51
|
Kyu Ko S, Berner C, Kulakova A, Schneider M, Antes I, Winter G, Harris P, Peters GH. Investigation of the pH-dependent aggregation mechanisms of GCSF using low resolution protein characterization techniques and advanced molecular dynamics simulations. Comput Struct Biotechnol J 2022; 20:1439-1455. [PMID: 35386098 PMCID: PMC8956964 DOI: 10.1016/j.csbj.2022.03.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 03/13/2022] [Accepted: 03/14/2022] [Indexed: 01/19/2023] Open
Abstract
Granulocyte-colony stimulating factor (GCSF) is a widely used therapeutic protein to treat neutropenia. GCSF has an increased propensity to aggregate if the pH is increased above 5.0. Although GCSF is very well experimentally characterized, the exact pH-dependent aggregation mechanism of GCSF is still under debate. This study aimed to model the complex pH-dependent aggregation behavior of GCSF using state-of-the-art simulation techniques. The conformational stability of GCSF was investigated by performing metadynamics simulations, while the protein-protein interactions were investigated using coarse-grained (CG) simulations of multiple GCSF monomers. The CG simulations were directly compared with small-angle X-ray (SAXS) data. The metadynamics simulations demonstrated that the orientations of Trp residues in GCSF are dependent on pH. The conformational change of Trp residues is due to the loss of Trp-His interactions at the physiological pH, which in turn may increase protein flexibility. The helical structure of GCSF was not affected by the pH conditions of the simulations. Our CG simulations indicate that at pH 4.0, the colloidal stability may be more important than the conformational stability of GCSF. The electrostatic potential surface and CG simulations suggested that the basic residues are mainly responsible for colloidal stability as deprotonation of these residues causes a reduction of the highly positively charged electrostatic barrier close to the aggregation-prone long loop regions.
Collapse
|
52
|
Patel D, Haag SL, Patel JS, Ytreberg FM, Bernards MT. Paired Simulations and Experimental Investigations into the Calcium-Dependent Conformation of Albumin. J Chem Inf Model 2022; 62:1282-1293. [PMID: 35194993 DOI: 10.1021/acs.jcim.1c01104] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Serum albumin is the most abundant protein in blood plasma, and it is involved in multiple biological processes. Serum albumin has recently been adapted for improving biomaterial integration with bone tissue, and studies have shown the importance of this protein in bone repair and regeneration. However, the mechanism of action is not yet clear. In stark contrast, other studies have demonstrated that albumin blocks cell adhesion to surfaces, which is seen as a limitation to its bone healing role. These apparent contradictions suggest that the conformation of albumin facilitates its bioactivity, leading to enhanced bone repair. Serum albumin is known to play a major role in maintaining the calcium ion concentration in blood plasma. Due to the prevalence of calcium at bone repair and regeneration sites, it has been hypothesized that calcium binding to serum albumin triggers a conformational change, leading to bioactivity. In the current study, molecular modeling approaches including molecular docking, atomic molecular dynamics (MD) simulation, and coarse-grained MD simulation were used to test this hypothesis by investigating the conformational changes induced in bovine serum albumin by interaction with calcium ions. The computational results were qualitatively validated with experimental Fourier-transform infrared spectroscopy analysis. We find that free calcium ions in solution transiently bind with the three major loops in albumin, triggering a conformational change where N-terminal and C-terminal domains separate from each other in a partial unfolding process. The separation distance between these domains was found to correlate with the calcium ion concentration. The experimental data support the simulation results showing that albumin has enhanced conformational heterogeneity upon exposure to intermediate levels of calcium, without any significant secondary structure changes.
Collapse
Affiliation(s)
- Dharmeshkumar Patel
- Institute for Modeling Collaboration and Innovation, University of Idaho, Moscow 83844, Idaho, United States.,Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine and Children's Healthcare of Atlanta, Atlanta 30322, Georgia, United States
| | - Stephanie L Haag
- Department of Chemical and Biological Engineering, University of Idaho, Moscow 83844, Idaho, United States
| | - Jagdish Suresh Patel
- Institute for Modeling Collaboration and Innovation, University of Idaho, Moscow 83844, Idaho, United States.,Department of Biological Sciences, University of Idaho, Moscow 83844, Idaho, United States
| | - F Marty Ytreberg
- Institute for Modeling Collaboration and Innovation, University of Idaho, Moscow 83844, Idaho, United States.,Department of Physics, University of Idaho, Moscow 83844, Idaho, United States
| | - Matthew T Bernards
- Department of Chemical and Biological Engineering, University of Idaho, Moscow 83844, Idaho, United States
| |
Collapse
|
53
|
Melo MN. Coarse-Grain Simulations of Membrane-Adsorbed Helical Peptides. Methods Mol Biol 2022; 2405:137-150. [PMID: 35298812 DOI: 10.1007/978-1-0716-1855-4_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The amphipathic α-helix is a common motif for peptide adsorption to membranes. Many physiologically relevant events involving membrane-adsorbed peptides occur over time and size scales readily accessible to coarse-grain molecular dynamics simulations. This methodological suitability, however, comes with a number of pitfalls. Here, I exemplify a multi-step adsorption equilibration procedure on the antimicrobial peptide Magainin 2. It involves careful control of peptide freedom to promote optimal membrane adsorption before other interactions are allowed. This shortens preparation times prior to production simulations while avoiding divergence into unrealistic or artifactual configurations.
Collapse
Affiliation(s)
- Manuel N Melo
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal.
| |
Collapse
|
54
|
Balatti GE, Barletta GP, Parisi G, Tosatto SCE, Bellanda M, Fernandez-Alberti S. Intrinsically Disordered Region Modulates Ligand Binding in Glutaredoxin 1 from Trypanosoma Brucei. J Phys Chem B 2021; 125:13366-13375. [PMID: 34870419 DOI: 10.1021/acs.jpcb.1c07035] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Glutaredoxins are small proteins that share a common well-conserved thioredoxin-fold and participate in a wide variety of biological processes. Among them, class II Grx are redox-inactive proteins involved in iron-sulfur (Fe-S) metabolism. In the present work, we report different structural and dynamics aspects of 1CGrx1 from the pathogenic parasite Trypanosoma brucei that differentiate it from other orthologues by the presence of a parasite-specific unstructured N-terminal extension whose role has not been fully elucidated yet. Previous nuclear magnetic resonance (NMR) studies revealed significant differences with respect to the mutant lacking the disordered tail. Herein, we have performed atomistic molecular dynamics simulations that, complementary to NMR studies, confirm the intrinsically disordered nature of the N-terminal extension. Moreover, we confirm the main role of these residues in modulating the conformational dynamics of the glutathione-binding pocket. We observe that the N-terminal extension modifies the ligand cavity stiffening it by specific interactions that ultimately modulate its intrinsic flexibility, which may modify its role in the storage and/or transfer of preformed iron-sulfur clusters. These unique structural and dynamics aspects of Trypanosoma brucei 1CGrx1 differentiate it from other orthologues and could have functional relevance. In this way, our results encourage the study of other similar protein folding families with intrinsically disordered regions whose functional roles are still unrevealed and the screening of potential 1CGrx1 inhibitors as antitrypanosomal drug candidates.
Collapse
Affiliation(s)
- Galo E Balatti
- Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes/CONICET, B1876BXD Bernal, Argentina
| | - G Patricio Barletta
- Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes/CONICET, B1876BXD Bernal, Argentina
| | - Gustavo Parisi
- Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes/CONICET, B1876BXD Bernal, Argentina
| | - Silvio C E Tosatto
- Department of Biomedical Sciences, University of Padova, Viale G. Colombo 3, 35131 Padua, Italy
| | - Massimo Bellanda
- Department of Chemical Sciences, University of Padova, via Marzolo 1, 35131 Padua, Italy
| | | |
Collapse
|
55
|
Caceres-Delpiano J, Wang LP, Essex JW. The automated optimisation of a coarse-grained force field using free energy data. Phys Chem Chem Phys 2021; 23:24842-24851. [PMID: 34723311 PMCID: PMC8579472 DOI: 10.1039/d0cp05041e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 10/18/2021] [Indexed: 11/21/2022]
Abstract
Atomistic models provide a detailed representation of molecular systems, but are sometimes inadequate for simulations of large systems over long timescales. Coarse-grained models enable accelerated simulations by reducing the number of degrees of freedom, at the cost of reduced accuracy. New optimisation processes to parameterise these models could improve their quality and range of applicability. We present an automated approach for the optimisation of coarse-grained force fields, by reproducing free energy data derived from atomistic molecular simulations. To illustrate the approach, we implemented hydration free energy gradients as a new target for force field optimisation in ForceBalance and applied it successfully to optimise the un-charged side-chains and the protein backbone in the SIRAH protein coarse-grain force field. The optimised parameters closely reproduced hydration free energies of atomistic models and gave improved agreement with experiment.
Collapse
Affiliation(s)
| | - Lee-Ping Wang
- Department of Chemistry, University of California, Davis, California 95616, USA.
| | - Jonathan W Essex
- School of Chemistry, University of Southampton, Southapton, S017 1BJ, UK.
| |
Collapse
|
56
|
Vaiwala R, Ayappa KG. A generic force field for simulating native protein structures using dissipative particle dynamics. SOFT MATTER 2021; 17:9772-9785. [PMID: 34651150 DOI: 10.1039/d1sm01194d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
A coarse-grained force field for molecular dynamics simulations of the native structures of proteins in a dissipative particle dynamics (DPD) framework is developed. The parameters for bonded interactions are derived by mapping the bonds and angles for 20 amino acids onto target distributions obtained from fully atomistic simulations in explicit solvent. A dual-basin potential is introduced for stabilizing backbone angles, to cover a wide spectrum of protein secondary structures. The backbone dihedral potential enables folding of the protein from an unfolded initial state to the folded native structure. The proposed force field is validated by evaluating the structural properties of several model peptides and proteins including the SARS-CoV-2 fusion peptide, consisting of α-helices, β-sheets, loops and turns. Detailed comparisons with fully atomistic simulations are carried out to assess the ability of the proposed force field to stabilize the different secondary structures present in proteins. The compact conformations of the native states were evident from the radius of gyration and the high intensity peaks of the root mean square deviation histograms, which were found to be within 0.4 nm. The Ramachandran-like energy landscape on the phase space of backbone angles (θ) and dihedrals (ϕ) effectively captured the conformational phase space of α-helices at ∼(ϕ = 50°,θ = 90°) and β-strands at ∼(ϕ = ±180°,θ = 90-120°). Furthermore, the residue-residue native contacts were also well reproduced by the proposed DPD model. The applicability of the model to multidomain complexes was assessed using lysozyme and a large α-helical bacterial pore-forming toxin, cytolysin A. Our study illustrates that the proposed force field is generic, and can potentially be extended for efficient in silico investigations of membrane bound polypeptides and proteins using DPD simulations.
Collapse
Affiliation(s)
- Rakesh Vaiwala
- Department of Chemical Engineering, Indian Institute of Science, Bangalore 560012, India.
| | - K Ganapathy Ayappa
- Department of Chemical Engineering, Indian Institute of Science, Bangalore 560012, India.
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
57
|
Kist R, Timmers LFSM, Caceres RA. Understanding the role of mTOR-mLst8 binding through coarse-grained simulation approaches. MOLECULAR SIMULATION 2021. [DOI: 10.1080/08927022.2021.1962525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Roger Kist
- Graduate Program in Health Sciences of Federal University of Health Sciences of Porto Alegre – UFCSPA, Porto Alegre City, Brazil
| | | | - Rafael Andrade Caceres
- Graduate Program in Health Sciences of Federal University of Health Sciences of Porto Alegre – UFCSPA, Porto Alegre City, Brazil
- Pharmacosciences Department of Federal University of Health Sciences of Porto Alegre – UFCSPA, Porto Alegre City, Brazil
| |
Collapse
|
58
|
Liwo A, Czaplewski C, Sieradzan AK, Lipska AG, Samsonov SA, Murarka RK. Theory and Practice of Coarse-Grained Molecular Dynamics of Biologically Important Systems. Biomolecules 2021; 11:1347. [PMID: 34572559 PMCID: PMC8465211 DOI: 10.3390/biom11091347] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 09/03/2021] [Accepted: 09/09/2021] [Indexed: 12/16/2022] Open
Abstract
Molecular dynamics with coarse-grained models is nowadays extensively used to simulate biomolecular systems at large time and size scales, compared to those accessible to all-atom molecular dynamics. In this review article, we describe the physical basis of coarse-grained molecular dynamics, the coarse-grained force fields, the equations of motion and the respective numerical integration algorithms, and selected practical applications of coarse-grained molecular dynamics. We demonstrate that the motion of coarse-grained sites is governed by the potential of mean force and the friction and stochastic forces, resulting from integrating out the secondary degrees of freedom. Consequently, Langevin dynamics is a natural means of describing the motion of a system at the coarse-grained level and the potential of mean force is the physical basis of the coarse-grained force fields. Moreover, the choice of coarse-grained variables and the fact that coarse-grained sites often do not have spherical symmetry implies a non-diagonal inertia tensor. We describe selected coarse-grained models used in molecular dynamics simulations, including the most popular MARTINI model developed by Marrink's group and the UNICORN model of biological macromolecules developed in our laboratory. We conclude by discussing examples of the application of coarse-grained molecular dynamics to study biologically important processes.
Collapse
Affiliation(s)
- Adam Liwo
- Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland; (C.C.); (A.K.S.); (A.G.L.); (S.A.S.)
| | - Cezary Czaplewski
- Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland; (C.C.); (A.K.S.); (A.G.L.); (S.A.S.)
| | - Adam K. Sieradzan
- Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland; (C.C.); (A.K.S.); (A.G.L.); (S.A.S.)
| | - Agnieszka G. Lipska
- Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland; (C.C.); (A.K.S.); (A.G.L.); (S.A.S.)
| | - Sergey A. Samsonov
- Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland; (C.C.); (A.K.S.); (A.G.L.); (S.A.S.)
| | - Rajesh K. Murarka
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhopal 462066, MP, India;
| |
Collapse
|
59
|
Giulini M, Rigoli M, Mattiotti G, Menichetti R, Tarenzi T, Fiorentini R, Potestio R. From System Modeling to System Analysis: The Impact of Resolution Level and Resolution Distribution in the Computer-Aided Investigation of Biomolecules. Front Mol Biosci 2021; 8:676976. [PMID: 34164432 PMCID: PMC8215203 DOI: 10.3389/fmolb.2021.676976] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Accepted: 05/06/2021] [Indexed: 12/18/2022] Open
Abstract
The ever increasing computer power, together with the improved accuracy of atomistic force fields, enables researchers to investigate biological systems at the molecular level with remarkable detail. However, the relevant length and time scales of many processes of interest are still hardly within reach even for state-of-the-art hardware, thus leaving important questions often unanswered. The computer-aided investigation of many biological physics problems thus largely benefits from the usage of coarse-grained models, that is, simplified representations of a molecule at a level of resolution that is lower than atomistic. A plethora of coarse-grained models have been developed, which differ most notably in their granularity; this latter aspect determines one of the crucial open issues in the field, i.e. the identification of an optimal degree of coarsening, which enables the greatest simplification at the expenses of the smallest information loss. In this review, we present the problem of coarse-grained modeling in biophysics from the viewpoint of system representation and information content. In particular, we discuss two distinct yet complementary aspects of protein modeling: on the one hand, the relationship between the resolution of a model and its capacity of accurately reproducing the properties of interest; on the other hand, the possibility of employing a lower resolution description of a detailed model to extract simple, useful, and intelligible information from the latter.
Collapse
Affiliation(s)
- Marco Giulini
- Physics Department, University of Trento, Trento, Italy.,INFN-TIFPA, Trento Institute for Fundamental Physics and Applications, Trento, Italy
| | - Marta Rigoli
- Physics Department, University of Trento, Trento, Italy.,INFN-TIFPA, Trento Institute for Fundamental Physics and Applications, Trento, Italy
| | - Giovanni Mattiotti
- Physics Department, University of Trento, Trento, Italy.,INFN-TIFPA, Trento Institute for Fundamental Physics and Applications, Trento, Italy
| | - Roberto Menichetti
- Physics Department, University of Trento, Trento, Italy.,INFN-TIFPA, Trento Institute for Fundamental Physics and Applications, Trento, Italy
| | - Thomas Tarenzi
- Physics Department, University of Trento, Trento, Italy.,INFN-TIFPA, Trento Institute for Fundamental Physics and Applications, Trento, Italy
| | - Raffaele Fiorentini
- Physics Department, University of Trento, Trento, Italy.,INFN-TIFPA, Trento Institute for Fundamental Physics and Applications, Trento, Italy
| | - Raffaello Potestio
- Physics Department, University of Trento, Trento, Italy.,INFN-TIFPA, Trento Institute for Fundamental Physics and Applications, Trento, Italy
| |
Collapse
|
60
|
Hernández-Meza JM, Mares-Sámano S, Garduño-Juárez R. Insights into the Molecular Inhibition of the Oncogenic Channel K V10.1 by Globular Toxins. J Chem Inf Model 2021; 61:2328-2340. [PMID: 33900765 DOI: 10.1021/acs.jcim.0c01353] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Inhibition of the expression of the human ether-à-go-go (hEAG1 or hKV10.1) channel is associated with a dramatic reduction in the growth of several cancerous tumors. The modulation of this channel's activity is a promising target for the development of new anticancer drugs. Although some small molecules have shown inhibitory activity against KV10.1, their lack of specificity has prevented their use in humans. In vitro studies have recently identified a limited number of peptide toxins with proven specificity in their hKV10.1 channel inhibitory effect. These peptide toxins have become desirable candidates to use as lead compounds to design more potent and specific hKV10.1 inhibitors. However, the currently available studies lack the atomic resolution needed to characterize the molecular features that favor their binding to hKV10.1. In this work, we present the first attempt to locate the possible hKV10.1 binding sites of the animal peptide toxins APETx4, Aa1a, Ap1a, and k-hefutoxin 1, all of which described as hKV10.1 inhibitors. Our studies incorporated homology modeling to construct a robust three-dimensional (3D) model of hKV10.1, applied protein docking, and multiscale molecular dynamics techniques to reveal in atomic resolution the toxin-channel interactions. Our approach suggests that some peptide toxins bind in the outer vestibule surrounding the pore of hKV10.1; it also identified the channel residues Met397 and Asp398 as possible anchors that stabilize the binding of the evaluated toxins. Finally, a description of the possible mechanism for inhibition and gating is presented.
Collapse
Affiliation(s)
- Juan M Hernández-Meza
- Instituto de Ciencias Físicas, Universidad Nacional Autónoma de México, Cuernavaca 62210, Morelos, México
| | - Sergio Mares-Sámano
- CONACYT - Instituto de Ciencias Físicas, Universidad Nacional Autónoma de México, Cuernavaca 62210, Morelos, México
| | - Ramón Garduño-Juárez
- Instituto de Ciencias Físicas, Universidad Nacional Autónoma de México, Cuernavaca 62210, Morelos, México
| |
Collapse
|
61
|
Nguyen PH, Ramamoorthy A, Sahoo BR, Zheng J, Faller P, Straub JE, Dominguez L, Shea JE, Dokholyan NV, De Simone A, Ma B, Nussinov R, Najafi S, Ngo ST, Loquet A, Chiricotto M, Ganguly P, McCarty J, Li MS, Hall C, Wang Y, Miller Y, Melchionna S, Habenstein B, Timr S, Chen J, Hnath B, Strodel B, Kayed R, Lesné S, Wei G, Sterpone F, Doig AJ, Derreumaux P. Amyloid Oligomers: A Joint Experimental/Computational Perspective on Alzheimer's Disease, Parkinson's Disease, Type II Diabetes, and Amyotrophic Lateral Sclerosis. Chem Rev 2021; 121:2545-2647. [PMID: 33543942 PMCID: PMC8836097 DOI: 10.1021/acs.chemrev.0c01122] [Citation(s) in RCA: 403] [Impact Index Per Article: 134.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Protein misfolding and aggregation is observed in many amyloidogenic diseases affecting either the central nervous system or a variety of peripheral tissues. Structural and dynamic characterization of all species along the pathways from monomers to fibrils is challenging by experimental and computational means because they involve intrinsically disordered proteins in most diseases. Yet understanding how amyloid species become toxic is the challenge in developing a treatment for these diseases. Here we review what computer, in vitro, in vivo, and pharmacological experiments tell us about the accumulation and deposition of the oligomers of the (Aβ, tau), α-synuclein, IAPP, and superoxide dismutase 1 proteins, which have been the mainstream concept underlying Alzheimer's disease (AD), Parkinson's disease (PD), type II diabetes (T2D), and amyotrophic lateral sclerosis (ALS) research, respectively, for many years.
Collapse
Affiliation(s)
- Phuong H Nguyen
- CNRS, UPR9080, Université de Paris, Laboratory of Theoretical Biochemistry, IBPC, Fondation Edmond de Rothschild, PSL Research University, Paris 75005, France
| | - Ayyalusamy Ramamoorthy
- Biophysics and Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| | - Bikash R Sahoo
- Biophysics and Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| | - Jie Zheng
- Department of Chemical & Biomolecular Engineering, The University of Akron, Akron, Ohio 44325, United States
| | - Peter Faller
- Institut de Chimie, UMR 7177, CNRS-Université de Strasbourg, 4 rue Blaise Pascal, 67000 Strasbourg, France
| | - John E Straub
- Department of Chemistry, Boston University, 590 Commonwealth Avenue, Boston, Massachusetts 02215, United States
| | - Laura Dominguez
- Facultad de Química, Departamento de Fisicoquímica, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | - Joan-Emma Shea
- Department of Chemistry and Biochemistry, and Department of Physics, University of California, Santa Barbara, California 93106, United States
| | - Nikolay V Dokholyan
- Department of Pharmacology and Biochemistry & Molecular Biology, Penn State University College of Medicine, Hershey, Pennsylvania 17033, United States
- Department of Chemistry, and Biomedical Engineering, Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Alfonso De Simone
- Department of Life Sciences, Imperial College London, London SW7 2AZ, U.K
- Molecular Biology, University of Naples Federico II, Naples 80138, Italy
| | - Buyong Ma
- Basic Science Program, Leidos Biomedical Research, Inc., Cancer and Inflammation Program, National Cancer Institute, Frederick, Maryland 21702, United States
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Ruth Nussinov
- Basic Science Program, Leidos Biomedical Research, Inc., Cancer and Inflammation Program, National Cancer Institute, Frederick, Maryland 21702, United States
- Sackler Institute of Molecular Medicine, Department of Human Genetics and Molecular Medicine Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Saeed Najafi
- Department of Chemistry and Biochemistry, and Department of Physics, University of California, Santa Barbara, California 93106, United States
| | - Son Tung Ngo
- Laboratory of Theoretical and Computational Biophysics & Faculty of Applied Sciences, Ton Duc Thang University, 33000 Ho Chi Minh City, Vietnam
| | - Antoine Loquet
- Institute of Chemistry & Biology of Membranes & Nanoobjects, (UMR5248 CBMN), CNRS, Université Bordeaux, Institut Européen de Chimie et Biologie, 33600 Pessac, France
| | - Mara Chiricotto
- Department of Chemical Engineering and Analytical Science, University of Manchester, Manchester M13 9PL, U.K
| | - Pritam Ganguly
- Department of Chemistry and Biochemistry, and Department of Physics, University of California, Santa Barbara, California 93106, United States
| | - James McCarty
- Chemistry Department, Western Washington University, Bellingham, Washington 98225, United States
| | - Mai Suan Li
- Institute for Computational Science and Technology, SBI Building, Quang Trung Software City, Tan Chanh Hiep Ward, District 12, Ho Chi Minh City 700000, Vietnam
- Institute of Physics, Polish Academy of Sciences, Al. Lotnikow 32/46, 02-668 Warsaw, Poland
| | - Carol Hall
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695-7905, United States
| | - Yiming Wang
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695-7905, United States
| | - Yifat Miller
- Department of Chemistry and The Ilse Katz Institute for Nanoscale Science & Technology, Ben-Gurion University of the Negev, Be'er Sheva 84105, Israel
| | | | - Birgit Habenstein
- Institute of Chemistry & Biology of Membranes & Nanoobjects, (UMR5248 CBMN), CNRS, Université Bordeaux, Institut Européen de Chimie et Biologie, 33600 Pessac, France
| | - Stepan Timr
- CNRS, UPR9080, Université de Paris, Laboratory of Theoretical Biochemistry, IBPC, Fondation Edmond de Rothschild, PSL Research University, Paris 75005, France
| | - Jiaxing Chen
- Department of Pharmacology and Biochemistry & Molecular Biology, Penn State University College of Medicine, Hershey, Pennsylvania 17033, United States
| | - Brianna Hnath
- Department of Pharmacology and Biochemistry & Molecular Biology, Penn State University College of Medicine, Hershey, Pennsylvania 17033, United States
| | - Birgit Strodel
- Institute of Complex Systems: Structural Biochemistry (ICS-6), Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Rakez Kayed
- Mitchell Center for Neurodegenerative Diseases, and Departments of Neurology, Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, Texas 77555, United States
| | - Sylvain Lesné
- Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Guanghong Wei
- Department of Physics, State Key Laboratory of Surface Physics, and Key Laboratory for Computational Physical Science, Multiscale Research Institute of Complex Systems, Fudan University, Shanghai 200438, China
| | - Fabio Sterpone
- CNRS, UPR9080, Université de Paris, Laboratory of Theoretical Biochemistry, IBPC, Fondation Edmond de Rothschild, PSL Research University, Paris 75005, France
| | - Andrew J Doig
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, U.K
| | - Philippe Derreumaux
- CNRS, UPR9080, Université de Paris, Laboratory of Theoretical Biochemistry, IBPC, Fondation Edmond de Rothschild, PSL Research University, Paris 75005, France
- Laboratory of Theoretical Chemistry, Ton Duc Thang University, 33000 Ho Chi Minh City, Vietnam
- Faculty of Pharmacy, Ton Duc Thang University, 33000 Ho Chi Minh City, Vietnam
| |
Collapse
|
62
|
Sokhan VP, Todorov IT. Dissipative particle dynamics: dissipative forces from atomistic simulation. MOLECULAR SIMULATION 2021. [DOI: 10.1080/08927022.2019.1578353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Vlad P. Sokhan
- STFC Daresbury Laboratory, Sci-Tech Daresbury, Cheshire, UK
| | | |
Collapse
|
63
|
Soñora M, Martínez L, Pantano S, Machado MR. Wrapping Up Viruses at Multiscale Resolution: Optimizing PACKMOL and SIRAH Execution for Simulating the Zika Virus. J Chem Inf Model 2021; 61:408-422. [PMID: 33415985 DOI: 10.1021/acs.jcim.0c01205] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Simulating huge biomolecular complexes of million atoms at relevant biological time scales is becoming accessible to the broad scientific community. That proves to be crucial for urgent responses against emergent diseases in real time. Yet, there are still issues to sort regarding the system setup so that molecular dynamics (MD) simulations can be run in a simple and standard way. Here, we introduce an optimized pipeline for building and simulating enveloped virus-like particles (VLP). First, the membrane packing problem is tackled with new features and optimized options in PACKMOL. This allows preparing accurate membrane models of thousands of lipids in the context of a VLP within a few hours using a single CPU. Then, the assembly of the VLP system is done within the multiscale framework of the coarse-grained SIRAH force field. Finally, the equilibration protocol provides a system ready for production MD simulations within a few days on broadly accessible GPU resources. The pipeline is applied to study the Zika virus as a test case for large biomolecular systems. The VLP stabilizes at approximately 0.5 μs of MD simulation, reproducing correlations greater than 0.90 against experimental density maps from cryo-electron microscopy. Detailed structural analysis of the protein envelope also shows very good agreement in root-mean-square deviations and B-factors with the experimental data. The level of details attained shows for the first time a possible role for anionic phospholipids in stabilizing the envelope. Combining an efficient and reliable setup procedure with an accurate coarse-grained force field provides a valuable pipeline for simulating arbitrary viral systems or subcellular compartments, paving the way toward whole-cell simulations.
Collapse
Affiliation(s)
- Martín Soñora
- Biomolecular Simulations Group, Institut Pasteur de Montevideo, Mataojo 2020, Montevideo, 11400, Uruguay
| | - Leandro Martínez
- Institute of Chemistry and Center for Computational Engineering & Science, University of Campinas, Rua Josué de Castro s/n, Cidade Universitária "Zeferino Vaz", Barão Geraldo, 13083-861 Campinas, SP, Brazil
| | - Sergio Pantano
- Biomolecular Simulations Group, Institut Pasteur de Montevideo, Mataojo 2020, Montevideo, 11400, Uruguay
| | - Matías R Machado
- Biomolecular Simulations Group, Institut Pasteur de Montevideo, Mataojo 2020, Montevideo, 11400, Uruguay
| |
Collapse
|
64
|
Klein F, Barrera EE, Pantano S. Assessing SIRAH's Capability to Simulate Intrinsically Disordered Proteins and Peptides. J Chem Theory Comput 2021; 17:599-604. [PMID: 33411518 DOI: 10.1021/acs.jctc.0c00948] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The challenges posed by intrinsically disordered proteins (IDPs) to atomistic and coarse-grained (CG) simulations are boosting efforts to develop and reparametrize current force fields. An assessment of the dynamical behavior of IDPs' and unstructured peptides with the CG SIRAH force field suggests that the current version achieves a fair description of IDPs' conformational flexibility. Moreover, we found a remarkable capability to capture the effect of point mutations in loosely structured peptides.
Collapse
Affiliation(s)
- Florencia Klein
- Institut Pasteur de Montevideo, Mataojo 2020, Montevideo, CP 11400, Uruguay.,Graduate Program in Chemistry, Facultad de Química, Universidad de la República, Montevideo 11800, Uruguay
| | - Exequiel E Barrera
- Institut Pasteur de Montevideo, Mataojo 2020, Montevideo, CP 11400, Uruguay.,Instituto de Histología y Embriología (IHEM) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), CC56, Universidad Nacional de Cuyo (UNCuyo), M5500 Mendoza, Argentina
| | - Sergio Pantano
- Institut Pasteur de Montevideo, Mataojo 2020, Montevideo, CP 11400, Uruguay.,Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai 201210, China
| |
Collapse
|
65
|
Moqadam M, Tubiana T, Moutoussamy EE, Reuter N. Membrane models for molecular simulations of peripheral membrane proteins. ADVANCES IN PHYSICS: X 2021. [DOI: 10.1080/23746149.2021.1932589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Affiliation(s)
- Mahmoud Moqadam
- Department of Chemistry, University of Bergen, Bergen, Norway
- Computational Biology Unit, Department of Informatics, University of Bergen, Bergen, Norway
| | - Thibault Tubiana
- Department of Chemistry, University of Bergen, Bergen, Norway
- Computational Biology Unit, Department of Informatics, University of Bergen, Bergen, Norway
| | - Emmanuel E. Moutoussamy
- Computational Biology Unit, Department of Informatics, University of Bergen, Bergen, Norway
- Department of Biological Sciences, University of Bergen, Bergen, Norway
| | - Nathalie Reuter
- Department of Chemistry, University of Bergen, Bergen, Norway
- Computational Biology Unit, Department of Informatics, University of Bergen, Bergen, Norway
| |
Collapse
|
66
|
Ramis R, Ortega-Castro J, Vilanova B, Adrover M, Frau J. Cu 2+, Ca 2+, and methionine oxidation expose the hydrophobic α-synuclein NAC domain. Int J Biol Macromol 2020; 169:251-263. [PMID: 33345970 DOI: 10.1016/j.ijbiomac.2020.12.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 09/04/2020] [Accepted: 12/03/2020] [Indexed: 11/25/2022]
Abstract
α-Synuclein is an intrinsically disordered protein whose aggregation is related to Parkinson's disease and other neurodegenerative disorders. Metal cations are one of the main factors affecting the propensity of α-synuclein to aggregate, either by directly binding to it or by catalyzing the production of reactive oxygen species that oxidize it. His50, Asp121 and several additional C-terminal α-synuclein residues are binding sites for numerous metal cations, while methionine sulfoxidation occurs readily on this protein under oxidative stress conditions. Molecular dynamics simulations are an excellent tool to obtain a microscopic picture of how metal binding or methionine sulfoxidation alter the conformational preferences of α-synuclein and, hence, its aggregation propensity. In this work, we report the first coarse-grained molecular dynamics study comparing the conformational ensembles of the native protein, the protein bound to either Cu2+ or Ca2+ at its main binding sites, and the methionine-sulfoxidized protein. Our results suggest that these events alter the transient α-synuclein intramolecular contacts, inducing a greater solvent exposure of its hydrophobic, aggregation-prone NAC domain, in full agreement with a recent experimental study on Ca2+ binding. Moreover, metal-binding residues directly participate in the long-range contacts that shield this domain and regulate α-synuclein aggregation. These results provide a molecular-level rationalization of the enhanced fibrillation experimentally observed in the presence of Cu2+ or Ca2+ and the oligomerization induced by methionine sulfoxidation.
Collapse
Affiliation(s)
- Rafael Ramis
- Institut Universitari d'Investigació en Cièencies de la Salut (IUNICS), Departament de Química, Universitat de les Illes Balears, 07122 Palma de Mallorca, Spain; Institut d'Investigació Sanitària Illes Balears (IdISBa), 07020 Palma de Mallorca, Spain
| | - Joaquín Ortega-Castro
- Institut Universitari d'Investigació en Cièencies de la Salut (IUNICS), Departament de Química, Universitat de les Illes Balears, 07122 Palma de Mallorca, Spain; Institut d'Investigació Sanitària Illes Balears (IdISBa), 07020 Palma de Mallorca, Spain.
| | - Bartolomé Vilanova
- Institut Universitari d'Investigació en Cièencies de la Salut (IUNICS), Departament de Química, Universitat de les Illes Balears, 07122 Palma de Mallorca, Spain; Institut d'Investigació Sanitària Illes Balears (IdISBa), 07020 Palma de Mallorca, Spain
| | - Miquel Adrover
- Institut Universitari d'Investigació en Cièencies de la Salut (IUNICS), Departament de Química, Universitat de les Illes Balears, 07122 Palma de Mallorca, Spain; Institut d'Investigació Sanitària Illes Balears (IdISBa), 07020 Palma de Mallorca, Spain
| | - Juan Frau
- Institut Universitari d'Investigació en Cièencies de la Salut (IUNICS), Departament de Química, Universitat de les Illes Balears, 07122 Palma de Mallorca, Spain; Institut d'Investigació Sanitària Illes Balears (IdISBa), 07020 Palma de Mallorca, Spain
| |
Collapse
|
67
|
Marchetto A, Si Chaib Z, Rossi CA, Ribeiro R, Pantano S, Rossetti G, Giorgetti A. CGMD Platform: Integrated Web Servers for the Preparation, Running, and Analysis of Coarse-Grained Molecular Dynamics Simulations. Molecules 2020; 25:E5934. [PMID: 33333836 PMCID: PMC7765266 DOI: 10.3390/molecules25245934] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 11/21/2020] [Accepted: 11/28/2020] [Indexed: 12/17/2022] Open
Abstract
Advances in coarse-grained molecular dynamics (CGMD) simulations have extended the use of computational studies on biological macromolecules and their complexes, as well as the interactions of membrane protein and lipid complexes at a reduced level of representation, allowing longer and larger molecular dynamics simulations. Here, we present a computational platform dedicated to the preparation, running, and analysis of CGMD simulations. The platform is built on a completely revisited version of our Martini coarsE gRained MembrAne proteIn Dynamics (MERMAID) web server, and it integrates this with other three dedicated services. In its current version, the platform expands the existing implementation of the Martini force field for membrane proteins to also allow the simulation of soluble proteins using the Martini and the SIRAH force fields. Moreover, it offers an automated protocol for carrying out the backmapping of the coarse-grained description of the system into an atomistic one.
Collapse
Affiliation(s)
- Alessandro Marchetto
- Department of Biotechnology, University of Verona, 37134 Verona, Italy; (A.M.); (C.A.R.); (R.R.)
- Computational Biomedicine, Institute for Neuroscience and Medicine (INM-9) and Institute for Advanced Simulations (IAS-5), Forschungszentrum Jülich, 52425 Jülich, Germany;
- Faculty of Mathematics, Computer Science and Natural Sciences, RWTH Aachen University, 52062 Aachen, Germany
| | - Zeineb Si Chaib
- Computational Biomedicine, Institute for Neuroscience and Medicine (INM-9) and Institute for Advanced Simulations (IAS-5), Forschungszentrum Jülich, 52425 Jülich, Germany;
- Faculty of Mathematics, Computer Science and Natural Sciences, RWTH Aachen University, 52062 Aachen, Germany
| | - Carlo Alberto Rossi
- Department of Biotechnology, University of Verona, 37134 Verona, Italy; (A.M.); (C.A.R.); (R.R.)
| | - Rui Ribeiro
- Department of Biotechnology, University of Verona, 37134 Verona, Italy; (A.M.); (C.A.R.); (R.R.)
| | - Sergio Pantano
- Institut Pasteur de Montevideo, Mataojo 2020, 11400 Montevideo, Uruguay;
| | - Giulia Rossetti
- Computational Biomedicine, Institute for Neuroscience and Medicine (INM-9) and Institute for Advanced Simulations (IAS-5), Forschungszentrum Jülich, 52425 Jülich, Germany;
- Jülich Supercomputing Center (JSC), Forschungszentrum Jülich, 52428 Jülich, Germany
- Department of Hematology, Oncology, Hemostaseology, and Stem Cell Transplantation, RWTH Aachen University, 52062 Aachen, Germany
| | - Alejandro Giorgetti
- Department of Biotechnology, University of Verona, 37134 Verona, Italy; (A.M.); (C.A.R.); (R.R.)
- Computational Biomedicine, Institute for Neuroscience and Medicine (INM-9) and Institute for Advanced Simulations (IAS-5), Forschungszentrum Jülich, 52425 Jülich, Germany;
| |
Collapse
|
68
|
Ramis R, Ortega-Castro J, Vilanova B, Adrover M, Frau J. Unraveling the NaCl Concentration Effect on the First Stages of α-Synuclein Aggregation. Biomacromolecules 2020; 21:5200-5212. [PMID: 33140640 DOI: 10.1021/acs.biomac.0c01292] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Intraneuronal aggregation of the intrinsically disordered protein α-synuclein is at the core of Parkinson's disease and related neurodegenerative disorders. Several reports show that the concentration of salts in the medium heavily affects its aggregation rate and fibril morphology, but a characterization of the individual monomeric conformations underlying these effects is still lacking. In this work, we have applied our α-synuclein-optimized coarse-grained molecular dynamics approach to decipher the structural features of the protein monomer under a range of NaCl concentrations (0.0-1.0 M). The results show that key intramolecular contacts between the terminal domains are lost at intermediate concentrations (leading to extended conformations likely to fibrillate), but recovered at high concentrations (leading to compact conformations likely to evolve toward amorphous aggregates). The pattern of direct interactions of the terminal α-synuclein domains with Na+ and Cl- ions plays a key role in explaining this effect. Our results are consistent with a recent study reporting a fibrillation enhancement at moderate NaCl concentrations but an inhibition at higher concentrations. The present work will contribute to improving our understanding of the structural features of monomeric α-synuclein, determining its NaCl-induced fibrillation propensity and the molecular basis of synucleinopathies, necessary for the future development of disease-halting therapies.
Collapse
Affiliation(s)
- Rafael Ramis
- Institut Universitari d'Investigació en Ciències de la Salut (IUNICS), Departament de Química, Universitat de les Illes Balears, 07122 Palma de Mallorca, Spain.,Institut d'Investigació Sanitària Illes Balears (IdISBa), 07020 Palma de Mallorca, Spain
| | - Joaquín Ortega-Castro
- Institut Universitari d'Investigació en Ciències de la Salut (IUNICS), Departament de Química, Universitat de les Illes Balears, 07122 Palma de Mallorca, Spain.,Institut d'Investigació Sanitària Illes Balears (IdISBa), 07020 Palma de Mallorca, Spain
| | - Bartolomé Vilanova
- Institut Universitari d'Investigació en Ciències de la Salut (IUNICS), Departament de Química, Universitat de les Illes Balears, 07122 Palma de Mallorca, Spain.,Institut d'Investigació Sanitària Illes Balears (IdISBa), 07020 Palma de Mallorca, Spain
| | - Miquel Adrover
- Institut Universitari d'Investigació en Ciències de la Salut (IUNICS), Departament de Química, Universitat de les Illes Balears, 07122 Palma de Mallorca, Spain.,Institut d'Investigació Sanitària Illes Balears (IdISBa), 07020 Palma de Mallorca, Spain
| | - Juan Frau
- Institut Universitari d'Investigació en Ciències de la Salut (IUNICS), Departament de Química, Universitat de les Illes Balears, 07122 Palma de Mallorca, Spain.,Institut d'Investigació Sanitària Illes Balears (IdISBa), 07020 Palma de Mallorca, Spain
| |
Collapse
|
69
|
Mirgaux M, Leherte L, Wouters J. Influence of the presence of the heme cofactor on the JK-loop structure in indoleamine 2,3-dioxygenase 1. ACTA CRYSTALLOGRAPHICA SECTION D-STRUCTURAL BIOLOGY 2020; 76:1211-1221. [DOI: 10.1107/s2059798320013510] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 10/08/2020] [Indexed: 01/13/2023]
Abstract
Indoleamine 2,3-dioxygenase 1 has sparked interest as an immunotherapeutic target in cancer research. Its structure includes a loop, named the JK-loop, that controls the orientation of the substrate or inhibitor within the active site. However, little has been reported about the crystal structure of this loop. In the present work, the conformation of the JK-loop is determined for the first time in the presence of the heme cofactor in the active site through X-ray diffraction experiments (2.44 Å resolution). Molecular-dynamics trajectories were also obtained to provide dynamic information about the loop according to the presence of cofactor. This new structural and dynamic information highlights the importance of the JK-loop in confining the labile heme cofactor to the active site.
Collapse
|
70
|
Murphy P, Xu Y, Rouse SL, Jaffray EG, Plechanovová A, Matthews SJ, Carlos Penedo J, Hay RT. Functional 3D architecture in an intrinsically disordered E3 ligase domain facilitates ubiquitin transfer. Nat Commun 2020; 11:3807. [PMID: 32733036 PMCID: PMC7393505 DOI: 10.1038/s41467-020-17647-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 07/13/2020] [Indexed: 12/18/2022] Open
Abstract
The human genome contains an estimated 600 ubiquitin E3 ligases, many of which are single-subunit E3s (ssE3s) that can bind to both substrate and ubiquitin-loaded E2 (E2~Ub). Within ssE3s structural disorder tends to be located in substrate binding and domain linking regions. RNF4 is a ssE3 ligase with a C-terminal RING domain and disordered N-terminal region containing SUMO Interactions Motifs (SIMs) required to bind SUMO modified substrates. Here we show that, although the N-terminal region of RNF4 bears no secondary structure, it maintains a compact global architecture primed for SUMO interaction. Segregated charged regions within the RNF4 N-terminus promote compaction, juxtaposing RING domain and SIMs to facilitate substrate ubiquitination. Mutations that induce a more extended shape reduce ubiquitination activity. Our result offer insight into a key step in substrate ubiquitination by a member of the largest ubiquitin ligase subtype and reveal how a defined architecture within a disordered region contributes to E3 ligase function.
Collapse
Affiliation(s)
- Paul Murphy
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, DD1 5EH, Dundee, UK
| | - Yingqi Xu
- Centre for Structural Biology, Department of Life Sciences, Imperial College London, SW7 2AZ, London, UK
| | - Sarah L Rouse
- Centre for Structural Biology, Department of Life Sciences, Imperial College London, SW7 2AZ, London, UK
| | - Ellis G Jaffray
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, DD1 5EH, Dundee, UK
| | - Anna Plechanovová
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, DD1 5EH, Dundee, UK
| | - Steve J Matthews
- Centre for Structural Biology, Department of Life Sciences, Imperial College London, SW7 2AZ, London, UK
| | - J Carlos Penedo
- Centre of Biophotonics, School of Physics and Astronomy, University of St. Andrews, KY16 9SS, St. Andrews, UK
- Biomedical Sciences Research Complex, School of Biology, University of St. Andrews, KY16 9ST, St. Andrews, UK
| | - Ronald T Hay
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, DD1 5EH, Dundee, UK.
| |
Collapse
|
71
|
Zhang X, Sundram S, Oppelstrup T, Kokkila-Schumacher SIL, Carpenter TS, Ingólfsson HI, Streitz FH, Lightstone FC, Glosli JN. ddcMD: A fully GPU-accelerated molecular dynamics program for the Martini force field. J Chem Phys 2020; 153:045103. [PMID: 32752727 DOI: 10.1063/5.0014500] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
We have implemented the Martini force field within Lawrence Livermore National Laboratory's molecular dynamics program, ddcMD. The program is extended to a heterogeneous programming model so that it can exploit graphics processing unit (GPU) accelerators. In addition to the Martini force field being ported to the GPU, the entire integration step, including thermostat, barostat, and constraint solver, is ported as well, which speeds up the simulations to 278-fold using one GPU vs one central processing unit (CPU) core. A benchmark study is performed with several test cases, comparing ddcMD and GROMACS Martini simulations. The average performance of ddcMD for a protein-lipid simulation system of 136k particles achieves 1.04 µs/day on one NVIDIA V100 GPU and aggregates 6.19 µs/day on one Summit node with six GPUs. The GPU implementation in ddcMD offloads all computations to the GPU and only requires one CPU core per simulation to manage the inputs and outputs, freeing up remaining CPU resources on the compute node for alternative tasks often required in complex simulation campaigns. The ddcMD code has been made open source and is available on GitHub at https://github.com/LLNL/ddcMD.
Collapse
Affiliation(s)
- Xiaohua Zhang
- Physical and Life Sciences (PLS) Directorate, Lawrence Livermore National Laboratory, Livermore, California 94550, USA
| | - Shiv Sundram
- Computing Directorate, Lawrence Livermore National Laboratory, Livermore, California 94550, USA
| | - Tomas Oppelstrup
- Physical and Life Sciences (PLS) Directorate, Lawrence Livermore National Laboratory, Livermore, California 94550, USA
| | | | - Timothy S Carpenter
- Physical and Life Sciences (PLS) Directorate, Lawrence Livermore National Laboratory, Livermore, California 94550, USA
| | - Helgi I Ingólfsson
- Physical and Life Sciences (PLS) Directorate, Lawrence Livermore National Laboratory, Livermore, California 94550, USA
| | - Frederick H Streitz
- Physical and Life Sciences (PLS) Directorate, Lawrence Livermore National Laboratory, Livermore, California 94550, USA
| | - Felice C Lightstone
- Physical and Life Sciences (PLS) Directorate, Lawrence Livermore National Laboratory, Livermore, California 94550, USA
| | - James N Glosli
- Physical and Life Sciences (PLS) Directorate, Lawrence Livermore National Laboratory, Livermore, California 94550, USA
| |
Collapse
|
72
|
Structures of the intrinsically disordered Aβ, tau and α-synuclein proteins in aqueous solution from computer simulations. Biophys Chem 2020; 264:106421. [PMID: 32623047 DOI: 10.1016/j.bpc.2020.106421] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 06/17/2020] [Accepted: 06/18/2020] [Indexed: 12/21/2022]
Abstract
Intrinsically disordered proteins (IDPs) play many biological roles in the human proteome ranging from vesicular transport, signal transduction to neurodegenerative diseases. The Aβ and tau proteins, and the α-synuclein protein, key players in Alzheimer's and Parkinson's diseases, respectively are fully disordered at the monomer level. The structural heterogeneity of the monomeric and oligomeric states and the high self-assembly propensity of these three IDPs have precluded experimental structural determination. Simulations have been used to determine the atomic structures of these IDPs. In this article, we review recent computer models to capture the equilibrium ensemble of Aβ, tau and α-synuclein proteins at different association steps in aqueous solution and present new results of the PEP-FOLD framework on α-synuclein monomer.
Collapse
|
73
|
Saldaño TE, Freixas VM, Tosatto SCE, Parisi G, Fernandez-Alberti S. Exploring Conformational Space with Thermal Fluctuations Obtained by Normal-Mode Analysis. J Chem Inf Model 2020; 60:3068-3080. [PMID: 32216314 DOI: 10.1021/acs.jcim.9b01136] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Proteins in their native states can be represented as ensembles of conformers in dynamical equilibrium. Thermal fluctuations are responsible for transitions between these conformers. Normal-modes analysis (NMA) using elastic network models (ENMs) provides an efficient procedure to explore global dynamics of proteins commonly associated with conformational transitions. In the present work, we present an iterative approach to explore protein conformational spaces by introducing structural distortions according to their equilibrium dynamics at room temperature. The approach can be used either to perform unbiased explorations of conformational space or to explore guided pathways connecting two different conformations, e.g., apo and holo forms. In order to test its performance, four proteins with different magnitudes of structural distortions upon ligand binding have been tested. In all cases, the conformational selection model has been confirmed and the conformational space between apo and holo forms has been encompassed. Different strategies have been tested that impact on the efficiency either to achieve a desired conformational change or to achieve a balanced exploration of the protein conformational multiplicity.
Collapse
Affiliation(s)
- Tadeo E Saldaño
- Universidad Nacional de Quilmes/CONICET, Roque Saenz Peña 352, B1876BXD Bernal, Argentina
| | - Victor M Freixas
- Universidad Nacional de Quilmes/CONICET, Roque Saenz Peña 352, B1876BXD Bernal, Argentina
| | - Silvio C E Tosatto
- Department of Biomedical Sciences, University of Padova, Viale G. Colombo 3, 5131 Padova, Italy
| | - Gustavo Parisi
- Universidad Nacional de Quilmes/CONICET, Roque Saenz Peña 352, B1876BXD Bernal, Argentina
| | | |
Collapse
|
74
|
Fiorentini R, Kremer K, Potestio R. Ligand-protein interactions in lysozyme investigated through a dual-resolution model. Proteins 2020; 88:1351-1360. [PMID: 32525263 PMCID: PMC7497117 DOI: 10.1002/prot.25954] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 05/04/2020] [Accepted: 05/16/2020] [Indexed: 12/12/2022]
Abstract
A fully atomistic (AT) modeling of biological macromolecules at relevant length- and time-scales is often cumbersome or not even desirable, both in terms of computational effort required and a posteriori analysis. This difficulty can be overcome with the use of multiresolution models, in which different regions of the same system are concurrently described at different levels of detail. In enzymes, computationally expensive AT detail is crucial in the modeling of the active site in order to capture, for example, the chemically subtle process of ligand binding. In contrast, important yet more collective properties of the remainder of the protein can be reproduced with a coarser description. In the present work, we demonstrate the effectiveness of this approach through the calculation of the binding free energy of hen egg white lysozyme with the inhibitor di-N-acetylchitotriose. Particular attention is payed to the impact of the mapping, that is, the selection of AT and coarse-grained residues, on the binding free energy. It is shown that, in spite of small variations of the binding free energy with respect to the active site resolution, the separate contributions coming from different energetic terms (such as electrostatic and van der Waals interactions) manifest a stronger dependence on the mapping, thus pointing to the existence of an optimal level of intermediate resolution.
Collapse
Affiliation(s)
| | - Kurt Kremer
- Max Planck Institute for Polymer Research, Mainz, Germany
| | - Raffaello Potestio
- Physics Department, University of Trento, Trento, Italy.,INFN-TIFPA, Trento Institute for Fundamental Physics and Applications, Trento, Italy
| |
Collapse
|
75
|
Damre M, Marchetto A, Giorgetti A. MERMAID: dedicated web server to prepare and run coarse-grained membrane protein dynamics. Nucleic Acids Res 2020; 47:W456-W461. [PMID: 31106328 PMCID: PMC6602572 DOI: 10.1093/nar/gkz416] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 04/26/2019] [Accepted: 05/05/2019] [Indexed: 01/06/2023] Open
Abstract
Atomistic molecular dynamics simulations of membrane proteins have been shown to be extremely useful for characterizing the molecular features underlying their function, but require high computational power, limiting the understanding of complex events in membrane proteins, e.g. ion channels gating, GPCRs activation. To overcome this issue, it has been shown that coarse-grained approaches, although requiring less computational power, are still capable of correctly describing molecular events underlying big conformational changes in biological systems. Here, we present the Martini coarse-grained membrane protein dynamics (MERMAID), a publicly available web interface that allows the user to prepare and run coarse-grained molecular dynamics (CGMD) simulations and to analyse the trajectories.
Collapse
Affiliation(s)
- Mangesh Damre
- Neurobiology, International School for Advanced Studies (SISSA), via Bonomea 265, 34136 Trieste, Italy.,Department of Biotechnology, University of Verona, Ca Vignal 1, strada Le Grazie, 15, 37134 Verona, Italy
| | - Alessandro Marchetto
- Department of Biotechnology, University of Verona, Ca Vignal 1, strada Le Grazie, 15, 37134 Verona, Italy
| | - Alejandro Giorgetti
- Department of Biotechnology, University of Verona, Ca Vignal 1, strada Le Grazie, 15, 37134 Verona, Italy.,Institute for Advanced Simulations (IAS)-5/Institute for Neuroscience and Medicine (INM)-9, Forschungszentrum Jülich, 52428 Jülich, Germany
| |
Collapse
|
76
|
Roel-Touris J, Bonvin AM. Coarse-grained (hybrid) integrative modeling of biomolecular interactions. Comput Struct Biotechnol J 2020; 18:1182-1190. [PMID: 32514329 PMCID: PMC7264466 DOI: 10.1016/j.csbj.2020.05.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 04/23/2020] [Accepted: 05/06/2020] [Indexed: 12/23/2022] Open
Abstract
The computational modeling field has vastly evolved over the past decades. The early developments of simplified protein systems represented a stepping stone towards establishing more efficient approaches to sample intricated conformational landscapes. Downscaling the level of resolution of biomolecules to coarser representations allows for studying protein structure, dynamics and interactions that are not accessible by classical atomistic approaches. The combination of different resolutions, namely hybrid modeling, has also been proved as an alternative when mixed levels of details are required. In this review, we provide an overview of coarse-grained/hybrid models focusing on their applicability in the modeling of biomolecular interactions. We give a detailed list of ready-to-use modeling software for studying biomolecular interactions allowing various levels of coarse-graining and provide examples of complexes determined by integrative coarse-grained/hybrid approaches in combination with experimental information.
Collapse
|
77
|
Zhong Q, Li G. Arbitrary Resolution with Two Bead Types Coarse-Grained Strategy and Applications to Protein Recognition. J Phys Chem Lett 2020; 11:3263-3270. [PMID: 32251595 DOI: 10.1021/acs.jpclett.0c00750] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Molecular recognition is a fundamental step in essentially any biological process. However, the kinetic processes during association and dissociation are difficult to be efficiently sampled by direct all-atom molecular dynamics simulations because of the large spatial and temporal scales. Here we propose an arbitrary resolution with two bead types (ART) coarse-grained (CG) strategy that is adept in molecular recognition. ART is a universal user-customized CG strategy that can generate a system-specific CG force field anytime and be applied to any system with an arbitrary CG resolution according to research requirements. ART CG simulations can be very efficiently performed with implicit solvation in prevalent simulation packages and provide interfaces for any enhanced sampling method. We used three applications, HLA-HIV epitope recognition, barnase-barstar association, and trimeric TRAF2 self-assembly, to validate the feasibility of the ART CG strategy, its advantages in protein recognition, and its high performance in simulations. Regular CG simulations can successfully achieve valid protein recognitions without any prior bound structure.
Collapse
Affiliation(s)
- Qinglu Zhong
- Laboratory of Molecular Modeling and Design, State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guohui Li
- Laboratory of Molecular Modeling and Design, State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| |
Collapse
|
78
|
Furuki T, Takahashi Y, Hatanaka R, Kikawada T, Furuta T, Sakurai M. Group 3 LEA Protein Model Peptides Suppress Heat-Induced Lysozyme Aggregation. Elucidation of the Underlying Mechanism Using Coarse-Grained Molecular Simulations. J Phys Chem B 2020; 124:2747-2759. [PMID: 32192343 DOI: 10.1021/acs.jpcb.9b11000] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We investigated experimentally whether a short peptide, PvLEA-22, which consists of two tandem repeats of an 11-mer motif of Group 3 late embryogenesis abundant proteins, has a chaperone-like function for denatured proteins. Lysozyme was selected as a target protein. Turbidity measurements indicated that the peptide suppresses the heat-induced aggregation of lysozyme when added at a molar ratio of PvLEA-22/lysozyme >40. Circular dichroism and differential scanning calorimetry measurements confirmed that the lysozyme was denatured on heating but spontaneously refolded on subsequent cooling in the presence of the peptide. As a result, up to 80% of the native catalytic activity of lysozyme was preserved. Similar chaperone-like activity was also observed for a peptide with the same amino acid composition as PvLEA-22 but whose sequence is scrambled. To elucidate the underlying mechanism of the chaperone function of these peptides, we performed coarse-grained molecular dynamics simulations. This revealed that a denatured lysozyme molecule is shielded by several peptide molecules in aqueous solution, which acts as a physical barrier, reducing the opportunities for collision between denatured proteins. An important finding was that a peptide bound to the denatured protein is very rapidly replaced by another; due to such rapid exchange, peptide-protein contact time is very short, that is, on the order of ∼200 ns. Therefore, the peptide does not constrain the behavior of the denatured protein, which can refold freely.
Collapse
Affiliation(s)
- Takao Furuki
- Center for Biological Resources and Informatics, Tokyo Institute of Technology, 4259-B-62, Nagatsuta-cho, Midori-ku, Yokohama, 226-8501, Japan
| | - Yuta Takahashi
- Center for Biological Resources and Informatics, Tokyo Institute of Technology, 4259-B-62, Nagatsuta-cho, Midori-ku, Yokohama, 226-8501, Japan
| | - Rie Hatanaka
- Molecular Biomimetics Research Unit, Division of Biotechnology, Institute of Agrobiological Sciences, National Institute of Agriculture and Food Research Organization, Ohwashi 1-2, Tsukuba 305-8634 Japan
| | - Takahiro Kikawada
- Molecular Biomimetics Research Unit, Division of Biotechnology, Institute of Agrobiological Sciences, National Institute of Agriculture and Food Research Organization, Ohwashi 1-2, Tsukuba 305-8634 Japan
| | - Tadaomi Furuta
- Center for Biological Resources and Informatics, Tokyo Institute of Technology, 4259-B-62, Nagatsuta-cho, Midori-ku, Yokohama, 226-8501, Japan
| | - Minoru Sakurai
- Center for Biological Resources and Informatics, Tokyo Institute of Technology, 4259-B-62, Nagatsuta-cho, Midori-ku, Yokohama, 226-8501, Japan
| |
Collapse
|
79
|
Garay PG, Barrera EE, Pantano S. Post-Translational Modifications at the Coarse-Grained Level with the SIRAH Force Field. J Chem Inf Model 2020; 60:964-973. [PMID: 31840995 DOI: 10.1021/acs.jcim.9b00900] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Post-translational modifications (PTMs) on proteins significantly enlarge the physicochemical diversity present in biological macromolecules, altering function, localization, and interactions. Despite their critical role in regulating cellular processes, theoretical methods are not yet fully capable of coping with this diversity. These limitations are particularly more marked for coarse-grained (CG) models, in which comprehensive and self-consistent parametrizations are less frequent. Here we present a set of topologies and interaction parameters for the most common PTMs, fully compatible with the SIRAH force field. The PTMs introduced here reach the same level of structural description of the existing SIRAH force field, expanding the chemical spectrum with promising applications in dynamical protein-protein interactions in large and complex cellular environments.
Collapse
Affiliation(s)
- Pablo G Garay
- Biomolecular Simulations Group , Institut Pasteur de Montevideo , Mataojo 2020, CP 11400 Montevideo , Uruguay
| | - Exequiel E Barrera
- Biomolecular Simulations Group , Institut Pasteur de Montevideo , Mataojo 2020, CP 11400 Montevideo , Uruguay
| | - Sergio Pantano
- Biomolecular Simulations Group , Institut Pasteur de Montevideo , Mataojo 2020, CP 11400 Montevideo , Uruguay.,Shanghai Institute for Advanced Immunochemical Studies , ShanghaiTech University , 393 Middle Huaxia Road , Shanghai 201210 , China
| |
Collapse
|
80
|
Caparotta M, Bustos DM, Masone D. Order–disorder skewness in alpha-synuclein: a key mechanism to recognize membrane curvature. Phys Chem Chem Phys 2020; 22:5255-5263. [DOI: 10.1039/c9cp04951g] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Currently, membrane curvature is understood as an active mechanism to control cells spatial organization and activity.
Collapse
Affiliation(s)
- Marcelo Caparotta
- Facultad de Ciencias Exactas y Naturales
- Universidad Nacional de Cuyo (UNCuyo)
- Mendoza
- Argentina
| | - Diego M. Bustos
- Facultad de Ciencias Exactas y Naturales
- Universidad Nacional de Cuyo (UNCuyo)
- Mendoza
- Argentina
- Instituto de Histología y Embriología de Mendoza (IHEM) – Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)
| | - Diego Masone
- Instituto de Histología y Embriología de Mendoza (IHEM) – Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)
- Universidad Nacional de Cuyo (UNCuyo)
- Mendoza
- Argentina
- Facultad de Ingeniería
| |
Collapse
|
81
|
Wilson KA, Wang L, MacDermott-Opeskin H, O'Mara ML. The Fats of Life: Using Computational Chemistry to Characterise the Eukaryotic Cell Membrane. Aust J Chem 2020. [DOI: 10.1071/ch19353] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Our current knowledge of the structural dynamics and complexity of lipid bilayers is still developing. Computational techniques, especially molecular dynamics simulations, have increased our understanding significantly as they allow us to model functions that cannot currently be experimentally resolved. Here we review available computational tools and techniques, the role of the major lipid species, insights gained into lipid bilayer structure and function from molecular dynamics simulations, and recent progress towards the computational modelling of the physiological complexity of eukaryotic lipid bilayers.
Collapse
|
82
|
Martínez M, Cooper CD, Poma AB, Guzman HV. Free Energies of the Disassembly of Viral Capsids from a Multiscale Molecular Simulation Approach. J Chem Inf Model 2019; 60:974-981. [DOI: 10.1021/acs.jcim.9b00883] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Matías Martínez
- Department of Mechanical Engineering, Universidad Técnica Federico Santa María, 2390123 Valparaíso, Chile
| | - Christopher D. Cooper
- Department of Mechanical Engineering, Universidad Técnica Federico Santa María, 2390123 Valparaíso, Chile
- Centro Científico Tecnológico de Valparaíso (CCTVal), 2390123 Valparaíso, Chile
| | - Adolfo B. Poma
- Institute of Fundamental Technological Research, Polish Academy of Sciences, Pawińskiego 5B, 02-106 Warsaw, Poland
| | - Horacio V. Guzman
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
- Jožef Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia
| |
Collapse
|
83
|
Herrera MG, Gómez Castro MF, Prieto E, Barrera E, Dodero VI, Pantano S, Chirdo F. Structural conformation and self-assembly process of p31-43 gliadin peptide in aqueous solution. Implications for celiac disease. FEBS J 2019; 287:2134-2149. [PMID: 31659864 DOI: 10.1111/febs.15109] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Revised: 09/06/2019] [Accepted: 10/25/2019] [Indexed: 12/13/2022]
Abstract
Celiac disease (CeD) is a highly prevalent chronic immune-mediated enteropathy developed in genetically predisposed individuals after ingestion of a group of wheat proteins (called gliadins and glutenins). The 13mer α-gliadin peptide, p31-43, induces proinflammatory responses, observed by in vitro assays and animal models, that may contribute to innate immune mechanisms of CeD pathogenesis. Since a cellular receptor for p31-43 has not been identified, this raises the question of whether this peptide could mediate different biological effects. In this work, we aimed to characterize the p31-43 secondary structure by different biophysical and in silico techniques. By dynamic light scattering and using an oligomer/fibril-sensitive fluorescent probe, we showed the presence of oligomers of this peptide in solution. Furthermore, atomic force microscopy analysis showed p31-43 oligomers with different height distribution. Also, peptide concentration had a very strong influence on peptide self-organization process. Oligomers gradually increased their size at lower concentration. Whereas, at higher ones, oligomers increased their complexity, forming branched structures. By CD, we observed that p31-43 self-organized in a polyproline II conformation in equilibrium with β-sheets-like structures, whose pH remained stable in the range of 3-8. In addition, these findings were supported by molecular dynamics simulation. The formation of p31-43 nanostructures with increased β-sheet structure may help to explain the molecular etiopathogenesis in the induction of proinflammatory effects and subsequent damage at the intestinal mucosa in CeD.
Collapse
Affiliation(s)
- María Georgina Herrera
- Instituto de Química y Fisicoquímica Biológicas - IQUIFIB (UBA-CONICET), Buenos Aires, Argentina
| | | | - Eduardo Prieto
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA, UNLP-CONICET), La Plata, Argentina
| | | | | | - Sergio Pantano
- Institut Pasteur de Montevideo, Uruguay.,Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, China
| | - Fernando Chirdo
- Instituto de Estudios Inmunológicos y Fisiopatológicos (IIFP, UNLP-CONICET), La Plata, Argentina
| |
Collapse
|
84
|
Rajagopal N, Irudayanathan FJ, Nangia S. Computational Nanoscopy of Tight Junctions at the Blood-Brain Barrier Interface. Int J Mol Sci 2019; 20:E5583. [PMID: 31717316 PMCID: PMC6888702 DOI: 10.3390/ijms20225583] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 11/05/2019] [Accepted: 11/06/2019] [Indexed: 12/16/2022] Open
Abstract
The selectivity of the blood-brain barrier (BBB) is primarily maintained by tight junctions (TJs), which act as gatekeepers of the paracellular space by blocking blood-borne toxins, drugs, and pathogens from entering the brain. The BBB presents a significant challenge in designing neurotherapeutics, so a comprehensive understanding of the TJ architecture can aid in the design of novel therapeutics. Unraveling the intricacies of TJs with conventional experimental techniques alone is challenging, but recently developed computational tools can provide a valuable molecular-level understanding of TJ architecture. We employed the computational methods toolkit to investigate claudin-5, a highly expressed TJ protein at the BBB interface. Our approach started with the prediction of claudin-5 structure, evaluation of stable dimer conformations and nanoscale assemblies, followed by the impact of lipid environments, and posttranslational modifications on these claudin-5 assemblies. These led to the study of TJ pores and barriers and finally understanding of ion and small molecule transport through the TJs. Some of these in silico, molecular-level findings, will need to be corroborated by future experiments. The resulting understanding can be advantageous towards the eventual goal of drug delivery across the BBB. This review provides key insights gleaned from a series of state-of-the-art nanoscale simulations (or computational nanoscopy studies) performed on the TJ architecture.
Collapse
Affiliation(s)
| | | | - Shikha Nangia
- Department of Biomedical and Chemical Engineering, Syracuse University, Syracuse, NY 13244, USA
| |
Collapse
|
85
|
Frigini EN, Barrera EE, Pantano S, Porasso RD. Role of membrane curvature on the activation/deactivation of Carnitine Palmitoyltransferase 1A: A coarse grain molecular dynamic study. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2019; 1862:183094. [PMID: 31705849 DOI: 10.1016/j.bbamem.2019.183094] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 09/20/2019] [Accepted: 09/23/2019] [Indexed: 10/25/2022]
Abstract
Carnitine Palmitoyltransferase 1A (CPT 1A) is an enzyme anchored to the outer mitochondrial membrane (OMM), where it regulates the passage of fatty acids into the mitochondria and intervenes in the process of β-oxidation of long-chain fatty acids. Although CPT 1A is inhibited by malonyl-CoA, its activity is also modulated by the curvature of OMM. This modulation depends on the behavior of the N-terminal domain (NTD), which can be adsorbed onto the OMM (nonactive CPT 1A) or interacting with the C-terminal domain (active CPT 1A). Aimed to provide mechanistic insights on the regulatory mechanism of CPT 1A, we studied the influence of the bilayer curvature on the NTD behavior through a series of coarse-grained (CG) molecular dynamics simulations using curved and planar membranes. Comparative analysis suggests that the main determinant for the activation/deactivation of the enzyme is the tilt angle orientation of the transmembrane (TM) domains. Planar membranes induce a wide variation on the tilt angle orientation of TM helices, while curved geometries promote small angles with the membrane normal. Our results identify the first TM domain as an important component of the membrane sensing mechanism.
Collapse
Affiliation(s)
- Ezequiel N Frigini
- Instituto de Matemáticas Aplicada San Luis (IMASL), CONICET, Facultad de Quimica, Bioquimica y Farmacia, Facultad de Ciencias Físico Matemáticas y Naturales, Universidad Nacional de San Luis, Av. Ejército de los Andes 950, San Luis 5700, Argentina
| | - Exequiel E Barrera
- Biomolecular Simulations Group, Institut Pasteur de Montevideo, Mataojo 2020, Montevideo 11400, Uruguay
| | - Sergio Pantano
- Biomolecular Simulations Group, Institut Pasteur de Montevideo, Mataojo 2020, Montevideo 11400, Uruguay
| | - Rodolfo D Porasso
- Instituto de Matemáticas Aplicada San Luis (IMASL), CONICET, Facultad de Quimica, Bioquimica y Farmacia, Facultad de Ciencias Físico Matemáticas y Naturales, Universidad Nacional de San Luis, Av. Ejército de los Andes 950, San Luis 5700, Argentina.
| |
Collapse
|
86
|
Barrera EE, Machado MR, Pantano S. Fat SIRAH: Coarse-Grained Phospholipids To Explore Membrane-Protein Dynamics. J Chem Theory Comput 2019; 15:5674-5688. [PMID: 31433946 DOI: 10.1021/acs.jctc.9b00435] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The capability to handle highly heterogeneous molecular assemblies in a consistent manner is among the greatest challenges faced when deriving simulation parameters. This is particularly the case for coarse-grained (CG) simulations in which chemical functional groups are lumped into effective interaction centers for which transferability between different chemical environments is not guaranteed. Here, we introduce the parametrization of a set of CG phospholipids compatible with the latest version of the SIRAH force field for proteins. The newly introduced lipid species include different acylic chain lengths and partial unsaturation, as well as polar and acidic head groups that show a very good reproduction of structural membrane determinants, such as areas per lipid, thickness, order parameter, etc., and their dependence with temperature. Simulation of membrane proteins showed unprecedented accuracy in the unbiased description of the thickness-dependent membrane-protein orientation in systems where this information is experimentally available (namely, the SarcoEndoplasmic Reticulum Calcium-SERCA-pump and its regulator Phospholamban). The interactions that lead to this faithful reproduction can be traced down to the single amino acid-lipid interaction level and show full agreement with biochemical data present in the literature. Finally, the present parametrization is implemented in the GROMACS and AMBER simulation packages facilitating its use by a wide portion of the biocomputing community.
Collapse
Affiliation(s)
- Exequiel E Barrera
- Biomolecular Simulations Group , Institut Pasteur de Montevideo , Mataojo 2020 , CP 11400 Montevideo , Uruguay
| | - Matías R Machado
- Biomolecular Simulations Group , Institut Pasteur de Montevideo , Mataojo 2020 , CP 11400 Montevideo , Uruguay
| | - Sergio Pantano
- Biomolecular Simulations Group , Institut Pasteur de Montevideo , Mataojo 2020 , CP 11400 Montevideo , Uruguay.,Shanghai Institute for Advanced Immunochemical Studies , ShanghaiTech University , Shanghai 201210 , China
| |
Collapse
|
87
|
Reid LM, Verma CS, Essex JW. The role of molecular simulations in understanding the mechanisms of cell-penetrating peptides. Drug Discov Today 2019; 24:1821-1835. [DOI: 10.1016/j.drudis.2019.06.013] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 05/12/2019] [Accepted: 06/17/2019] [Indexed: 01/06/2023]
|
88
|
Machado MR, Zeida A, Darré L, Pantano S. From quantum to subcellular scales: multi-scale simulation approaches and the SIRAH force field. Interface Focus 2019; 9:20180085. [PMID: 31065347 PMCID: PMC6501346 DOI: 10.1098/rsfs.2018.0085] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/11/2019] [Indexed: 12/11/2022] Open
Abstract
Modern molecular and cellular biology profits from astonishing resolution structural methods, currently even reaching the whole cell level. This is encompassed by the development of computational methods providing a deep view into the structure and dynamics of molecular processes happening at very different scales in time and space. Linking such scales is of paramount importance when aiming at far-reaching biological questions. Computational methods at the interface between classical and coarse-grained resolutions are gaining momentum with several research groups dedicating important efforts to their development and tuning. An overview of such methods is addressed herein, with special emphasis on the SIRAH force field for coarse-grained and multi-scale simulations. Moreover, we provide proof of concept calculations on the implementation of a multi-scale simulation scheme including quantum calculations on a classical fine-grained/coarse-grained representation of double-stranded DNA. This opens the possibility to include the effect of large conformational fluctuations in chromatin segments on, for instance, the reactivity of particular base pairs within the same simulation framework.
Collapse
Affiliation(s)
- Matías R. Machado
- Institut Pasteur de Montevideo, Group of Biomolecular Simulations, Mataojo 2020, CP 11400 Montevideo, Uruguay
| | - Ari Zeida
- Departamento de Bioquímica and Center for Free Radical and Biomedical Research, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Leonardo Darré
- Institut Pasteur de Montevideo, Group of Biomolecular Simulations, Mataojo 2020, CP 11400 Montevideo, Uruguay
- Institut Pasteur de Montevideo, Functional Genomics Unit, Mataojo 2020, CP 11400 Montevideo, Uruguay
| | - Sergio Pantano
- Institut Pasteur de Montevideo, Group of Biomolecular Simulations, Mataojo 2020, CP 11400 Montevideo, Uruguay
| |
Collapse
|
89
|
Haufroid M, Mirgaux M, Leherte L, Wouters J. Crystal structures and snapshots along the reaction pathway of human phosphoserine phosphatase. ACTA CRYSTALLOGRAPHICA SECTION D-STRUCTURAL BIOLOGY 2019; 75:592-604. [DOI: 10.1107/s2059798319006867] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 05/13/2019] [Indexed: 11/10/2022]
Abstract
The equilibrium between phosphorylation and dephosphorylation is one of the most important processes that takes place in living cells. Human phosphoserine phosphatase (hPSP) is a key enzyme in the production of serine by the dephosphorylation of phospho-L-serine. It is directly involved in the biosynthesis of other important metabolites such as glycine and D-serine (a neuromodulator). hPSP is involved in the survival mechanism of cancer cells and has recently been found to be an essential biomarker. Here, three new high-resolution crystal structures of hPSP (1.5–2.0 Å) in complexes with phosphoserine and with serine, which are the substrate and the product of the reaction, respectively, and in complex with a noncleavable substrate analogue (homocysteic acid) are presented. New types of interactions take place between the enzyme and its ligands. Moreover, the loop involved in the open/closed state of the enzyme is fully refined in a totally unfolded conformation. This loop is further studied through molecular-dynamics simulations. Finally, all of these analyses allow a more complete reaction mechanism for this enzyme to be proposed which is consistent with previous publications on the subject.
Collapse
|
90
|
Li M, Cao H, Lai L, Liu Z. Disordered linkers in multidomain allosteric proteins: Entropic effect to favor the open state or enhanced local concentration to favor the closed state? Protein Sci 2019; 27:1600-1610. [PMID: 30019371 DOI: 10.1002/pro.3475] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 06/12/2018] [Accepted: 06/24/2018] [Indexed: 12/11/2022]
Abstract
There are many multidomain allosteric proteins where an allosteric signal at the allosteric domain modifies the activity of the functional domain. Intrinsically disordered regions (linkers) are widely involved in this kind of regulation process, but the essential role they play therein is not well understood. Here, we investigated the effect of linkers in stabilizing the open or the closed states of multidomain proteins using combined thermodynamic deduction and coarse-grained molecular dynamics simulations. We revealed that the influence of linker can be fully characterized by an effective local concentration [B]0 . When Kd is smaller than [B]0 , the closed state would be favored; while the open state would be preferred when Kd is larger than [B]0 . We used four protein systems with markedly different domain-domain binding affinity and structural order/disorder as model systems to understand the relationship between [B]0 and the linker length as well as its flexibility. The linker length is the main practical determinant of [B]0 . [B]0 of a flexible linker with 40-60 residues was determined to be in a narrow range of 0.2-0.6 mM, while a too short or too long length would dramatically decrease [B]0 . With the revealed [B]0 range, the introduction of a flexible linker makes the regulation of weakly interacting partners possible.
Collapse
Affiliation(s)
- Maodong Li
- Center for Quantitative Biology, Peking University, Beijing, 100871, China
| | - Huaiqing Cao
- College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Luhua Lai
- Center for Quantitative Biology, Peking University, Beijing, 100871, China.,College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China.,State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Beijing National Laboratory for Molecular Sciences (BNLMS), Peking University, Beijing, 100871, China
| | - Zhirong Liu
- Center for Quantitative Biology, Peking University, Beijing, 100871, China.,College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China.,State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Beijing National Laboratory for Molecular Sciences (BNLMS), Peking University, Beijing, 100871, China
| |
Collapse
|
91
|
de Azevedo EC, Nascimento AS. Energy landscape of the domain movement in Staphylococcus aureus UDP-N-acetylglucosamine 2-epimerase. J Struct Biol 2019; 207:158-168. [PMID: 31088716 DOI: 10.1016/j.jsb.2019.05.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 04/18/2019] [Accepted: 05/07/2019] [Indexed: 12/30/2022]
Abstract
Staphylococcus aureus is an important cause of resistant healthcare-associated infections. It has been shown that the wall teichoic acid (WTA) may be an important drug target acting on antibiotic-resistant cells. The UDP-N-acetylglucosamine 2-epimerase, MnaA, is one of the first enzymes on the pathway for the biosynthesis of the WTA. Here, detailed molecular dynamics simulations of S. aureus MnaA were used to characterize the conformational changes that occur in the presence of UDP and UDP-GlcNac and also the energetic landscape associated with these changes. Using different simulation techniques, such as ABMD and GAMD, it was possible to assess the energetic profile for the protein with and without ligands in its active site. We found that there is a dynamic energy landscape that has its minimum changed by the presence of the ligands, with a closed structure of the enzyme being more frequently observed for the bound state while the unbound enzyme favors an opened conformation. Further structural analysis indicated that positively charged amino acids associated with UDP and UDP-GlcNac interactions play a major role in the enzyme opening movement. Finally, the energy landscape profiled in this work provides important conclusions for the design of inhibitor candidates targeting S. aureus MnaA.
Collapse
Affiliation(s)
- Erika Chang de Azevedo
- Instituto de Física de São Carlos, Universidade de São Paulo, Av. Trabalhador SaoCarlense, 400, Parque Arnold Schmidit, São Carlos, SP 13566-590, Brazil
| | - Alessandro S Nascimento
- Instituto de Física de São Carlos, Universidade de São Paulo, Av. Trabalhador SaoCarlense, 400, Parque Arnold Schmidit, São Carlos, SP 13566-590, Brazil.
| |
Collapse
|
92
|
Marrink SJ, Corradi V, Souza PC, Ingólfsson HI, Tieleman DP, Sansom MS. Computational Modeling of Realistic Cell Membranes. Chem Rev 2019; 119:6184-6226. [PMID: 30623647 PMCID: PMC6509646 DOI: 10.1021/acs.chemrev.8b00460] [Citation(s) in RCA: 435] [Impact Index Per Article: 87.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Indexed: 12/15/2022]
Abstract
Cell membranes contain a large variety of lipid types and are crowded with proteins, endowing them with the plasticity needed to fulfill their key roles in cell functioning. The compositional complexity of cellular membranes gives rise to a heterogeneous lateral organization, which is still poorly understood. Computational models, in particular molecular dynamics simulations and related techniques, have provided important insight into the organizational principles of cell membranes over the past decades. Now, we are witnessing a transition from simulations of simpler membrane models to multicomponent systems, culminating in realistic models of an increasing variety of cell types and organelles. Here, we review the state of the art in the field of realistic membrane simulations and discuss the current limitations and challenges ahead.
Collapse
Affiliation(s)
- Siewert J. Marrink
- Groningen
Biomolecular Sciences and Biotechnology Institute & Zernike Institute
for Advanced Materials, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - Valentina Corradi
- Centre
for Molecular Simulation and Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| | - Paulo C.T. Souza
- Groningen
Biomolecular Sciences and Biotechnology Institute & Zernike Institute
for Advanced Materials, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - Helgi I. Ingólfsson
- Biosciences
and Biotechnology Division, Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, California 94550, United States
| | - D. Peter Tieleman
- Centre
for Molecular Simulation and Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| | - Mark S.P. Sansom
- Department
of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, U.K.
| |
Collapse
|
93
|
Piattoni CV, Sardi F, Klein F, Pantano S, Bollati-Fogolin M, Comini M. New red-shifted fluorescent biosensor for monitoring intracellular redox changes. Free Radic Biol Med 2019; 134:545-554. [PMID: 30735840 DOI: 10.1016/j.freeradbiomed.2019.01.035] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 01/24/2019] [Accepted: 01/24/2019] [Indexed: 12/13/2022]
Abstract
Maintenance of intracellular redox homeostasis is critical for cell survival, proliferation, differentiation, and signaling. In this regard, major changes in the intracellular redox milieu may lead to cell death whereas subtle increases in the level of certain oxidizing species may act as signals that regulate a plethora of cellular processes. Redox-sensitive variants of green fluorescent proteins (roGFP2 and rxYFP) were developed and proved useful to monitor intracellular redox changes in a non-invasive and online manner. With the aim to extend the spectral range of the fluorescent redox biosensors, we here describe the generation, biochemical characterization and biological validation of a new redox reporter based on the red-shifted mRuby2 protein (rxmRuby2). Spectrofluorimetric analysis performed with the recombinant biosensor shows a reversible redox response produced by two redox-active cysteine residues predicted by molecular modeling. rxmRuby2 is highly selective for the couple glutathione/glutathione disulfide in the presence of the oxidoreductase glutaredoxin. The estimated redox potential of rxmRuby2 (E° -265 ± 22 mV) makes it suitable for its use in reducing subcellular compartments. Titration assays demonstrated the capacity of rxmRuby2 to monitor redox changes within a physiological pH range. rxmRuby2 responded sensitively and reversibly to different redox stimuli applied to HeLa and HEK293 cells expressing transiently and/or stable the biosensor. Fusing rxmRuby2 to the Clover fluorescent protein allowed normalization of the redox signal to the expression level of the reporter protein and/or to other factors that may affect fluorescence. The new red-shifted redox biosensor show promises for deep-tissue and in vivo imaging applications.
Collapse
Affiliation(s)
- Claudia Vanesa Piattoni
- Cell Biology Unit, Institut Pasteur de Montevideo, Mataojo 2020, CP 11400, Montevideo, Uruguay
| | - Florencia Sardi
- Laboratory Redox Biology of Trypanosomes, Institut Pasteur de Montevideo, Mataojo 2020, CP 11400, Montevideo, Uruguay
| | - Florencia Klein
- BioMolecular Simulation Group, Institut Pasteur de Montevideo, Mataojo 2020, CP 11400, Montevideo, Uruguay
| | - Sergio Pantano
- BioMolecular Simulation Group, Institut Pasteur de Montevideo, Mataojo 2020, CP 11400, Montevideo, Uruguay
| | - Mariela Bollati-Fogolin
- Cell Biology Unit, Institut Pasteur de Montevideo, Mataojo 2020, CP 11400, Montevideo, Uruguay
| | - Marcelo Comini
- Laboratory Redox Biology of Trypanosomes, Institut Pasteur de Montevideo, Mataojo 2020, CP 11400, Montevideo, Uruguay.
| |
Collapse
|
94
|
Ramis R, Ortega-Castro J, Casasnovas R, Mariño L, Vilanova B, Adrover M, Frau J. A Coarse-Grained Molecular Dynamics Approach to the Study of the Intrinsically Disordered Protein α-Synuclein. J Chem Inf Model 2019; 59:1458-1471. [DOI: 10.1021/acs.jcim.8b00921] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Rafael Ramis
- Institut Universitari d’Investigació en Ciències de la Salut (IUNICS), Departament de Química, Universitat de les Illes Balears, 07122 Palma de Mallorca, Spain
- Institut d’Investigació Sanitària Illes Balears (IdISBa), 07120 Palma de Mallorca, Spain
| | - Joaquín Ortega-Castro
- Institut Universitari d’Investigació en Ciències de la Salut (IUNICS), Departament de Química, Universitat de les Illes Balears, 07122 Palma de Mallorca, Spain
- Institut d’Investigació Sanitària Illes Balears (IdISBa), 07120 Palma de Mallorca, Spain
| | - Rodrigo Casasnovas
- Institut Universitari d’Investigació en Ciències de la Salut (IUNICS), Departament de Química, Universitat de les Illes Balears, 07122 Palma de Mallorca, Spain
- Institut d’Investigació Sanitària Illes Balears (IdISBa), 07120 Palma de Mallorca, Spain
| | - Laura Mariño
- Institut Universitari d’Investigació en Ciències de la Salut (IUNICS), Departament de Química, Universitat de les Illes Balears, 07122 Palma de Mallorca, Spain
- Institut d’Investigació Sanitària Illes Balears (IdISBa), 07120 Palma de Mallorca, Spain
| | - Bartolomé Vilanova
- Institut Universitari d’Investigació en Ciències de la Salut (IUNICS), Departament de Química, Universitat de les Illes Balears, 07122 Palma de Mallorca, Spain
- Institut d’Investigació Sanitària Illes Balears (IdISBa), 07120 Palma de Mallorca, Spain
| | - Miquel Adrover
- Institut Universitari d’Investigació en Ciències de la Salut (IUNICS), Departament de Química, Universitat de les Illes Balears, 07122 Palma de Mallorca, Spain
- Institut d’Investigació Sanitària Illes Balears (IdISBa), 07120 Palma de Mallorca, Spain
| | - Juan Frau
- Institut Universitari d’Investigació en Ciències de la Salut (IUNICS), Departament de Química, Universitat de les Illes Balears, 07122 Palma de Mallorca, Spain
- Institut d’Investigació Sanitària Illes Balears (IdISBa), 07120 Palma de Mallorca, Spain
| |
Collapse
|
95
|
Machado MR, Barrera EE, Klein F, Sóñora M, Silva S, Pantano S. The SIRAH 2.0 Force Field: Altius, Fortius, Citius. J Chem Theory Comput 2019; 15:2719-2733. [PMID: 30810317 DOI: 10.1021/acs.jctc.9b00006] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
A new version of the coarse-grained (CG) SIRAH force field for proteins has been developed. Modifications to bonded and non-bonded interactions on the existing molecular topologies significantly ameliorate the structural description and flexibility of a non-redundant set of proteins. The SIRAH 2.0 force field has also been ported to the popular simulation package AMBER, which along with the former implementation in GROMACS expands significantly the potential range of users and performance of this CG force field on CPU/GPU codes. As a non-trivial example of its application, we undertook the structural and dynamical analysis of the most abundant and conserved calcium-binding protein, calmodulin (CaM). CaM is composed of two calcium-binding motifs called EF-hands, which in the presence of calcium specifically recognize a cognate peptide by embracing it. CG simulations of CaM bound to four calcium ions in the presence or absence of a binding peptide (holo and apo forms, respectively) resulted in good and stable ion coordination. The simulation of the holo form starting from an experimental structure sampled near-native conformations, retrieving quasi-atomistic precision. Removing the binding peptide enabled the EF-hands to perform large reciprocal movements, comparable to those observed in NMR structures. On the other hand, the isolated peptide starting from the helical conformation experienced spontaneous unfolding, in agreement with previous experimental data. However, repositioning the peptide in the neighborhood of one EF-hand not only prevented the peptide from unfolding but also drove CaM to a fully bound conformation, with both EF-hands embracing the cognate peptide, resembling the experimental holo structure. Therefore, SIRAH 2.0 shows the capacity to handle a number of structurally and dynamically challenging situations, including metal ion coordination, unbiased conformational sampling, and specific protein-peptide recognition.
Collapse
Affiliation(s)
- Matías R Machado
- Biomolecular Simulations Group , Institut Pasteur de Montevideo , Mataojo 2020 , CP 11400 Montevideo , Uruguay
| | - Exequiel E Barrera
- Biomolecular Simulations Group , Institut Pasteur de Montevideo , Mataojo 2020 , CP 11400 Montevideo , Uruguay
| | - Florencia Klein
- Biomolecular Simulations Group , Institut Pasteur de Montevideo , Mataojo 2020 , CP 11400 Montevideo , Uruguay
| | - Martín Sóñora
- Biomolecular Simulations Group , Institut Pasteur de Montevideo , Mataojo 2020 , CP 11400 Montevideo , Uruguay
| | - Steffano Silva
- Biomolecular Simulations Group , Institut Pasteur de Montevideo , Mataojo 2020 , CP 11400 Montevideo , Uruguay
| | - Sergio Pantano
- Biomolecular Simulations Group , Institut Pasteur de Montevideo , Mataojo 2020 , CP 11400 Montevideo , Uruguay
| |
Collapse
|
96
|
Gómez Castro MF, Miculán E, Herrera MG, Ruera C, Perez F, Prieto ED, Barrera E, Pantano S, Carasi P, Chirdo FG. p31-43 Gliadin Peptide Forms Oligomers and Induces NLRP3 Inflammasome/Caspase 1- Dependent Mucosal Damage in Small Intestine. Front Immunol 2019; 10:31. [PMID: 30761127 PMCID: PMC6363691 DOI: 10.3389/fimmu.2019.00031] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 01/08/2019] [Indexed: 01/08/2023] Open
Abstract
Celiac disease (CD) is a chronic enteropathy elicited by a Th1 response to gluten peptides in the small intestine of genetically susceptible individuals. However, it remains unclear what drives the induction of inflammatory responses of this kind against harmless antigens in food. In a recent work, we have shown that the p31-43 peptide (p31-43) from α-gliadin can induce an innate immune response in the intestine and that this may initiate pathological adaptive immunity. The receptors and mechanisms responsible for the induction of innate immunity by p31-43 are unknown and here we present evidence that this may reflect conformational changes in the peptide that allow it to activate the NLRP3 inflammasome. Administration of p31-43, but not scrambled or inverted peptides, to normal mice induced enteropathy in the proximal small intestine, associated with increased production of type I interferon and mature IL-1β. P31-43 showed a sequence-specific spontaneous ability to form structured oligomers and aggregates in vitro and induced activation of the ASC speck complex. In parallel, the enteropathy induced by p31-43 in vivo did not occur in the absence of NLRP3 or caspase 1 and was inhibited by administration of the caspase 1 inhibitor Ac-YVAD-cmk. Collectively, these findings show that p31-43 gliadin has an intrinsic propensity to form oligomers which trigger the NLRP3 inflammasome and that this pathway is required for intestinal inflammation and pathology when p31-43 is administered orally to mice. This innate activation of the inflammasome may have important implications in the initial stages of CD pathogenesis.
Collapse
Affiliation(s)
- María Florencia Gómez Castro
- Instituto de Estudios Inmunológicos y Fisiopatológicos (CONICET), Universidad Nacional de La Plata, La Plata, Argentina
| | - Emanuel Miculán
- Instituto de Estudios Inmunológicos y Fisiopatológicos (CONICET), Universidad Nacional de La Plata, La Plata, Argentina
| | - María Georgina Herrera
- Instituto de Fisicoquímica y Químicas Biológicas, Dr. Alejandro Paladini (CONICET), Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Carolina Ruera
- Instituto de Estudios Inmunológicos y Fisiopatológicos (CONICET), Universidad Nacional de La Plata, La Plata, Argentina
| | - Federico Perez
- Instituto de Estudios Inmunológicos y Fisiopatológicos (CONICET), Universidad Nacional de La Plata, La Plata, Argentina
| | - Eduardo Daniel Prieto
- Laboratorio de Nanoscopía y Fisicoquímica de Superficies (CONICET), Universidad Nacional de La Plata, La Plata, Argentina
| | - Exequiel Barrera
- Biomolecular Simulations Group, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Sergio Pantano
- Biomolecular Simulations Group, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Paula Carasi
- Instituto de Estudios Inmunológicos y Fisiopatológicos (CONICET), Universidad Nacional de La Plata, La Plata, Argentina
| | - Fernando Gabriel Chirdo
- Instituto de Estudios Inmunológicos y Fisiopatológicos (CONICET), Universidad Nacional de La Plata, La Plata, Argentina
| |
Collapse
|
97
|
Poma AB, Guzman HV, Li MS, Theodorakis PE. Mechanical and thermodynamic properties of Aβ 42, Aβ 40, and α-synuclein fibrils: a coarse-grained method to complement experimental studies. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2019; 10:500-513. [PMID: 30873322 PMCID: PMC6404408 DOI: 10.3762/bjnano.10.51] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 02/08/2019] [Indexed: 05/07/2023]
Abstract
We perform molecular dynamics simulation on several relevant biological fibrils associated with neurodegenerative diseases such as Aβ40, Aβ42, and α-synuclein systems to obtain a molecular understanding and interpretation of nanomechanical characterization experiments. The computational method is versatile and addresses a new subarea within the mechanical characterization of heterogeneous soft materials. We investigate both the elastic and thermodynamic properties of the biological fibrils in order to substantiate experimental nanomechanical characterization techniques that are quickly developing and reaching dynamic imaging with video rate capabilities. The computational method qualitatively reproduces results of experiments with biological fibrils, validating its use in extrapolation to macroscopic material properties. Our computational techniques can be used for the co-design of new experiments aiming to unveil nanomechanical properties of biological fibrils from a point of view of molecular understanding. Our approach allows a comparison of diverse elastic properties based on different deformations , i.e., tensile (Y L), shear (S), and indentation (Y T) deformation. From our analysis, we find a significant elastic anisotropy between axial and transverse directions (i.e., Y T > Y L) for all systems. Interestingly, our results indicate a higher mechanostability of Aβ42 fibrils compared to Aβ40, suggesting a significant correlation between mechanical stability and aggregation propensity (rate) in amyloid systems. That is, the higher the mechanical stability the faster the fibril formation. Finally, we find that α-synuclein fibrils are thermally less stable than β-amyloid fibrils. We anticipate that our molecular-level analysis of the mechanical response under different deformation conditions for the range of fibrils considered here will provide significant insights for the experimental observations.
Collapse
Affiliation(s)
- Adolfo B Poma
- Institute of Fundamental Technological Research, Polish Academy of Sciences, Pawińskiego 5B, 02-106 Warsaw, Poland
| | - Horacio V Guzman
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Mai Suan Li
- Institute of Physics, Polish Academy of Sciences, Al. Lotników 32/46, 02-668 Warsaw, Poland
- Institute for Computational Science and Technology, Quang Trung Software City, Tan Chanh Hiep Ward, District 12, Ho Chi Minh City, Vietnam
| | | |
Collapse
|
98
|
Jefferys EE, Sansom MSP. Computational Virology: Molecular Simulations of Virus Dynamics and Interactions. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1215:201-233. [DOI: 10.1007/978-3-030-14741-9_10] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
99
|
Poveda-Cuevas S, Etchebest C, Barroso da Silva FL. Insights into the ZIKV NS1 Virology from Different Strains through a Fine Analysis of Physicochemical Properties. ACS OMEGA 2018; 3:16212-16229. [PMID: 31458257 PMCID: PMC6643396 DOI: 10.1021/acsomega.8b02081] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Accepted: 11/14/2018] [Indexed: 05/02/2023]
Abstract
The flavivirus genus has several organisms responsible for generating various diseases in humans. Recently, especially in tropical regions, Zika virus (ZIKV) has raised great health concerns due to the high number of cases affecting the area during the last years that has been accompanied by a rise in the cases of the Guillain-Barré syndrome and fetal and neonatal microcephaly. Diagnosis is still difficult since the clinical symptoms between ZIKV and other flaviviruses (e.g., dengue and yellow fever) are highly similar. The understanding of their common physicochemical properties that are pH-dependent and biomolecular interaction features and their differences sheds light on the relation strain-virulence and might suggest alternative strategies toward differential serological diagnostics and therapeutic intervention. Due to their immunogenicity, the primary focus of this study was on the ZIKV nonstructural proteins 1 (NS1). By means of computational studies and semiquantitative theoretical analyses, we calculated the main physicochemical properties of this protein from different strains that are directly responsible for the biomolecular interactions and, therefore, can be related to the differential infectivity of the strains. We also mapped the electrostatic differences at both the sequence and structural levels for the strains from Uganda to Brazil, which could suggest possible molecular mechanisms for the increase of the virulence of ZIKV in Brazil. Exploring the interfaces used by NS1 to self-associate in some different oligomeric states and interact with membranes and the antibody, we could map the strategy used by the ZIKV during its evolutionary process. This indicates possible molecular mechanisms that can be correlated with the different immunological responses. By comparing with the known antibody structure available for the West Nile virus, we demonstrated that this antibody would have difficulties to neutralize the NS1 from the Brazilian strain. The present study also opens up perspectives to computationally design high-specificity antibodies.
Collapse
Affiliation(s)
- Sergio
A. Poveda-Cuevas
- Programa
Interunidades em Bioinformática, Universidade de São Paulo, São Paulo 05508-090, Brazil
- Departamento
de Física e Química, Faculdade de Ciências Farmacêuticas
de Ribeirão Preto, Universidade de
São Paulo, Ribeirão Preto, São Paulo 14040-903, Brazil
- University
of São Paulo and Université Sorbonne Paris Cité
Joint International Laboratory in Structural Bioinformatics
| | - Catherine Etchebest
- Institut
National de la Transfusion Sanguine, Paris 75015, France
- Biologie
Intégrée du Globule Rouge, Equipe 2, Dynamique des Structures
et des Interactions Moléculaires, Institut National de la Santé et de la Recherche Médicale,
UMR_S 1134, Paris 75015, France
- Université
Sorbonne Paris Cité and Université Paris Diderot, 75013 Paris, France
- University
of São Paulo and Université Sorbonne Paris Cité
Joint International Laboratory in Structural Bioinformatics
| | - Fernando L. Barroso da Silva
- Programa
Interunidades em Bioinformática, Universidade de São Paulo, São Paulo 05508-090, Brazil
- Departamento
de Física e Química, Faculdade de Ciências Farmacêuticas
de Ribeirão Preto, Universidade de
São Paulo, Ribeirão Preto, São Paulo 14040-903, Brazil
- University
of São Paulo and Université Sorbonne Paris Cité
Joint International Laboratory in Structural Bioinformatics
- Department
of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27606, United States
- E-mail: and
| |
Collapse
|
100
|
Leherte L, Petit A, Jacquemin D, Vercauteren DP, Laurent AD. Investigating cyclic peptides inhibiting CD2-CD58 interactions through molecular dynamics and molecular docking methods. J Comput Aided Mol Des 2018; 32:1295-1313. [PMID: 30368623 DOI: 10.1007/s10822-018-0172-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Accepted: 10/18/2018] [Indexed: 10/28/2022]
Abstract
The CD2-CD58 protein-protein interaction is known to favor the recognition of antigen presenting cells by T cells. The structural, energetics, and dynamical properties of three known cyclic CD58 ligands, named P6, P7, and RTD-c, are studied through molecular dynamics (MD) simulations and molecular docking calculations. The ligands are built so as to mimic the C and F β-strands of protein CD2, connected via turn inducers. The MD analyses focus on the location of the ligands with respect to the experimental binding site and on the direct and water-mediated hydrogen bonds (H bonds) they form with CD58. Ligand P6, with a sequence close to the experimental β-strands of CD2, presents characteristics that explain its higher experimental affinity, e.g., the lower mobility and flexibility at the CD58 surface, and the larger number and occurrence frequency of ligand-CD58 H bonds. For the two other ligands, the structural modifications lead to changes in the binding pattern with CD58 and its dynamics. In parallel, a large set of molecular docking calculations, carried out with various search spaces and docking algorithms, are compared to provide a consensus view of the preferred ligand binding modes. The analysis of the ligand side chain locations yields results that are consistent with the CD2-CD58 crystal structure and suggests various binding modes of the experimentally identified hot spot of the ligands, i.e., Tyr86. P6 is shown to form a number of contacts that are also present in the experimental CD2-CD58 structure.
Collapse
Affiliation(s)
- Laurence Leherte
- Laboratoire de Physico-Chimie Informatique, Unité de Chimie Physique Théorique et Structurale, Department of Chemistry, NAmur MEdicine and Drug Innovation Center (NAMEDIC), Namur Institute of Structured Matter (NISM), University of Namur, Rue de Bruxelles 61, 5000, Namur, Belgium.
| | - Axel Petit
- Laboratoire de Physico-Chimie Informatique, Unité de Chimie Physique Théorique et Structurale, Department of Chemistry, NAmur MEdicine and Drug Innovation Center (NAMEDIC), Namur Institute of Structured Matter (NISM), University of Namur, Rue de Bruxelles 61, 5000, Namur, Belgium
| | - Denis Jacquemin
- University of Nantes, CEISAM UMR CNRS 6230, UFR Sciences et Techniques, 2 Rue de la Houssinière, BP 92208, 44322, Nantes Cedex 03, France.,Institut Universitaire de France, 103 Bd St Michel, 75005, Paris Cedex 5, France
| | - Daniel P Vercauteren
- Laboratoire de Physico-Chimie Informatique, Unité de Chimie Physique Théorique et Structurale, Department of Chemistry, NAmur MEdicine and Drug Innovation Center (NAMEDIC), Namur Institute of Structured Matter (NISM), University of Namur, Rue de Bruxelles 61, 5000, Namur, Belgium
| | - Adèle D Laurent
- University of Nantes, CEISAM UMR CNRS 6230, UFR Sciences et Techniques, 2 Rue de la Houssinière, BP 92208, 44322, Nantes Cedex 03, France
| |
Collapse
|