51
|
Wang JS, Li C, Ying J, Xu T, Lu W, Li CY, Wu XF. Activated carbon fibers supported palladium as efficient and easy-separable catalyst for carbonylative cyclization of o-alkynylphenols with nitroarenes: Facile construction of benzofuran-3-carboxamides. J Catal 2022. [DOI: 10.1016/j.jcat.2022.07.027] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
52
|
Fukuda T, Iwata H, Kishikawa N, El-Maghrabey MH, Ohyama K, Kawakami S, Wada M, Kuroda N. Selective fluorescence labeling of myristicin using Mizoroki-Heck coupling reaction. Application to nutmeg powder, oil, and human plasma samples. J Chromatogr A 2022; 1681:463465. [DOI: 10.1016/j.chroma.2022.463465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 08/29/2022] [Accepted: 08/31/2022] [Indexed: 11/26/2022]
|
53
|
Liu RZ, Chen S, Zhang L. A Streptomyces P450 enzyme dimerizes isoflavones from plants. Beilstein J Org Chem 2022; 18:1107-1115. [PMID: 36105730 PMCID: PMC9443421 DOI: 10.3762/bjoc.18.113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 08/11/2022] [Indexed: 11/23/2022] Open
Abstract
Dimerization is a widespread natural strategy that enables rapid structural diversification of natural products. However, our understanding of the dimerization enzymes involved in this biotransformation is still limited compared to the numerous reported dimeric natural products. Here, we report the characterization of three new isoflavone dimers from Streptomyces cattleya cultured on an isoflavone-containing agar plate. We further identified a cytochrome P450 monooxygenase, CYP158C1, which is able to catalyze the dimerization of isoflavones. CYP158C1 can also dimerize plant-derived polyketides, such as flavonoids and stilbenes. Our work represents a unique bacterial P450 that can dimerize plant polyphenols, which extends the insights into P450-mediated biaryl coupling reactions in biosynthesis.
Collapse
Affiliation(s)
- Run-Zhou Liu
- Department of Chemistry, Fudan University, Shanghai 200433, China
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, Department of Chemistry, School of Science, Westlake University, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China
- Institute of Natural Sciences, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China
| | - Shanchong Chen
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, Department of Chemistry, School of Science, Westlake University, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China
- Institute of Natural Sciences, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China
| | - Lihan Zhang
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, Department of Chemistry, School of Science, Westlake University, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China
- Institute of Natural Sciences, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China
| |
Collapse
|
54
|
Valbuena-Rus AM, Savastano M, Arranz-Mascarós P, Bazzicalupi C, Clares MP, Godino-Salido ML, Gutiérrez-Valero MD, Inclán M, Bianchi A, García-España E, López-Garzón R. Noncovalent Assembly and Catalytic Activity of Hybrid Materials Based on Pd Complexes Adsorbed on Multiwalled Carbon Nanotubes, Graphene, and Graphene Nanoplatelets. Inorg Chem 2022; 61:12610-12624. [PMID: 35926979 PMCID: PMC9387097 DOI: 10.1021/acs.inorgchem.2c01559] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
Green catalysts with excellent performance in Cu-free
Sonogashira
coupling reactions can be prepared by the supramolecular decoration
of graphene surfaces with Pd(II) complexes. Here we report the synthesis,
characterization, and catalytic properties of new catalysts obtained
by the surface decoration of multiwalled carbon nanotubes (MWCNTs),
graphene (G), and graphene nanoplatelets (GNPTs) with Pd(II) complexes
of tetraaza-macrocyclic ligands bearing one or two anchor functionalities.
The decoration of these carbon surfaces takes place under environmentally
friendly conditions (water, room temperature, aerobic) in two steps:
(i) π–π stacking attachment of the ligand via electron-poor
anchor group 6-amino-3,4-dihydro-3-methyl-5-nitroso-4-oxo-pyrimidine
and (ii) Pd(II) coordination from PdCl42–. Ligands are more efficiently adsorbed on the flat surfaces of G
and GNPTs than on the curved surfaces of MWCNTs. All catalysts work
very efficiently under mild conditions (50 °C, aerobic, 7 h),
giving a similar high yield (90% or greater) in the coupling of iodobenzene
with phenylacetylene to form diphenylacetylene in one catalytic cycle,
but catalysts based on G and GNPTs (especially on GNPTs) provide greater
catalytic efficiency in reuse (four cycles). The study also revealed
that the active centers of the ligand-Pd type decorating the support
surfaces are much more efficient than the Pd(0) and PdCl42– centers sharing the same surfaces. All of the
results allow a better understanding of the structural factors to
be controlled in order to obtain an optimal efficiency from similar
catalysts based on graphene supports. Green catalysts
with high efficiency in the Cu-free Sonogashira
C−C coupling reactions can be prepared by the supramolecular
functionalization of carbon materials.
Collapse
Affiliation(s)
- Alba M Valbuena-Rus
- Department of Inorganic and Organic Chemistry, University of Jaén, 23071 Jaen, Spain
| | - Matteo Savastano
- Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 3-13, 50019 Sesto Fiorentino, Italy.,National Interuniversity Consortium of Materials Science and Technology (INSTM), Via G. Giusti 9, 50121 Florence, Italy
| | | | - Carla Bazzicalupi
- Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 3-13, 50019 Sesto Fiorentino, Italy
| | - María P Clares
- ICMol, Department of Inorganic Chemistry, University of Valencia, C/Catedrático José Beltrán 2, 46980 Paterna, Spain
| | - María L Godino-Salido
- Department of Inorganic and Organic Chemistry, University of Jaén, 23071 Jaen, Spain
| | | | - Mario Inclán
- ICMol, Department of Inorganic Chemistry, University of Valencia, C/Catedrático José Beltrán 2, 46980 Paterna, Spain
| | - Antonio Bianchi
- Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 3-13, 50019 Sesto Fiorentino, Italy
| | - Enrique García-España
- ICMol, Department of Inorganic Chemistry, University of Valencia, C/Catedrático José Beltrán 2, 46980 Paterna, Spain
| | - Rafael López-Garzón
- Department of Inorganic and Organic Chemistry, University of Jaén, 23071 Jaen, Spain
| |
Collapse
|
55
|
Tessema E, Fan YW, Chiu CF, Elakkat V, Rahayu HA, Shen CR, Shanthakumar KC, Zhang P, Lu N. Recoverable low fluorine content palladium complex-catalyzed Suzuki-Miyaura and Sonogashira coupling reactions under thermomorphic mode. Tetrahedron 2022. [DOI: 10.1016/j.tet.2022.132961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
56
|
Activating Pd nanoparticles via the Mott-Schottky effect in Ni doped CeO2 nanotubes for enhanced catalytic Suzuki reaction. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2022.112452] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
57
|
Molinaro C, Kawasaki Y, Wanyoike G, Nishioka T, Yamamoto T, Snedecor B, Robinson SJ, Gosselin F. Engineered Cytochrome P450-Catalyzed Oxidative Biaryl Coupling Reaction Provides a Scalable Entry into Arylomycin Antibiotics. J Am Chem Soc 2022; 144:14838-14845. [PMID: 35905381 DOI: 10.1021/jacs.2c06019] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
We report herein the first example of a cytochrome P450-catalyzed oxidative carbon-carbon coupling process for a scalable entry into arylomycin antibiotic cores. Starting from wild-type hydroxylating cytochrome P450 enzymes and engineered Escherichia coli, a combination of enzyme engineering, random mutagenesis, and optimization of reaction conditions generated a P450 variant that affords the desired arylomycin core 2d in 84% assay yield. Furthermore, this process was demonstrated as a viable route for the production of the arylomycin antibiotic core on the gram scale. Finally, this new entry affords a viable, scalable, and practical route for the synthesis of novel Gram-negative antibiotics.
Collapse
Affiliation(s)
- Carmela Molinaro
- Department of Small Molecule Process Chemistry, Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Yukie Kawasaki
- Applied Microbiotechnology Department, MicroBiopharm Japan Co. Ltd., 156 Nakagawara, Kiyosu, Aichi 452-0915, Japan
| | - George Wanyoike
- Production Technology Department, MicroBiopharm Japan Co. Ltd., 1808 Nakaizumi, Iwata, Shizuoka 438-0078, Japan
| | - Taiki Nishioka
- Applied Microbiotechnology Department, MicroBiopharm Japan Co. Ltd., 156 Nakagawara, Kiyosu, Aichi 452-0915, Japan
| | - Tsuyoshi Yamamoto
- Applied Microbiotechnology Department, MicroBiopharm Japan Co. Ltd., 156 Nakagawara, Kiyosu, Aichi 452-0915, Japan
| | - Brad Snedecor
- Department of Cell Culture and Bioprocess Operations, Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Sarah J Robinson
- Department of Discovery Chemistry, Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Francis Gosselin
- Department of Small Molecule Process Chemistry, Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| |
Collapse
|
58
|
Ballav T, Chakrabortty R, Das A, Ghosh S, Ganesh V. Palladium‐Catalyzed Dual Catalytic Synthesis of Heterocycles. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Tamal Ballav
- IIT Kharagpur: Indian Institute of Technology Kharagpur Chemistry INDIA
| | | | - Aniruddha Das
- IIT Kharagpur: Indian Institute of Technology Kharagpur Chemistry INDIA
| | - Suman Ghosh
- IIT Kharagpur: Indian Institute of Technology Kharagpur Chemistry INDIA
| | - Venkataraman Ganesh
- IIT Kharagpur: Indian Institute of Technology Kharagpur Chemistry Department of Chemistry,Indian Institute Technology Kharagpur 721302 Kharagpur INDIA
| |
Collapse
|
59
|
Ohta R, Shio Y, Akiyama T, Yamada M, Shimoda S, Harada K, Sako M, Hasegawa JY, Arisawa M. Carbon(sp2)‐carbon(sp3) Bond‐forming Cross‐coupling Reactions Using Sulfur‐Modified Au‐Supported Nickel Nanoparticle Catalyst. ASIAN J ORG CHEM 2022. [DOI: 10.1002/ajoc.202200229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Ryosuke Ohta
- Osaka University: Osaka Daigaku Graduate School of Pharmaceutical Sciences Suita JAPAN
| | - Yasunori Shio
- Osaka University: Osaka Daigaku Graduate School of Pharmaceutical Sciences Suita JAPAN
| | - Toshiki Akiyama
- Osaka University: Osaka Daigaku Graduate School of Pharmaceutical Sciences Suita JAPAN
| | - Makito Yamada
- Osaka University: Osaka Daigaku Graduate School of Pharmaceutical Sciences Suita JAPAN
| | - Shuhei Shimoda
- Hokkaido University: Hokkaido Daigaku Institute for Catalysis Sapporo JAPAN
| | - Kazuo Harada
- Osaka University: Osaka Daigaku Graduate School of Pharmaceutical Sciences Suita JAPAN
| | - Makoto Sako
- Osaka University: Osaka Daigaku Graduate School of Pharmaceutical Sciences Suita JAPAN
| | - Jun-ya Hasegawa
- Hokkaido University: Hokkaido Daigaku Institute for Catalysis Sapporo JAPAN
| | - Mitsuhiro Arisawa
- Osaka University: Osaka Daigaku Graduate School of Pharmaceutical Sciences 1-6 Yamada-oka 565-0872 Suita JAPAN
| |
Collapse
|
60
|
Karami K, Abedanzadeh S, Afroomand M, Hervés P, Bayat P. Heterogeneous Copper-Free Sonogashira Cross-Coupling Reactions Catalyzed by a Recyclable Orthopalladated Azo-Complex. Catal Letters 2022. [DOI: 10.1007/s10562-022-04059-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
61
|
Costa DCS, da S. M. Forezi L, Lessa MD, Delarmelina M, Matuck BVA, Freitas MCR, Ferreira VF, de C. Resende JAL, de M. Carneiro JW, de C. da Silva F. A Stereoselective, Base‐free, Palladium‐Catalyzed Heck Coupling Between 3‐halo‐1,4‐Naphthoquinones and Vinyl‐1
H
‐1,2,3‐Triazoles. ChemistrySelect 2022. [DOI: 10.1002/slct.202201334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Dora C. S. Costa
- Universidade Federal Fluminense Instituto de Química Campus do Valonguinho, CEP 24020-150 Niterói RJ Brazil
| | - Luana da S. M. Forezi
- Universidade Federal Fluminense Instituto de Química Campus do Valonguinho, CEP 24020-150 Niterói RJ Brazil
| | - Milena D. Lessa
- Universidade Federal Fluminense Instituto de Química Campus do Valonguinho, CEP 24020-150 Niterói RJ Brazil
| | - Maicon Delarmelina
- School of Chemistry Cardiff University, Main Building Park Place Cardiff CF10 3AT United Kingdom
| | - Beatriz V. A. Matuck
- Universidade Federal Fluminense Instituto de Química Campus do Valonguinho, CEP 24020-150 Niterói RJ Brazil
| | - Maria Clara R. Freitas
- Universidade Federal Rural do Rio de Janeiro Instituto de Química Departamento de Química Fundamental e Inorgânica Campus Seropédica, CEP 23890-000 Seropédica RJ Brazil
| | - Vitor F. Ferreira
- Universidade Federal Fluminense Departamento de Tecnologia Farmacêutica Faculdade de Farmácia 24241-002 Niterói RJ Brazil
| | - Jackson A. L. de C. Resende
- Universidade Federal do Mato Grosso Campus Universitário do Araguaia Instituto de Ciências Exatas e da Terra 78698-000 Pontal do Araguaia MT Brazil
| | | | - Fernando de C. da Silva
- Universidade Federal Fluminense Instituto de Química Campus do Valonguinho, CEP 24020-150 Niterói RJ Brazil
| |
Collapse
|
62
|
Kalay E. Investigation of the activity of palladium nanoparticles supported on mesoporous graphitic carbon nitride in Heck and Suzuki cross-coupling reactions. SYNTHETIC COMMUN 2022. [DOI: 10.1080/00397911.2022.2084416] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Erbay Kalay
- Department of Material and Material Processing Technologies, Kars Vocational School, Kafkas University, Kars, Turkey
| |
Collapse
|
63
|
Rahman M, Ghosh S, Bhattacherjee D, Zyryanov GV, Bagdi AK, Hajra A. Recent Advances in Microwave‐assisted Cross‐Coupling Reactions. ASIAN J ORG CHEM 2022. [DOI: 10.1002/ajoc.202200179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Matiur Rahman
- Ural Federal University named after the first President of Russia B N Yeltsin: Ural'skij federal'nyj universitet imeni pervogo Prezidenta Rossii B N El'cina Department of Organic and Biomolecular Chemistry RUSSIAN FEDERATION
| | | | - Dhananjay Bhattacherjee
- Ural Federal University named after the first President of Russia B N Yeltsin: Ural'skij federal'nyj universitet imeni pervogo Prezidenta Rossii B N El'cina Department of Organic and Biomolecular Chemistry RUSSIAN FEDERATION
| | - Grigory V. Zyryanov
- Ural Federal University named after the first President of Russia B N Yeltsin: Ural'skij federal'nyj universitet imeni pervogo Prezidenta Rossii B N El'cina Department of Organic and Biomolecular Chemistry RUSSIAN FEDERATION
| | | | - Alakananda Hajra
- Visva-Bharati Chemistry Santiniketan Road 731235 Santiniketan, Bolpur INDIA
| |
Collapse
|
64
|
Sharma D, Arora A, Oswal P, Bahuguna A, Datta A, Kumar A. Organosulphur and organoselenium compounds as emerging building blocks for catalytic systems for O-arylation of phenols, a C-O coupling reaction. Dalton Trans 2022; 51:8103-8132. [PMID: 35535745 DOI: 10.1039/d1dt04371d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Diaryl ethers form an important class of organic compounds. The classic copper-mediated Ullmann diaryl ether synthesis has been known for many years and involves the coupling of phenols with aryl halides. However, the use of high reaction temperature, high catalyst loading and expensive ligands has created a need for the development of alternative catalytic systems. In the recent past, organosulphur and organoselenium compounds have been used as building blocks for developing homogeneous, heterogeneous and nanocatalysts for this C-O coupling reaction. Homogeneous catalytic systems include preformed complexes of metals with organosulphur and organoselenium ligands. The performance of such complexes is influenced dramatically by the nature of the chalcogen (S or Se) donor site of the ligand. Nanocatalytic systems (including Pd17Se15, Pd16S7 and Cu1.8S) have been designed using a single-source precursor route. Heterogeneous catalytic systems contain either metal (Cu or Pd) or metal chalcogenides (Pd17Se15 or Cu1.8S) as catalytically active species. This article aims to cover the simple and straightforward methodologies and approaches that are adopted for developing catalytically relevant organosulfur and organoselenium ligands, their homogeneous metal complexes, heterogeneous and nanocatalysts. The effects of chalcogen (S or Se) donor, halogen (Cl/Br/I) of aryl halide, nature (electron withdrawing or electron donating) of substituents present on the aromatic ring of aryl halides or substituted phenols and position (ortho or para) of substitution on the results of catalytic reactions have been critically analyzed and summarized. The effect of composition (Pd17Se15 or Pd16S7) on the performance of nanocatalytic systems is also highlighted. Substrate scope has also been discussed in all three types of catalysis. The superiority of heterogeneous catalytic systems (e.g., Pd17Se15 immobilised on graphene oxide) indicates the bright future possibilities for the development of efficient catalytic systems using similar or tailored ligands for this reaction.
Collapse
Affiliation(s)
- Deepali Sharma
- Department of Chemistry, School of Physical Sciences, Doon University, Dehradun, 248012 India.
| | - Aayushi Arora
- Department of Chemistry, School of Physical Sciences, Doon University, Dehradun, 248012 India.
| | - Preeti Oswal
- Department of Chemistry, School of Physical Sciences, Doon University, Dehradun, 248012 India.
| | - Anurag Bahuguna
- Department of Chemistry, School of Physical Sciences, Doon University, Dehradun, 248012 India.
| | - Anupama Datta
- Institute of Nuclear Medicine and Allied Sciences (INMAS), India
| | - Arun Kumar
- Department of Chemistry, School of Physical Sciences, Doon University, Dehradun, 248012 India.
| |
Collapse
|
65
|
Jin L, Zeng X, Li S, Qiu G, Liu P. Copper‐Catalyzed Regioselective Halogenation of Anilides with N‐Fluorobenzenesulfonimide. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200399] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Lianwen Jin
- Wuhan University School of Pharmaceutical Sciences CHINA
| | - Xiaoli Zeng
- Wuhan University School of Pharmaceutical Sciences CHINA
| | - Siyang Li
- Wuhan University School of Pharmaceutical Sciences CHINA
| | - Guofu Qiu
- Wuhan University School of Pharmaceutical Sciences CHINA
| | - Peng Liu
- Wuhan University School of Pharmaceutical Sciences donghu road 185 430071 Wuhan CHINA
| |
Collapse
|
66
|
Liu T, Shen X, Liu Z, Zhang F, Liu JJ. An electron-deficient MOF as an efficient electron-transfer catalyst for selective oxidative carbon-carbon coupling of 2,6-di- tert-butylphenol. Dalton Trans 2022; 51:8234-8239. [PMID: 35575225 DOI: 10.1039/d2dt00869f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Naphthalene diimides (NDIs), a type of electron-deficient dye molecule with high quadrupole moment and excellent redox activity, have been utilized in various fields, such as energy transfer, chemical sensing, anion transport, and photo-/electrochromic materials. In this study, an electron-deficient metal-organic framework with one-dimensional channels, Eu2(BBNDI)3(DMF)2 (MOF 1) (H2BBNDI = N,N'-bis(3-benzoic acid)naphthalene diimide), was successfully constructed based on the naphthalene diimide derivative. Because of the generation of NDI radicals by electron transfer between components, this material exhibits fast-responsive reversible photochromic properties. Moreover, it shows high efficiency and selective oxidation of 2,6-di-tert-butylphenol to its quinone derivative, aldehyde, and dimeric or trimeric phenol derivative by controlling the reaction conditions.
Collapse
Affiliation(s)
- Teng Liu
- College of Chemistry and Environmental Science, Qujing Normal University, Qujing 655011, China.
| | - Xianfu Shen
- College of Chemistry and Environmental Science, Qujing Normal University, Qujing 655011, China.
| | - Zhengfen Liu
- College of Chemistry and Environmental Science, Qujing Normal University, Qujing 655011, China.
| | - Feng Zhang
- College of Chemistry and Environmental Science, Qujing Normal University, Qujing 655011, China.
| | - Jian-Jun Liu
- College of Chemistry and Environmental Science, Qujing Normal University, Qujing 655011, China.
| |
Collapse
|
67
|
Okada S, Nakahara Y, Watanabe M, Tamai T, Kobayashi Y, Yajima S. Room-temperature coalescence of Pd nanoparticles with sacrificial templates and sintering agents, and their catalytic activities in the Suzuki coupling reaction. RSC Adv 2022; 12:14535-14543. [PMID: 35702252 PMCID: PMC9101230 DOI: 10.1039/d2ra00660j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 04/30/2022] [Indexed: 11/21/2022] Open
Abstract
Porous metal structures are very useful for heterogeneous catalysts in organic syntheses. This study reports a novel method to fabricate porous Pd structures by room-temperature (RT) coalescence of Pd nanoparticles (Pd NPs). First, oleylamine-capped Pd NPs were synthesized, and then Pd NP pastes were fabricated by mixing with tri-n-octylphosphine oxide as a sacrificial template. Finally, the Pd NP paste was dipped into methanol containing a sintering agent. When KOH was used as the sintering agent, porous Pd structures could be successfully obtained at RT. The catalytic activities of porous Pd structures were investigated in the Suzuki coupling reaction and they increased with the increase of the KOH concentration in the sintering process. These results indicate that pre-activation of porous Pd structures by KOH increased the catalytic activities.
Collapse
Affiliation(s)
- Soichiro Okada
- Department of Applied Chemistry, Faculty of Systems Engineering, Wakayama University 930 Sakae-dani Wakayama 640-8510 Japan
| | - Yoshio Nakahara
- Department of Applied Chemistry, Faculty of Systems Engineering, Wakayama University 930 Sakae-dani Wakayama 640-8510 Japan
| | - Mitsuru Watanabe
- Morinomiya Center, Osaka Research Institute of Industrial Science and Technology 1-6-50 Morinomiya Joto-ku Osaka 536-8553 Japan
| | - Toshiyuki Tamai
- Morinomiya Center, Osaka Research Institute of Industrial Science and Technology 1-6-50 Morinomiya Joto-ku Osaka 536-8553 Japan
| | - Yasuyuki Kobayashi
- Morinomiya Center, Osaka Research Institute of Industrial Science and Technology 1-6-50 Morinomiya Joto-ku Osaka 536-8553 Japan
| | - Setsuko Yajima
- Department of Applied Chemistry, Faculty of Systems Engineering, Wakayama University 930 Sakae-dani Wakayama 640-8510 Japan
| |
Collapse
|
68
|
Bolduc TG, Lee C, Chappell WP, Sammis GM. Thionyl Fluoride-Mediated One-Pot Substitutions and Reductions of Carboxylic Acids. J Org Chem 2022; 87:7308-7318. [PMID: 35549478 DOI: 10.1021/acs.joc.2c00496] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Thionyl fluoride (SOF2) is an underutilized reagent that is yet to be extensively studied for its synthetic applications. We previously reported that it is a powerful reagent for both the rapid syntheses of acyl fluorides and for one-pot peptide couplings, but the full scope of these nucleophilic acyl substitutions had not been explored. Herein, we report one-pot thionyl fluoride-mediated syntheses of peptides and amides (35 examples, 45-99% yields) that were not explored in our previous study. The scope of thionyl fluoride-mediated nucleophilic acyl substitutions was also expanded to encompass esters (24 examples, 64-99% yields) and thioesters (11 examples, 24-96% yields). In addition, we demonstrate that the scope of thionyl fluoride-mediated one-pot reactions can be extended beyond nucleophilic acyl substitutions to mild reductions of carboxylic acids using NaBH4 (13 examples, 33-80% yields).
Collapse
Affiliation(s)
- Trevor G Bolduc
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
| | - Cayo Lee
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
| | - William P Chappell
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
| | - Glenn M Sammis
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
| |
Collapse
|
69
|
Pd Nanoparticles Embedded Into MOF‑808: An efficient and reusable catalyst for Sonogashira and Heck cross-coupling reactions. Tetrahedron Lett 2022. [DOI: 10.1016/j.tetlet.2022.153849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
70
|
Ionic liquid-catalyzed synthesis of (1,4-benzoxazin-3-yl) malonate derivatives via cross-dehydrogenative-coupling reactions. HETEROCYCL COMMUN 2022. [DOI: 10.1515/hc-2022-0007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Abstract
A convenient C(sp3)–C(sp3) oxidative dehydrogenative coupling reaction of 1,4-benzoxazin-2-ones with malonate esters was developed under mild conditions to obtain the respective ester malonates in high yields. Reactions take place in [omim]FeCl4, acting as both the solvent and the catalyst. Under [omim]Cl/FeCl3-DDQ conditions, derivatives of 1 coupled with malonate 2 to give the target molecules within 1–2 h time periods. The ionic liquid was recovered and reused in the next reactions without losing its efficiency.
Collapse
|
71
|
Ravbar M, Koler A, Paljevac M, Krajnc P, Kolar M, Iskra J. Reusable Pd-PolyHIPE for Suzuki-Miyaura Coupling. ACS OMEGA 2022; 7:12610-12616. [PMID: 35474763 PMCID: PMC9026024 DOI: 10.1021/acsomega.1c06318] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 03/25/2022] [Indexed: 06/14/2023]
Abstract
Palladium was immobilized on a highly porous copolymer of 4-vinylpyridine and divinylbenzene (polyHIPE-poly(high internal phase emulsion)) using palladium(II) acetate to obtain PolyPy-Pd with 6.1 wt % or 0.57 mmol Pd/g. The immobilized catalyst was able to catalyze the coupling of iodobenzene and phenylboronic acid in ethylene glycol monomethyl ether/water (3:1) within 4 h at rt and complete conversion was observed when 2.5 mol % of Pd per PhI was used. The reaction tolerated a wide range of substituents on the aromatic ring. Iodobenzene derivatives with electron-withdrawing substituents showed higher reactivity, while the opposite was true for the phenylboronic acid series. The polyHIPE-supported Pd catalyst was also used for the direct conversion of phenylboronic acid to biphenyl through an iodination/coupling reaction sequence. The recyclability of the heterogeneous catalyst was also optimized, and by finding a suitable combination of solvents for the loading of Pd, the reaction, and the isolation of the product, the solid-supported catalyst was completely regenerated and used in the next reaction with the same activity.
Collapse
Affiliation(s)
- Miha Ravbar
- Faculty
of Chemistry and Chemical Technology, University
of Ljubljana, Večna
Pot 113, 1000 Ljubljana, Slovenia
| | - Amadeja Koler
- Faculty
of Chemistry and Chemical Engineering, University
of Maribor, Smetanova
Ulica 17, 2000 Maribor, Slovenia
| | - Muzafera Paljevac
- Faculty
of Chemistry and Chemical Engineering, University
of Maribor, Smetanova
Ulica 17, 2000 Maribor, Slovenia
| | - Peter Krajnc
- Faculty
of Chemistry and Chemical Engineering, University
of Maribor, Smetanova
Ulica 17, 2000 Maribor, Slovenia
| | - Mitja Kolar
- Faculty
of Chemistry and Chemical Technology, University
of Ljubljana, Večna
Pot 113, 1000 Ljubljana, Slovenia
| | - Jernej Iskra
- Faculty
of Chemistry and Chemical Technology, University
of Ljubljana, Večna
Pot 113, 1000 Ljubljana, Slovenia
| |
Collapse
|
72
|
Lei M, Chen X, Wang Y, Zhang L, Zhu H, Wang Z. Homogeneous and Heterogeneous Pd-Catalyzed Selective C-P Activation and Transfer Hydrogenation for "Group-Substitution" Synthesis of Trivalent Phosphines. Org Lett 2022; 24:2868-2872. [PMID: 35416672 DOI: 10.1021/acs.orglett.2c00844] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
A "group-substitution" synthesis of trivalent phosphines via a C-P activation of phosphonium salts is reported. The alkyl groups were introduced by alkylation of phosphines to form phosphonium salts. The "de-arylation" of phosphonium salts was achieved by C-P activation and transfer hydrogenation with homogeneous or heterogeneous Pd (0) catalysts. With this method, a series of trivalent phosphines were prepared from commercially available triarylphosphines. A chiral monophosphine ligand could be prepared from BINAP in a "de-phosphination" process.
Collapse
Affiliation(s)
- Ming Lei
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xingyu Chen
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yingjie Wang
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China
| | - Liran Zhang
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China.,Xi'an Tieyi Binhe School, Xi'an 710038, China
| | - Hong Zhu
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China
| | - Zhiqian Wang
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
73
|
Shahriari M, Ali Hosseini Sedigh M, Shahriari M, Stenzel M, Mahdi Zangeneh M, Zangeneh A, Mahdavi B, Asadnia M, Gholami J, Karmakar B, Veisi H. Palladium nanoparticles decorated Chitosan-Pectin modified Kaolin: It’s catalytic activity for Suzuki-Miyaura coupling reaction, reduction of the 4-nitrophenol, and treatment of lung cancer. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109523] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
74
|
Zetzsche LE, Chakrabarty S, Narayan ARH. The Transformative Power of Biocatalysis in Convergent Synthesis. J Am Chem Soc 2022; 144:5214-5225. [PMID: 35290055 PMCID: PMC10082969 DOI: 10.1021/jacs.2c00224] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Achieving convergent synthetic strategies has long been a gold standard in constructing complex molecular skeletons, allowing for the rapid generation of complexity in comparatively streamlined synthetic routes. Traditionally, biocatalysis has not played a prominent role in convergent laboratory synthesis, with the application of biocatalysts in convergent strategies primarily limited to the synthesis of chiral fragments. Although the use of enzymes to enable convergent synthetic approaches is relatively new and emerging, combining the efficiency of convergent transformations with the selectivity achievable through biocatalysis creates new opportunities for efficient synthetic strategies. This Perspective provides an overview of recent developments in biocatalytic strategies for convergent transformations and offers insights into the advantages of these methods compared to their small molecule-based counterparts.
Collapse
Affiliation(s)
- Lara E. Zetzsche
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, 48109, USA
- Program in Chemical Biology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Suman Chakrabarty
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Alison R. H. Narayan
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, 48109, USA
- Program in Chemical Biology, University of Michigan, Ann Arbor, MI, 48109, USA
- Department of Chemistry, University of Michigan, Ann Arbor, MI, 48109, USA
| |
Collapse
|
75
|
Wang D, Shi F, Jose J, Hu Y, Zhang C, Zhu A, Grzeschik R, Schlücker S, Xie W. In Situ Monitoring of Palladium-Catalyzed Chemical Reactions by Nanogap-Enhanced Raman Scattering using Single Pd Cube Dimers. J Am Chem Soc 2022; 144:5003-5009. [DOI: 10.1021/jacs.1c13240] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Dan Wang
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Tianjin Key Lab of Molecular Recognition & Biosensing, Haihe Laboratory of Sustainable Chemical Transformations, Renewable Energy Conversion and Storage Center, College of Chemistry, Nankai University, Weijin Rd. 94, Tianjin 300071, China
| | - Faxing Shi
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Tianjin Key Lab of Molecular Recognition & Biosensing, Haihe Laboratory of Sustainable Chemical Transformations, Renewable Energy Conversion and Storage Center, College of Chemistry, Nankai University, Weijin Rd. 94, Tianjin 300071, China
| | - Jesil Jose
- Department of Chemistry and Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Universitätsstr. 5, Essen 45141, Germany
| | - Yanfang Hu
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Tianjin Key Lab of Molecular Recognition & Biosensing, Haihe Laboratory of Sustainable Chemical Transformations, Renewable Energy Conversion and Storage Center, College of Chemistry, Nankai University, Weijin Rd. 94, Tianjin 300071, China
| | - Cancan Zhang
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Tianjin Key Lab of Molecular Recognition & Biosensing, Haihe Laboratory of Sustainable Chemical Transformations, Renewable Energy Conversion and Storage Center, College of Chemistry, Nankai University, Weijin Rd. 94, Tianjin 300071, China
| | - Aonan Zhu
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Tianjin Key Lab of Molecular Recognition & Biosensing, Haihe Laboratory of Sustainable Chemical Transformations, Renewable Energy Conversion and Storage Center, College of Chemistry, Nankai University, Weijin Rd. 94, Tianjin 300071, China
| | - Roland Grzeschik
- Department of Chemistry and Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Universitätsstr. 5, Essen 45141, Germany
| | - Sebastian Schlücker
- Department of Chemistry and Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Universitätsstr. 5, Essen 45141, Germany
| | - Wei Xie
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Tianjin Key Lab of Molecular Recognition & Biosensing, Haihe Laboratory of Sustainable Chemical Transformations, Renewable Energy Conversion and Storage Center, College of Chemistry, Nankai University, Weijin Rd. 94, Tianjin 300071, China
| |
Collapse
|
76
|
DFT reveals the support effects in Pd nanoclusters over defect-ridden graphene for the oxidative addition of bromobenzene. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2022.112205] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
77
|
Zetzsche LE, Yazarians JA, Chakrabarty S, Hinze ME, Murray LAM, Lukowski AL, Joyce LA, Narayan ARH. Biocatalytic oxidative cross-coupling reactions for biaryl bond formation. Nature 2022; 603:79-85. [PMID: 35236972 PMCID: PMC9213091 DOI: 10.1038/s41586-021-04365-7] [Citation(s) in RCA: 67] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 12/08/2021] [Indexed: 12/22/2022]
Abstract
Biaryl compounds, with two connected aromatic rings, are found across medicine, materials science and asymmetric catalysis1,2. The necessity of joining arene building blocks to access these valuable compounds has inspired several approaches for biaryl bond formation and challenged chemists to develop increasingly concise and robust methods for this task3. Oxidative coupling of two C-H bonds offers an efficient strategy for the formation of a biaryl C-C bond; however, fundamental challenges remain in controlling the reactivity and selectivity for uniting a given pair of substrates4,5. Biocatalytic oxidative cross-coupling reactions have the potential to overcome limitations inherent to numerous small-molecule-mediated methods by providing a paradigm with catalyst-controlled selectivity6. Here we disclose a strategy for biocatalytic cross-coupling through oxidative C-C bond formation using cytochrome P450 enzymes. We demonstrate the ability to catalyse cross-coupling reactions on a panel of phenolic substrates using natural P450 catalysts. Moreover, we engineer a P450 to possess the desired reactivity, site selectivity and atroposelectivity by transforming a low-yielding, unselective reaction into a highly efficient and selective process. This streamlined method for constructing sterically hindered biaryl bonds provides a programmable platform for assembling molecules with catalyst-controlled reactivity and selectivity.
Collapse
Affiliation(s)
- Lara E Zetzsche
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA
- Program in Chemical Biology, University of Michigan, Ann Arbor, MI, USA
| | - Jessica A Yazarians
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA
- Department of Chemistry, University of Michigan, Ann Arbor, MI, USA
| | | | - Meagan E Hinze
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA
| | | | - April L Lukowski
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA
- Program in Chemical Biology, University of Michigan, Ann Arbor, MI, USA
| | - Leo A Joyce
- Arrowhead Pharmaceuticals, Inc., Madison, WI, USA
| | - Alison R H Narayan
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA.
- Program in Chemical Biology, University of Michigan, Ann Arbor, MI, USA.
- Department of Chemistry, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
78
|
Gao Z, Qiu S, Yan M, Lu S, Liu H, Lian H, Zhang P, Zhu J, Jin M. A highly selective turn-on fluorescence probe with large Stokes shift for detection of palladium and its applications in environment water and living cells. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 267:120500. [PMID: 34689092 DOI: 10.1016/j.saa.2021.120500] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/19/2021] [Accepted: 10/10/2021] [Indexed: 06/13/2023]
Abstract
Nowadays, palladium has been widely used in many fields, which facilitates all aspects of our life. However, it may cause water and soil pollution and bring irreversible damage to the environment and organisms. Developing a fluorescence probe for rapid, highly sensitive and selective detection of palladium is still a poser. In this work, we designed and synthesized a novel fluorescence probe (RHS) for specific detection of palladium. Based on Pd0-mediated Tsuji-Trost reaction, the fluorescence probe was constructed by a rhodol derivative as thefluorophore and an allyl carbonate moiety as the specific palladium reactive site. The probe displayed excellent properties for detecting palladium, such as high selectivity and sensitivity, rapid response (20 min) and large Stokes shift (155 nm). The detection limit was determined to be as low as 0.140 μM with a linear range from 20 to 80 μM. After addition of palladium in RHS solution, the color of the solution turned from yellow to blue, indicating palladium could be monitored by the naked eyes. Moreover, probe RHS was successfully applied to palladium detection in environmental water samples. Importantly, with low cytotoxicity and good biocompatibility, the probe could monitor palladium in living cells.
Collapse
Affiliation(s)
- Zhigang Gao
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, 200 Xiaolingwei, Nanjing 210094, PR China
| | - Siyan Qiu
- Department of Pharmacy, Nanjing University of Chinese Medicine, 138 Xialin Dadao, 210023, PR China
| | - Minchuan Yan
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, 200 Xiaolingwei, Nanjing 210094, PR China
| | - Shaohui Lu
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, 200 Xiaolingwei, Nanjing 210094, PR China
| | - Haibo Liu
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, 200 Xiaolingwei, Nanjing 210094, PR China
| | - Huihui Lian
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, 200 Xiaolingwei, Nanjing 210094, PR China
| | - Peng Zhang
- Department of Pharmacy, Nanjing University of Chinese Medicine, 138 Xialin Dadao, 210023, PR China
| | - Jing Zhu
- Department of Pharmacy, Nanjing University of Chinese Medicine, 138 Xialin Dadao, 210023, PR China.
| | - Mingjie Jin
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, 200 Xiaolingwei, Nanjing 210094, PR China.
| |
Collapse
|
79
|
Malapit CA, Prater MB, Cabrera-Pardo JR, Li M, Pham TD, McFadden TP, Blank S, Minteer SD. Advances on the Merger of Electrochemistry and Transition Metal Catalysis for Organic Synthesis. Chem Rev 2022; 122:3180-3218. [PMID: 34797053 PMCID: PMC9714963 DOI: 10.1021/acs.chemrev.1c00614] [Citation(s) in RCA: 101] [Impact Index Per Article: 33.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Synthetic organic electrosynthesis has grown in the past few decades by achieving many valuable transformations for synthetic chemists. Although electrocatalysis has been popular for improving selectivity and efficiency in a wide variety of energy-related applications, in the last two decades, there has been much interest in electrocatalysis to develop conceptually novel transformations, selective functionalization, and sustainable reactions. This review discusses recent advances in the combination of electrochemistry and homogeneous transition-metal catalysis for organic synthesis. The enabling transformations, synthetic applications, and mechanistic studies are presented alongside advantages as well as future directions to address the challenges of metal-catalyzed electrosynthesis.
Collapse
Affiliation(s)
- Christian A Malapit
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112, United States
| | - Matthew B Prater
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112, United States
| | - Jaime R Cabrera-Pardo
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112, United States
| | - Min Li
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112, United States
| | - Tammy D Pham
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112, United States
| | - Timothy Patrick McFadden
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112, United States
| | - Skylar Blank
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112, United States
| | - Shelley D Minteer
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112, United States
| |
Collapse
|
80
|
Aryanasab F. Mizoroki–Heck coupling reaction on the surface of sepiolite clay-supported Pd/Cu nanoalloy. SYNTHETIC COMMUN 2022. [DOI: 10.1080/00397911.2022.2034883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Fezzeh Aryanasab
- Chemistry Research Group, Chemistry and Petrochemical Research Center, Standard Research Institute (SRI), Karaj, Iran
| |
Collapse
|
81
|
Zeolite-encaged palladium catalysts for heterogeneous Suzuki-Miyaura cross-coupling reactions. Catal Today 2022. [DOI: 10.1016/j.cattod.2022.02.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
82
|
Egan-Morriss C, Kimber RL, Powell NA, Lloyd JR. Biotechnological synthesis of Pd-based nanoparticle catalysts. NANOSCALE ADVANCES 2022; 4:654-679. [PMID: 35224444 PMCID: PMC8805459 DOI: 10.1039/d1na00686j] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 11/22/2021] [Indexed: 06/02/2023]
Abstract
Palladium metal nanoparticles are excellent catalysts used industrially for reactions such as hydrogenation and Heck and Suzuki C-C coupling reactions. However, the global demand for Pd far exceeds global supply, therefore the sustainable use and recycling of Pd is vital. Conventional chemical synthesis routes of Pd metal nanoparticles do not meet sustainability targets due to the use of toxic chemicals, such as organic solvents and capping agents. Microbes are capable of bioreducing soluble high oxidation state metal ions to form metal nanoparticles at ambient temperature and pressure, without the need for toxic chemicals. Microbes can also reduce metal from waste solutions, revalorising these waste streams and allowing the reuse of precious metals. Pd nanoparticles supported on microbial cells (bio-Pd) can catalyse a wide array of reactions, even outperforming commercial heterogeneous Pd catalysts in several studies. However, to be considered a viable commercial option, the intrinsic activity and selectivity of bio-Pd must be enhanced. Many types of microorganisms can produce bio-Pd, although most studies so far have been performed using bacteria, with metal reduction mediated by hydrogenase or formate dehydrogenase enzymes. Dissimilatory metal-reducing bacteria (DMRB) possess additional enzymes adapted for extracellular electron transport that potentially offer greater control over the properties of the nanoparticles produced. A recent and important addition to the field are bio-bimetallic nanoparticles, which significantly enhance the catalytic properties of bio-Pd. In addition, systems biology can integrate bio-Pd into biocatalytic processes, and processing techniques may enhance the catalytic properties further, such as incorporating additional functional nanomaterials. This review aims to highlight aspects of enzymatic metal reduction processes that can be bioengineered to control the size, shape, and cellular location of bio-Pd in order to optimise its catalytic properties.
Collapse
Affiliation(s)
- Christopher Egan-Morriss
- Department of Earth and Environmental Sciences, Williamson Research Centre for Molecular Environmental Science, University of Manchester UK
| | - Richard L Kimber
- Department of Environmental Geosciences, Centre for Microbiology and Environmental Systems Science, University of Vienna 1090 Vienna Austria
| | | | - Jonathan R Lloyd
- Department of Earth and Environmental Sciences, Williamson Research Centre for Molecular Environmental Science, University of Manchester UK
| |
Collapse
|
83
|
Shah V, Bhaliya J, Patel GM, Joshi P. Recent Advancement in Pd-Decorated Nanostructures for Its Catalytic and Chemiresistive Gas Sensing Applications: A Review. Top Catal 2022. [DOI: 10.1007/s11244-022-01564-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
84
|
Bhat S, Wahid M, Banday J. Suitably Band-aligned MOF derived Ni2P/MnO2 Heterostructure With Ni(+1) Coordination Surface Sites For Self-Coupling of Aryl Halides to Bi-aryls. Chem Asian J 2022; 17:e202101279. [PMID: 34982845 DOI: 10.1002/asia.202101279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 12/30/2021] [Indexed: 11/10/2022]
Abstract
An efficient photo-redox route for the aryl-aryl self-coupling of aryl halides through a heterogeneous catalysis route has been demonstrated. Coordinatively unsaturated Ni 2 P surface with enhanced photochemical credentials upon hetero-structuring with δ-MnO 2 affects the organic transformation to biaryls with impressive yield and photo-conversion efficiency. Duel role of Ni 2 P catalyst with its participation as the catalytic active surface and the photo-redox centre distinguishes the organic transformation achieved herein with the other catalytic and photo-catalytic aryl-aryl self-coupling.
Collapse
Affiliation(s)
- Sajad Bhat
- National Institute of Technology Srinagar, Chemsitry, INDIA
| | - Malik Wahid
- National Institute of Technology Srinagar, India, Hazratbal Srinagar, 190006, srinagr, INDIA
| | - Javid Banday
- National Institute of Technology Srinagar, Chemistry, INDIA
| |
Collapse
|
85
|
Fe3O4-carbon spheres core-shell supported palladium nanoparticles: A robust and recyclable catalyst for suzuki coupling reaction. Chin J Chem Eng 2022. [DOI: 10.1016/j.cjche.2021.11.024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
86
|
Jin SH, Ko W, Lee S, Hwang YJ. Combining flow synthesis and heterogeneous catalysis for the preparation of conjugated polymers. Polym Chem 2022. [DOI: 10.1039/d2py00362g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report the first successful synthesis of a conjugated polymer using a heterogeneous palladium catalyst in a flow system. The resulting polymer with an Mn of 13.6 kDa and high reproducibility shows the great potential of this system.
Collapse
Affiliation(s)
- Seung-Hwan Jin
- Department of Chemistry and Chemical Engineering, Education and Research Center for Smart Energy and Materials, Inha University, 100 Inha-ro, Michuhol-gu, Incheon, Republic of Korea
| | - Wonyoung Ko
- Department of Chemistry and Chemical Engineering, Education and Research Center for Smart Energy and Materials, Inha University, 100 Inha-ro, Michuhol-gu, Incheon, Republic of Korea
| | - Seungjun Lee
- Department of Chemistry and Chemical Engineering, Education and Research Center for Smart Energy and Materials, Inha University, 100 Inha-ro, Michuhol-gu, Incheon, Republic of Korea
| | - Ye-Jin Hwang
- Department of Chemistry and Chemical Engineering, Education and Research Center for Smart Energy and Materials, Inha University, 100 Inha-ro, Michuhol-gu, Incheon, Republic of Korea
| |
Collapse
|
87
|
Poovan F, Chandrashekhar V, Natte K, Rajenahally J. Synergy between homogeneous and heterogeneous catalysis. Catal Sci Technol 2022. [DOI: 10.1039/d2cy00232a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Catalysis plays a decisive role in the advancement of sustainable processes in chemical, pharmaceutical, and agrochemical industries as well as petrochemical, material, and energy technologies. Notably, more than 80% of...
Collapse
|
88
|
Gholinejad M, Naghshbandi Z, Sansano JM. Zeolitic imidazolate frameworks-67 (ZIF-67) supported PdCu nanoparticles for enhanced catalytic activity in Sonogashira-Hagihara and nitro group reduction under mild conditions. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2021.112093] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
89
|
Ma Y, Hussein AA. Unveiling the origin of the chemoselectivity of bismacycle-mediated C–H arylation of phenols: from mechanism concept to new coupling design. Org Chem Front 2022. [DOI: 10.1039/d2qo00981a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
DFT calculations for the bismacycle-catalyzed C–H arylation of phenols explain the origin of high chemoselectivity. The reducive elimination is polar, which allows the design of new coupling modes.
Collapse
Affiliation(s)
- Yumiao Ma
- BSJ Institute, Haidian, Beijing, 100084, People's Republic of China
- Hangzhou Yanqu Information Technology Co., Ltd, Xihu District, Hangzhou City, Zhejiang Province, 310003, People's Republic of China
| | - Aqeel A. Hussein
- Department of Biomedical Science, College of Science, Komar University of Science and Technology, 46001 Sulaymaniyah, Kurdistan Region, Iraq
| |
Collapse
|
90
|
Rahmani A, Currie TM, Shultz LR, Bryant JT, Beazley MJ, Uribe-Romo FJ, Tetard L, Rudawski NG, Xie S, Liu F, Wang TH, Ong TG, Zhai L, Jurca T. Robust palladium catalysts on nickel foam for highly efficient hydrogenations. Catal Sci Technol 2022. [DOI: 10.1039/d2cy01082h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The combination of a polydopamine interface, solvothermal seeding of Pd(OAc)2, and ALD Al2O3 overcoat enables the formation of evenly-coated, ultralow Pd loading Ni foam monolith materials.
Collapse
Affiliation(s)
- Azina Rahmani
- Department of Chemistry, University of Central Florida, Orlando, Florida, 32816, USA
| | - Taylor M. Currie
- Department of Chemistry, University of Central Florida, Orlando, Florida, 32816, USA
| | - Lorianne R. Shultz
- Department of Chemistry, University of Central Florida, Orlando, Florida, 32816, USA
| | - Jacob T. Bryant
- Department of Chemistry, University of Central Florida, Orlando, Florida, 32816, USA
| | - Melanie J. Beazley
- Department of Chemistry, University of Central Florida, Orlando, Florida, 32816, USA
| | | | - Laurene Tetard
- Department of Physics, University of Central Florida, Orlando, Florida, 32816, USA
- NanoScience and Technology Center (NSTC), University of Central Florida, Orlando, Florida, 32826, USA
| | - Nicholas G. Rudawski
- Herbert Wertheim College of Engineering Research Service Centers, University of Florida, Gainesville, FL, 32611, USA
| | - Shaohua Xie
- Department of Civil, Environmental, and Construction Engineering, University of Central Florida, Orlando, Florida, 32816, USA
| | - Fudong Liu
- NanoScience and Technology Center (NSTC), University of Central Florida, Orlando, Florida, 32826, USA
- Department of Civil, Environmental, and Construction Engineering, University of Central Florida, Orlando, Florida, 32816, USA
- Renewable Energy and Chemical Transformations Faculty Cluster (REACT), University of Central Florida, Orlando, Florida, 32816, USA
| | - Ting-Hsuan Wang
- Institute of Chemistry, Academia Sinica, Taipei, Taiwan, Republic of China
| | - Tiow-Gan Ong
- Institute of Chemistry, Academia Sinica, Taipei, Taiwan, Republic of China
| | - Lei Zhai
- Department of Chemistry, University of Central Florida, Orlando, Florida, 32816, USA
- NanoScience and Technology Center (NSTC), University of Central Florida, Orlando, Florida, 32826, USA
| | - Titel Jurca
- Department of Chemistry, University of Central Florida, Orlando, Florida, 32816, USA
- NanoScience and Technology Center (NSTC), University of Central Florida, Orlando, Florida, 32826, USA
- Renewable Energy and Chemical Transformations Faculty Cluster (REACT), University of Central Florida, Orlando, Florida, 32816, USA
| |
Collapse
|
91
|
Cartagenova D, Bachmann S, Püntener K, Scalone M, Newton MA, Peixoto Esteves FA, Rohrbach T, Zimmermann PP, van Bokhoven JA, Ranocchiari M. Highly selective Suzuki reaction catalysed by a molecular Pd–P-MOF catalyst under mild conditions: role of ligands and palladium speciation. Catal Sci Technol 2022. [DOI: 10.1039/d1cy01351c] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A phosphine-functionalized MOF was used to prepare molecularly-defined palladium catalysts, active for Suzuki coupling in mild conditions. Their selectivity was correlated with the nature of the catalytic active site via XAS and NMR.
Collapse
Affiliation(s)
- Daniele Cartagenova
- Laboratory for Catalysis and Sustainable Chemistry, Paul Scherrer Institut, Forschungsstrasse 111, 5232 Villigen PSI, Switzerland
| | - Stephan Bachmann
- Pharmaceutical Division, Synthetic Molecules Technical Development, Department of Process Chemistry and Catalysis, F. Hoffmann-La Roche Ltd, Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Kurt Püntener
- Pharmaceutical Division, Synthetic Molecules Technical Development, Department of Process Chemistry and Catalysis, F. Hoffmann-La Roche Ltd, Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Michelangelo Scalone
- Pharmaceutical Division, Synthetic Molecules Technical Development, Department of Process Chemistry and Catalysis, F. Hoffmann-La Roche Ltd, Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Mark A. Newton
- Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 1-5, 8093 Zurich, Switzerland
| | - Fabio A. Peixoto Esteves
- Laboratory for Catalysis and Sustainable Chemistry, Paul Scherrer Institut, Forschungsstrasse 111, 5232 Villigen PSI, Switzerland
| | - Thomas Rohrbach
- Laboratory for Catalysis and Sustainable Chemistry, Paul Scherrer Institut, Forschungsstrasse 111, 5232 Villigen PSI, Switzerland
| | - Patrik P. Zimmermann
- Laboratory for Catalysis and Sustainable Chemistry, Paul Scherrer Institut, Forschungsstrasse 111, 5232 Villigen PSI, Switzerland
| | - Jeroen A. van Bokhoven
- Laboratory for Catalysis and Sustainable Chemistry, Paul Scherrer Institut, Forschungsstrasse 111, 5232 Villigen PSI, Switzerland
- Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 1-5, 8093 Zurich, Switzerland
| | - Marco Ranocchiari
- Laboratory for Catalysis and Sustainable Chemistry, Paul Scherrer Institut, Forschungsstrasse 111, 5232 Villigen PSI, Switzerland
| |
Collapse
|
92
|
Ghora S, Sreenivasulu C, Satyanarayana G. A Domino Heck Coupling–Cyclization–Dehydrogenative Strategy for the One-Pot Synthesis of Quinolines. SYNTHESIS-STUTTGART 2022. [DOI: 10.1055/a-1589-7548] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
AbstractAn efficient, one-pot, domino synthesis of quinolines via the coupling of iodoanilines with allylic alcohols facilitated by palladium catalysis is described. The overall synthetic process involves an intermolecular Heck coupling between 2-iodoanilines and allylic alcohols, intramolecular condensation of in situ generated ketones with an internal amine functional group, and a dehydrogenation sequence. Notably, this protocol occurs in water as a green solvent. Significantly, the method exhibits broad substrate scope and is applied for the synthesis of deuterated quinolines through a deuterium-exchange process.
Collapse
|
93
|
Sahu SK, Choudhury P, Behera PK, Bisoyi T, Sahu RR, Bisoyi A, Gorantla KR, Mallik BS, Mohapatra M, Rout L. An oxygen-bridged bimetallic [Cu–O–Se] catalyst for Sonogashira cross-coupling. NEW J CHEM 2022. [DOI: 10.1039/d1nj04485k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Oxygen bridged bimetallic CuSeO3·2H2O catalyst is used for Sonogashira cross-coupling under ligand free condition. Catalyst is free from palladium up to 0.2 ppm.
Collapse
Affiliation(s)
| | | | | | - Tanmayee Bisoyi
- Department of Chemistry, Berhampur University, Odisha-760007, India
| | | | - Abinash Bisoyi
- Department of Chemistry, Berhampur University, Odisha-760007, India
| | | | - Bhabani S. Mallik
- Department of Chemistry, IIT Hydrabad, Sangareddy, Medak-502285, Telangana, India
| | - Manoj Mohapatra
- Homi Bhaba National Institute, Anushakti Nagar, Bhaba Atomic Research Centre, Bombay-400085, India
| | - Laxmidhar Rout
- Department of Chemistry, Berhampur University, Odisha-760007, India
| |
Collapse
|
94
|
Kalanthoden AN, Zahir MH, Aziz MA, Al-Najar B, Rani SK, Shaikh MN. Palladium Nanoparticles Supported on Cellulosic Paper as Multifunctional Catalyst for Coupling and Hydrogenation Reactions. Chem Asian J 2021; 17:e202101195. [PMID: 34970847 DOI: 10.1002/asia.202101195] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 12/13/2021] [Indexed: 11/06/2022]
Abstract
Hallmark of a successful catalyst is its high efficiency, economic aspects, operational simplicity, extensive reusability, higher environment friendliness, and potential use in multiple industrial applications. Herein, a facile protocol involving a catalyst with Pd nanoparticles supported on cellulose paper (also known as a "dip-catalyst") for the hydrogenation of a series of quinolines, nitroarene, and C-C bond formation reactions in most benign solvents such as water is described. The mere insertion/removal of the "dip-catalyst" strip enables instantaneous start/stop of the reaction, which enhances its reusability and ease of separation of products. Cellulose paper (CP) strips decorated with Pd nanoparticles (Pd/CP) are prepared by the reduction of K2 PdCl4 soaked strips using formic acid as reductant. The resulting spherical shaped Pd particles, confirmed by scanning electron microscopy, form stable catalysis centers on the support. XRD signature confirms the crystallinity of the Pd nanoparticles and the TEM images display 15-20 nm size particles uniformly decorating CP. X-ray photoelectron spectroscopy indicates the formation of metallic Pd. The catalyst is tested for the C-C bond formation reactions. Pd/CP catalyzed Suzuki-Miyaura coupling reaction demonstrate >99% conversion with optimum selectivity. On the other hand, Mizoroki-Heck reaction produced 87% conversion with the reaction of 4-methoxycarbonyl phenylboronic acid and iodobenzene in ethanol:water (1 : 1 v/v) using KOH as base. The developed Pd/CP construct produces >99% of the pyridine-ring hydrogenated product on quinoline hydrogenation using tetrahydroxydiboron (THDB) as the hydrogen source. Diverse and highly reducible functional groups were also evaluated for transfer hydrogenation, which demonstrates a high efficiency in terms of both reactivity and selectivity. The used catalysts are recyclable for the multiple cycles.
Collapse
Affiliation(s)
- Abdul Nasar Kalanthoden
- B. S. Abdurrahman Crescent Institute of Science and Technology, Chennai,600048, Tamil Nadu, India
| | - Md Hasan Zahir
- Interdisciplinary Research Center for Renewable Energy and Power Systems (IRC-REPS), King Fahd University of Petroleum & Minerals, (KFUPM), Dhahran, 31261, Saudi Arabia
| | - Md Abdul Aziz
- Interdisciplinary Research Center for Hydrogen and Energy storage (IRC-HES), King Fahd University of Petroleum & Minerals (KFUPM), Dhahran, 31261, Saudi Arabia
| | - Basmah Al-Najar
- Department of Physics, College of Science, University of Bahrain, Sakhir Campus, 32038, Bahrain
| | - S Kutti Rani
- B. S. Abdurrahman Crescent Institute of Science and Technology, Chennai,600048, Tamil Nadu, India
| | - M Nasiruzzaman Shaikh
- Interdisciplinary Research Center for Hydrogen and Energy storage (IRC-HES), King Fahd University of Petroleum & Minerals (KFUPM), Dhahran, 31261, Saudi Arabia
| |
Collapse
|
95
|
Osakada K, Nishihara Y. Transmetalation of boronic acids and their derivatives: mechanistic elucidation and relevance to catalysis. Dalton Trans 2021; 51:777-796. [PMID: 34951434 DOI: 10.1039/d1dt02986j] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The Suzuki-Miyaura reaction (the cross-coupling reaction of boronic acids with organic halides catalysed by Pd complexes) has been recognised as a useful synthetic organic reaction that forms a C(sp2)-C(sp2) bond. The catalytic cycle of the reaction involves the transmetalation of aryl- and alkenylboronic acids with Pd(II) complexes. It migrates the aryl and alkenyl groups of boronic acid to Pd and produces a Pd-C bond. Many studies have investigated the mechanism of transmetalation. They elucidated the mechanism of the organometallic reaction and its role as a fundamental step in catalytic reactions. This perspective reviews studies on the transmetalation of aryl- and alkenylboronic acids with Pd(II) complexes. Emphasis was laid on the structures and chemical properties of the intermediate Pd complexes and the effects of OH- on the pathways of the catalytic Suzuki-Miyaura reaction. The reactions of arylboronic acids with Rh(I)-OH complexes were investigated, which are relevant to the mechanism of Rh-catalysed addition of aryl boronic acids to enones and aldehydes. Recent studies on the transmetalation of boronic acids with other late transition metals such as Fe(II), Co(I), Pt(II), Au(III), and Au(I) are presented with the related catalytic reactions and their utilisation in the synthesis of aromatic molecules and π-conjugated materials.
Collapse
Affiliation(s)
- Kohtaro Osakada
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagastuta, Midori-ku, Yokohama 226-8503, Japan. .,National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 5, 1-1-1 Higashi, Tsukuba 305-8565, Japan
| | - Yasushi Nishihara
- Research Institute for Interdisciplinary Science, Okayama University, 3-1-1 Tsushimanaka, Kita-ku, Okayama 700-8530, Japan.
| |
Collapse
|
96
|
Yadav S, Vijayan P, Gupta R. Ruthenium complexes of N/O/S based multidentate ligands: Structural diversities and catalysis perspectives. J Organomet Chem 2021. [DOI: 10.1016/j.jorganchem.2021.122081] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
97
|
Moniriyan F, Sabounchei SJ. A comparative study of catalytic activity on iron‐based carbon nanostructured catalysts with Pd loading: Using the Box–Behnken design (BBD) method in the Suzuki–Miyaura coupling. Appl Organomet Chem 2021. [DOI: 10.1002/aoc.6415] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
98
|
Deka JR, Saikia D, Chen PH, Chen KT, Kao HM, Yang YC. N-functionalized mesoporous carbon supported Pd nanoparticles as highly active nanocatalyst for Suzuki-Miyaura reaction, reduction of 4-nitrophenol and hydrodechlorination of chlorobenzene. J IND ENG CHEM 2021. [DOI: 10.1016/j.jiec.2021.09.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
99
|
Cartagenova D, Bachmann S, Van Bokhoven JA, Püntener K, Ranocchiari M. Heterogeneous Metal-Organic Framework Catalysts for Suzuki-Miyaura Cross Coupling in the Pharma Industry. Chimia (Aarau) 2021; 75:972-978. [PMID: 34798920 DOI: 10.2533/chimia.2021.972] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The synthesis of drug substances (DS) requires the continuous effort of the pharma industry to ensure high sustainability standards. The Suzuki-Miyaura cross coupling is a fundamental C-C bond-forming reaction to produce complex DS intermediates. The present contribution points out the way in which the synthesis of DS intermediates by C-C cross coupling can be economically competitive, while minimizing waste by selecting the appropriate heterogeneous catalyst. By comparing homogeneous, immobilized heterogeneous catalysts on silica and metal-organic framework (MOF) catalysts, while considering the perspectives of academia and industry, the critical parameters for a successful industrial application of heterogeneous catalytic Suzuki-Miyaura cross coupling reactions were identified. Heterogeneous catalysts, such as MOFs, may provide a complementary platform for reducing waste and the costs of production related to such transformations.
Collapse
Affiliation(s)
- Daniele Cartagenova
- Paul Scherrer Institute, Laboratory for Catalysis and Sustainable Chemistry, Forschungsstrasse 111, CH-5232 Villigen PSI, Switzerland
| | - Stephan Bachmann
- F. Hoffmann-La Roche Ltd., Department of Process Chemistry & Catalysis, Grenzacherstrasse 124, CH-4070 Basel, Switzerland,
| | - Jeroen A Van Bokhoven
- Paul Scherrer Institute, Laboratory for Catalysis and Sustainable Chemistry, Forschungsstrasse 111, CH-5232 Villigen PSI, Switzerland; ETH Zurich, Institute for Chemical and Bioengineering, CH-8093 Zurich
| | - Kurt Püntener
- F. Hoffmann-La Roche Ltd., Department of Process Chemistry & Catalysis, Grenzacherstrasse 124, CH-4070 Basel, Switzerland
| | - Marco Ranocchiari
- Paul Scherrer Institute, Laboratory for Catalysis and Sustainable Chemistry, Forschungsstrasse 111, CH-5232 Villigen PSI, Switzerland;,
| |
Collapse
|
100
|
Chen W, Cai P, Elumalai P, Zhang P, Feng L, Al-Rawashdeh M, Madrahimov ST, Zhou HC. Site-Isolated Azobenzene-Containing Metal-Organic Framework for Cyclopalladated Catalyzed Suzuki-Miyuara Coupling in Flow. ACS APPLIED MATERIALS & INTERFACES 2021; 13:51849-51854. [PMID: 33914510 DOI: 10.1021/acsami.1c03607] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Sites isolation of active metals centers, systematically studied in homogeneous systems, has been an alternative to develop low metal consuming, highly active next generation catalysts in heterogeneous condition. Because of the high porosity and facile synthetic procedures, MOF-based catalysts are excellent candidates for heterogenization of well-defined homogeneous catalysts. Herein, we report the direct Pd coordination on the azobenzene linker within a MOF catalyst through a postsynthetic modification method for a Suzuki-Miyaura coupling reaction. The immobilized cyclopalladated complexes in MOFs were analyzed by a series of characterization techniques including XPS, PXRD, and deuterium NMR (2H NMR) spectroscopy. The heterogeneous nature of the catalyst as well as its stability were demonstrated though "hot filtration" and recycling experiments. Furthermore, we demonstrate that the MOF packed column promoted the reaction between phenyl boronic acid and bromobenzene under microflow conditions with a 85% yield continuously for 12 h. This work sheds light on the potential of site-isolated MOF catalysts in efficient, recyclable and continuous flow systems for industrial application.
Collapse
Affiliation(s)
- Wenmiao Chen
- Department of Chemistry, Texas A&M University, College Station, Texas 77843-3255, United States
- Department of Science, Texas A&M University at Qatar, Education City, P.O. Box 23874, Doha, Qatar
| | - Peiyu Cai
- Department of Chemistry, Texas A&M University, College Station, Texas 77843-3255, United States
| | - Palani Elumalai
- Department of Science, Texas A&M University at Qatar, Education City, P.O. Box 23874, Doha, Qatar
| | - Peng Zhang
- Department of Chemistry, Texas A&M University, College Station, Texas 77843-3255, United States
| | - Liang Feng
- Department of Chemistry, Texas A&M University, College Station, Texas 77843-3255, United States
| | - Ma'moun Al-Rawashdeh
- Department of Chemical Engineering, Texas A&M University at Qatar, Education City, P.O. Box 23874, Doha, Qatar
| | - Sherzod T Madrahimov
- Department of Science, Texas A&M University at Qatar, Education City, P.O. Box 23874, Doha, Qatar
| | - Hong-Cai Zhou
- Department of Chemistry, Texas A&M University, College Station, Texas 77843-3255, United States
| |
Collapse
|