed through cooperative H-H bond splitting at a polar nickel-sulfur bond. This Account provides an overview of reported metal-sulfur complexes that allow for cooperative E-H bond (E = H, Si, and B) activation and highlights the potential of this motif in catalytic applications. In recent years, our contributions to this research field have led to the development of a broad spectrum of synthetically useful transformations catalyzed by cationic ruthenium(II) thiolate complexes of type [(DmpS)Ru(PR3)]+BArF4- (DmpS = 2,6-dimesitylphenyl thiolate, ArF = 3,5-bis(trifluoromethyl)phenyl). The tethered coordination mode of the bulky 2,6-dimesitylphenyl thiolate ligand is crucial, stabilizing the coordinatively unsaturated ruthenium atom and also preventing formation of binuclear sulfur-bridged complexes. The ruthenium-sulfur bond of these complexes combines Lewis acidity at the metal center and Lewis basicity at the adjacent sulfur atom. This structural motif allows for reversible heterolytic splitting of E-H bonds (E = H, Si, and B) across the polar ruthenium-sulfur bond, generating a metal hydride and a sulfur-stabilized E+ cation. Hence, this activation mode provides a new strategy to catalytically generate silicon and boron electrophiles. After transfer of the electrophile to a Lewis-basic substrate, the resulting neutral ruthenium(II) hydride can either act as a hydride donor (reductant) or as a proton acceptor (Brønsted base); the latter scenario is followed by dihydrogen release. On the basis of this concept, the tethered ruthenium(II) thiolate complexes emerged as widely applicable catalysts for various transformations, which can be categorized into (i) dehydrogenative couplings [Si-C(sp2), Si-O, Si-N, and B-C(sp2)], (ii) chemoselective reductions (hydrogenation and hydrosilylation), and (iii) hydrodefluorination reactions. All reactions are promoted by a single catalyst motif through synergistic metal-sulfur interplay. The most prominent examples of these transformations are the first catalytic protocols for the regioselective C-H silylation and borylation of electron-rich heterocycles following a Friedel-Crafts mechanism.
Collapse
Affiliation(s)
- Lukas Omann
- Institut für Chemie, Technische Universität Berlin, Strasse des 17. Juni 115, 10623 Berlin, Germany
| | - C. David F. Königs
- Institut für Chemie, Technische Universität Berlin, Strasse des 17. Juni 115, 10623 Berlin, Germany
| | - Hendrik F. T. Klare
- Institut für Chemie, Technische Universität Berlin, Strasse des 17. Juni 115, 10623 Berlin, Germany
| | - Martin Oestreich
- Institut für Chemie, Technische Universität Berlin, Strasse des 17. Juni 115, 10623 Berlin, Germany
| |
Collapse
|
71
|
Quantum chemical approaches to [NiFe] hydrogenase. Essays Biochem 2017; 61:293-303. [PMID: 28487405 DOI: 10.1042/ebc20160079] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 02/22/2017] [Accepted: 03/01/2017] [Indexed: 11/17/2022]
Abstract
The mechanism by which [NiFe] hydrogenase catalyses the oxidation of molecular hydrogen is a significant yet challenging topic in bioinorganic chemistry. With far-reaching applications in renewable energy and carbon mitigation, significant effort has been invested in the study of these complexes. In particular, computational approaches offer a unique perspective on how this enzyme functions at an electronic and atomistic level. In this article, we discuss state-of-the art quantum chemical methods and how they have helped deepen our comprehension of [NiFe] hydrogenase. We outline the key strategies that can be used to compute the (i) geometry, (ii) electronic structure, (iii) thermodynamics and (iv) kinetic properties associated with the enzymatic activity of [NiFe] hydrogenase and other bioinorganic complexes.
Collapse
|
72
|
Ash PA, Hidalgo R, Vincent KA. Proton Transfer in the Catalytic Cycle of [NiFe] Hydrogenases: Insight from Vibrational Spectroscopy. ACS Catal 2017; 7:2471-2485. [PMID: 28413691 PMCID: PMC5387674 DOI: 10.1021/acscatal.6b03182] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Revised: 01/30/2017] [Indexed: 12/11/2022]
Abstract
![]()
Catalysis
of H2 production and oxidation reactions is
critical in renewable energy systems based around H2 as
a clean fuel, but the present reliance on platinum-based catalysts
is not sustainable. In nature, H2 is oxidized at minimal
overpotential and high turnover frequencies at [NiFe] catalytic sites
in hydrogenase enzymes. Although an outline mechanism has been established
for the [NiFe] hydrogenases involving heterolytic cleavage of H2 followed by a first and then second transfer of a proton
and electron away from the active site, details remain vague concerning
how the proton transfers are facilitated by the protein environment
close to the active site. Furthermore, although [NiFe] hydrogenases
from different organisms or cellular environments share a common active
site, they exhibit a broad range of catalytic characteristics indicating
the importance of subtle changes in the surrounding protein in controlling
their behavior. Here we review recent time-resolved infrared (IR)
spectroscopic studies and IR spectroelectrochemical studies carried
out in situ during electrocatalytic turnover. Additionally, we re-evaluate
the significant body of IR spectroscopic data on hydrogenase active
site states determined through more conventional solution studies,
in order to highlight mechanistic steps that seem to apply generally
across the [NiFe] hydrogenases, as well as steps which so far seem
limited to specific groups of these enzymes. This analysis is intended
to help focus attention on the key open questions where further work
is needed to assess important aspects of proton and electron transfer
in the mechanism of [NiFe] hydrogenases.
Collapse
Affiliation(s)
- Philip A. Ash
- Department
of Chemistry, University of Oxford, Inorganic Chemistry Laboratory, South Parks Road, Oxford OX1 3QR, United Kingdom
| | - Ricardo Hidalgo
- Department
of Chemistry, University of Oxford, Inorganic Chemistry Laboratory, South Parks Road, Oxford OX1 3QR, United Kingdom
| | - Kylie A. Vincent
- Department
of Chemistry, University of Oxford, Inorganic Chemistry Laboratory, South Parks Road, Oxford OX1 3QR, United Kingdom
| |
Collapse
|
73
|
Reijerse EJ, Pham CC, Pelmenschikov V, Gilbert-Wilson R, Adamska-Venkatesh A, Siebel JF, Gee LB, Yoda Y, Tamasaku K, Lubitz W, Rauchfuss TB, Cramer SP. Direct Observation of an Iron-Bound Terminal Hydride in [FeFe]-Hydrogenase by Nuclear Resonance Vibrational Spectroscopy. J Am Chem Soc 2017; 139:4306-4309. [PMID: 28291336 PMCID: PMC5545132 DOI: 10.1021/jacs.7b00686] [Citation(s) in RCA: 130] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
[FeFe]-hydrogenases catalyze the reversible reduction of protons to molecular hydrogen with extremely high efficiency. The active site ("H-cluster") consists of a [4Fe-4S]H cluster linked through a bridging cysteine to a [2Fe]H subsite coordinated by CN- and CO ligands featuring a dithiol-amine moiety that serves as proton shuttle between the protein proton channel and the catalytic distal iron site (Fed). Although there is broad consensus that an iron-bound terminal hydride species must occur in the catalytic mechanism, such a species has never been directly observed experimentally. Here, we present FTIR and nuclear resonance vibrational spectroscopy (NRVS) experiments in conjunction with density functional theory (DFT) calculations on an [FeFe]-hydrogenase variant lacking the amine proton shuttle which is stabilizing a putative hydride state. The NRVS spectra unequivocally show the bending modes of the terminal Fe-H species fully consistent with widely accepted models of the catalytic cycle.
Collapse
Affiliation(s)
- Edward J. Reijerse
- Max-Planck-Institut für Chemische Energiekonversion, Stitstrasse 34-36, 45470 Mülheim, Germany
| | - Cindy C. Pham
- Department of Chemistry, University of California, Davis, California 95616, United States
| | | | - Ryan Gilbert-Wilson
- School of Chemical Sciences, University of Illinois at Urbana—Champaign, Urbana, Illinois 61801, United States
| | | | - Judith F. Siebel
- Max-Planck-Institut für Chemische Energiekonversion, Stitstrasse 34-36, 45470 Mülheim, Germany
| | - Leland B. Gee
- Department of Chemistry, University of California, Davis, California 95616, United States
| | - Yoshitaka Yoda
- Materials Dynamics Laboratory, RIKEN SPring-8, Hyogo 679-5148, Japan
| | - Kenji Tamasaku
- Materials Dynamics Laboratory, RIKEN SPring-8, Hyogo 679-5148, Japan
| | - Wolfgang Lubitz
- Max-Planck-Institut für Chemische Energiekonversion, Stitstrasse 34-36, 45470 Mülheim, Germany
| | - Thomas B. Rauchfuss
- School of Chemical Sciences, University of Illinois at Urbana—Champaign, Urbana, Illinois 61801, United States
| | - Stephen P. Cramer
- Department of Chemistry, University of California, Davis, California 95616, United States
| |
Collapse
|
74
|
|
75
|
Xiang J, Wang Q, Yiu SM, Lau TC. Dual Pathways in the Oxidation of an Osmium(III) Guanidine Complex. Formation of Osmium(VI) Nitrido and Osmium Nitrosyl Complex. Inorg Chem 2017; 56:2022-2028. [DOI: 10.1021/acs.inorgchem.6b02645] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Jing Xiang
- College
of Chemistry and Environmental Engineering, Yangtze University, Jingzhou 434020, Hubei, P. R. China
- Department
of Biology and Chemistry, City University of Hong Kong, Tat Chee
Avenue, Kowloon Tong, Hong Kong
| | - Qian Wang
- Department
of Biology and Chemistry, City University of Hong Kong, Tat Chee
Avenue, Kowloon Tong, Hong Kong
- School
of Chemical Engineering, Shandong University of Technology, Zibo 255049, P. R. China
| | - Shek-Man Yiu
- Department
of Biology and Chemistry, City University of Hong Kong, Tat Chee
Avenue, Kowloon Tong, Hong Kong
| | - Tai-Chu Lau
- Department
of Biology and Chemistry, City University of Hong Kong, Tat Chee
Avenue, Kowloon Tong, Hong Kong
| |
Collapse
|
76
|
Yuki M, Sakata K, Kikuchi S, Kawai H, Takahashi T, Ando M, Nakajima K, Nishibayashi Y. Catalytic Activity of Thiolate-Bridged Diruthenium Complexes Bearing Pendent Ether Moieties in the Oxidation of Molecular Dihydrogen. Chemistry 2017; 23:1007-1012. [PMID: 27779798 DOI: 10.1002/chem.201604974] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Indexed: 11/06/2022]
Abstract
Thiolate-bridged diruthenium complexes bearing pendent ethers have been found to work as effective catalysts toward the oxidation of molecular dihydrogen into protons and electrons in water. The pendent ether moiety in the complex plays an important role to facilitate the proton transfer between the metal center and the external proton acceptor.
Collapse
Affiliation(s)
- Masahiro Yuki
- Department of Systems Innovation, School of Engineering, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Ken Sakata
- Faculty of Pharmaceutical Sciences, Hoshi University, Ebara, Shinagawa-ku, Tokyo, 142-8501, Japan
| | - Shoma Kikuchi
- Faculty of Pharmaceutical Sciences, Hoshi University, Ebara, Shinagawa-ku, Tokyo, 142-8501, Japan
| | - Hiroyuki Kawai
- Fuel Cell System Development Center, Toyota Motor Corporation, Mishuku, Susono, Shizuoka, 410-1193, Japan
| | - Tsuyoshi Takahashi
- Fuel Cell System Development Center, Toyota Motor Corporation, Mishuku, Susono, Shizuoka, 410-1193, Japan
| | - Masaki Ando
- Fuel Cell System Development Center, Toyota Motor Corporation, Mishuku, Susono, Shizuoka, 410-1193, Japan
| | - Kazunari Nakajima
- Department of Systems Innovation, School of Engineering, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Yoshiaki Nishibayashi
- Department of Systems Innovation, School of Engineering, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| |
Collapse
|
77
|
Dong G, Phung QM, Hallaert SD, Pierloot K, Ryde U. H2binding to the active site of [NiFe] hydrogenase studied by multiconfigurational and coupled-cluster methods. Phys Chem Chem Phys 2017; 19:10590-10601. [DOI: 10.1039/c7cp01331k] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
CCSD(T) and DMRG-CASPT2 calculations show that H2prefers to bind to Ni rather than to Fe in [NiFe] hydrogenase.
Collapse
Affiliation(s)
- Geng Dong
- Department of Theoretical Chemistry
- Lund University
- SE-221 00 Lund
- Sweden
| | - Quan Manh Phung
- Department of Chemistry
- University of Leuven
- B-3001 Leuven
- Belgium
| | | | | | - Ulf Ryde
- Department of Theoretical Chemistry
- Lund University
- SE-221 00 Lund
- Sweden
| |
Collapse
|
78
|
Zhang X, Chung LW. Alternative Mechanistic Strategy for Enzyme Catalysis in a Ni-Dependent Lactate Racemase (LarA): Intermediate Destabilization by the Cofactor. Chemistry 2016; 23:3623-3630. [DOI: 10.1002/chem.201604893] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Indexed: 12/22/2022]
Affiliation(s)
- Xiaoyong Zhang
- Department of Chemistry; South University of Science and Technology of China; Shenzhen 518055 P. R. China
| | - Lung W. Chung
- Department of Chemistry; South University of Science and Technology of China; Shenzhen 518055 P. R. China
| |
Collapse
|
79
|
Wang Y, Yang Y, Zhang T, Zhang X, Jiang S, Zhang G, Li B. A new nitrogen heterocyclic carbene containing diiron complex as bio-inspired catalyst for proton reduction and benzene hydroxylation. J Organomet Chem 2016. [DOI: 10.1016/j.jorganchem.2016.10.020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
80
|
Sensi M, Baffert C, Greco C, Caserta G, Gauquelin C, Saujet L, Fontecave M, Roy S, Artero V, Soucaille P, Meynial-Salles I, Bottin H, de Gioia L, Fourmond V, Léger C, Bertini L. Reactivity of the Excited States of the H-Cluster of FeFe Hydrogenases. J Am Chem Soc 2016; 138:13612-13618. [DOI: 10.1021/jacs.6b06603] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Matteo Sensi
- Aix Marseille Univ., CNRS, BIP UMR 7281, Marseille, France
- Department
of Biotechnologies and Biosciences, University of Milano-Bicocca, Piazza
della Scienza 2, 20126 Milan, Italy
| | - Carole Baffert
- Aix Marseille Univ., CNRS, BIP UMR 7281, Marseille, France
| | - Claudio Greco
- Department
of Earth and Environmental Sciences, Milano-Bicocca University, Piazza della
Scienza 1, 20126 Milan, Italy
| | - Giorgio Caserta
- Laboratoire
de Chimie des Processus Biologiques, UMR 8229 CNRS, Collège de France, Université Paris 6, 11 Place Marcelin Berthelot, Paris 75231 Cedex 05, France
| | - Charles Gauquelin
- Université de Toulouse, INSA, UPS, INP, LISBP, INRA:UMR792,135 CNRS:UMR 5504, avenue de Rangueil, 31077 Toulouse, France
| | - Laure Saujet
- Institut de Biologie et de Technologies de Saclay IBITECS, SB2SM/Institut de Biologie Intégrative de la Cellule I2BC, UMR 9198, CEA, CNRS, Université Paris Sud, F-91191 Gif sur Yvette, France
| | - Marc Fontecave
- Laboratoire
de Chimie des Processus Biologiques, UMR 8229 CNRS, Collège de France, Université Paris 6, 11 Place Marcelin Berthelot, Paris 75231 Cedex 05, France
| | - Souvik Roy
- Laboratoire
de Chimie et Biologie des Métaux, Université Grenoble Alpes, CNRS, CEA, 17 rue des Martyrs, 38054 Grenoble, France
| | - Vincent Artero
- Laboratoire
de Chimie et Biologie des Métaux, Université Grenoble Alpes, CNRS, CEA, 17 rue des Martyrs, 38054 Grenoble, France
| | - Philippe Soucaille
- Université de Toulouse, INSA, UPS, INP, LISBP, INRA:UMR792,135 CNRS:UMR 5504, avenue de Rangueil, 31077 Toulouse, France
| | - Isabelle Meynial-Salles
- Université de Toulouse, INSA, UPS, INP, LISBP, INRA:UMR792,135 CNRS:UMR 5504, avenue de Rangueil, 31077 Toulouse, France
| | - Hervé Bottin
- Institut de Biologie et de Technologies de Saclay IBITECS, SB2SM/Institut de Biologie Intégrative de la Cellule I2BC, UMR 9198, CEA, CNRS, Université Paris Sud, F-91191 Gif sur Yvette, France
| | - Luca de Gioia
- Department
of Biotechnologies and Biosciences, University of Milano-Bicocca, Piazza
della Scienza 2, 20126 Milan, Italy
| | | | | | - Luca Bertini
- Department
of Biotechnologies and Biosciences, University of Milano-Bicocca, Piazza
della Scienza 2, 20126 Milan, Italy
| |
Collapse
|
81
|
Greene BL, Vansuch GE, Wu CH, Adams MWW, Dyer RB. Glutamate Gated Proton-Coupled Electron Transfer Activity of a [NiFe]-Hydrogenase. J Am Chem Soc 2016; 138:13013-13021. [DOI: 10.1021/jacs.6b07789] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Brandon L. Greene
- Chemistry
Department, Emory University, Atlanta, Georgia 30322, United States
| | - Gregory E. Vansuch
- Chemistry
Department, Emory University, Atlanta, Georgia 30322, United States
| | - Chang-Hao Wu
- Department
of Biochemistry, University of Georgia, Athens, Georgia 30602, United States
| | - Michael W. W. Adams
- Department
of Biochemistry, University of Georgia, Athens, Georgia 30602, United States
| | - R. Brian Dyer
- Chemistry
Department, Emory University, Atlanta, Georgia 30322, United States
| |
Collapse
|
82
|
Ding S, Ghosh P, Lunsford AM, Wang N, Bhuvanesh N, Hall MB, Darensbourg MY. Hemilabile Bridging Thiolates as Proton Shuttles in Bioinspired H2 Production Electrocatalysts. J Am Chem Soc 2016; 138:12920-12927. [DOI: 10.1021/jacs.6b06461] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Shengda Ding
- Department of Chemistry, Texas A & M University, College Station, Texas 77843, United States
| | - Pokhraj Ghosh
- Department of Chemistry, Texas A & M University, College Station, Texas 77843, United States
| | - Allen M. Lunsford
- Department of Chemistry, Texas A & M University, College Station, Texas 77843, United States
| | - Ning Wang
- Department of Chemistry, Texas A & M University, College Station, Texas 77843, United States
| | - Nattamai Bhuvanesh
- Department of Chemistry, Texas A & M University, College Station, Texas 77843, United States
| | - Michael B. Hall
- Department of Chemistry, Texas A & M University, College Station, Texas 77843, United States
| | - Marcetta Y. Darensbourg
- Department of Chemistry, Texas A & M University, College Station, Texas 77843, United States
| |
Collapse
|
83
|
Phung QM, Wouters S, Pierloot K. Cumulant Approximated Second-Order Perturbation Theory Based on the Density Matrix Renormalization Group for Transition Metal Complexes: A Benchmark Study. J Chem Theory Comput 2016; 12:4352-61. [DOI: 10.1021/acs.jctc.6b00714] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Quan Manh Phung
- Department
of Chemistry, KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium
| | - Sebastian Wouters
- Center
for Molecular Modelling, Ghent University, Technologiepark 903, 9052 Zwijnaarde, Belgium
| | - Kristine Pierloot
- Department
of Chemistry, KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium
| |
Collapse
|
84
|
Mirmohades M, Adamska-Venkatesh A, Sommer C, Reijerse E, Lomoth R, Lubitz W, Hammarström L. Following [FeFe] Hydrogenase Active Site Intermediates by Time-Resolved Mid-IR Spectroscopy. J Phys Chem Lett 2016; 7:3290-3293. [PMID: 27494400 DOI: 10.1021/acs.jpclett.6b01316] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Time-resolved nanosecond mid-infrared spectroscopy is for the first time employed to study the [FeFe] hydrogenase from Chlamydomonas reinhardtii and to investigate relevant intermediates of the enzyme active site. An actinic 355 nm, 10 ns laser flash triggered photodissociation of a carbonyl group from the CO-inhibited state Hox-CO to form the state Hox, which is an intermediate of the catalytic proton reduction cycle. Time-resolved infrared spectroscopy allowed us to directly follow the subsequent rebinding of the carbonyl, re-forming Hox-CO, and determine the reaction half-life to be t1/2 ≈ 13 ± 5 ms at room temperature. This gives direct information on the dynamics of CO inhibition of the enzyme.
Collapse
Affiliation(s)
- Mohammad Mirmohades
- Department of Chemistry - Ångström Laboratory, Uppsala University , Box 523, 751 20 Uppsala, Sweden
| | - Agnieszka Adamska-Venkatesh
- Max Planck Institute for Chemical Energy Conversion , Stiftstrasse 34-36, 45470 Mülheim an der Ruhr, Germany
| | - Constanze Sommer
- Max Planck Institute for Chemical Energy Conversion , Stiftstrasse 34-36, 45470 Mülheim an der Ruhr, Germany
| | - Edward Reijerse
- Max Planck Institute for Chemical Energy Conversion , Stiftstrasse 34-36, 45470 Mülheim an der Ruhr, Germany
| | - Reiner Lomoth
- Department of Chemistry - Ångström Laboratory, Uppsala University , Box 523, 751 20 Uppsala, Sweden
| | - Wolfgang Lubitz
- Max Planck Institute for Chemical Energy Conversion , Stiftstrasse 34-36, 45470 Mülheim an der Ruhr, Germany
| | - Leif Hammarström
- Department of Chemistry - Ångström Laboratory, Uppsala University , Box 523, 751 20 Uppsala, Sweden
| |
Collapse
|
85
|
Schilter D, Camara JM, Huynh MT, Hammes-Schiffer S, Rauchfuss TB. Hydrogenase Enzymes and Their Synthetic Models: The Role of Metal Hydrides. Chem Rev 2016; 116:8693-749. [PMID: 27353631 PMCID: PMC5026416 DOI: 10.1021/acs.chemrev.6b00180] [Citation(s) in RCA: 410] [Impact Index Per Article: 45.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Hydrogenase enzymes efficiently process H2 and protons at organometallic FeFe, NiFe, or Fe active sites. Synthetic modeling of the many H2ase states has provided insight into H2ase structure and mechanism, as well as afforded catalysts for the H2 energy vector. Particularly important are hydride-bearing states, with synthetic hydride analogues now known for each hydrogenase class. These hydrides are typically prepared by protonation of low-valent cores. Examples of FeFe and NiFe hydrides derived from H2 have also been prepared. Such chemistry is more developed than mimicry of the redox-inactive monoFe enzyme, although functional models of the latter are now emerging. Advances in physical and theoretical characterization of H2ase enzymes and synthetic models have proven key to the study of hydrides in particular, and will guide modeling efforts toward more robust and active species optimized for practical applications.
Collapse
Affiliation(s)
- David Schilter
- Center for Multidimensional Carbon Materials, Institute for Basic Science (IBS), Ulsan 44919, Republic of Korea
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - James M. Camara
- Department of Chemistry, Yeshiva University, 500 West 185th Street, New York, New York 10033, United States
| | - Mioy T. Huynh
- Department of Chemistry, University of Illinois at Urbana–Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, United States
| | - Sharon Hammes-Schiffer
- Department of Chemistry, University of Illinois at Urbana–Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, United States
| | - Thomas B. Rauchfuss
- Department of Chemistry, University of Illinois at Urbana–Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, United States
| |
Collapse
|
86
|
Siegbahn PEM. Model Calculations Suggest that the Central Carbon in the FeMo-Cofactor of Nitrogenase Becomes Protonated in the Process of Nitrogen Fixation. J Am Chem Soc 2016; 138:10485-95. [DOI: 10.1021/jacs.6b03846] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Per E. M. Siegbahn
- Department of Organic Chemistry,
Arrhenius Laboratory, Stockholm University, SE-106 91, Stockholm, Sweden
| |
Collapse
|
87
|
Qiu S, Azofra LM, MacFarlane DR, Sun C. Unraveling the Role of Ligands in the Hydrogen Evolution Mechanism Catalyzed by [NiFe] Hydrogenases. ACS Catal 2016. [DOI: 10.1021/acscatal.6b01359] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Siyao Qiu
- School
of Chemistry, Faculty of Science, Monash University, Clayton, Victoria 3800, Australia
| | - Luis Miguel Azofra
- School
of Chemistry, Faculty of Science, Monash University, Clayton, Victoria 3800, Australia
- ARC
Centre of Excellence for Electromaterials Science (ACES), School of
Chemistry, Faculty of Science, Monash University, Clayton, Victoria 3800, Australia
| | - Douglas R. MacFarlane
- School
of Chemistry, Faculty of Science, Monash University, Clayton, Victoria 3800, Australia
- ARC
Centre of Excellence for Electromaterials Science (ACES), School of
Chemistry, Faculty of Science, Monash University, Clayton, Victoria 3800, Australia
| | - Chenghua Sun
- School
of Chemistry, Faculty of Science, Monash University, Clayton, Victoria 3800, Australia
- ARC
Centre of Excellence for Electromaterials Science (ACES), School of
Chemistry, Faculty of Science, Monash University, Clayton, Victoria 3800, Australia
| |
Collapse
|
88
|
New progress in theoretical studies on palladium-catalyzed C−C bond-forming reaction mechanisms. Sci China Chem 2016. [DOI: 10.1007/s11426-016-0018-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
89
|
Ulloa OA, Huynh MT, Richers CP, Bertke JA, Nilges MJ, Hammes-Schiffer S, Rauchfuss TB. Mechanism of H2 Production by Models for the [NiFe]-Hydrogenases: Role of Reduced Hydrides. J Am Chem Soc 2016; 138:9234-45. [PMID: 27328053 DOI: 10.1021/jacs.6b04579] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The intermediacy of a reduced nickel-iron hydride in hydrogen evolution catalyzed by Ni-Fe complexes was verified experimentally and computationally. In addition to catalyzing hydrogen evolution, the highly basic and bulky (dppv)Ni(μ-pdt)Fe(CO)(dppv) ([1](0); dppv = cis-C2H2(PPh2)2) and its hydride derivatives have yielded to detailed characterization in terms of spectroscopy, bonding, and reactivity. The protonation of [1](0) initially produces unsym-[H1](+), which converts by a first-order pathway to sym-[H1](+). These species have C1 (unsym) and Cs (sym) symmetries, respectively, depending on the stereochemistry of the octahedral Fe site. Both experimental and computational studies show that [H1](+) protonates at sulfur. The S = 1/2 hydride [H1](0) was generated by reduction of [H1](+) with Cp*2Co. Density functional theory (DFT) calculations indicate that [H1](0) is best described as a Ni(I)-Fe(II) derivative with significant spin density on Ni and some delocalization on S and Fe. EPR spectroscopy reveals both kinetic and thermodynamic isomers of [H1](0). Whereas [H1](+) does not evolve H2 upon protonation, treatment of [H1](0) with acids gives H2. The redox state of the "remote" metal (Ni) modulates the hydridic character of the Fe(II)-H center. As supported by DFT calculations, H2 evolution proceeds either directly from [H1](0) and external acid or from protonation of the Fe-H bond in [H1](0) to give a labile dihydrogen complex. Stoichiometric tests indicate that protonation-induced hydrogen evolution from [H1](0) initially produces [1](+), which is reduced by [H1](0). Our results reconcile the required reductive activation of a metal hydride and the resistance of metal hydrides toward reduction. This dichotomy is resolved by reduction of the remote (non-hydride) metal of the bimetallic unit.
Collapse
Affiliation(s)
- Olbelina A Ulloa
- Department of Chemistry, University of Illinois at Urbana-Champaign , Urbana, Illinois 61801, United States
| | - Mioy T Huynh
- Department of Chemistry, University of Illinois at Urbana-Champaign , Urbana, Illinois 61801, United States
| | - Casseday P Richers
- Department of Chemistry, University of Illinois at Urbana-Champaign , Urbana, Illinois 61801, United States
| | - Jeffery A Bertke
- Department of Chemistry, University of Illinois at Urbana-Champaign , Urbana, Illinois 61801, United States
| | - Mark J Nilges
- Department of Chemistry, University of Illinois at Urbana-Champaign , Urbana, Illinois 61801, United States
| | - Sharon Hammes-Schiffer
- Department of Chemistry, University of Illinois at Urbana-Champaign , Urbana, Illinois 61801, United States
| | - Thomas B Rauchfuss
- Department of Chemistry, University of Illinois at Urbana-Champaign , Urbana, Illinois 61801, United States
| |
Collapse
|
90
|
Zhou X, Barton BE, Chambers GM, Rauchfuss TB, Arrigoni F, Zampella G. Preparation and Protonation of Fe2(pdt)(CNR)6, Electron-Rich Analogues of Fe2(pdt)(CO)6. Inorg Chem 2016; 55:3401-12. [PMID: 26999632 DOI: 10.1021/acs.inorgchem.5b02789] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The complexes Fe2(pdt)(CNR)6 (pdt(2-) = CH2(CH2S(-))2) were prepared by thermal substitution of the hexacarbonyl complex with the isocyanides RNC for R = C6H4-4-OMe (1), C6H4-4-Cl (2), Me (3). These complexes represent electron-rich analogues of the parent Fe2(pdt)(CO)6. Unlike most substituted derivatives of Fe2(pdt)(CO)6, these isocyanide complexes are sterically unencumbered and have the same idealized symmetry as the parent hexacarbonyl derivatives. Like the hexacarbonyls, the stereodynamics of 1-3 involve both turnstile rotation of the Fe(CNR)3 as well as the inversion of the chair conformation of the pdt ligand. Structural studies indicate that the basal isocyanide has nonlinear CNC bonds and short Fe-C distances, indicating that they engage in stronger Fe-C π-backbonding than the apical ligands. Cyclic voltammetry reveals that these new complexes are far more reducing than the hexacarbonyls, although the redox behavior is complex. Estimated reduction potentials are E1/2 ≈ -0.6 ([2](+/0)), -0.7 ([1](+/0)), and -1.25 ([3](+/0)). According to DFT calculations, the rotated isomer of 3 is only 2.2 kcal/mol higher in energy than the crystallographically observed unrotated structure. The effects of rotated versus unrotated structure and of solvent coordination (THF, MeCN) on redox potentials were assessed computationally. These factors shift the redox couple by as much as 0.25 V, usually less. Compounds 1 and 2 protonate with strong acids to give the expected μ-hydrides [H1](+) and [H2](+). In contrast, 3 protonates with [HNEt3]BAr(F)4 (pKa(MeCN) = 18.7) to give the aminocarbyne [Fe2(pdt)(CNMe)5(μ-CN(H)Me)](+) ([3H](+)). According to NMR measurements and DFT calculations, this species adopts an unsymmetrical, rotated structure. DFT calculations further indicate that the previously described carbyne complex [Fe2(SMe)2(CO)3(PMe3)2(CCF3)](+) also adopts a rotated structure with a bridging carbyne ligand. Complex [3H](+) reversibly adds MeNC to give [Fe2(pdt)(CNR)6(μ-CN(H)Me)](+) ([3H(CNMe)](+)). Near room temperature, [3H](+) isomerizes to the hydride [(μ-H)Fe2(pdt)(CNMe)6](+) ([H3](+)) via a first-order pathway.
Collapse
Affiliation(s)
- Xiaoyuan Zhou
- School of Chemical Sciences, University of Illinois at Urbana-Champaign, 600 South Goodwin Avenue, Urbana, Illinois 61801, United States
| | - Bryan E Barton
- School of Chemical Sciences, University of Illinois at Urbana-Champaign, 600 South Goodwin Avenue, Urbana, Illinois 61801, United States
| | - Geoffrey M Chambers
- School of Chemical Sciences, University of Illinois at Urbana-Champaign, 600 South Goodwin Avenue, Urbana, Illinois 61801, United States
| | - Thomas B Rauchfuss
- School of Chemical Sciences, University of Illinois at Urbana-Champaign, 600 South Goodwin Avenue, Urbana, Illinois 61801, United States
| | - Federica Arrigoni
- Department of Biotechnology and Biosciences, University of Milano-Bicocca , Piazza della Scienza 2, 20126 Milan, Italy
| | - Giuseppe Zampella
- Department of Biotechnology and Biosciences, University of Milano-Bicocca , Piazza della Scienza 2, 20126 Milan, Italy
| |
Collapse
|
91
|
Greene BL, Wu CH, Vansuch GE, Adams MWW, Dyer RB. Proton Inventory and Dynamics in the Nia-S to Nia-C Transition of a [NiFe] Hydrogenase. Biochemistry 2016; 55:1813-25. [DOI: 10.1021/acs.biochem.5b01348] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Brandon L. Greene
- Chemistry
Department, Emory University, Atlanta, Georgia 30322, United States
| | - Chang-Hao Wu
- Department
of Biochemistry, University of Georgia, Athens, Georgia 30602, United States
| | - Gregory E. Vansuch
- Chemistry
Department, Emory University, Atlanta, Georgia 30322, United States
| | - Michael W. W. Adams
- Department
of Biochemistry, University of Georgia, Athens, Georgia 30602, United States
| | - R. Brian Dyer
- Chemistry
Department, Emory University, Atlanta, Georgia 30322, United States
| |
Collapse
|
92
|
Protonation states of intermediates in the reaction mechanism of [NiFe] hydrogenase studied by computational methods. J Biol Inorg Chem 2016; 21:383-94. [DOI: 10.1007/s00775-016-1348-9] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Accepted: 02/23/2016] [Indexed: 10/22/2022]
|
93
|
Chambers GM, Rauchfuss TB, Arrigoni F, Zampella G. Effect of Pyramidalization of the M2(SR)2 Center: The Case of (C5H5)2Ni2(SR)2. Organometallics 2016. [DOI: 10.1021/acs.organomet.6b00068] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Geoffrey M. Chambers
- School of Chemical Sciences, University of Illinois, Urbana, Illinois 61801, United States
| | - Thomas B. Rauchfuss
- School of Chemical Sciences, University of Illinois, Urbana, Illinois 61801, United States
| | - Federica Arrigoni
- Department of Biotechnology
and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126-Milan, Italy
| | - Giuseppe Zampella
- Department of Biotechnology
and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126-Milan, Italy
| |
Collapse
|
94
|
Darensbourg MY, Llobet A. Preface for Small Molecule Activation: From Biological Principles to Energy Applications. Part 3: Small Molecules Related to (Artificial) Photosynthesis. Inorg Chem 2016; 55:371-7. [PMID: 26782691 DOI: 10.1021/acs.inorgchem.5b02925] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Marcetta Y Darensbourg
- Department of Chemistry, Texas A&M University , College Station, Texas 77845, United States
| | - Antoni Llobet
- Departament de Quı́mica, Universitat Autònoma de Barcelona , Cerdanyola del Vallès, 08193 Barcelona, Spain
| |
Collapse
|
95
|
Chambers GM, Huynh MT, Li Y, Hammes-Schiffer S, Rauchfuss TB, Reijerse E, Lubitz W. Models of the Ni-L and Ni-SIa States of the [NiFe]-Hydrogenase Active Site. Inorg Chem 2016; 55:419-31. [PMID: 26421729 PMCID: PMC4807737 DOI: 10.1021/acs.inorgchem.5b01662] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A new class of synthetic models for the active site of [NiFe]-hydrogenases are described. The Ni(I/II)(SCys)2 and Fe(II)(CN)2CO sites are represented with (RC5H4)Ni(I/II) and Fe(II)(diphos)(CO) modules, where diphos = 1,2-C2H4(PPh2)2(dppe) or cis-1,2-C2H2(PPh2)2(dppv). The two bridging thiolate ligands are represented by CH2(CH2S)2(2-) (pdt(2-)), Me2C(CH2S)2(2-) (Me2pdt(2-)), and (C6H5S)2(2-). The reaction of Fe(pdt)(CO)2(dppe) and [(C5H5)3Ni2]BF4 affords [(C5H5)Ni(pdt)Fe(dppe)(CO)]BF4 ([1a]BF4). Monocarbonyl [1a]BF4 features an S = 0 Ni(II)Fe(II) center with five-coordinated iron, as proposed for the Ni-SIa state of the enzyme. One-electron reduction of [1a](+) affords the S = 1/2 derivative [1a](0), which, according to density functional theory (DFT) calculations and electron paramagnetic resonance and Mössbauer spectroscopies, is best described as a Ni(I)Fe(II) compound. The Ni(I)Fe(II) assignment matches that for the Ni-L state in [NiFe]-hydrogenase, unlike recently reported Ni(II)Fe(I)-based models. Compound [1a](0) reacts with strong acids to liberate 0.5 equiv of H2 and regenerate [1a](+), indicating that H2 evolution is catalyzed by [1a](0). DFT calculations were used to investigate the pathway for H2 evolution and revealed that the mechanism can proceed through two isomers of [1a](0) that differ in the stereochemistry of the Fe(dppe)CO center. Calculations suggest that protonation of [1a](0) (both isomers) affords Ni(III)-H-Fe(II) intermediates, which represent mimics of the Ni-C state of the enzyme.
Collapse
|
96
|
Nath I, Chakraborty J, Verpoort F. Metal organic frameworks mimicking natural enzymes: a structural and functional analogy. Chem Soc Rev 2016; 45:4127-70. [DOI: 10.1039/c6cs00047a] [Citation(s) in RCA: 299] [Impact Index Per Article: 33.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
In this review, we have portrayed the structure, synthesis and applications of a variety of biomimetic MOFs from an unprecedented angle.
Collapse
Affiliation(s)
- Ipsita Nath
- Laboratory of Organometallics
- Catalysis and Ordered Materials
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing
- Center for Chemical and Material Engineering
- Wuhan University of Technology
| | - Jeet Chakraborty
- Laboratory of Organometallics
- Catalysis and Ordered Materials
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing
- Center for Chemical and Material Engineering
- Wuhan University of Technology
| | - Francis Verpoort
- Laboratory of Organometallics
- Catalysis and Ordered Materials
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing
- Center for Chemical and Material Engineering
- Wuhan University of Technology
| |
Collapse
|
97
|
Vedha SA, Velmurugan G, Venuvanalingam P. Noncovalent interactions between the second coordination sphere and the active site of [NiFeSe] hydrogenase. RSC Adv 2016. [DOI: 10.1039/c6ra11295a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
QM/MM studies on seven truncated models of the oxidized as-isolated state of the [NiFeSe] Hases reveal the influence of the residues in the second coordination sphere on the active site.
Collapse
Affiliation(s)
- Swaminathan Angeline Vedha
- Theoretical and Computational Chemistry Laboratory
- School of Chemistry
- Bharathidasan University
- Tiruchirappalli-620 024
- India
| | - Gunasekaran Velmurugan
- Theoretical and Computational Chemistry Laboratory
- School of Chemistry
- Bharathidasan University
- Tiruchirappalli-620 024
- India
| | - Ponnambalam Venuvanalingam
- Theoretical and Computational Chemistry Laboratory
- School of Chemistry
- Bharathidasan University
- Tiruchirappalli-620 024
- India
| |
Collapse
|
98
|
Ye K, Li YY, Liao RZ. DFT study of the mechanism of hydrogen evolution catalysed by molecular Ni, Co and Fe catalysts containing a diamine–tripyridine ligand. RSC Adv 2016. [DOI: 10.1039/c6ra20721a] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Electrolysis of water to obtain hydrogen is a practical way to transform surplus electrical power into clean and sustainable hydrogen fuels.
Collapse
Affiliation(s)
- Ke Ye
- Key Laboratory of Material Chemistry for Energy Conversion and Storage
- Ministry of Education
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica
- Hubei Key Laboratory of Materials Chemistry and Service Failure
- School of Chemistry and Chemical Engineering
| | - Ying-Ying Li
- Key Laboratory of Material Chemistry for Energy Conversion and Storage
- Ministry of Education
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica
- Hubei Key Laboratory of Materials Chemistry and Service Failure
- School of Chemistry and Chemical Engineering
| | - Rong-Zhen Liao
- Key Laboratory of Material Chemistry for Energy Conversion and Storage
- Ministry of Education
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica
- Hubei Key Laboratory of Materials Chemistry and Service Failure
- School of Chemistry and Chemical Engineering
| |
Collapse
|
99
|
Qiu S, Azofra LM, MacFarlane DR, Sun C. Why is a proton transformed into a hydride by [NiFe] hydrogenases? An intrinsic reactivity analysis based on conceptual DFT. Phys Chem Chem Phys 2016; 18:15369-74. [DOI: 10.1039/c6cp00948d] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The hydrogen evolution reaction (HER) catalysed by [NiFe] hydrogenases entails a series of chemical events involving great mechanistic interest.
Collapse
Affiliation(s)
- Siyao Qiu
- School of Chemistry
- Faculty of Science
- Monash University
- Clayton
- Australia
| | | | | | - Chenghua Sun
- School of Chemistry
- Faculty of Science
- Monash University
- Clayton
- Australia
| |
Collapse
|
100
|
Das R, Neese F, van Gastel M. Hydrogen evolution in [NiFe] hydrogenases and related biomimetic systems: similarities and differences. Phys Chem Chem Phys 2016; 18:24681-92. [DOI: 10.1039/c6cp03672d] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Schematic overview of the orbitals that play a role in the cycle of reversible hydrogen oxidation in [NiFe] hydrogenases.
Collapse
Affiliation(s)
- Ranjita Das
- Max Planck Institute for Chemical Energy Conversion
- D-45470 Mülheim an der Ruhr
- Germany
| | - Frank Neese
- Max Planck Institute for Chemical Energy Conversion
- D-45470 Mülheim an der Ruhr
- Germany
| | - Maurice van Gastel
- Max Planck Institute for Chemical Energy Conversion
- D-45470 Mülheim an der Ruhr
- Germany
| |
Collapse
|