51
|
Sakr H, Ayyad RR, El-Helby AA, Khalifa MM, Mahdy HA. Discovery of novel triazolophthalazine derivatives as DNA intercalators and topoisomerase II inhibitors. Arch Pharm (Weinheim) 2021; 354:e2000456. [PMID: 33554352 DOI: 10.1002/ardp.202000456] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 01/07/2021] [Accepted: 01/15/2021] [Indexed: 01/07/2023]
Abstract
A new series of triazolophthalazine derivatives was designed and synthesized as topoisomerase II (Topo II) inhibitors and DNA intercalators. The synthesized derivatives were evaluated in vitro for their cytotoxic activities against three human cancer cell lines: HepG2, MCF-7, and HCT-116 cells. Compound IXb was the most potent counterpart with IC50 values of 5.39 ± 0.4, 3.81 ± 0.2, and 4.38 ± 0.3 µM, as it was about 1.47, 1.77, and 1.19 times more active than doxorubicin (IC50 = 7.94 ± 0.6, 6.75 ± 0.4, and 5.23 ± 0.3 µM) against HepG2, MCF-7, and HCT-116 cells, respectively. Additionally, the binding affinity of the synthesized compounds toward the DNA molecule was assessed using the DNA/methyl green assay. Compound IXb showed an excellent DNA binding affinity with an IC50 value of 27.16 ± 1.2 µM, which was better than that of the reference drug doxorubicin (IC50 = 31.02 ± 1.80 µM). Moreover, compound IXb was the most potent member among the tested compounds when investigated for their Topo II inhibitory activity. Furthermore, compound IXb induced apoptosis in HepG2 cells and arrested the cell cycle at the G2/M phase. Additionally, compound IXb showed Topo II poisoning effects at 2.5 μM and Topo II catalytic inhibitory effects at 5 and 10 μM. Finally, molecular docking studies were carried out against the DNA-Topo II complex and DNA, to investigate the binding patterns of the designed compounds.
Collapse
Affiliation(s)
- Helmy Sakr
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
| | - Rezk R Ayyad
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
| | - Ali A El-Helby
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
| | - Mohamed M Khalifa
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
| | - Hazem A Mahdy
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
| |
Collapse
|
52
|
Matias-Barrios VM, Radaeva M, Song Y, Alperstein Z, Lee AR, Schmitt V, Lee J, Ban F, Xie N, Qi J, Lallous N, Gleave ME, Cherkasov A, Dong X. Discovery of New Catalytic Topoisomerase II Inhibitors for Anticancer Therapeutics. Front Oncol 2021; 10:633142. [PMID: 33598437 PMCID: PMC7883873 DOI: 10.3389/fonc.2020.633142] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 12/15/2020] [Indexed: 01/23/2023] Open
Abstract
Poison inhibitors of DNA topoisomerase II (TOP2) are clinically used drugs that cause cancer cell death by inducing DNA damage, which mechanism of action is also associated with serious side effects such as secondary malignancy and cardiotoxicity. In contrast, TOP2 catalytic inhibitors induce limited DNA damage, have low cytotoxicity, and are effective in suppressing cancer cell proliferation. They have been sought after to be prospective anticancer therapies. Herein the discovery of new TOP2 catalytic inhibitors is described. A new druggable pocket of TOP2 protein at its DNA binding domain was used as a docking site to virtually screen ~6 million molecules from the ZINC15 library. The lead compound, T60, was characterized to be a catalytic TOP2 inhibitor that binds TOP2 protein and disrupts TOP2 from interacting with DNA, resulting in no DNA cleavage. It has low cytotoxicity, but strongly inhibits cancer cell proliferation and xenograft growth. T60 also inhibits androgen receptor activity and prostate cancer cell growth. These results indicate that T60 is a promising candidate compound that can be further developed into new anticancer drugs.
Collapse
Affiliation(s)
- Victor M Matias-Barrios
- The Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Mariia Radaeva
- The Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Yi Song
- The Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada.,Department of Geriatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zaccary Alperstein
- The Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Ahn R Lee
- The Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Veronika Schmitt
- The Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Joseph Lee
- The Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Fuqiang Ban
- The Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Ning Xie
- The Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Jianfei Qi
- Department of Biochemistry and Molecular Biology, University of Maryland, Baltimore, Baltimore, MD, United States
| | - Nada Lallous
- The Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Martin E Gleave
- The Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Artem Cherkasov
- The Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Xuesen Dong
- The Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
53
|
Tao H, Zuo L, Xu H, Li C, Qiao G, Guo M, Lin X. Alkaloids as Anticancer Agents: A Review of Chinese Patents in Recent 5 Years. Recent Pat Anticancer Drug Discov 2021; 15:2-13. [PMID: 32003702 DOI: 10.2174/1574892815666200131120618] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 01/19/2020] [Accepted: 01/28/2020] [Indexed: 12/17/2022]
Abstract
BACKGROUND In recent years, many novel alkaloids with anticancer activity have been found in China, and some of them are promising for developing as anticancer agents. OBJECTIVE This review aims to provide a comprehensive overview of the information about alkaloid anticancer agents disclosed in Chinese patents, and discusses their potential to be developed as anticancer drugs used clinically. METHODS Anticancer alkaloids disclosed in Chinese patents in recent 5 years were presented according to their mode of actions. Their study results published on PubMed, and SciDirect databases were presented. RESULTS More than one hundred anticancer alkaloids were disclosed in Chinese patents and their mode of action referred to arresting cell cycle, inhibiting protein kinases, affecting DNA synthesis and p53 expression, etc. Conclusion: Many newly found alkaloids displayed potent anticancer activity both in vitro and in vivo, and some of the anticancer alkaloids acted as protein kinase inhibitors or CDK inhibitors possess the potential for developing as novel anticancer agents.
Collapse
Affiliation(s)
- Hongyu Tao
- Department of Pharmacology, School of Basic Medicine, Capital Medical University, Beijing 100069, China
| | - Ling Zuo
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Sichuan 646000, China
| | - Huanli Xu
- Department of Pharmacology, School of Basic Medicine, Capital Medical University, Beijing 100069, China
| | - Cong Li
- Department of Pharmacology, School of Basic Medicine, Capital Medical University, Beijing 100069, China
| | - Gan Qiao
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Sichuan 646000, China
| | - Mingyue Guo
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Sichuan 646000, China
| | - Xiukun Lin
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Sichuan 646000, China
| |
Collapse
|
54
|
Yu Y, Xiang K, Xu M, Li Y, Cui J, Zhang L, Tang X, Zhu X, Qian L, Zhang M, Yang Y, Yu Q, Shen Y, Gan Z. Prodrug Nanomedicine Inhibits Chemotherapy-Induced Proliferative Burst by Altering the Deleterious Intercellular Communication. ACS NANO 2021; 15:781-796. [PMID: 33410660 DOI: 10.1021/acsnano.0c07113] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Chemotherapy is one of the most commonly used clinical antitumor strategies. However, the therapy-induced proliferative burst, which always accompanies drug resistance and metastasis, has become a major obstacle during treatment. Except for some endogenous cellular or genetic mechanisms and some microenvironmental selection pressures, the intercellular connections in the tumor microenvironment (TME) are also thought to be the driving force for the acquired drug resistance and proliferative burst. Even though some pathway inhibitors or cell exempting strategies could be applied to partially avoid these unwanted communications, the complexity of the TME and the limited knowledge about those unknown detrimental connections might greatly compromise the efforts. Therefore, a more broad-spectrum strategy is urgently needed to relieve the drug-induced burst proliferation during various treatments. In this article, based on the possible discrepancies in metabolic activity between cells with different growth rates, several ester-bond-based prodrugs were synthesized. After screening, 7-ethyl-10-hyodroxycamptothecin-based prodrug nanoparticles were found to efficiently overcome the paclitaxel resistance, to selectively act on the malignantly proliferated drug-resistant cells and, furthermore, to greatly diminish the proliferative effect of common cytotoxic agents by blocking the detrimental intercellular connections. With the discriminating ability against malignant proliferating cells, the as-prepared prodrug nanomedicine exhibited significant anticancer efficacy against both drug-sensitive and drug-resistant tumor models, either by itself or by combining with highly potent nonselective chemotherapeutics. This work provides a different perspective and a possible solution for the treatment of therapy-induced burst proliferation.
Collapse
Affiliation(s)
- Yanting Yu
- Beijing Laboratory of Biomedical Materials, The State Key Laboratory of Organic-Inorganic Composites, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Keqi Xiang
- Beijing Laboratory of Biomedical Materials, The State Key Laboratory of Organic-Inorganic Composites, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Mingzhi Xu
- Beijing Laboratory of Biomedical Materials, The State Key Laboratory of Organic-Inorganic Composites, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yuqiang Li
- Beijing Laboratory of Biomedical Materials, The State Key Laboratory of Organic-Inorganic Composites, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Jiajunzi Cui
- Beijing Laboratory of Biomedical Materials, The State Key Laboratory of Organic-Inorganic Composites, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Lanqiong Zhang
- Beijing Laboratory of Biomedical Materials, The State Key Laboratory of Organic-Inorganic Composites, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xiaohu Tang
- Beijing Laboratory of Biomedical Materials, The State Key Laboratory of Organic-Inorganic Composites, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xianqi Zhu
- Beijing Laboratory of Biomedical Materials, The State Key Laboratory of Organic-Inorganic Composites, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Lili Qian
- Beijing Laboratory of Biomedical Materials, The State Key Laboratory of Organic-Inorganic Composites, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Meng Zhang
- Beijing Laboratory of Biomedical Materials, The State Key Laboratory of Organic-Inorganic Composites, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yan Yang
- Beijing Laboratory of Biomedical Materials, The State Key Laboratory of Organic-Inorganic Composites, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Qingsong Yu
- Beijing Laboratory of Biomedical Materials, The State Key Laboratory of Organic-Inorganic Composites, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Youqing Shen
- Center for Bionanoengineering and Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Zhihua Gan
- Beijing Laboratory of Biomedical Materials, The State Key Laboratory of Organic-Inorganic Composites, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
55
|
Sutormin DA, Galivondzhyan AK, Polkhovskiy AV, Kamalyan SO, Severinov KV, Dubiley SA. Diversity and Functions of Type II Topoisomerases. Acta Naturae 2021; 13:59-75. [PMID: 33959387 PMCID: PMC8084294 DOI: 10.32607/actanaturae.11058] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 10/09/2020] [Indexed: 11/29/2022] Open
Abstract
The DNA double helix provides a simple and elegant way to store and copy genetic information. However, the processes requiring the DNA helix strands separation, such as transcription and replication, induce a topological side-effect - supercoiling of the molecule. Topoisomerases comprise a specific group of enzymes that disentangle the topological challenges associated with DNA supercoiling. They relax DNA supercoils and resolve catenanes and knots. Here, we review the catalytic cycles, evolution, diversity, and functional roles of type II topoisomerases in organisms from all domains of life, as well as viruses and other mobile genetic elements.
Collapse
Affiliation(s)
- D. A. Sutormin
- Institute of Gene Biology RAS, Moscow, 119334 Russia
- Centre for Life Sciences, Skolkovo Institute of Science and Technology, Moscow, 121205 Russia
| | - A. K. Galivondzhyan
- Lomonosov Moscow State University, Moscow, 119991 Russia
- Institute of Molecular Genetics RAS, Moscow, 123182 Russia
| | - A. V. Polkhovskiy
- Institute of Gene Biology RAS, Moscow, 119334 Russia
- Centre for Life Sciences, Skolkovo Institute of Science and Technology, Moscow, 121205 Russia
| | - S. O. Kamalyan
- Institute of Gene Biology RAS, Moscow, 119334 Russia
- Centre for Life Sciences, Skolkovo Institute of Science and Technology, Moscow, 121205 Russia
| | - K. V. Severinov
- Centre for Life Sciences, Skolkovo Institute of Science and Technology, Moscow, 121205 Russia
- Centre for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology RAS, Moscow, 119334 Russia
- Waksman Institute for Microbiology, Piscataway, New Jersey, 08854 USA
| | - S. A. Dubiley
- Institute of Gene Biology RAS, Moscow, 119334 Russia
- Centre for Life Sciences, Skolkovo Institute of Science and Technology, Moscow, 121205 Russia
| |
Collapse
|
56
|
Buzun K, Bielawska A, Bielawski K, Gornowicz A. DNA topoisomerases as molecular targets for anticancer drugs. J Enzyme Inhib Med Chem 2020; 35:1781-1799. [PMID: 32975138 PMCID: PMC7534307 DOI: 10.1080/14756366.2020.1821676] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 09/01/2020] [Accepted: 09/02/2020] [Indexed: 02/07/2023] Open
Abstract
The significant role of topoisomerases in the control of DNA chain topology has been confirmed in numerous research conducted worldwide. The prevalence of these enzymes, as well as the key importance of topoisomerase in the proper functioning of cells, have made them the target of many scientific studies conducted all over the world. This article is a comprehensive review of knowledge about topoisomerases and their inhibitors collected over the years. Studies on the structure-activity relationship and molecular docking are one of the key elements driving drug development. In addition to information on molecular targets, this article contains details on the structure-activity relationship of described classes of compounds. Moreover, the work also includes details about the structure of the compounds that drive the mode of action of topoisomerase inhibitors. Finally, selected topoisomerases inhibitors at the stage of clinical trials and their potential application in the chemotherapy of various cancers are described.
Collapse
Affiliation(s)
- Kamila Buzun
- Department of Biotechnology, Medical University of Bialystok, Bialystok, Poland
| | - Anna Bielawska
- Department of Biotechnology, Medical University of Bialystok, Bialystok, Poland
| | - Krzysztof Bielawski
- Department of Synthesis and Technology of Drugs, Medical University of Bialystok, Bialystok, Poland
| | - Agnieszka Gornowicz
- Department of Biotechnology, Medical University of Bialystok, Bialystok, Poland
| |
Collapse
|
57
|
Alesawy MS, Al-Karmalawy AA, Elkaeed EB, Alswah M, Belal A, Taghour MS, Eissa IH. Design and discovery of new 1,2,4-triazolo[4,3-c]quinazolines as potential DNA intercalators and topoisomerase II inhibitors. Arch Pharm (Weinheim) 2020; 354:e2000237. [PMID: 33226150 DOI: 10.1002/ardp.202000237] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 10/27/2020] [Accepted: 10/31/2020] [Indexed: 02/05/2023]
Abstract
A new series of 1,2,4-triazolo[4,3-c]quinazoline derivatives was designed and synthesized as Topo II inhibitors and DNA intercalators. The cytotoxic effect of the new members was evaluated in vitro against a group of cancer cell lines including HCT-116, HepG-2, and MCF-7. Compounds 14c , 14d , 14e , 14e , 15b , 18b , 18c , and 19b exhibited the highest activities with IC50 values ranging from 5.22 to 24.24 µM. Furthermore, Topo II inhibitory activities and DNA intercalating affinities of the most promising candidates were evaluated as a possible mechanism for the antiproliferative effect. The results of the Topo II inhibition and DNA binding tests were coherent with that of in vitro cytotoxicity. Additionally, the most promising compound 18c was analyzed in HepG-2 cells for its apoptotic effect and cell cycle arrest. It was found that 18c can induce apoptosis and arrest the cell cycle at the G2-M phase. Finally, molecular docking studies were carried out for the designed compounds against the crystal structure of the DNA-Topo II complex as a potential target to explore their binding modes. On the basis of these studies, it was hypothesized that the DNA binding and/or Topo II inhibition would participate in the noted cytotoxicity of the synthesized compounds.
Collapse
Affiliation(s)
- Mohamed S Alesawy
- Pharmaceutical Medicinal Chemistry and Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
| | - Ahmed A Al-Karmalawy
- Department of Pharmaceutical Medicinal Chemistry, Faculty of Pharmacy, Horus University-Egypt, New Damietta, Egypt
| | - Eslam B Elkaeed
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
| | - Mohamed Alswah
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
| | - Ahmed Belal
- Zoology Department, Faculty of Science, Al-Azhar University, Cairo, Egypt
| | - Mohammed S Taghour
- Pharmaceutical Medicinal Chemistry and Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
| | - Ibrahim H Eissa
- Pharmaceutical Medicinal Chemistry and Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
| |
Collapse
|
58
|
Gholampour M, Seradj H, Pirhadi S, Khoshneviszadeh M. Novel 2-amino-1,4-naphthoquinone hybrids: Design, synthesis, cytotoxicity evaluation and in silico studies. Bioorg Med Chem 2020; 28:115718. [PMID: 33065435 DOI: 10.1016/j.bmc.2020.115718] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 08/04/2020] [Accepted: 08/16/2020] [Indexed: 12/24/2022]
Abstract
In the present work, a novel series of 2-amino-1,4-naphthoquinones bearing oxyphenyl moiety (5a-5m) were designed and synthesized via a two-step route and evaluated for their in vitro cytotoxic activity against three different cancer cell lines (MCF-7, HL-60 and U937) and normal human cell line (HEK-293) by MTT assay. Compounds 5b (4-nitro-benzyl-) and 5k (4-bromo-benzyl-) were identified to possess the highest cytotoxic activity against MCF-7 cancerous cells (IC50 values of 27.76 and 27.86 μM, respectively). At the same time, none of the compounds exert significant toxicity against HEK-293 normal human kidney cells. Cell cycle analysis showed that the selected derivatives increased the population of MCF-7 cells in the S phase at 25 and 50 μM concentrations. Annexin V-FITC/PI staining assay also confirmed that compounds 5b and 5k induced apoptosis in the cell death pathway. Molecular docking and molecular dynamics studies were also performed to evaluate the probable interactions between the hybrids and human ATP binding domain of topo IIα protein. Our findings may provide new insight for further development of novel naphthoquinone-containing compounds.
Collapse
Affiliation(s)
- Maryam Gholampour
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Medicinal Chemistry, Faculty of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hassan Seradj
- Department of Pharmacognosy, Faculty of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Somayeh Pirhadi
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mehdi Khoshneviszadeh
- Department of Medicinal Chemistry, Faculty of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran; Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
59
|
Ortega JA, Arencibia JM, Minniti E, Byl JAW, Franco-Ulloa S, Borgogno M, Genna V, Summa M, Bertozzi SM, Bertorelli R, Armirotti A, Minarini A, Sissi C, Osheroff N, De Vivo M. Novel, Potent, and Druglike Tetrahydroquinazoline Inhibitor That Is Highly Selective for Human Topoisomerase II α over β. J Med Chem 2020; 63:12873-12886. [PMID: 33079544 PMCID: PMC7668297 DOI: 10.1021/acs.jmedchem.0c00774] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
![]()
We disclose a novel
class of 6-amino-tetrahydroquinazoline derivatives
that inhibit human topoisomerase II (topoII), a validated target of
anticancer drugs. In contrast to topoII-targeted drugs currently in
clinical use, these compounds do not act as topoII poisons that enhance
enzyme-mediated DNA cleavage, a mechanism that is linked to the development
of secondary leukemias. Instead, these tetrahydroquinazolines block
the topoII function with no evidence of DNA intercalation. We identified
a potent lead compound [compound 14 (ARN-21934) IC50 = 2 μM for inhibition of DNA relaxation, as compared
to an IC50 = 120 μM for the anticancer drug etoposide]
with excellent metabolic stability and solubility. This new compound
also shows ~100-fold selectivity for topoIIα over topoβ,
a broad antiproliferative activity toward cultured human cancer cells,
a favorable in vivo pharmacokinetic profile, and the ability to penetrate
the blood–brain barrier. Thus, ARN-21934 is a highly promising
lead for the development of novel and potentially safer topoII-targeted
anticancer drugs.
Collapse
Affiliation(s)
- Jose Antonio Ortega
- Laboratory of Molecular Modeling and Drug Discovery, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genoa, Italy
| | - Jose M Arencibia
- Laboratory of Molecular Modeling and Drug Discovery, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genoa, Italy
| | - Elirosa Minniti
- Laboratory of Molecular Modeling and Drug Discovery, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genoa, Italy.,Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, Via Belmeloro 6, 40126 Bologna, Italy
| | - Jo Ann W Byl
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146, United States
| | - Sebastian Franco-Ulloa
- Laboratory of Molecular Modeling and Drug Discovery, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genoa, Italy
| | - Marco Borgogno
- Laboratory of Molecular Modeling and Drug Discovery, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genoa, Italy
| | - Vito Genna
- Laboratory of Molecular Modeling and Drug Discovery, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genoa, Italy
| | - Maria Summa
- Analytical Chemistry & Translational Pharmacology, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genoa, Italy
| | - Sine Mandrup Bertozzi
- Analytical Chemistry & Translational Pharmacology, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genoa, Italy
| | - Rosalia Bertorelli
- Analytical Chemistry & Translational Pharmacology, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genoa, Italy
| | - Andrea Armirotti
- Analytical Chemistry & Translational Pharmacology, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genoa, Italy
| | - Anna Minarini
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, Via Belmeloro 6, 40126 Bologna, Italy
| | - Claudia Sissi
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via Marzolo 5, 35131 Padova, Italy
| | - Neil Osheroff
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146, United States.,Department of Medicine (Hematology/Oncology), Vanderbilt University School of Medicine, Nashville, Tennessee 37232-6307, United States.,VA Tennessee Valley Healthcare System, Nashville, Tennessee 37212, United States
| | - Marco De Vivo
- Laboratory of Molecular Modeling and Drug Discovery, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genoa, Italy
| |
Collapse
|
60
|
Song L, Van der Eycken EV. Transition Metal-Catalyzed Intermolecular Cascade C-H Activation/Annulation Processes for the Synthesis of Polycycles. Chemistry 2020; 27:121-144. [PMID: 32530508 DOI: 10.1002/chem.202002110] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Indexed: 12/16/2022]
Abstract
Polycycles are abundantly present in numerous advanced chemicals, functional materials, bioactive molecules and natural products. However, the strategies for the synthesis of polycycles are limited to classical reactions and transition metal-catalyzed cross-coupling reactions, requiring pre-functionalized starting materials and lengthy synthetic operations. The emergence of novel approaches shows great promise for the fields of organic/medicinal/materials chemistry. Among them, transition metal-catalyzed C-H activation followed by intermolecular annulation reactions prevail, due to their straightforward manner with high atom- and step-economy, providing rapid, concise and efficient methods for the construction of diverse polycycles. Several strategies have been developed for the synthesis of polycycles, relying on sequential multiple C-H activation/annulation, or combination of C-H activation/annulation and further interaction with a proximal group, or merger of C-H activation with a cycloaddition reaction, or in situ formation of the directing group. These are attractive, efficient, step- and atom-economic methods starting from commercially available materials. This Minireview will provide an introduction to transition metal-catalyzed C-H activation for the synthesis of polycycles, helping researchers to discover indirect connections and reveal hidden opportunities. It will also promote the discovery of novel synthetic strategies relying on C-H activation.
Collapse
Affiliation(s)
- Liangliang Song
- Laboratory for Organic & Microwave-Assisted Chemistry (LOMAC), Department of Chemistry, KU Leuven, Celestijnenlaan 200F, 3001, Leuven, Belgium
| | - Erik V Van der Eycken
- Laboratory for Organic & Microwave-Assisted Chemistry (LOMAC), Department of Chemistry, KU Leuven, Celestijnenlaan 200F, 3001, Leuven, Belgium.,Peoples' Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya street, Moscow, 117198, Russia
| |
Collapse
|
61
|
Molinaro C, Martoriati A, Pelinski L, Cailliau K. Copper Complexes as Anticancer Agents Targeting Topoisomerases I and II. Cancers (Basel) 2020; 12:E2863. [PMID: 33027952 PMCID: PMC7601307 DOI: 10.3390/cancers12102863] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 09/24/2020] [Accepted: 09/29/2020] [Indexed: 12/12/2022] Open
Abstract
Organometallics, such as copper compounds, are cancer chemotherapeutics used alone or in combination with other drugs. One small group of copper complexes exerts an effective inhibitory action on topoisomerases, which participate in the regulation of DNA topology. Copper complexes inhibitors of topoisomerases 1 and 2 work by different molecular mechanisms, analyzed herein. They allow genesis of DNA breaks after the formation of a ternary complex, or act in a catalytic mode, often display DNA intercalative properties and ROS production, and sometimes display dual effects. These amplified actions have repercussions on the cell cycle checkpoints and death effectors. Copper complexes of topoisomerase inhibitors are analyzed in a broader synthetic view and in the context of cancer cell mutations. Finally, new emerging treatment aspects are depicted to encourage the expansion of this family of highly active anticancer drugs and to expend their use in clinical trials and future cancer therapy.
Collapse
Affiliation(s)
- Caroline Molinaro
- Univ. Lille, CNRS, UMR 8576-UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, F-59000 Lille, France; (C.M.); (A.M.)
| | - Alain Martoriati
- Univ. Lille, CNRS, UMR 8576-UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, F-59000 Lille, France; (C.M.); (A.M.)
| | - Lydie Pelinski
- Univ. Lille, CNRS, Centrale Lille, Univ. Artois, UMR 8181-UCCS-Unité de Catalyse et Chimie du Solide, F-59000 Lille, France;
| | - Katia Cailliau
- Univ. Lille, CNRS, UMR 8576-UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, F-59000 Lille, France; (C.M.); (A.M.)
| |
Collapse
|
62
|
El-Helby AGA, Sakr H, Ayyad RR, Mahdy HA, Khalifa MM, Belal A, Rashed M, El-Sharkawy A, Metwaly AM, Elhendawy MA, Radwan MM, ElSohly MA, Eissa IH. Design, synthesis, molecular modeling, in vivo studies and anticancer activity evaluation of new phthalazine derivatives as potential DNA intercalators and topoisomerase II inhibitors. Bioorg Chem 2020; 103:104233. [DOI: 10.1016/j.bioorg.2020.104233] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 08/20/2020] [Accepted: 08/24/2020] [Indexed: 12/17/2022]
|
63
|
Makarov AA, Dzhemileva LU, Salimova AR, Makarova EK, Ramazanov IR, D'yakonov VA, Dzhemilev UM. New synthetic analogues of natural 5Z,9Z-dienoic acids: Stereoselective synthesis and study of the anticancer activity. Bioorg Chem 2020; 104:104303. [PMID: 33011528 DOI: 10.1016/j.bioorg.2020.104303] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 07/05/2020] [Accepted: 09/20/2020] [Indexed: 12/23/2022]
Abstract
A stereoselective method was developed for the synthesis of synthetic analogues of natural 5Z,9Z-dienoic acids by esterification of aliphatic and aromatic alcohols and carboxylic acids with (5Z,9Z)-1,14-tetradeca-5,9-dienedioic acid and (5Z,9Z)-1,14-tetradeca-5,9-dienediol, synthesized by Ti-catalyzed homo-cyclomagnesiation of the tetrahydropyran ether of hepta-5,6-dien-1-ol with Grignard reagents. In order to establish the effect of molecular structure on the antitumor activity, the obtained 5Z,9Z-dienoic acids were tested for the inhibitory activity against human topoisomerase I, the cytotoxic activity in vitro against several cancer and normal cell lines (Jurkat, HL-60, K562, U937, fibroblasts), the effect on the cell cycle, and apoptosis-inducing ability using flow cytofluorometry. In addition, the effect of the synthesized acids on the cancer cell production of some phosphorylated and unphosphorylated proteins responsible for proliferation and apoptosis was studied by a new multiplex assay technology, MAGPIX.
Collapse
Affiliation(s)
- Alexey A Makarov
- Institute of Petrochemistry and Catalysis, Russian Academy of Sciences, 141 Prospekt Oktyabrya, Ufa 450075, Russian Federation
| | - Lilya U Dzhemileva
- Institute of Petrochemistry and Catalysis, Russian Academy of Sciences, 141 Prospekt Oktyabrya, Ufa 450075, Russian Federation.
| | - Alfiya R Salimova
- Institute of Petrochemistry and Catalysis, Russian Academy of Sciences, 141 Prospekt Oktyabrya, Ufa 450075, Russian Federation
| | - Elina Kh Makarova
- Institute of Petrochemistry and Catalysis, Russian Academy of Sciences, 141 Prospekt Oktyabrya, Ufa 450075, Russian Federation
| | - Ilfir R Ramazanov
- Institute of Petrochemistry and Catalysis, Russian Academy of Sciences, 141 Prospekt Oktyabrya, Ufa 450075, Russian Federation
| | - Vladimir A D'yakonov
- Institute of Petrochemistry and Catalysis, Russian Academy of Sciences, 141 Prospekt Oktyabrya, Ufa 450075, Russian Federation.
| | - Usein M Dzhemilev
- Institute of Petrochemistry and Catalysis, Russian Academy of Sciences, 141 Prospekt Oktyabrya, Ufa 450075, Russian Federation
| |
Collapse
|
64
|
Targeting topoisomerase II with trypthantrin derivatives: Discovery of 7-((2-(dimethylamino)ethyl)amino)indolo[2,1-b]quinazoline-6,12-dione as an antiproliferative agent and to treat cancer. Eur J Med Chem 2020; 202:112504. [DOI: 10.1016/j.ejmech.2020.112504] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 05/13/2020] [Accepted: 05/25/2020] [Indexed: 12/22/2022]
|
65
|
Radaeva M, Dong X, Cherkasov A. The Use of Methods of Computer-Aided Drug Discovery in the Development of Topoisomerase II Inhibitors: Applications and Future Directions. J Chem Inf Model 2020; 60:3703-3721. [DOI: 10.1021/acs.jcim.0c00325] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Mariia Radaeva
- Vancouver Prostate Centre, University of British Columbia, 2660 Oak Street, Vancouver, British Columbia V6H 3Z6, Canada
| | - Xuesen Dong
- Vancouver Prostate Centre, University of British Columbia, 2660 Oak Street, Vancouver, British Columbia V6H 3Z6, Canada
| | - Artem Cherkasov
- Vancouver Prostate Centre, University of British Columbia, 2660 Oak Street, Vancouver, British Columbia V6H 3Z6, Canada
| |
Collapse
|
66
|
Xiong K, Qian C, Yuan Y, Wei L, Liao X, He L, Rees TW, Chen Y, Wan J, Ji L, Chao H. Necroptosis Induced by Ruthenium(II) Complexes as Dual Catalytic Inhibitors of Topoisomerase I/II. Angew Chem Int Ed Engl 2020; 59:16631-16637. [PMID: 32533618 DOI: 10.1002/anie.202006089] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 06/10/2020] [Indexed: 12/29/2022]
Abstract
Inducing necroptosis in cancer cells is an effective approach to circumvent drug-resistance. Metal-based triggers have, however, rarely been reported. Ruthenium(II) complexes containing 1,1-(pyrazin-2-yl)pyreno[4,5-e][1,2,4]triazine were developed with a series of different ancillary ligands (Ru1-7). The combination of the main ligand with bipyridyl and phenylpyridyl ligands endows Ru7 with superior nucleus-targeting properties. As a rare dual catalytic inhibitor, Ru7 effectively inhibits the endogenous activities of topoisomerase (topo) I and II and kills cancer cells by necroptosis. The cell signaling pathway from topo inhibition to necroptosis was elucidated. Furthermore, Ru7 displays significant antitumor activity against drug-resistant cancer cells in vivo. To the best of our knowledge, Ru7 is the first Ru-based necroptosis-inducing chemotherapeutic agent.
Collapse
Affiliation(s)
- Kai Xiong
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, P. R. China
| | - Chen Qian
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, P. R. China
| | - Yixian Yuan
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, P. R. China
| | - Lin Wei
- College of Chemistry, Central China Normal University, Wuhan, 430079, P. R. China
| | - Xinxing Liao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, P. R. China
| | - Liting He
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, P. R. China
| | - Thomas W Rees
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, P. R. China
| | - Yu Chen
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, P. R. China
| | - Jian Wan
- College of Chemistry, Central China Normal University, Wuhan, 430079, P. R. China
| | - Liangnian Ji
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, P. R. China
| | - Hui Chao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, P. R. China.,College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518071, P. R. China
| |
Collapse
|
67
|
Xiong K, Qian C, Yuan Y, Wei L, Liao X, He L, Rees TW, Chen Y, Wan J, Ji L, Chao H. Necroptosis Induced by Ruthenium(II) Complexes as Dual Catalytic Inhibitors of Topoisomerase I/II. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202006089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Kai Xiong
- MOE Key Laboratory of Bioinorganic and Synthetic ChemistrySchool of ChemistrySun Yat-Sen University Guangzhou 510275 P. R. China
| | - Chen Qian
- MOE Key Laboratory of Bioinorganic and Synthetic ChemistrySchool of ChemistrySun Yat-Sen University Guangzhou 510275 P. R. China
| | - Yixian Yuan
- MOE Key Laboratory of Bioinorganic and Synthetic ChemistrySchool of ChemistrySun Yat-Sen University Guangzhou 510275 P. R. China
| | - Lin Wei
- College of ChemistryCentral China Normal University Wuhan 430079 P. R. China
| | - Xinxing Liao
- MOE Key Laboratory of Bioinorganic and Synthetic ChemistrySchool of ChemistrySun Yat-Sen University Guangzhou 510275 P. R. China
| | - Liting He
- MOE Key Laboratory of Bioinorganic and Synthetic ChemistrySchool of ChemistrySun Yat-Sen University Guangzhou 510275 P. R. China
| | - Thomas W. Rees
- MOE Key Laboratory of Bioinorganic and Synthetic ChemistrySchool of ChemistrySun Yat-Sen University Guangzhou 510275 P. R. China
| | - Yu Chen
- MOE Key Laboratory of Bioinorganic and Synthetic ChemistrySchool of ChemistrySun Yat-Sen University Guangzhou 510275 P. R. China
| | - Jian Wan
- College of ChemistryCentral China Normal University Wuhan 430079 P. R. China
| | - Liangnian Ji
- MOE Key Laboratory of Bioinorganic and Synthetic ChemistrySchool of ChemistrySun Yat-Sen University Guangzhou 510275 P. R. China
| | - Hui Chao
- MOE Key Laboratory of Bioinorganic and Synthetic ChemistrySchool of ChemistrySun Yat-Sen University Guangzhou 510275 P. R. China
- College of Chemistry and Environmental EngineeringShenzhen University Shenzhen 518071 P. R. China
| |
Collapse
|
68
|
Discovery of new ATP-competitive inhibitors of human DNA topoisomerase IIα through screening of bacterial topoisomerase inhibitors. Bioorg Chem 2020; 102:104049. [PMID: 32688116 DOI: 10.1016/j.bioorg.2020.104049] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Revised: 06/19/2020] [Accepted: 06/25/2020] [Indexed: 02/07/2023]
Abstract
Human DNA topoisomerase II is one of the major targets in anticancer therapy, however ATP-competitive inhibitors of this target have not yet reached their full potential. ATPase domain of human DNA topoisomerase II belongs to the GHKL ATPase superfamily and shares a very high 3D structural similarity with other superfamily members, including bacterial topoisomerases. In this work we report the discovery of a new chemotype of ATP-competitive inhibitors of human DNA topoisomerase IIα that were discovered through screening of in-house library of ATP-competitive inhibitors of bacterial DNA gyrase and topoisomerase IV. Systematic screening of this library provided us with 20 hit compounds. 1,2,4-Substituted N-phenylpyrrolamides were selected for a further exploration which resulted in 13 new analogues, including 52 with potent activity in relaxation assay (IC50 = 3.2 µM) and ATPase assay (IC50 = 0.43 µM). Cytotoxic activity of all hits was determined in MCF-7 cancer cell line and the most potent compounds, 16 and 20, showed an IC50 value of 8.7 and 8.2 µM, respectively.
Collapse
|
69
|
Bergant Loboda K, Janežič M, Štampar M, Žegura B, Filipič M, Perdih A. Substituted 4,5'-Bithiazoles as Catalytic Inhibitors of Human DNA Topoisomerase IIα. J Chem Inf Model 2020; 60:3662-3678. [PMID: 32484690 PMCID: PMC7469689 DOI: 10.1021/acs.jcim.0c00202] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Human type II topoisomerases, molecular motors that alter the DNA topology, are a major target of modern chemotherapy. Groups of catalytic inhibitors represent a new approach to overcome the known limitations of topoisomerase II poisons such as cardiotoxicity and induction of secondary tumors. Here, we present a class of substituted 4,5'-bithiazoles as catalytic inhibitors targeting the human DNA topoisomerase IIα. Based on a structural comparison of the ATPase domains of human and bacterial type II topoisomerase, a focused chemical library of 4,5'-bithiazoles was assembled and screened to identify compounds that better fit the topology of the human topo IIα adenosine 5'-triphosphate (ATP) binding site. Selected compounds showed inhibition of human topo IIα comparable to that of the etoposide topo II drug, revealing a new class of inhibitors targeting this molecular motor. Further investigations showed that compounds act as catalytic inhibitors via competitive ATP inhibition. We also confirmed binding to the truncated ATPase domain of topo IIα and modeled the inhibitor molecular recognition with molecular simulations and dynophore models. The compounds also displayed promising cytotoxicity against HepG2 and MCF-7 cell lines comparable to that of etoposide. In a more detailed study with the HepG2 cell line, there was no induction of DNA double-strand breaks (DSBs), and the compounds were able to reduce cell proliferation and stop the cell cycle mainly in the G1 phase. This confirms the mechanism of action of these compounds, which differs from topo II poisons also at the cellular level. Substituted 4,5'-bithiazoles appear to be a promising class for further development toward efficient and potentially safer cancer therapies exploiting the alternative topo II inhibition paradigm.
Collapse
Affiliation(s)
- Kaja Bergant Loboda
- National Institute of Chemistry, Hajdrihova 19, SI-1001 Ljubljana, Slovenia.,Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, SI-1000 Ljubljana, Slovenia
| | - Matej Janežič
- Laboratory for Structural Bioinformatics, RIKEN Center for Biosystems Dynamics Research, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Martina Štampar
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, Večna pot 111, SI-1000 Ljubljana, Slovenia
| | - Bojana Žegura
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, Večna pot 111, SI-1000 Ljubljana, Slovenia
| | - Metka Filipič
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, Večna pot 111, SI-1000 Ljubljana, Slovenia
| | - Andrej Perdih
- National Institute of Chemistry, Hajdrihova 19, SI-1001 Ljubljana, Slovenia
| |
Collapse
|
70
|
Design and synthesis of 3,5-substituted 1,2,4-oxadiazoles as catalytic inhibitors of human DNA topoisomerase IIα. Bioorg Chem 2020; 99:103828. [DOI: 10.1016/j.bioorg.2020.103828] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 03/20/2020] [Accepted: 04/05/2020] [Indexed: 01/05/2023]
|
71
|
Wang S, Zhang F, Yu G, Wang Z, Jacobson O, Ma Y, Tian R, Deng H, Yang W, Chen ZY, Chen X. Zwitterionic-to-cationic charge conversion polyprodrug nanomedicine for enhanced drug delivery. Am J Cancer Res 2020; 10:6629-6637. [PMID: 32550894 PMCID: PMC7295052 DOI: 10.7150/thno.47849] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 05/09/2020] [Indexed: 12/21/2022] Open
Abstract
Zwitterionic surface modification is a promising strategy for nanomedicines to achieve prolonged circulation time and thus effective tumor accumulation. However, zwitterion modified nanoparticles suffer from reduced cellular internalization efficiency. Methods: A polyprodrug-based nanomedicine with zwitterionic-to-cationic charge conversion ability (denoted as ZTC-NMs) was developed for enhanced chemotherapeutic drug delivery. The polyprodrug consists of pH-responsive poly(carboxybetaine)-like zwitterionic segment and glutathione-responsive camptothecin prodrug segment. Results: The ZTC-NMs combine the advantages of zwitterionic surface and polyprodrug. Compared with conventional zwitterionic surface, the ZTC-NMs can respond to tumor microenvironment and realize ZTC surface charge conversion, thus improve cellular internalization efficiency of the nanomedicines. Conclusions: This ZTC method offers a strategy to promote the drug delivery efficiency and therapeutic efficacy, which is promising for the development of cancer nanomedicines.
Collapse
|
72
|
Silva-Fisher JM, Dang HX, White NM, Strand MS, Krasnick BA, Rozycki EB, Jeffers GGL, Grossman JG, Highkin MK, Tang C, Cabanski CR, Eteleeb A, Mudd J, Goedegebuure SP, Luo J, Mardis ER, Wilson RK, Ley TJ, Lockhart AC, Fields RC, Maher CA. Long non-coding RNA RAMS11 promotes metastatic colorectal cancer progression. Nat Commun 2020; 11:2156. [PMID: 32358485 PMCID: PMC7195452 DOI: 10.1038/s41467-020-15547-8] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 03/16/2020] [Indexed: 01/14/2023] Open
Abstract
Colorectal cancer (CRC) is the most common gastrointestinal malignancy in the U.S.A. and approximately 50% of patients develop metastatic disease (mCRC). Despite our understanding of long non-coding RNAs (lncRNAs) in primary colon cancer, their role in mCRC and treatment resistance remains poorly characterized. Therefore, through transcriptome sequencing of normal, primary, and distant mCRC tissues we find 148 differentially expressed RNAs Associated with Metastasis (RAMS). We prioritize RAMS11 due to its association with poor disease-free survival and promotion of aggressive phenotypes in vitro and in vivo. A FDA-approved drug high-throughput viability assay shows that elevated RAMS11 expression increases resistance to topoisomerase inhibitors. Subsequent experiments demonstrate RAMS11-dependent recruitment of Chromobox protein 4 (CBX4) transcriptionally activates Topoisomerase II alpha (TOP2α). Overall, recent clinical trials using topoisomerase inhibitors coupled with our findings of RAMS11-dependent regulation of TOP2α supports the potential use of RAMS11 as a biomarker and therapeutic target for mCRC.
Collapse
Affiliation(s)
- Jessica M Silva-Fisher
- Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO, USA
- Alvin J. Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Ha X Dang
- Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO, USA
- Alvin J. Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO, USA
- The McDonnell Genome Institute, St. Louis, MO, USA
| | - Nicole M White
- Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO, USA
- Alvin J. Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Matthew S Strand
- Department of Surgery, Washington University School of Medicine, St. Louis, MO, USA
| | - Bradley A Krasnick
- Department of Surgery, Washington University School of Medicine, St. Louis, MO, USA
| | - Emily B Rozycki
- Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Gejae G L Jeffers
- Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Julie G Grossman
- Department of Surgery, Washington University School of Medicine, St. Louis, MO, USA
| | - Maureen K Highkin
- Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Cynthia Tang
- Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | | | - Abdallah Eteleeb
- Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Jacqueline Mudd
- Department of Surgery, Washington University School of Medicine, St. Louis, MO, USA
| | - S Peter Goedegebuure
- Department of Surgery, Washington University School of Medicine, St. Louis, MO, USA
| | - Jingqin Luo
- Alvin J. Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO, USA
- Division of Public Health Sciences, Department of Surgery, Washington University School of Medicine, St. Louis, MO, USA
| | - Elaine R Mardis
- Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, OH, USA
| | - Richard K Wilson
- Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, OH, USA
| | - Timothy J Ley
- Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO, USA
- Alvin J. Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO, USA
| | | | - Ryan C Fields
- Alvin J. Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO, USA
- Department of Surgery, Washington University School of Medicine, St. Louis, MO, USA
| | - Christopher A Maher
- Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO, USA.
- Alvin J. Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO, USA.
- The McDonnell Genome Institute, St. Louis, MO, USA.
- Department of Biomedical Engineering, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
73
|
Liu T, Wan Y, Xiao Y, Xia C, Duan G. Dual-Target Inhibitors Based on HDACs: Novel Antitumor Agents for Cancer Therapy. J Med Chem 2020; 63:8977-9002. [PMID: 32320239 DOI: 10.1021/acs.jmedchem.0c00491] [Citation(s) in RCA: 103] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Histone deacetylases (HDACs) play an important role in regulating target gene expression. They have been highlighted as a novel category of anticancer targets, and their inhibition can induce apoptosis, differentiation, and growth arrest in cancer cells. In view of the fact that HDAC inhibitors and other antitumor agents, such as BET inhibitors, topoisomerase inhibitors, and RTK pathway inhibitors, exert a synergistic effect on cellular processes in cancer cells, the combined inhibition of two targets is regarded as a rational strategy to improve the effectiveness of these single-target drugs for cancer treatment. In this review, we discuss the theoretical basis for designing HDAC-involved dual-target drugs and provide insight into the structure-activity relationships of these dual-target agents.
Collapse
Affiliation(s)
- Tingting Liu
- Department of Medicinal Chemistry, School of Pharmacy, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian 271016, Shandong, China
| | - Yichao Wan
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule, Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201, Hunan, China
| | - Yuliang Xiao
- Department of Medicinal Chemistry, School of Pharmacy, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian 271016, Shandong, China
| | - Chengcai Xia
- Department of Medicinal Chemistry, School of Pharmacy, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian 271016, Shandong, China
| | - Guiyun Duan
- Department of Medicinal Chemistry, School of Pharmacy, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian 271016, Shandong, China
| |
Collapse
|
74
|
Arencibia JM, Brindani N, Franco-Ulloa S, Nigro M, Kuriappan JA, Ottonello G, Bertozzi SM, Summa M, Girotto S, Bertorelli R, Armirotti A, De Vivo M. Design, Synthesis, Dynamic Docking, Biochemical Characterization, and in Vivo Pharmacokinetics Studies of Novel Topoisomerase II Poisons with Promising Antiproliferative Activity. J Med Chem 2020; 63:3508-3521. [PMID: 32196342 PMCID: PMC7997578 DOI: 10.1021/acs.jmedchem.9b01760] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
![]()
We
previously reported a first set of hybrid topoisomerase II (topoII)
poisons whose chemical core merges key pharmacophoric elements of
etoposide and merbarone, which are two well-known topoII blockers.
Here, we report on the expansion of this hybrid molecular scaffold
and present 16 more hybrid derivatives that have been designed, synthesized,
and characterized for their ability to block topoII and for their
overall drug-like profile. Some of these compounds act as topoII poison
and exhibit good solubility, metabolic (microsomal) stability, and
promising cytotoxicity in three cancer cell lines (DU145, HeLa, A549).
Compound 3f (ARN24139) is the most promising drug-like
candidate, with a good pharmacokinetics profile in vivo. Our results indicate that this hybrid new chemical class of topoII
poisons deserves further exploration and that 3f is a
favorable lead candidate as a topoII poison, meriting future studies
to test its efficacy in in vivo tumor models.
Collapse
Affiliation(s)
- Jose M Arencibia
- Molecular Modeling and Drug Discovery Lab, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| | - Nicoletta Brindani
- Molecular Modeling and Drug Discovery Lab, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| | - Sebastian Franco-Ulloa
- Molecular Modeling and Drug Discovery Lab, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| | - Michela Nigro
- Molecular Modeling and Drug Discovery Lab, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| | | | - Giuliana Ottonello
- Analytical Chemistry and in Vivo Pharmacology, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| | - Sine Mandrup Bertozzi
- Analytical Chemistry and in Vivo Pharmacology, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| | - Maria Summa
- Analytical Chemistry and in Vivo Pharmacology, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| | - Stefania Girotto
- Molecular Modeling and Drug Discovery Lab, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| | - Rosalia Bertorelli
- Analytical Chemistry and in Vivo Pharmacology, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| | - Andrea Armirotti
- Analytical Chemistry and in Vivo Pharmacology, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| | - Marco De Vivo
- Molecular Modeling and Drug Discovery Lab, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| |
Collapse
|
75
|
'Acridines' as New Horizons in Antifungal Treatment. Molecules 2020; 25:molecules25071480. [PMID: 32218216 PMCID: PMC7180854 DOI: 10.3390/molecules25071480] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 03/20/2020] [Accepted: 03/23/2020] [Indexed: 12/11/2022] Open
Abstract
Frequent fungal infections in immunocompromised patients and mortality due to invasive mycosis are important clinical problems. Opportunistic pathogenic Candida species remain one of the leading causes of systemic mycosis worldwide. The repertoire of antifungal chemotherapeutic agents is very limited. Although new antifungal drugs such as lanosterol 14α-demethylase and β-glucan synthase inhibitors have been introduced into clinical practice, the development of multidrug resistance has become increasingly significant. The urgency to expand the range of therapeutic options for the treatment of fungal infections has led researchers in recent decades to seek alternative antifungal targets to the conventional ones currently used. Among them, many compounds containing an acridine scaffold have been synthesized and tested. In this review, the applicability of acridines and their functional analogues acridones as antifungal agents is described. Acridine derivatives usage in photoantifungal chemotherapy, interactions with fungal transporters resulting in modulation of efflux/influx pumps and the effect of acridine derivatives on fungal topoisomerases are discussed. This article explores new perspectives on the mechanisms of antifungal acridine-peptide conjugates and acridine-based hybrid molecules to effectively combat fungal infections.
Collapse
|
76
|
Hwang JK, Moinuddin SG, Davin LB, Lewis NG. Pinoresinol‐lariciresinol reductase: Substrate versatility, enantiospecificity, and kinetic properties. Chirality 2020; 32:770-789. [DOI: 10.1002/chir.23218] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 02/24/2020] [Indexed: 11/11/2022]
Affiliation(s)
- Julianne K. Hwang
- Institute of Biological ChemistryWashington State University Pullman Washington
| | - Syed G.A. Moinuddin
- Institute of Biological ChemistryWashington State University Pullman Washington
| | - Laurence B. Davin
- Institute of Biological ChemistryWashington State University Pullman Washington
| | - Norman G. Lewis
- Institute of Biological ChemistryWashington State University Pullman Washington
| |
Collapse
|
77
|
Cheng J, Zhao W, Yao H, Shen Y, Zhang Y, Li YZ, QI Q, Wongprasert K, Tang YJ. Discovery of 4,6-O-Thenylidene-β-d-glucopyranoside-(2″-acetamido, 3″-acetyl-di-S-5-fluorobenzothizole/5-fluorobenzoxazole)-4′-demethylepipodophyllotoxin as Potential Less Toxic Antitumor Candidate Drugs by Reducing DNA Damage and Less Inhibition of PI3K. J Med Chem 2020; 63:2877-2893. [DOI: 10.1021/acs.jmedchem.9b01354] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Jie Cheng
- Hubei Key Laboratory of Industrial Microbiology, Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan 430068, China
| | - Wei Zhao
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Hui Yao
- Hubei Key Laboratory of Industrial Microbiology, Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan 430068, China
| | - Yuemao Shen
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Youming Zhang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Yue-zhong Li
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Qingsheng QI
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Kanokpan Wongprasert
- Department of Anatomy, Faculty of Science, Mahidol University, Rama Sixth Road, Bangkok 10400, Thailand
| | - Ya-Jie Tang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| |
Collapse
|
78
|
Kou F, Sun H, Wu L, Li B, Zhang B, Wang X, Yang L. TOP2A Promotes Lung Adenocarcinoma Cells' Malignant Progression and Predicts Poor Prognosis in Lung Adenocarcinoma. J Cancer 2020; 11:2496-2508. [PMID: 32201520 PMCID: PMC7066024 DOI: 10.7150/jca.41415] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 01/22/2020] [Indexed: 12/18/2022] Open
Abstract
Background: Topoisomerase IIA (TOP2A) gene encodes DNA topoisomerase enzyme and has been reported that TOP2A is broadly expressed in many types of cancers. Our study aims to investigate the prognostic effect of TOP2A on lung adenocarcinoma (LUAD) and the potential molecular mechanism of TOP2A to tumorigenesis. Methods: Bioinformatical analysis, real-time PCR and Western blot were applied to explore the expression level of TOP2A. Kaplan-Meier survival analysis was used to evaluate the effect of TOP2A on patients' prognosis. Cell proliferation, migration and invasion ability were examined by colony-formation, Cell Counting Kit-8 (CCK8) assay, wound healing assay and transwell invasion assay, respectively. Results: We firstly investigated differentially expressed genes in lung adenocarcinoma and normal tissues of GEO (tumor = 666, normal = 184) and TCGA (tumor = 517, normal = 59) and these data showed that TOP2A is broadly expressed in LUAD and the expression level of TOP2A is associated with poor prognosis, which indicated that TOP2A is an upregulated prognostic related gene in LUAD. Then we identified that the expression level of TOP2A was upregulated in both surgically removed lung cancer tissues and lung cancer cell lines. Knockdown of TOP2A in A549 and GLC82 cells inhibited cell proliferation, migration and invasion. Inhibition of TOP2A reduced the expression levels of CCNB1 and CCNB2, which indicated that TOP2A targeting CCNB1 and CCNB2 promotes GLC82 and A549 cells proliferation and metastasis. Conclusions: Our study revealed an important role of TOP2A in LUAD, and may provide a potential prognostic indicator and target for cancer therapy.
Collapse
Affiliation(s)
- Fan Kou
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,National Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Houfang Sun
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,National Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Lei Wu
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,National Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Baihui Li
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,National Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Bailu Zhang
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,National Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Xuezhou Wang
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,National Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Lili Yang
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,National Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China
| |
Collapse
|
79
|
Ceramella J, Mariconda A, Iacopetta D, Saturnino C, Barbarossa A, Caruso A, Rosano C, Sinicropi MS, Longo P. From coins to cancer therapy: Gold, silver and copper complexes targeting human topoisomerases. Bioorg Med Chem Lett 2019; 30:126905. [PMID: 31874823 DOI: 10.1016/j.bmcl.2019.126905] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 12/07/2019] [Accepted: 12/09/2019] [Indexed: 02/07/2023]
Abstract
Cancer is a complex issue and, even though the prevention basics and therapy have been implemented, it is still the second leading death cause worldwide. With the hope to discover new powerful and safer molecules to fight cancer, many researchers focused their attention on metal-based compounds, starting from the most famous and successfully employed anticancer drug, i.e. cisplatin. The current article aims to report the most recent discoveries about the use of gold, silver and copper complexes as antitumor agents, highlighting their influences on important enzymes, namely human topoisomerases. The latter are fundamental for the cell life and, if overexpressed, strongly implicated in cancer onset and progression. The identification of lead complexes targeting human topoisomerases and gifted with the appropriate chemical and pharmacological properties represents a fecund starting point to obtain new and more effective anticancer molecules.
Collapse
Affiliation(s)
- Jessica Ceramella
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, CS, Italy
| | | | - Domenico Iacopetta
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, CS, Italy.
| | - Carmela Saturnino
- Department of Science, University of Basilicata, 85100 Potenza, Italy
| | - Alexia Barbarossa
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, CS, Italy
| | - Anna Caruso
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, CS, Italy
| | - Camillo Rosano
- Biopolymers and Proteomics IRCCS, Ospedale Policlinico San Martino - IST, 16132 Genova, Italy
| | - Maria Stefania Sinicropi
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, CS, Italy
| | - Pasquale Longo
- Department of Biology and Chemistry, University of Salerno, 84084 Fisciano, Italy
| |
Collapse
|
80
|
Pedatella S, Cerchia C, Manfra M, Cioce A, Bolognese A, Lavecchia A. Antitumor agents 7. Synthesis, antiproliferative activity and molecular modeling of new l-lysine-conjugated pyridophenoxazinones as potent DNA-binding ligands and topoisomerase IIα inhibitors. Eur J Med Chem 2019; 187:111960. [PMID: 31869654 DOI: 10.1016/j.ejmech.2019.111960] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 11/20/2019] [Accepted: 12/09/2019] [Indexed: 01/24/2023]
Abstract
A series of l-lysine-conjugated pyridophenoxazinones 2-5 and 2'-5' were designed and synthesized for developing compounds with multimodal anticancer potentialities. All compounds inhibited the proliferation of a panel of human liquid and solid neoplastic cell lines. 2 and 5 were the most active compounds with IC50 values in the submicromolar range. UV-vis, 1H NMR, unwinding, and docking experiments demonstrated that they intercalate between the middle 5'-GC-3' base pairs with the carboxamide side chain lying into major groove. Charge-transfer contribution to the complex stability, evaluated by ab initio calculations, was found to correlate with cytotoxicity. Relaxation and cleavage assays showed that 2 and 5 selectively target Topo IIα over Topo IIβ and stimulate the formation of covalent Topo II-DNA complexes, functioning as poisons. Moreover, compound 5 induced DNA damage and arrested MCF-7 cells at the G2/M phase. Altogether, the work provides interesting structure-activity relationships in the pyridophenoxazinone-l-lysine conjugate series and identifies 5 as a promising candidate for further in vivo evaluation.
Collapse
Affiliation(s)
- Silvana Pedatella
- Department of Chemical Sciences, University of Naples Federico II, via Cynthia 6, Monte Sant'Angelo, 80126, Naples, Italy
| | - Carmen Cerchia
- Department of Pharmacy, "Drug Discovery" Laboratory, University of Naples Federico II, via D. Montesano 49, 80131, Naples, Italy
| | - Michele Manfra
- Department of Science, University of Basilicata, viale dell'Ateneo Lucano 10, 85100, Potenza, Italy.
| | - Anna Cioce
- Department of Glycotechnology, CIC biomaGUNE, Paseo Miramón 182, 20009, San Sebastián, Spain
| | - Adele Bolognese
- Department of Chemical Sciences, University of Naples Federico II, via Cynthia 6, Monte Sant'Angelo, 80126, Naples, Italy
| | - Antonio Lavecchia
- Department of Pharmacy, "Drug Discovery" Laboratory, University of Naples Federico II, via D. Montesano 49, 80131, Naples, Italy.
| |
Collapse
|
81
|
Stanković T, Dinić J, Podolski-Renić A, Musso L, Burić SS, Dallavalle S, Pešić M. Dual Inhibitors as a New Challenge for Cancer Multidrug Resistance Treatment. Curr Med Chem 2019; 26:6074-6106. [PMID: 29874992 DOI: 10.2174/0929867325666180607094856] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 05/28/2018] [Accepted: 05/28/2018] [Indexed: 12/23/2022]
Abstract
BACKGROUND Dual-targeting in cancer treatment by a single drug is an unconventional approach in relation to drug combinations. The rationale for the development of dualtargeting agents is to overcome incomplete efficacy and drug resistance frequently present when applying individual targeting agents. Consequently, -a more favorable outcome of cancer treatment is expected with dual-targeting strategies. METHODS We reviewed the literature, concentrating on the association between clinically relevant and/or novel dual inhibitors with the potential to modulate multidrug resistant phenotype of cancer cells, particularly the activity of P-glycoprotein. A balanced analysis of content was performed to emphasize the most important findings and optimize the structure of this review. RESULTS Two-hundred and forty-five papers were included in the review. The introductory part was interpreted by 9 papers. Tyrosine kinase inhibitors' role in the inhibition of Pglycoprotein and chemosensitization was illustrated by 87 papers. The contribution of naturalbased compounds in overcoming multidrug resistance was reviewed using 92 papers, while specific dual inhibitors acting against microtubule assembling and/or topoisomerases were described with 55 papers. Eleven papers gave an insight into a novel and less explored approach with hybrid drugs. Their influence on P-glycoprotein and multidrug resistance was also evaluated. CONCLUSION These findings bring into focus rational anticancer strategies with dual-targeting agents. Most evaluated synthetic and natural drugs showed a great potential in chemosensitization. Further steps in this direction are needed for the optimization of anticancer treatment.
Collapse
Affiliation(s)
- Tijana Stanković
- Department of Neurobiology, Institute for Biological Research "Sinisa Stankovic", University of Belgrade, Belgrade, Serbia
| | - Jelena Dinić
- Department of Neurobiology, Institute for Biological Research "Sinisa Stankovic", University of Belgrade, Belgrade, Serbia
| | - Ana Podolski-Renić
- Department of Neurobiology, Institute for Biological Research "Sinisa Stankovic", University of Belgrade, Belgrade, Serbia
| | - Loana Musso
- DeFENS, Department of Food, Environmental and Nutritional Sciences, Universita degli Studi di Milano, Milano, Italy
| | - Sonja Stojković Burić
- Department of Neurobiology, Institute for Biological Research "Sinisa Stankovic", University of Belgrade, Belgrade, Serbia
| | - Sabrina Dallavalle
- DeFENS, Department of Food, Environmental and Nutritional Sciences, Universita degli Studi di Milano, Milano, Italy
| | - Milica Pešić
- Department of Neurobiology, Institute for Biological Research "Sinisa Stankovic", University of Belgrade, Belgrade, Serbia
| |
Collapse
|
82
|
Grenda A, Błach J, Szczyrek M, Krawczyk P, Nicoś M, Kuźnar Kamińska B, Jakimiec M, Balicka G, Chmielewska I, Batura-Gabryel H, Sawicki M, Milanowski J. Promoter polymorphisms of TOP2A and ERCC1 genes as predictive factors for chemotherapy in non-small cell lung cancer patients. Cancer Med 2019; 9:605-614. [PMID: 31797573 PMCID: PMC6970032 DOI: 10.1002/cam4.2743] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 10/29/2019] [Accepted: 11/15/2019] [Indexed: 12/11/2022] Open
Abstract
Background Topoisomerase 2‐alpha (TOP2A) is an enzyme that controls topologic changes in DNA during transcription and replication. ERCC1 is an enzyme that takes part in DNA repair processes. The purpose of this study was to assess the predictive role of particular single nucleotide polymorphisms (SNPs) in the promoter regions of TOP2A and ERCC1 genes in non‐small cell lung cancer patients (NSCLC) treated with chemotherapy. Materials and methods We enrolled 113 NSCLC patients treated in the first line with platinum‐based chemotherapy. Effectiveness was available for 71 patients. DNA was isolated from whole blood using the Qiamp DNA Blood Mini kit (Qiagen). We examined five SNPs: rs11615 (ERCC1), rs3212986 (ERCC1), rs13695 (TOP2A), rs34300454 (TOP2A), rs11540720 (TOP2A). Quantitative PCR using the TaqMan probe (ThermoFisher) was performed on a Eco Illumina Real‐Time PCR system device (Illumina Inc). Results Patients with the A/A genotype in rs11615 of the ERCC1 gene had significantly longer median progression free survival (PFS) (8.5 months; P = .0088). Patients with the C/C genotype in rs3212986 of the ERCC1 gene had longer median PFS (7 months; P = .05). Patients with the C/C genotype in rs34300454 of TOP2A gene had significantly higher median PFS (7.5 months; P = .0029). Carriers of the C/C genotype in rs34300454 of the TOP2A gene had significantly longer median OS (15.5 months; P = .0017). Patients with the A/A genotype in rs11615 of the ERCC1 gene had significantly higher risk of neutropenia (P = .0133). Conclusions Polymorphisms of the TOP2A and ERCC1 genes may be a predictive factor of toxicities and survival for chemotherapy in NSCLC patients.
Collapse
Affiliation(s)
- Anna Grenda
- Department of Pneumonology, Oncology and Allergology, Medical University of Lublin, Lublin, Poland
| | - Justyna Błach
- Department of Pneumonology, Oncology and Allergology, Medical University of Lublin, Lublin, Poland.,Department of Clinical Immunology, Medical University of Lublin, Lublin, Poland
| | - Michał Szczyrek
- Department of Pneumonology, Oncology and Allergology, Medical University of Lublin, Lublin, Poland
| | - Paweł Krawczyk
- Department of Pneumonology, Oncology and Allergology, Medical University of Lublin, Lublin, Poland
| | - Marcin Nicoś
- Department of Pneumonology, Oncology and Allergology, Medical University of Lublin, Lublin, Poland.,Science for Life Laboratory, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Barbara Kuźnar Kamińska
- Department of Pulmonology, Allergology and Respiratory Oncology, University of Medical Sciences in Poznań, Poznań, Poland
| | - Monika Jakimiec
- Department of Pneumonology, Oncology and Allergology, Medical University of Lublin, Lublin, Poland
| | - Grażyna Balicka
- Department of Thoracic Surgery, Medical University of Lublin, Lublin, Poland
| | - Izabela Chmielewska
- Department of Pneumonology, Oncology and Allergology, Medical University of Lublin, Lublin, Poland
| | - Halina Batura-Gabryel
- Department of Pulmonology, Allergology and Respiratory Oncology, University of Medical Sciences in Poznań, Poznań, Poland
| | - Marek Sawicki
- Department of Thoracic Surgery, Medical University of Lublin, Lublin, Poland
| | - Janusz Milanowski
- Department of Pneumonology, Oncology and Allergology, Medical University of Lublin, Lublin, Poland
| |
Collapse
|
83
|
Almansour AI, Kumar RS, Arumugam N, Bianchini G, Menéndez JC, Mohammad F, Dupadahalli K, Altaf M. D-Ring-Modified Analogues of Luotonin A with Reduced Planarity: Design, Synthesis, and Evaluation of Their Topoisomerase Inhibition-Associated Cytotoxicity. BIOMED RESEARCH INTERNATIONAL 2019; 2019:2514524. [PMID: 31815127 PMCID: PMC6877907 DOI: 10.1155/2019/2514524] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 10/14/2019] [Indexed: 11/22/2022]
Abstract
A- and D-ring-modified luotonin-inspired heterocycles have been synthesized and were evaluated for their activity against the viability of four cancer cell lines in vitro, namely, MCF7, HCT116, JURKAT, and NCI-H460. The analysis of results indicated that two of the synthesized derivatives displayed good inhibition against the growth of the human colon cancer HCT116 cell line, with potencies lower than but in the same order of magnitude as camptothecin (CPT). These two luotonin analogues also showed an activity similar to that of the highly potent alkaloid CPT as inhibitors of topoisomerase I and also inhibited topoisomerase II. These results show that complete planarity is not a strict requirement for topoisomerase inhibition by luotonin-related compounds, paving the way to the design of analogues with improved solubility.
Collapse
Affiliation(s)
- Abdulrahman I. Almansour
- Department of Chemistry, College of Science, King Saud University, P. O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Raju Suresh Kumar
- Department of Chemistry, College of Science, King Saud University, P. O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Natarajan Arumugam
- Department of Chemistry, College of Science, King Saud University, P. O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Giulia Bianchini
- Unidad de Química Orgánica y Farmacéutica, Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense, 28040 Madrid, Spain
| | - J. Carlos Menéndez
- Unidad de Química Orgánica y Farmacéutica, Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense, 28040 Madrid, Spain
| | - Faruq Mohammad
- Surfactants Research Chair, Department of Chemistry, College of Science, King Saud University, P. O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Kotresha Dupadahalli
- Department of Botany, Davangere University, Shivagangothri, Davangere 577007, Karnataka, India
| | - Mohammad Altaf
- Department of Chemistry, College of Science, King Saud University, P. O. Box 2455, Riyadh 11451, Saudi Arabia
- Central Laboratory, College of Science, King Saud University, P. O. Box 2455, Riyadh 11451, Saudi Arabia
| |
Collapse
|
84
|
Li L, Shi H, Sheng A, Yang Y, Shi L, Li C, Li G. A novel method to engineer proteases for selective enzyme inhibition. Chem Commun (Camb) 2019; 55:14039-14042. [PMID: 31690924 DOI: 10.1039/c9cc08085f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this work, we have proposed a new strategy to expand the function of a protein. By taking a protease as an example, it can be engineered to make up the shortcoming of natural proteases, and thus it can efficiently and selectively hydrolyze a desired protein even in a complex biological fluid.
Collapse
Affiliation(s)
- Lingling Li
- Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China.
| | - Hai Shi
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, P. R. China.
| | - Anzhi Sheng
- Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China.
| | - Yi Yang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, P. R. China.
| | - Liu Shi
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, P. R. China.
| | - Chao Li
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, P. R. China. and School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui 230009, P. R. China
| | - Genxi Li
- Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China. and State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, P. R. China.
| |
Collapse
|
85
|
Menezes JC, Diederich MF. Natural dimers of coumarin, chalcones, and resveratrol and the link between structure and pharmacology. Eur J Med Chem 2019; 182:111637. [DOI: 10.1016/j.ejmech.2019.111637] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 08/19/2019] [Accepted: 08/20/2019] [Indexed: 02/07/2023]
|
86
|
Skok Ž, Zidar N, Kikelj D, Ilaš J. Dual Inhibitors of Human DNA Topoisomerase II and Other Cancer-Related Targets. J Med Chem 2019; 63:884-904. [DOI: 10.1021/acs.jmedchem.9b00726] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Žiga Skok
- Faculty of Pharmacy, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Nace Zidar
- Faculty of Pharmacy, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Danijel Kikelj
- Faculty of Pharmacy, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Janez Ilaš
- Faculty of Pharmacy, University of Ljubljana, 1000 Ljubljana, Slovenia
| |
Collapse
|
87
|
Kuriappan JA, Osheroff N, De Vivo M. Smoothed Potential MD Simulations for Dissociation Kinetics of Etoposide To Unravel Isoform Specificity in Targeting Human Topoisomerase II. J Chem Inf Model 2019; 59:4007-4017. [PMID: 31449404 PMCID: PMC6800198 DOI: 10.1021/acs.jcim.9b00605] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
![]()
Human
type II topoisomerases (TopoII) are essential for controlling
DNA topology within the cell. For this reason, there are a number
of TopoII-targeted anticancer drugs that act by inducing DNA cleavage
mediated by both TopoII isoforms (TopoIIα and TopoIIβ)
in cells. However, recent studies suggest that specific poisoning
of TopoIIα may be a safer strategy for treating cancer. This
is because poisoning of TopoIIβ appears to be linked to the
generation of secondary leukemia in patients. We recently reported
that enzyme-mediated DNA cleavage complexes (in which TopoII is covalently
linked to the cleaved DNA during catalysis) formed in the presence
of the anticancer drug etoposide persisted approximately 3-fold longer
with TopoIIα than TopoIIβ. Notably, enhanced drug-target
residence time may reduce the adverse effects of specific TopoIIα
poisons. However, it is still not clear how to design drugs that are
specific for the α isoform. In this study, we report the results
of classical molecular dynamics (MD) simulations to comparatively
analyze the molecular interactions formed within the TopoII/DNA/etoposide
complex with both isoforms. We also used smoothed potential MD to
estimate etoposide dissociation kinetics from the two isoform complexes.
These extensive classical and enhanced sampling simulations revealed
stabilizing interactions of etoposide with two serine residues (Ser763
and Ser800) in TopoIIα. These interactions are missing in TopoIIβ,
where both amino acids are alanine residues. This may explain the
greater persistence of etoposide-stabilized cleavage complexes formed
with Topo TopoIIα. These findings could be useful for the rational
design of specific TopoIIα poisons.
Collapse
Affiliation(s)
- Jissy A Kuriappan
- Laboratory of Molecular Modeling and Drug Discovery , Istituto Italiano di Tecnologia , Via Morego 30 , 16163 Genova , Italy
| | - Neil Osheroff
- Department of Biochemistry , Vanderbilt University School of Medicine , Nashville , Tennessee 37232-0146 , United States.,Department of Medicine (Hematology/Oncology) , Vanderbilt University School of Medicine , Nashville , Tennessee 37232-6307 , United States.,VA Tennessee Valley Healthcare System , Nashville , Tennessee 37212 , United States
| | - Marco De Vivo
- Laboratory of Molecular Modeling and Drug Discovery , Istituto Italiano di Tecnologia , Via Morego 30 , 16163 Genova , Italy
| |
Collapse
|
88
|
Xu J, Li L, Shi H, Feng C, Sheng A, Li C, Li G. Fabrication of gold nanoparticle@protease for cancer therapy and disinfection. INORG CHEM COMMUN 2019. [DOI: 10.1016/j.inoche.2019.107456] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
89
|
Liu J, Qu L, Meng L, Shou C. Topoisomerase inhibitors promote cancer cell motility via ROS-mediated activation of JAK2-STAT1-CXCL1 pathway. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2019; 38:370. [PMID: 31438997 PMCID: PMC6704639 DOI: 10.1186/s13046-019-1353-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 08/01/2019] [Indexed: 12/22/2022]
Abstract
Background Topoisomerase inhibitors (TI) can inhibit cell proliferation by preventing DNA replication, stimulating DNA damage and inducing cell cycle arrest. Although these agents have been commonly used in the chemotherapy for the anti-proliferative effect, their impacts on the metastasis of cancer cells remain obscure. Methods We used the transwell chamber assay to test effects of Topoisomerase inhibitors Etoposide (VP-16), Adriamycin (ADM) and Irinotecan (CPT-11) on the migration and invasion of cancer cells. Conditioned medium (CM) from TI-treated cells was subjected to Mass spectrometry screening. Gene silencing, neutralizing antibody, and specific chemical inhibitors were used to validate the roles of signaling molecules. Results Our studies disclosed that TI could promote the migration and invasion of a subset of cancer cells, which were dependent on chemokine (C-X-C motif) ligand 1 (CXCL1). Further studies disclosed that TI enhanced phosphorylation of Janus kinase 2 (JAK2) and Signal transducers and activators of transcription 1 (STAT1). Silencing or chemical inhibition of JAK2 or STAT1 abrogated TI-induced CXCL1 expression and cell motility. Moreover, TI increased cellular levels of reactive oxygen species (ROS) and promoted oxidation of Protein Tyrosine Phosphatase 1B (PTP1B), while reduced glutathione (GSH) reversed TI-induced JAK2-STAT1 activation, CXCL1 expression, and cell motility. Conclusions Our study demonstrates that TI can promote the expression and secretion of CXCL1 by elevating ROS, inactivating PTP1B, and activating JAK2-STAT1 signaling pathway, thereby promoting the motility of cancer cells. Electronic supplementary material The online version of this article (10.1186/s13046-019-1353-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jiafei Liu
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Biochemistry and Molecular Biology, Peking University Cancer Hospital and Institute, 52 Fucheng Road, Beijing, 100142, China
| | - Like Qu
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Biochemistry and Molecular Biology, Peking University Cancer Hospital and Institute, 52 Fucheng Road, Beijing, 100142, China
| | - Lin Meng
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Biochemistry and Molecular Biology, Peking University Cancer Hospital and Institute, 52 Fucheng Road, Beijing, 100142, China
| | - Chengchao Shou
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Biochemistry and Molecular Biology, Peking University Cancer Hospital and Institute, 52 Fucheng Road, Beijing, 100142, China.
| |
Collapse
|
90
|
Paidakula S, Nerella S, Vadde R, Kamal A, Kankala S. Design and synthesis of 4β-Acetamidobenzofuranone-podophyllotoxin hybrids and their anti-cancer evaluation. Bioorg Med Chem Lett 2019; 29:2153-2156. [PMID: 31281022 DOI: 10.1016/j.bmcl.2019.06.060] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 06/03/2019] [Accepted: 06/28/2019] [Indexed: 11/28/2022]
Abstract
A new series of amide derivatives of 4β-Acetamidobenzofuranone-podophyllotoxin hybrids (14a-g) were synthesized and their chemical structures were confirmed by 1H, 13C NMR and mass spectral data. Further, all the synthesized Acetamidobenzofuranone-podophyllotoxin hybrids were evaluated for in vitro cytotoxic activity against a panel of four human cancer cell lines i.e., human breast (MCF-7, MDA MB-231), lung (A549), and prostrate (DU-145). Among benzofuranone-podophyllotoxin hybrid compounds, 14b and 14e were exhibited more potent activity than standard drug and 14c and 14f were showed anticancer activity equivalent to etoposide.
Collapse
Affiliation(s)
- Suresh Paidakula
- Department of Chemistry, Kakatiya University, Warangal 506009, India; Centre for Semio Chemicals, CSIR-Indian Institute of Chemical Technology (IICT), Hyderabad 500007, India.
| | - Srinivas Nerella
- Department of Chemistry, Kakatiya University, Warangal 506009, India
| | - Ravinder Vadde
- Department of Chemistry, Kakatiya University, Warangal 506009, India
| | - Ahmed Kamal
- Centre for Semio Chemicals, CSIR-Indian Institute of Chemical Technology (IICT), Hyderabad 500007, India; School of Pharmaceutical Education and Research (SPER), Jamia Hamdard, New Delhi 110062, India
| | | |
Collapse
|
91
|
Translational role of natural coumarins and their derivatives as anticancer agents. Future Med Chem 2019; 11:1057-1082. [PMID: 31140865 DOI: 10.4155/fmc-2018-0375] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Natural coumarins and their derivatives isolated from various plants or microorganisms have inherent antioxidant, antibacterial, antifungal, antiviral and anticancer properties among many biological activities. Some of these coumarins and their derivatives lead to self-programmed cancer cell death (apoptosis) via different mechanisms, which will be discussed. The link between bacterial and viral infections to cancer compels us to highlight fascinating reports from coumarin isolation from microorganisms; comment on the recent bioavailability studies of natural or derived coumarins; and discuss our perspectives with respect to bioisosterism in coumarins, p-glycoprotein inhibition and covalent modification, and bioprobes. Overall, this review hopes to stimulate and offer in particular medicinal chemists and the reader in general an outlook on natural coumarins and their derivatives with potential for cancer therapy.
Collapse
|
92
|
Bergant K, Janežič M, Valjavec K, Sosič I, Pajk S, Štampar M, Žegura B, Gobec S, Filipič M, Perdih A. Structure-guided optimization of 4,6-substituted-1,3,5-triazin-2(1H)-ones as catalytic inhibitors of human DNA topoisomerase IIα. Eur J Med Chem 2019; 175:330-348. [PMID: 31096154 DOI: 10.1016/j.ejmech.2019.04.055] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 04/19/2019] [Indexed: 01/03/2023]
Abstract
Human DNA topoisomerases represent one of the key targets of modern chemotherapy. An emerging group of catalytic inhibitors of human DNA topoisomerase IIα comprises a new paradigm directed to circumvent the known limitations of topoisomerase II poisons such as cardiotoxicity and induction of secondary tumors. In our previous studies, 4,6-substituted-1,3,5-triazin-2(1H)-ones were discovered as catalytic inhibitors of topo IIα. Here, we report the results of our efforts to optimize several properties of the initial chemical series that did not exhibit cytotoxicity on cancer cell lines. Using an optimized synthetic route, a focused chemical library was designed aimed at further functionalizing substituents at the position 4 of the 1,3,5-triazin-2(1H)-one scaffold to enable additional interactions with the topo IIα ATP binding site. After virtual screening, selected 36 analogues were synthesized and experimentally evaluated for human topo IIα inhibition. The optimized series displayed improved inhibition of topo IIα over the initial series and the catalytic mode of inhibition was confirmed for the selected active compounds. The optimized series also showed cytotoxicity against HepG2 and MCF-7 cell lines and did not induce double-strand breaks, thus displaying a mechanism of action that differs from the topo II poisons on the cellular level. The new series represents a new step in the development of the 4,6-substituted-1,3,5-triazin-2(1H)-one class towards novel efficient anticancer therapies utilizing the catalytic topo IIα inhibition paradigm.
Collapse
Affiliation(s)
- Kaja Bergant
- National Institute of Chemistry, Hajdrihova 19, SI 1001, Ljubljana, Slovenia; University of Ljubljana, Faculty of Pharmacy, Aškerčeva 7, SI 1000, Ljubljana, Slovenia
| | - Matej Janežič
- Laboratory for Structural Bioinformatics, RIKEN Center for Biosystems Dynamics Research, 1-7-22 Suehiro, Tsurumi, Yokohama, Kanagawa, 230-0045, Japan
| | - Katja Valjavec
- National Institute of Chemistry, Hajdrihova 19, SI 1001, Ljubljana, Slovenia
| | - Izidor Sosič
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva 7, SI 1000, Ljubljana, Slovenia
| | - Stane Pajk
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva 7, SI 1000, Ljubljana, Slovenia
| | - Martina Štampar
- National Institute of Biology, Department of Genetic Toxicology and Cancer Biology, Večna pot 111, 1000, Ljubljana, Slovenia
| | - Bojana Žegura
- National Institute of Biology, Department of Genetic Toxicology and Cancer Biology, Večna pot 111, 1000, Ljubljana, Slovenia
| | - Stanislav Gobec
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva 7, SI 1000, Ljubljana, Slovenia
| | - Metka Filipič
- National Institute of Biology, Department of Genetic Toxicology and Cancer Biology, Večna pot 111, 1000, Ljubljana, Slovenia
| | - Andrej Perdih
- National Institute of Chemistry, Hajdrihova 19, SI 1001, Ljubljana, Slovenia.
| |
Collapse
|
93
|
Macieja A, Kopa P, Galita G, Pastwa E, Majsterek I, Poplawski T. Comparison of the effect of three different topoisomerase II inhibitors combined with cisplatin in human glioblastoma cells sensitized with double strand break repair inhibitors. Mol Biol Rep 2019; 46:3625-3636. [PMID: 31020489 DOI: 10.1007/s11033-019-04605-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 01/16/2019] [Indexed: 12/14/2022]
Abstract
Topoisomerase II (Topo2) inhibitors in combination with cisplatin represent a common treatment modality used for glioma patients. The main mechanism of their action involves induction of DNA double-strand breaks (DSBs). DSBs are repaired via the homology-dependent DNA repair (HRR) and non-homologous end-joining (NHEJ). Inhibition of the NHEJ or HRR pathway sensitizes cancer cells to the treatment. In this work, we investigated the effect of three Topo2 inhibitors-etoposide, NK314, or HU-331 in combination with cisplatin in the U-87 human glioblastoma cell line. Etoposide as well as NK314 inhibited Topo2 activity by stabilizing Topo2-DNA cleavable complexes whereas HU-331 inhibited the ATPase activity of Topo2 using a noncompetitive mechanism. To increase the effectiveness of the treatment, we combined cisplatin and Topo2 inhibitor treatment with DSB repair inhibitors (DRIs). The cells were sensitized with NHEJ inhibitor, NU7441, or the novel HRR inhibitor, YU238259, prior to drug treatment. All of the investigated Topo2 inhibitors in combination with cisplatin efficiently killed the U-87 cells. The most cytotoxic effect was observed for the cisplatin + HU331 treatment scheme and this effect was significantly increased when a DRI pretreatment was used; however, we did not observed DSBs. Therefore, the molecular mechanism of cytotoxicity caused by the cisplatin + HU331 treatment scheme is yet to be evaluated. We observed a concentration-dependent change in DSB levels and accumulation at the G2/M checkpoint and S-phase in glioma cells incubated with NK314/cisplatin and etoposide/cisplatin. In conclusion, in combination with cisplatin, HU331 is the most potent Topo2 inhibitor of human glioblastoma cells.
Collapse
Affiliation(s)
- Anna Macieja
- Department of Molecular Genetics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, Lodz, 90-236, Poland.
| | - Paulina Kopa
- Department of Immunopathology, Medical University of Lodz, Żeligowskiego 7/9, Lodz, 90-752, Poland
| | - Grzegorz Galita
- Department of Molecular Genetics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, Lodz, 90-236, Poland
| | - Elżbieta Pastwa
- Functional Genomics & Proteomics Unit, ITSI-Biosciences, 633, Napoleon Street, Johnstown, PA, 15901, USA
| | - Ireneusz Majsterek
- Department of Clinical Chemistry and Biochemistry, Faculty of Medicine, Medical University of Lodz, Hallera 1, Lodz, 90-647, Poland
| | - Tomasz Poplawski
- Department of Molecular Genetics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, Lodz, 90-236, Poland
| |
Collapse
|
94
|
Yang C, Xie Q, Zeng X, Tao N, Xu Y, Chen Y, Wang J, Zhang L. Novel hybrids of podophyllotoxin and formononetin inhibit the growth, migration and invasion of lung cancer cells. Bioorg Chem 2019; 85:445-454. [DOI: 10.1016/j.bioorg.2019.02.019] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Revised: 01/22/2019] [Accepted: 02/06/2019] [Indexed: 10/27/2022]
|
95
|
Su MX, Zhang LL, Huang ZJ, Shi JJ, Lu JJ. Investigational Hypoxia-Activated Prodrugs: Making Sense of Future Development. Curr Drug Targets 2019; 20:668-678. [DOI: 10.2174/1389450120666181123122406] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 11/12/2018] [Accepted: 11/16/2018] [Indexed: 01/04/2023]
Abstract
Hypoxia, which occurs in most cancer cases, disrupts the efficacy of anticarcinogens. Fortunately,
hypoxia itself is a potential target for cancer treatment. Hypoxia-activated prodrugs (HAPs)
can be selectively activated by reductase under hypoxia. Some promising HAPs have been already
achieved, and many clinical trials of HAPs in different types of cancer are ongoing. However, none of
them has been approved in clinic to date. From the studies on HAPs began, some achievements are
obtained but more challenges are put forward. In this paper, we reviewed the research progress of
HAPs to discuss the strategies for HAPs development. According to the research status and results of
these studies, administration pattern, reductase activity, and patient selection need to be taken into
consideration to further improve the efficacy of existing HAPs. As the requirement of new drug research
and development, design of optimal preclinical models and clinical trials are quite important in
HAPs development, while different drug delivery systems and anticancer drugs with different mechanisms
can be sources of novel HAPs.
Collapse
Affiliation(s)
- Min-Xia Su
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Le-Le Zhang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Zhang-Jian Huang
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing, China
| | - Jia-Jie Shi
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Jin-Jian Lu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| |
Collapse
|
96
|
Delgado JL, Lentz SRC, Kulkarni CA, Chheda PR, Held HA, Hiasa H, Kerns RJ. Probing structural requirements for human topoisomerase I inhibition by a novel N1-Biphenyl fluoroquinolone. Eur J Med Chem 2019; 172:109-130. [PMID: 30959322 DOI: 10.1016/j.ejmech.2019.03.040] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 03/13/2019] [Accepted: 03/16/2019] [Indexed: 11/28/2022]
Abstract
Fluoroquinolones substituted with N-1 biphenyl and napthyl groups were discovered to act as catalytically inhibitors of human topoisomerases I and II, and to possess anti-proliferative activity in vivo. Structural requirements for these novel quinolones to inhibit catalytic activity of human topoisomerase I have not been explored. In this work novel derivatives of the N-1 biphenyl fluoroquinolone were designed, synthesized and evaluated to understand structural requirements of the C-3 carboxylic acid, C-6 fluorine, C-7 aminomethylpyrrolidine, C-8 methoxy, and the N-1 biphenyl functional groups for hTopoI inhibition. Characterization of each analog for inhibition of hTopoI catalytic inhibition reveals critical insight into structural requirements of these novel quinolones for activity. Additionally, results of DNA binding and modeling studies suggest that N-1 biphenyl fluoroquinolones intercalate between the DNA base pairs with the N-1 biphenyl functional group, rather than the quinolone core, and that this mode of DNA intercalation contributes to inhibition of hTopoI by these novel structures. The results presented here support further development and evaluation of N-1 biphenyl fluoroquinolone analogs as a novel class of anti-cancer agents that act through catalytic inhibition of hTopoI.
Collapse
Affiliation(s)
- Justine L Delgado
- Division of Medicinal and Natural Products Chemistry, Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, 115 S Grand Ave., S321 Pharmacy Building, Iowa City, IA, 52242, USA
| | - Sarah R C Lentz
- Department of Pharmacology, University of Minnesota Medical School, 6-120 Jackson Hall, 321 Church Street SE, Minneapolis, MN, 55455, USA
| | - Chaitanya A Kulkarni
- Division of Medicinal and Natural Products Chemistry, Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, 115 S Grand Ave., S321 Pharmacy Building, Iowa City, IA, 52242, USA
| | - Pratik R Chheda
- Division of Medicinal and Natural Products Chemistry, Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, 115 S Grand Ave., S321 Pharmacy Building, Iowa City, IA, 52242, USA
| | - Hailey A Held
- Department of Pharmacology, University of Minnesota Medical School, 6-120 Jackson Hall, 321 Church Street SE, Minneapolis, MN, 55455, USA
| | - Hiroshi Hiasa
- Department of Pharmacology, University of Minnesota Medical School, 6-120 Jackson Hall, 321 Church Street SE, Minneapolis, MN, 55455, USA
| | - Robert J Kerns
- Division of Medicinal and Natural Products Chemistry, Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, 115 S Grand Ave., S321 Pharmacy Building, Iowa City, IA, 52242, USA.
| |
Collapse
|
97
|
Salerno S, La Pietra V, Hyeraci M, Taliani S, Robello M, Barresi E, Milite C, Simorini F, García-Argáez AN, Marinelli L, Novellino E, Da Settimo F, Marini AM, Dalla Via L. Benzothiopyranoindole- and pyridothiopyranoindole-based antiproliferative agents targeting topoisomerases. Eur J Med Chem 2019; 165:46-58. [PMID: 30660826 DOI: 10.1016/j.ejmech.2019.01.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 12/21/2018] [Accepted: 01/07/2019] [Indexed: 11/20/2022]
Abstract
New benzothiopyranoindoles (5a-l) and pyridothiopyranoindoles (5m-t), featuring different combinations of substituents (H, Cl, OCH3) at R2-R4 positions and protonatable R1-dialkylaminoalkyl chains, were synthesized and biologically assayed on three human tumor cell lines, showing significant antiproliferative activity (GI50 values spanning from 0.31 to 6.93 μM) and pro-apoptotic effect. Linear flow dichroism experiments indicate the ability of both chromophores to form a molecular complex with DNA, following an intercalative mode of binding. All compounds displayed a moderate ability to inhibit the relaxation activity of both topoisomerases I and II, reasonably correlated to their intercalative capacities. Cleavable assay performed with topoisomerase I revealed a significant poisoning effect for compounds 5g, 5h, 5s, and 5t. A theoretical model provided by hydrated docking calculations clarified the role of the R1-R4 substituents on the topoisomerase I poison activity, revealing a crucial role of the R2-OCH3 group.
Collapse
Affiliation(s)
- Silvia Salerno
- Dipartimento di Farmacia, Università di Pisa, Via Bonanno 6, 56126, Pisa, Italy
| | - Valeria La Pietra
- Dipartimento di Farmacia, Università di Napoli "Federico II", Via D. Montesano 49, 80131, Napoli, Italy
| | - Mariafrancesca Hyeraci
- Dipartimento di Scienze del Farmaco, Università di Padova, Via Marzolo 5, 35131, Padova, Italy
| | - Sabrina Taliani
- Dipartimento di Farmacia, Università di Pisa, Via Bonanno 6, 56126, Pisa, Italy.
| | - Marco Robello
- Synthetic Bioactive Molecules Section LBC, NIDDK, NIH, 8 Center Dr., 20982, Bethesda, MD, USA
| | - Elisabetta Barresi
- Dipartimento di Farmacia, Università di Pisa, Via Bonanno 6, 56126, Pisa, Italy
| | - Ciro Milite
- Dipartimento di Farmacia, Università di Salerno, Via Giovanni Paolo II 132, 84084, Fisciano, Salerno, Italy
| | - Francesca Simorini
- Dipartimento di Farmacia, Università di Pisa, Via Bonanno 6, 56126, Pisa, Italy
| | - Aída Nelly García-Argáez
- Dipartimento di Scienze del Farmaco, Università di Padova, Via Marzolo 5, 35131, Padova, Italy; Fondazione per la Biologia e la Medicina della Rigenerazione T.E.S., Via Marzolo 13, 35131, Padova, Italy
| | - Luciana Marinelli
- Dipartimento di Farmacia, Università di Napoli "Federico II", Via D. Montesano 49, 80131, Napoli, Italy.
| | - Ettore Novellino
- Dipartimento di Farmacia, Università di Napoli "Federico II", Via D. Montesano 49, 80131, Napoli, Italy
| | - Federico Da Settimo
- Dipartimento di Farmacia, Università di Pisa, Via Bonanno 6, 56126, Pisa, Italy
| | - Anna Maria Marini
- Dipartimento di Farmacia, Università di Pisa, Via Bonanno 6, 56126, Pisa, Italy
| | - Lisa Dalla Via
- Dipartimento di Scienze del Farmaco, Università di Padova, Via Marzolo 5, 35131, Padova, Italy
| |
Collapse
|
98
|
Murugavel S, Ravikumar C, Jaabil G, Alagusundaram P. Synthesis, computational quantum chemical study, in silico ADMET and molecular docking analysis, in vitro biological evaluation of a novel sulfur heterocyclic thiophene derivative containing 1,2,3-triazole and pyridine moieties as a potential human topoisomerase IIα inhibiting anticancer agent. Comput Biol Chem 2019; 79:73-82. [PMID: 30731361 DOI: 10.1016/j.compbiolchem.2019.01.013] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 01/17/2019] [Accepted: 01/25/2019] [Indexed: 02/07/2023]
Abstract
Computational quantum chemical study and biological evaluation of a synthesized novel sulfur heterocyclic thiophene derivative containing 1,2,3-triazole and pyridine moieties namely BTPT [2-(1-benzyl-5-methyl-1H-1,2,3-triazol-4-yl)-6-methoxy-4-(thiophen-2-yl) pyridine] was presented in this study. The crystal structure was determined by SCXRD method. For the title compound BTPT, spectroscopic characterization like 1H NMR, 13C NMR, FTIR, UV-vis were carried out theoretically by computational DFT method and compared with experimental data. Druglikeness parameters of BTPT were found through in silico pharmacological ADMET properties estimation. The molecular docking investigation was performed with human topoisomerase IIα (PDB ID:1ZXM) targeting ATP binding site. In vitro cytotoxicity activity of BTPT/doxorubicin were examined by MTT assay procedure against three human cancer cell lines A549, PC-3, MDAMB-231 with IC50 values of 0.68/0.70, 1.03/0.77 and 0.88/0.98 μM, respectively. Our title compound BTPT reveals notable cytotoxicity against breast cancer cell (MDAMB-231), moderate activity with human lung cancer cell (A-549) and less inhibition with human prostate cancer cell (PC-3) compared to familiar cancer medicine doxorubicin. From the results, BTPT could be observed as a potential candidate for novel anticancer drug development process.
Collapse
Affiliation(s)
- S Murugavel
- Department of Physics, Thanthai Periyar Government Institute of Technology, Vellore, 632002, Tamil Nadu, India.
| | - C Ravikumar
- Department of Physics, Thanthai Periyar EVR Government Polytechnic College, Vellore, 632002, Tamil Nadu, India
| | - G Jaabil
- Department of Organic Chemistry, School of Chemistry, Madurai Kamaraj University, Madurai, 625021, Tamil Nadu, India
| | - Ponnuswamy Alagusundaram
- Department of Organic Chemistry, School of Chemistry, Madurai Kamaraj University, Madurai, 625021, Tamil Nadu, India
| |
Collapse
|
99
|
Design, synthesis, and biological evaluation of indole carboxylic acid esters of podophyllotoxin as antiproliferative agents. Med Chem Res 2018. [DOI: 10.1007/s00044-018-2266-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
100
|
Marinello J, Delcuratolo M, Capranico G. Anthracyclines as Topoisomerase II Poisons: From Early Studies to New Perspectives. Int J Mol Sci 2018; 19:ijms19113480. [PMID: 30404148 PMCID: PMC6275052 DOI: 10.3390/ijms19113480] [Citation(s) in RCA: 141] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 11/01/2018] [Accepted: 11/05/2018] [Indexed: 12/22/2022] Open
Abstract
Mammalian DNA topoisomerases II are targets of anticancer anthracyclines that act by stabilizing enzyme-DNA complexes wherein DNA strands are cut and covalently linked to the protein. This molecular mechanism is the molecular basis of anthracycline anticancer activity as well as the toxic effects such as cardiomyopathy and induction of secondary cancers. Even though anthracyclines have been used in the clinic for more than 50 years for solid and blood cancers, the search of breakthrough analogs has substantially failed. The recent developments of personalized medicine, availability of individual genomic information, and immune therapy are expected to change significantly human cancer therapy. Here, we discuss the knowledge of anthracyclines as Topoisomerase II poisons, their molecular and cellular effects and toxicity along with current efforts to improve the therapeutic index. Then, we discuss the contribution of the immune system in the anticancer activity of anthracyclines, and the need to increase our knowledge of molecular mechanisms connecting the drug targets to the immune stimulatory pathways in cancer cells. We propose that the complete definition of the molecular interaction of anthracyclines with the immune system may open up more effective and safer ways to treat patients with these drugs.
Collapse
Affiliation(s)
- Jessica Marinello
- Department of Pharmacy and Biotechnology, University of Bologna, via Selmi 3, 40126 Bologna, Italy.
| | - Maria Delcuratolo
- Department of Pharmacy and Biotechnology, University of Bologna, via Selmi 3, 40126 Bologna, Italy.
| | - Giovanni Capranico
- Department of Pharmacy and Biotechnology, University of Bologna, via Selmi 3, 40126 Bologna, Italy.
| |
Collapse
|