51
|
Hedegård ED, Ryde U. Multiscale Modelling of Lytic Polysaccharide Monooxygenases. ACS OMEGA 2017; 2:536-545. [PMID: 31457454 PMCID: PMC6641039 DOI: 10.1021/acsomega.6b00521] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 01/26/2017] [Indexed: 05/27/2023]
Abstract
Lytic polysaccharide monooxygenase (LPMO) enzymes have attracted considerable attention owing to their ability to enhance polysaccharide depolymerization, making them interesting with respect to production of biofuel from cellulose. LPMOs are metalloenzymes that contain a mononuclear copper active site, capable of activating dioxygen. However, many details of this activation are unclear. Some aspects of the mechanism have previously been investigated from a computational angle. Yet, either these studies have employed only molecular mechanics (MM), which are inaccurate for metal active sites, or they have described only the active site with quantum mechanics (QM) and neglected the effect of the protein. Here, we employ hybrid QM and MM (QM/MM) methods to investigate the first steps of the LPMO mechanism, which is reduction of CuII to CuI and the formation of a CuII-superoxide complex. In the latter complex, the superoxide can bind either in an equatorial or an axial position. For both steps, we obtain structures that are markedly different from previous suggestions, based on small QM-cluster calculations. Our calculations show that the equatorial isomer of the superoxide complex is over 60 kJ/mol more stable than the axial isomer because it is stabilized by interactions with a second-coordination-sphere glutamine residue, suggesting a possible role for this residue. The coordination of superoxide in this manner agrees with recent experimental suggestions.
Collapse
|
52
|
Nekardová M, Vymětalová L, Khirsariya P, Kováčová S, Hylsová M, Jorda R, Kryštof V, Fanfrlík J, Hobza P, Paruch K. Structural Basis of the Interaction of Cyclin-Dependent Kinase 2 with Roscovitine and Its Analogues Having Bioisosteric Central Heterocycles. Chemphyschem 2017; 18:785-795. [DOI: 10.1002/cphc.201601319] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 01/24/2017] [Indexed: 11/11/2022]
Affiliation(s)
- Michaela Nekardová
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences; Flemingovo nám. 2 166 10 Prague 6 Czech Republic
- Faculty of Mathematics and Physics; Charles University in Prague; Ke Karlovu 3 Prague 2 121 16 Czech Republic
| | - Ladislava Vymětalová
- Laboratory of Growth Regulators, Faculty of Science of; Palacky University and Institute of Experimental Botany of the Czech Academy of Sciences; Šlechtitelů 27 78371 Olomouc Czech Republic
| | - Prashant Khirsariya
- Department of Chemistry, CZ Openscreen; Masaryk University; Kamenice 5 62500 Brno Czech Republic
- International Center for Clinical Research; St. Anne's University Hospital Brno; Pekařská 53 656 91 Brno Czech Republic
| | - Silvia Kováčová
- Department of Chemistry, CZ Openscreen; Masaryk University; Kamenice 5 62500 Brno Czech Republic
| | - Michaela Hylsová
- Department of Chemistry, CZ Openscreen; Masaryk University; Kamenice 5 62500 Brno Czech Republic
| | - Radek Jorda
- Laboratory of Growth Regulators, Faculty of Science of; Palacky University and Institute of Experimental Botany of the Czech Academy of Sciences; Šlechtitelů 27 78371 Olomouc Czech Republic
| | - Vladimír Kryštof
- Laboratory of Growth Regulators, Faculty of Science of; Palacky University and Institute of Experimental Botany of the Czech Academy of Sciences; Šlechtitelů 27 78371 Olomouc Czech Republic
| | - Jindřich Fanfrlík
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences; Flemingovo nám. 2 166 10 Prague 6 Czech Republic
| | - Pavel Hobza
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences; Flemingovo nám. 2 166 10 Prague 6 Czech Republic
| | - Kamil Paruch
- Department of Chemistry, CZ Openscreen; Masaryk University; Kamenice 5 62500 Brno Czech Republic
- International Center for Clinical Research; St. Anne's University Hospital Brno; Pekařská 53 656 91 Brno Czech Republic
| |
Collapse
|
53
|
Roßbach S, Ochsenfeld C. Influence of Coupling and Embedding Schemes on QM Size Convergence in QM/MM Approaches for the Example of a Proton Transfer in DNA. J Chem Theory Comput 2017; 13:1102-1107. [PMID: 28195707 DOI: 10.1021/acs.jctc.6b00727] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The influence of embedding and coupling schemes on the convergence of the QM size in the QM/MM approach is investigated for the transfer of a proton in a DNA base pair. We find that the embedding scheme (mechanical or electrostatic) has a much greater impact on the convergence behavior than the coupling scheme (additive QM/MM or subtractive ONIOM). To achieve size convergence, QM regions with up to 6000 atoms are necessary for pure QM or mechanical embedding. In contrast, electrostatic embedding converges faster: for the example of the transfer of a proton between DNA base pairs, we recommend including at least five base pairs and 5 Å of solvent (including counterions) into the QM region, i.e., a total of 1150 atoms.
Collapse
Affiliation(s)
- Sven Roßbach
- Chair of Theoretical Chemistry, Department of Chemistry, University of Munich (LMU Munich) , Butenandtstr. 7, D-81377 Munich, Germany.,Center for Integrated Protein Science Munich (CIPSM) at the Department of Chemistry, University of Munich (LMU Munich) , Butenandtstr, 5-13, D-81377 Munich, Germany
| | - Christian Ochsenfeld
- Chair of Theoretical Chemistry, Department of Chemistry, University of Munich (LMU Munich) , Butenandtstr. 7, D-81377 Munich, Germany.,Center for Integrated Protein Science Munich (CIPSM) at the Department of Chemistry, University of Munich (LMU Munich) , Butenandtstr, 5-13, D-81377 Munich, Germany
| |
Collapse
|
54
|
Karelina M, Kulik HJ. Systematic Quantum Mechanical Region Determination in QM/MM Simulation. J Chem Theory Comput 2017; 13:563-576. [DOI: 10.1021/acs.jctc.6b01049] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Maria Karelina
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Heather J. Kulik
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
55
|
Dong G, Phung QM, Hallaert SD, Pierloot K, Ryde U. H2binding to the active site of [NiFe] hydrogenase studied by multiconfigurational and coupled-cluster methods. Phys Chem Chem Phys 2017; 19:10590-10601. [DOI: 10.1039/c7cp01331k] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
CCSD(T) and DMRG-CASPT2 calculations show that H2prefers to bind to Ni rather than to Fe in [NiFe] hydrogenase.
Collapse
Affiliation(s)
- Geng Dong
- Department of Theoretical Chemistry
- Lund University
- SE-221 00 Lund
- Sweden
| | - Quan Manh Phung
- Department of Chemistry
- University of Leuven
- B-3001 Leuven
- Belgium
| | | | | | - Ulf Ryde
- Department of Theoretical Chemistry
- Lund University
- SE-221 00 Lund
- Sweden
| |
Collapse
|
56
|
Romero-Rivera A, Garcia-Borràs M, Osuna S. Computational tools for the evaluation of laboratory-engineered biocatalysts. Chem Commun (Camb) 2016; 53:284-297. [PMID: 27812570 PMCID: PMC5310519 DOI: 10.1039/c6cc06055b] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 09/06/2016] [Indexed: 12/18/2022]
Abstract
Biocatalysis is based on the application of natural catalysts for new purposes, for which enzymes were not designed. Although the first examples of biocatalysis were reported more than a century ago, biocatalysis was revolutionized after the discovery of an in vitro version of Darwinian evolution called Directed Evolution (DE). Despite the recent advances in the field, major challenges remain to be addressed. Currently, the best experimental approach consists of creating multiple mutations simultaneously while limiting the choices using statistical methods. Still, tens of thousands of variants need to be tested experimentally, and little information is available on how these mutations lead to enhanced enzyme proficiency. This review aims to provide a brief description of the available computational techniques to unveil the molecular basis of improved catalysis achieved by DE. An overview of the strengths and weaknesses of current computational strategies is explored with some recent representative examples. The understanding of how this powerful technique is able to obtain highly active variants is important for the future development of more robust computational methods to predict amino-acid changes needed for activity.
Collapse
Affiliation(s)
- Adrian Romero-Rivera
- Institut de Química Computacional i Catàlisi and Departament de Química Universitat de Girona, Campus Montilivi, 17071 Girona, Catalonia, Spain.
| | - Marc Garcia-Borràs
- Department of Chemistry and Biochemistry, University of California, 607 Charles E. Young Drive, Los Angeles, California 90095, USA
| | - Sílvia Osuna
- Institut de Química Computacional i Catàlisi and Departament de Química Universitat de Girona, Campus Montilivi, 17071 Girona, Catalonia, Spain.
| |
Collapse
|
57
|
Kulik H, Zhang J, Klinman J, Martínez TJ. How Large Should the QM Region Be in QM/MM Calculations? The Case of Catechol O-Methyltransferase. J Phys Chem B 2016; 120:11381-11394. [PMID: 27704827 PMCID: PMC5108028 DOI: 10.1021/acs.jpcb.6b07814] [Citation(s) in RCA: 139] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 09/09/2016] [Indexed: 01/29/2023]
Abstract
Hybrid quantum mechanical-molecular mechanical (QM/MM) simulations are widely used in studies of enzymatic catalysis. Until recently, it has been cost prohibitive to determine the asymptotic limit of key energetic and structural properties with respect to increasingly large QM regions. Leveraging recent advances in electronic structure efficiency and accuracy, we investigate catalytic properties in catechol O-methyltransferase, a prototypical methyltransferase critical to human health. Using QM regions ranging in size from reactants-only (64 atoms) to nearly one-third of the entire protein (940 atoms), we show that properties such as the activation energy approach within chemical accuracy of the large-QM asymptotic limits rather slowly, requiring approximately 500-600 atoms if the QM residues are chosen simply by distance from the substrate. This slow approach to asymptotic limit is due to charge transfer from protein residues to the reacting substrates. Our large QM/MM calculations enable identification of charge separation for fragments in the transition state as a key component of enzymatic methyl transfer rate enhancement. We introduce charge shift analysis that reveals the minimum number of protein residues (approximately 11-16 residues or 200-300 atoms for COMT) needed for quantitative agreement with large-QM simulations. The identified residues are not those that would be typically selected using criteria such as chemical intuition or proximity. These results provide a recipe for a more careful determination of QM region sizes in future QM/MM studies of enzymes.
Collapse
Affiliation(s)
- Heather
J. Kulik
- Department
of Chemistry and PULSE Institute, Stanford
University, Stanford, California 94305, United States
- SLAC
National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Jianyu Zhang
- Departments
of Chemistry and of Molecular and Cell Biology, and California Institute
for Quantitative Biosciences, University
of California, Berkeley, California 94720, United States
| | - Judith
P. Klinman
- Departments
of Chemistry and of Molecular and Cell Biology, and California Institute
for Quantitative Biosciences, University
of California, Berkeley, California 94720, United States
| | - Todd J. Martínez
- Department
of Chemistry and PULSE Institute, Stanford
University, Stanford, California 94305, United States
- SLAC
National Accelerator Laboratory, Menlo Park, California 94025, United States
| |
Collapse
|
58
|
Dong G, Ryde U. O2 Activation in Salicylate 1,2-Dioxygenase: A QM/MM Study Reveals the Role of His162. Inorg Chem 2016; 55:11727-11735. [DOI: 10.1021/acs.inorgchem.6b01732] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Geng Dong
- Department of Theoretical Chemistry, Lund University, Chemical Centre, P.O. Box 124, SE-221 00 Lund, Sweden
| | - Ulf Ryde
- Department of Theoretical Chemistry, Lund University, Chemical Centre, P.O. Box 124, SE-221 00 Lund, Sweden
| |
Collapse
|
59
|
Rokob TA. Pathways for Arene Oxidation in Non-Heme Diiron Enzymes: Lessons from Computational Studies on Benzoyl Coenzyme A Epoxidase. J Am Chem Soc 2016; 138:14623-14638. [PMID: 27682344 DOI: 10.1021/jacs.6b06987] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Oxygenation of aromatic rings using O2 is catalyzed by several non-heme carboxylate-bridged diiron enzymes. In order to provide a general mechanistic description for these reactions, computational studies were carried out at the ONIOM(B3LYP/BP86/Amber) level on the non-heme diiron enzyme benzoyl coenzyme A epoxidase, BoxB. The calculations revealed four possible pathways for attacking the aromatic ring: (a) electrophilic (2e-) attack by a bis(μ-oxo)-diiron(IV) species (Q pathway); (b) electrophilic (2e-) attack via the σ* orbital of a μ-η2:η2-peroxo-diiron(III) intermediate (Pσ* pathway); (c) radical (1e-) attack via the π*-orbital of a superoxo-diiron(II,III) species (Pπ* pathway); (d) radical (1e-) attack of a partially quenched bis(μ-oxo)-diiron(IV) intermediate (Q' pathway). The results allowed earlier work of de Visser on olefin epoxidation by diiron complexes and QM-cluster studies of Liao and Siegbahn on BoxB to be put into a broader perspective. Parallels with epoxidation using organic peracids were also examined. Specifically for the BoxB enzyme, the Q pathway was found to be the most preferred, but the corresponding bis(μ-oxo)-diiron(IV) species is significantly destabilized and not expected to be directly observable. Epoxidation via the Pσ* pathway represents an energetically somewhat higher lying alternative; possible strategies for experimental discrimination are discussed. The selectivity toward epoxidation is shown to stem from a combination of inherent electronic properties of the thioacyl substituent and enzymatic constraints. Possible implications of the results for toluene monooxygenases are considered as well.
Collapse
Affiliation(s)
- Tibor András Rokob
- Institute of Organic Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences , Magyar Tudósok körútja 2, 1117 Budapest, Hungary
| |
Collapse
|
60
|
Fouda A, Ryde U. Does the DFT Self-Interaction Error Affect Energies Calculated in Proteins with Large QM Systems? J Chem Theory Comput 2016; 12:5667-5679. [DOI: 10.1021/acs.jctc.6b00903] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Adam Fouda
- Department of Theoretical
Chemistry, Chemical Centre, Lund University, P. O. Box 124, SE-221 00 Lund, Sweden
| | - Ulf Ryde
- Department of Theoretical
Chemistry, Chemical Centre, Lund University, P. O. Box 124, SE-221 00 Lund, Sweden
| |
Collapse
|
61
|
Li Y, Zhang R, Du L, Zhang Q, Wang W. How Many Conformations of Enzymes Should Be Sampled for DFT/MM Calculations? A Case Study of Fluoroacetate Dehalogenase. Int J Mol Sci 2016; 17:E1372. [PMID: 27556449 PMCID: PMC5000767 DOI: 10.3390/ijms17081372] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Revised: 08/12/2016] [Accepted: 08/16/2016] [Indexed: 11/16/2022] Open
Abstract
The quantum mechanics/molecular mechanics (QM/MM) method (e.g., density functional theory (DFT)/MM) is important in elucidating enzymatic mechanisms. It is indispensable to study "multiple" conformations of enzymes to get unbiased energetic and structural results. One challenging problem, however, is to determine the minimum number of conformations for DFT/MM calculations. Here, we propose two convergence criteria, namely the Boltzmann-weighted average barrier and the disproportionate effect, to tentatively address this issue. The criteria were tested by defluorination reaction catalyzed by fluoroacetate dehalogenase. The results suggest that at least 20 conformations of enzymatic residues are required for convergence using DFT/MM calculations. We also tested the correlation of energy barriers between small QM regions and big QM regions. A roughly positive correlation was found. This kind of correlation has not been reported in the literature. The correlation inspires us to propose a protocol for more efficient sampling. This saves 50% of the computational cost in our current case.
Collapse
Affiliation(s)
- Yanwei Li
- Environment Research Institute, Shandong University, Jinan 250100, China.
| | - Ruiming Zhang
- Environment Research Institute, Shandong University, Jinan 250100, China.
| | - Likai Du
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China..
| | - Qingzhu Zhang
- Environment Research Institute, Shandong University, Jinan 250100, China.
| | - Wenxing Wang
- Environment Research Institute, Shandong University, Jinan 250100, China.
| |
Collapse
|
62
|
Protein effects in non-heme iron enzyme catalysis: insights from multiscale models. J Biol Inorg Chem 2016; 21:645-57. [DOI: 10.1007/s00775-016-1374-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 06/20/2016] [Indexed: 01/09/2023]
|
63
|
Tah B, Dutta D, Pal P, Talapatra GB, Mishra S. QM/MM simulation of the amide-I band in the Raman spectrum of insulin. Mol Phys 2016. [DOI: 10.1080/00268976.2016.1170220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
64
|
Ryde U, Söderhjelm P. Ligand-Binding Affinity Estimates Supported by Quantum-Mechanical Methods. Chem Rev 2016; 116:5520-66. [DOI: 10.1021/acs.chemrev.5b00630] [Citation(s) in RCA: 175] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Ulf Ryde
- Department of Theoretical
Chemistry and ‡Department of Biophysical Chemistry, Lund University, Chemical Centre, P.O. Box 124, SE-221 00 Lund, Sweden
| | - Pär Söderhjelm
- Department of Theoretical
Chemistry and ‡Department of Biophysical Chemistry, Lund University, Chemical Centre, P.O. Box 124, SE-221 00 Lund, Sweden
| |
Collapse
|
65
|
Protonation states of intermediates in the reaction mechanism of [NiFe] hydrogenase studied by computational methods. J Biol Inorg Chem 2016; 21:383-94. [DOI: 10.1007/s00775-016-1348-9] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Accepted: 02/23/2016] [Indexed: 10/22/2022]
|
66
|
|
67
|
Vedha SA, Velmurugan G, Venuvanalingam P. Noncovalent interactions between the second coordination sphere and the active site of [NiFeSe] hydrogenase. RSC Adv 2016. [DOI: 10.1039/c6ra11295a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
QM/MM studies on seven truncated models of the oxidized as-isolated state of the [NiFeSe] Hases reveal the influence of the residues in the second coordination sphere on the active site.
Collapse
Affiliation(s)
- Swaminathan Angeline Vedha
- Theoretical and Computational Chemistry Laboratory
- School of Chemistry
- Bharathidasan University
- Tiruchirappalli-620 024
- India
| | - Gunasekaran Velmurugan
- Theoretical and Computational Chemistry Laboratory
- School of Chemistry
- Bharathidasan University
- Tiruchirappalli-620 024
- India
| | - Ponnambalam Venuvanalingam
- Theoretical and Computational Chemistry Laboratory
- School of Chemistry
- Bharathidasan University
- Tiruchirappalli-620 024
- India
| |
Collapse
|
68
|
Requirement for transient metal ions revealed through computational analysis for DNA polymerase going in reverse. Proc Natl Acad Sci U S A 2015; 112:E5228-36. [PMID: 26351676 DOI: 10.1073/pnas.1511207112] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
DNA polymerases facilitate faithful insertion of nucleotides, a central reaction occurring during DNA replication and repair. DNA synthesis (forward reaction) is "balanced," as dictated by the chemical equilibrium by the reverse reaction of pyrophosphorolysis. Two closely spaced divalent metal ions (catalytic and nucleotide-binding metals) provide the scaffold for these reactions. The catalytic metal lowers the pKa of O3' of the growing primer terminus, and the nucleotide-binding metal facilitates substrate binding. Recent time-lapse crystallographic studies of DNA polymerases have identified an additional metal ion (product metal) associated with pyrophosphate formation, leading to the suggestion of its possible involvement in the reverse reaction. Here, we establish a rationale for a role of the product metal using quantum mechanical/molecular mechanical calculations of the reverse reaction in the confines of the DNA polymerase β active site. Additionally, site-directed mutagenesis identifies essential residues and metal-binding sites necessary for pyrophosphorolysis. The results indicate that the catalytic metal site must be occupied by a magnesium ion for pyrophosphorolysis to occur. Critically, the product metal site is occupied by a magnesium ion early in the pyrophosphorolysis reaction path but must be removed later. The proposed dynamic nature of the active site metal ions is consistent with crystallographic structures. The transition barrier for pyrophosphorolysis was estimated to be significantly higher than that for the forward reaction, consistent with kinetic activity measurements of the respective reactions. These observations provide a framework to understand how ions and active site changes could modulate the internal chemical equilibrium of a reaction that is central to genome stability.
Collapse
|
69
|
Svensson F, Engen K, Lundbäck T, Larhed M, Sköld C. Virtual Screening for Transition State Analogue Inhibitors of IRAP Based on Quantum Mechanically Derived Reaction Coordinates. J Chem Inf Model 2015; 55:1984-93. [DOI: 10.1021/acs.jcim.5b00359] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Fredrik Svensson
- Organic
Pharmaceutical Chemistry, Department of Medicinal Chemistry, BMC, Uppsala University, P.O.
Box 574, SE-751 23 Uppsala, Sweden
| | - Karin Engen
- Organic
Pharmaceutical Chemistry, Department of Medicinal Chemistry, BMC, Uppsala University, P.O.
Box 574, SE-751 23 Uppsala, Sweden
| | - Thomas Lundbäck
- Chemical
Biology Consortium Sweden, Science for Life Laboratory, Division of
Translational Medicine and Chemical Biology, Department of Medical
Biochemistry and Biophysics, Karolinska Institutet, Tomtebodavägen
23A, SE-171 65 Solna, Sweden
| | - Mats Larhed
- Science
for Life Laboratory, Department of Medicinal Chemistry, BMC, Uppsala University, P.O.
Box 574, SE-751 23 Uppsala, Sweden
| | - Christian Sköld
- Organic
Pharmaceutical Chemistry, Department of Medicinal Chemistry, BMC, Uppsala University, P.O.
Box 574, SE-751 23 Uppsala, Sweden
| |
Collapse
|
70
|
The Importance of the MM Environment and the Selection of the QM Method in QM/MM Calculations: Applications to Enzymatic Reactions. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2015. [PMID: 26415844 DOI: 10.1016/bs.apcsb.2015.06.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
In this chapter, we discuss the influence of an anisotropic protein environment on the reaction mechanisms of saccharopine reductase and uroporphyrinogen decarboxylase, respectively, via the use of a quantum mechanical and molecular mechanical (QM/MM) approach. In addition, we discuss the importance of selecting a suitable DFT functional to be used in a QM/MM study of a key intermediate in the mechanism of 8R-lipoxygenase, a nonheme iron enzyme. In the case of saccharopine reductase, while the enzyme utilizes a substrate-assisted catalytic pathway, it was found that only through treating the polarizing effect of the active site, via the use of an electronic embedding formalism, was agreement with experimental kinetic data obtained. Similarly, in the case of uroporphyrinogen decarboxylase, the effect of the protein environment on the catalytic mechanism was found to be such that the calculated rate-limiting barrier is in good agreement with related experimentally determined values for the first decarboxylation of the substrate. For 8R-lipoxygenase, it was found that the geometries and energies of the multicentered open-shell intermediate complexes formed during the mechanism are quite sensitive to the choice of the density functional theory method. Thus, while density functional theory has become the method of choice in QM/MM studies, care must be taken in the selection of a particular high-level method.
Collapse
|
71
|
Hartman JD, Neubauer TJ, Caulkins BG, Mueller LJ, Beran GJO. Converging nuclear magnetic shielding calculations with respect to basis and system size in protein systems. JOURNAL OF BIOMOLECULAR NMR 2015; 62:327-40. [PMID: 25993979 PMCID: PMC4512207 DOI: 10.1007/s10858-015-9947-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Accepted: 05/12/2015] [Indexed: 05/25/2023]
Abstract
Ab initio chemical shielding calculations greatly facilitate the interpretation of nuclear magnetic resonance (NMR) chemical shifts in biological systems, but the large sizes of these systems requires approximations in the chemical models used to represent them. Achieving good convergence in the predicted chemical shieldings is necessary before one can unravel how other complex structural and dynamical factors affect the NMR measurements. Here, we investigate how to balance trade-offs between using a better basis set or a larger cluster model for predicting the chemical shieldings of the substrates in two representative examples of protein-substrate systems involving different domains in tryptophan synthase: the N-(4'-trifluoromethoxybenzoyl)-2-aminoethyl phosphate (F9) ligand which binds in the α active site, and the 2-aminophenol quinonoid intermediate formed in the β active site. We first demonstrate that a chemically intuitive three-layer, locally dense basis model that uses a large basis on the substrate, a medium triple-zeta basis to describe its hydrogen-bonding partners and/or surrounding van der Waals cavity, and a crude basis set for more distant atoms provides chemical shieldings in good agreement with much more expensive large basis calculations. Second, long-range quantum mechanical interactions are important, and one can accurately estimate them as a small-basis correction to larger-basis calculations on a smaller cluster. The combination of these approaches enables one to perform density functional theory NMR chemical shift calculations in protein systems that are well-converged with respect to both basis set and cluster size.
Collapse
Affiliation(s)
- Joshua D. Hartman
- Department of Chemistry, University of California at Riverside, Riverside, CA 92521, Tel.: +1-951-827-7869
| | - Thomas J. Neubauer
- Department of Chemistry, University of California at Riverside, Riverside, CA 92521, Tel.: +1-951-827-7869
| | - Bethany G. Caulkins
- Department of Chemistry, University of California at Riverside, Riverside, CA 92521, Tel.: +1-951-827-7869
| | - Leonard J. Mueller
- Department of Chemistry, University of California at Riverside, Riverside, CA 92521, Tel.: +1-951-827-7869
| | - Gregory J. O. Beran
- Department of Chemistry, University of California at Riverside, Riverside, CA 92521, Tel.: +1-951-827-7869
| |
Collapse
|
72
|
Blank ID, Sadeghian K, Ochsenfeld C. A base-independent repair mechanism for DNA glycosylase--no discrimination within the active site. Sci Rep 2015; 5:10369. [PMID: 26013033 PMCID: PMC4445063 DOI: 10.1038/srep10369] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Accepted: 04/09/2015] [Indexed: 11/09/2022] Open
Abstract
The ubiquitous occurrence of DNA damages renders its repair machinery a crucial requirement for the genomic stability and the survival of living organisms. Deficiencies in DNA repair can lead to carcinogenesis, Alzheimer, or Diabetes II, where increased amounts of oxidized DNA bases have been found in patients. Despite the highest mutation frequency among oxidized DNA bases, the base-excision repair process of oxidized and ring-opened guanine, FapydG (2,6-diamino-4-hydroxy-5-formamidopyrimidine), remained unclear since it is difficult to study experimentally. We use newly-developed linear-scaling quantum-chemical methods (QM) allowing us to include up to 700 QM-atoms and achieving size convergence. Instead of the widely assumed base-protonated pathway we find a ribose-protonated repair mechanism which explains experimental observations and shows strong evidence for a base-independent repair process. Our results also imply that discrimination must occur during recognition, prior to the binding within the active site.
Collapse
Affiliation(s)
- Iris D Blank
- 1] Chair of Theoretical Chemistry, Department of Chemistry, University of Munich (LMU), Butenandtstr. 7, D-81377 Munich, Germany [2] Center for Integrated Protein Science Munich (CIPSM) at the Department of Chemistry, University of Munich (LMU), Butenandtstr. 5-13, D-81377 Munich, Germany
| | - Keyarash Sadeghian
- 1] Chair of Theoretical Chemistry, Department of Chemistry, University of Munich (LMU), Butenandtstr. 7, D-81377 Munich, Germany [2] Center for Integrated Protein Science Munich (CIPSM) at the Department of Chemistry, University of Munich (LMU), Butenandtstr. 5-13, D-81377 Munich, Germany
| | - Christian Ochsenfeld
- 1] Chair of Theoretical Chemistry, Department of Chemistry, University of Munich (LMU), Butenandtstr. 7, D-81377 Munich, Germany [2] Center for Integrated Protein Science Munich (CIPSM) at the Department of Chemistry, University of Munich (LMU), Butenandtstr. 5-13, D-81377 Munich, Germany
| |
Collapse
|
73
|
Hedegård ED, Kongsted J, Ryde U. Multiscale Modeling of the Active Site of [Fe] Hydrogenase: The H 2Binding Site in Open and Closed Protein Conformations. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201501737] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
74
|
Hedegård ED, Kongsted J, Ryde U. Multiscale Modeling of the Active Site of [Fe] Hydrogenase: The H2Binding Site in Open and Closed Protein Conformations. Angew Chem Int Ed Engl 2015; 54:6246-50. [DOI: 10.1002/anie.201501737] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Indexed: 11/07/2022]
|
75
|
Goerigk L, Collyer CA, Reimers JR. Recommending Hartree–Fock Theory with London-Dispersion and Basis-Set-Superposition Corrections for the Optimization or Quantum Refinement of Protein Structures. J Phys Chem B 2014; 118:14612-26. [DOI: 10.1021/jp510148h] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Lars Goerigk
- School
of Chemistry, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Charles A. Collyer
- School
of Molecular Bioscience, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Jeffrey R. Reimers
- Centre
for Quantum and Molecular Structure, College of Sciences, Shanghai University, Shanghai 200444, China
- School
of Physics and Advanced Materials, The University of Technology, Sydney, New South Wales 2007, Australia
| |
Collapse
|
76
|
Blachly PG, Sandala GM, Giammona D, Liu T, Bashford D, McCammon JA, Noodleman L. Use of Broken-Symmetry Density Functional Theory To Characterize the IspH Oxidized State: Implications for IspH Mechanism and Inhibition. J Chem Theory Comput 2014; 10:3871-3884. [PMID: 25221444 PMCID: PMC4159220 DOI: 10.1021/ct5005214] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Indexed: 12/31/2022]
Abstract
With current therapies becoming less efficacious due to increased drug resistance, new inhibitors of both bacterial and malarial targets are desperately needed. The recently discovered methylerythritol phosphate (MEP) pathway for isoprenoid synthesis provides novel targets for the development of such drugs. Particular attention has focused on the IspH protein, the final enzyme in the MEP pathway, which uses its [4Fe-4S] cluster to catalyze the formation of the isoprenoid precursors IPP and DMAPP from HMBPP. IspH catalysis is achieved via a 2e-/2H+ reductive dehydroxylation of HMBPP; the mechanism by which catalysis is achieved, however, is highly controversial. The work presented herein provides the first step in assessing different routes to catalysis by using computational methods. By performing broken-symmetry density functional theory (BS-DFT) calculations that employ both the conductor-like screening solvation model (DFT/COSMO) and a finite-difference Poisson-Boltzmann self-consistent reaction field methodology (DFT/SCRF), we evaluate geometries, energies, and Mössbauer signatures of the different protonation states that may exist in the oxidized state of the IspH catalytic cycle. From DFT/SCRF computations performed on the oxidized state, we find a state where the substrate, HMBPP, coordinates the apical iron in the [4Fe-4S] cluster as an alcohol group (ROH) to be one of two, isoenergetic, lowest-energy states. In this state, the HMBPP pyrophosphate moiety and an adjacent glutamate residue (E126) are both fully deprotonated, making the active site highly anionic. Our findings that this low-energy state also matches the experimental geometry of the active site and that its computed isomer shifts agree with experiment validate the use of the DFT/SCRF method to assess relative energies along the IspH reaction pathway. Additional studies of IspH catalytic intermediates are currently being pursued.
Collapse
Affiliation(s)
- Patrick G. Blachly
- Department
of Chemistry and Biochemistry, University
of California San Diego, 9500 Gilman Drive, Mail Code 0365, La Jolla, California 92093-0365, United States
| | - Gregory M. Sandala
- Department
of Chemistry and Biochemistry, Mount Allison
University, 63C York
Street, Sackville, New Brunswick E4L 1G8, Canada
| | - Debra
Ann Giammona
- Department
of Structural Biology, St. Jude Children’s
Research Hospital, 262
Danny Thomas Place, Memphis, Tennessee 38105, United States
| | - Tiqing Liu
- Skaggs School of Pharmacy and Pharmaceutical
Sciences, Howard Hughes Medical
Institute, and Department of Pharmacology, University
of California San Diego, La Jolla, California 92093-0365, United States
| | - Donald Bashford
- Department
of Structural Biology, St. Jude Children’s
Research Hospital, 262
Danny Thomas Place, Memphis, Tennessee 38105, United States
| | - J. Andrew McCammon
- Department
of Chemistry and Biochemistry, University
of California San Diego, 9500 Gilman Drive, Mail Code 0365, La Jolla, California 92093-0365, United States
- Skaggs School of Pharmacy and Pharmaceutical
Sciences, Howard Hughes Medical
Institute, and Department of Pharmacology, University
of California San Diego, La Jolla, California 92093-0365, United States
| | - Louis Noodleman
- Department
of Integrative Structural and Computational Biology, The Scripps Research Institute, TPC15, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| |
Collapse
|
77
|
de Visser SP, Quesne MG, Martin B, Comba P, Ryde U. Computational modelling of oxygenation processes in enzymes and biomimetic model complexes. Chem Commun (Camb) 2014; 50:262-82. [DOI: 10.1039/c3cc47148a] [Citation(s) in RCA: 101] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
78
|
Dutta D, Mishra S. The structural and energetic aspects of substrate binding and the mechanism of action of the DapE-encoded N-succinyl-l,l-diaminopimelic acid desuccinylase (DapE) investigated using a hybrid QM/MM method. Phys Chem Chem Phys 2014; 16:26348-58. [DOI: 10.1039/c4cp03986f] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Substrate binding and the mechanism of action of the DapE-encodedN-succinyl-l,l-diaminopimelic acid desuccinylase (DapE).
Collapse
Affiliation(s)
- Debodyuti Dutta
- Department of Chemistry
- Indian Institute of Technology Kharagpur
- Kharagpur, India
| | - Sabyashachi Mishra
- Department of Chemistry
- Indian Institute of Technology Kharagpur
- Kharagpur, India
| |
Collapse
|
79
|
Delcey MG, Pierloot K, Phung QM, Vancoillie S, Lindh R, Ryde U. Accurate calculations of geometries and singlet–triplet energy differences for active-site models of [NiFe] hydrogenase. Phys Chem Chem Phys 2014; 16:7927-38. [DOI: 10.1039/c4cp00253a] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The relative stability of singlet and triplet state models of [NiFe] hydrogenase have been studied by advanced quantum-mechanical methods.
Collapse
Affiliation(s)
- Mickaël G. Delcey
- Department of Chemistry – Ångström
- The Theoretical Chemistry Programme
- Uppsala University
- SE-751 20 Uppsala, Sweden
| | | | - Quan M. Phung
- Department of Chemistry
- University of Leuven
- B-3001 Leuven, Belgium
| | | | - Roland Lindh
- Department of Chemistry – Ångström
- The Theoretical Chemistry Programme
- Uppsala University
- SE-751 20 Uppsala, Sweden
- Uppsala Center for Computational Chemistry – UC3
| | - Ulf Ryde
- Department of Theoretical Chemistry
- Lund University
- Chemical Centre
- SE-221 00 Lund, Sweden
| |
Collapse
|