51
|
Jiang Y, Liang Q, Chu N, Hao W, Zhang L, Zhan G, Li D, Zeng RJ. A slurry electrode integrated with membrane electrolysis for high-performance acetate production in microbial electrosynthesis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 741:140198. [PMID: 32574921 DOI: 10.1016/j.scitotenv.2020.140198] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 06/09/2020] [Accepted: 06/11/2020] [Indexed: 06/11/2023]
Abstract
Microbial electrosynthesis (MES) technology employs electrotrophic microbes as biocatalysts to produce chemicals from CO2. The application of a slurry electrode can enlarge the surface area to volume ratio, and membrane electrolysis (ME) for on-line extraction can solve the problem of product inhibition. This study constructed a novel dual-chamber ME-MES integrated system equipped with a slurry electrode, and the effect of concentration of powder-activated carbon (AC) in the catholyte on chemical production was also evaluated. The integrated system amended with 5 g L-1 AC produced up to 13.4 g L-1 acetate, showing a 179% increase compared with the control group without AC (4.8 g L-1). However, further increasing the AC concentration to 10 and 20 g L-1 resulted in decreased acetate production. A high concentration of AC showed higher antimicrobial activity to methanogens, as compared to acetogens. Amending AC exacerbated the process of electroosmosis. Also, amending AC with 0 to 10 g L-1 decreased the electrochemical losses via both the membrane and electrolyte. The chemical production using H2 or the electrode as electron donors showed a similar trend when amending AC. The present study provided important information for guiding future research to construct an efficient configuration of an MES bioreactor.
Collapse
Affiliation(s)
- Yong Jiang
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Qinjun Liang
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Na Chu
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Wen Hao
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Lixia Zhang
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China.
| | - Guoqiang Zhan
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China.
| | - Daping Li
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Raymond Jianxiong Zeng
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| |
Collapse
|
52
|
Izadi P, Fontmorin JM, Godain A, Yu EH, Head IM. Parameters influencing the development of highly conductive and efficient biofilm during microbial electrosynthesis: the importance of applied potential and inorganic carbon source. NPJ Biofilms Microbiomes 2020; 6:40. [PMID: 33056998 PMCID: PMC7560852 DOI: 10.1038/s41522-020-00151-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 09/21/2020] [Indexed: 01/04/2023] Open
Abstract
Cathode-driven applications of bio-electrochemical systems (BESs) have the potential to transform CO2 into value-added chemicals using microorganisms. However, their commercialisation is limited as biocathodes in BESs are characterised by slow start-up and low efficiency. Understanding biosynthesis pathways, electron transfer mechanisms and the effect of operational variables on microbial electrosynthesis (MES) is of fundamental importance to advance these applications of a system that has the capacity to convert CO2 to organics and is potentially sustainable. In this work, we demonstrate that cathodic potential and inorganic carbon source are keys for the development of a dense and conductive biofilm that ensures high efficiency in the overall system. Applying the cathodic potential of -1.0 V vs. Ag/AgCl and providing only gaseous CO2 in our system, a dense biofilm dominated by Acetobacterium (ca. 50% of biofilm) was formed. The superior biofilm density was significantly correlated with a higher production yield of organic chemicals, particularly acetate. Together, a significant decrease in the H2 evolution overpotential (by 200 mV) and abundant nifH genes within the biofilm were observed. This can only be mechanistically explained if intracellular hydrogen production with direct electron uptake from the cathode via nitrogenase within bacterial cells is occurring in addition to the commonly observed extracellular H2 production. Indeed, the enzymatic activity within the biofilm accelerated the electron transfer. This was evidenced by an increase in the coulombic efficiency (ca. 69%) and a 10-fold decrease in the charge transfer resistance. This is the first report of such a significant decrease in the charge resistance via the development of a highly conductive biofilm during MES. The results highlight the fundamental importance of maintaining a highly active autotrophic Acetobacterium population through feeding CO2 in gaseous form, which its dominance in the biocathode leads to a higher efficiency of the system.
Collapse
Affiliation(s)
- Paniz Izadi
- School of Engineering, Newcastle University, Newcastle upon Tyne, UK
| | | | - Alexiane Godain
- School of Natural and Environmental Sciences, Newcastle upon Tyne, UK
| | - Eileen H Yu
- School of Engineering, Newcastle University, Newcastle upon Tyne, UK.
- Department of Chemical Engineering, Loughborough University, Loughborough, UK.
| | - Ian M Head
- School of Natural and Environmental Sciences, Newcastle upon Tyne, UK
| |
Collapse
|
53
|
Kiefer D, Merkel M, Lilge L, Henkel M, Hausmann R. From Acetate to Bio-Based Products: Underexploited Potential for Industrial Biotechnology. Trends Biotechnol 2020; 39:397-411. [PMID: 33036784 DOI: 10.1016/j.tibtech.2020.09.004] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 09/07/2020] [Accepted: 09/08/2020] [Indexed: 12/21/2022]
Abstract
Currently, most biotechnological products are based on microbial conversion of carbohydrate substrates that are predominantly generated from sugar- or starch-containing plants. However, direct competitive uses of these feedstocks in the food and feed industry represent a dilemma, so using alternative carbon sources has become increasingly important in industrial biotechnology. A promising alternative carbon source that may be generated in substantial amounts from lignocellulosic biomass and C1 gases is acetate. This review discusses the underexploited potential of acetate to become a next-generation platform substrate in future industrial biotechnology and summarizes alternative sources and routes for acetate production. Furthermore, biotechnological aspects of microbial acetate utilization and the state of the art of biotechnological acetate conversion into value-added bioproducts are highlighted.
Collapse
Affiliation(s)
- Dirk Kiefer
- University of Hohenheim, Institute of Food Science and Biotechnology, Department of Bioprocess Engineering, Fruwirthstrasse 12, 70599 Stuttgart, Germany
| | - Manuel Merkel
- University of Hohenheim, Institute of Food Science and Biotechnology, Department of Bioprocess Engineering, Fruwirthstrasse 12, 70599 Stuttgart, Germany
| | - Lars Lilge
- University of Hohenheim, Institute of Food Science and Biotechnology, Department of Bioprocess Engineering, Fruwirthstrasse 12, 70599 Stuttgart, Germany
| | - Marius Henkel
- University of Hohenheim, Institute of Food Science and Biotechnology, Department of Bioprocess Engineering, Fruwirthstrasse 12, 70599 Stuttgart, Germany.
| | - Rudolf Hausmann
- University of Hohenheim, Institute of Food Science and Biotechnology, Department of Bioprocess Engineering, Fruwirthstrasse 12, 70599 Stuttgart, Germany
| |
Collapse
|
54
|
Song TS, Fu L, Wan N, Wu J, Xie J. Hydrothermal synthesis of MoS2 nanoflowers for an efficient microbial electrosynthesis of acetate from CO2. J CO2 UTIL 2020. [DOI: 10.1016/j.jcou.2020.101231] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
55
|
Review—Microbial Electrosynthesis: A Way Towards The Production of Electro-Commodities Through Carbon Sequestration with Microbes as Biocatalysts. JOURNAL OF THE ELECTROCHEMICAL SOCIETY 2020. [DOI: 10.1149/1945-7111/abb836] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
56
|
Abstract
Acetogens are anaerobic bacteria capable of fixing CO2 or CO to produce acetyl-CoA and ultimately acetate using the Wood-Ljungdahl pathway (WLP). This autotrophic metabolism plays a major role in the global carbon cycle and, if harnessed, can help reduce greenhouse gas emissions. Overall, the data presented here provide a framework for examining the ecology and evolution of the Acetobacterium genus and highlight the potential of these species as a source for production of fuels and chemicals from CO2 feedstocks. Acetogens are anaerobic bacteria capable of fixing CO2 or CO to produce acetyl coenzyme A (acetyl-CoA) and ultimately acetate using the Wood-Ljungdahl pathway (WLP). Acetobacterium woodii is the type strain of the Acetobacterium genus and has been critical for understanding the biochemistry and energy conservation in acetogens. Members of the Acetobacterium genus have been isolated from a variety of environments or have had genomes recovered from metagenome data, but no systematic investigation has been done on the unique and various metabolisms of the genus. To gain a better appreciation for the metabolic breadth of the genus, we sequenced the genomes of 4 isolates (A. fimetarium, A. malicum, A. paludosum, and A. tundrae) and conducted a comparative genome analysis (pan-genome) of 11 different Acetobacterium genomes. A unifying feature of the Acetobacterium genus is the carbon-fixing WLP. The methyl (cluster II) and carbonyl (cluster III) branches of the Wood-Ljungdahl pathway are highly conserved across all sequenced Acetobacterium genomes, but cluster I encoding the formate dehydrogenase is not. In contrast to A. woodii, all but four strains encode two distinct Rnf clusters, Rnf being the primary respiratory enzyme complex. Metabolism of fructose, lactate, and H2:CO2 was conserved across the genus, but metabolism of ethanol, methanol, caffeate, and 2,3-butanediol varied. Additionally, clade-specific metabolic potential was observed, such as amino acid transport and metabolism in the psychrophilic species, and biofilm formation in the A. wieringae clade, which may afford these groups an advantage in low-temperature growth or attachment to solid surfaces, respectively. IMPORTANCE Acetogens are anaerobic bacteria capable of fixing CO2 or CO to produce acetyl-CoA and ultimately acetate using the Wood-Ljungdahl pathway (WLP). This autotrophic metabolism plays a major role in the global carbon cycle and, if harnessed, can help reduce greenhouse gas emissions. Overall, the data presented here provide a framework for examining the ecology and evolution of the Acetobacterium genus and highlight the potential of these species as a source for production of fuels and chemicals from CO2 feedstocks.
Collapse
|
57
|
Fruehauf HM, Enzmann F, Harnisch F, Ulber R, Holtmann D. Microbial Electrosynthesis—An Inventory on Technology Readiness Level and Performance of Different Process Variants. Biotechnol J 2020; 15:e2000066. [DOI: 10.1002/biot.202000066] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 06/29/2020] [Indexed: 01/01/2023]
Affiliation(s)
- Hanna M. Fruehauf
- Industrial Biotechnology DECHEMA Research Institute Theodor‐Heuss‐Allee 25 Frankfurt am Main 60486 Germany
| | - Franziska Enzmann
- Technology and Infrastructure Evonik Industries Rodenbacher Chaussee 4 Hanau 63457 Germany
| | - Falk Harnisch
- Department of Environmental Microbiology Helmholtz‐Centre for Environmental Research GmbH ‐ UFZ Permoserstraße 15 Leipzig 04318 Germany
| | - Roland Ulber
- Bioprocess Engineering University of Kaiserslautern Erwin‐Schrödinger‐Straße 52 Kaiserslautern 64663 Germany
| | - Dirk Holtmann
- Institute of Bioprocess Engineering and Pharmaceutical Technology University of Applied Sciences Mittelhessen Wiesenstraße 14 Giessen 35390 Germany
| |
Collapse
|
58
|
Rodríguez-González V, Obregón S, Patrón-Soberano OA, Terashima C, Fujishima A. An approach to the photocatalytic mechanism in the TiO 2-nanomaterials microorganism interface for the control of infectious processes. APPLIED CATALYSIS. B, ENVIRONMENTAL 2020; 270:118853. [PMID: 32292243 DOI: 10.1016/j.apcatb.2020.118857] [Citation(s) in RCA: 86] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 02/27/2020] [Accepted: 03/03/2020] [Indexed: 05/21/2023]
Abstract
The approach of this timely review considers the current literature that is focused on the interface nanostructure/cell-wall microorganism to understand the annihilation mechanism. Morphological studies use optical and electronic microscopes to determine the physical damage on the cell-wall and the possible cell lysis that confirms the viability and microorganism death. The key parameters of the tailoring the surface of the photoactive nanostructures such as the metal functionalization with bacteriostatic properties, hydrophilicity, textural porosity, morphology and the formation of heterojunction systems, can achieve the effective eradication of the microorganisms under natural conditions, ranging from practical to applications in environment, agriculture, and so on. However, to our knowledge, a comprehensive review of the microorganism/nanomaterial interface approach has rarely been conducted. The final remarks point the ideal photocatalytic way for the effective prevention/eradication of microorganisms, considering the resistance that the microorganism could develop without the appropriate regulatory aspects for human and ecosystem safety.
Collapse
Affiliation(s)
- Vicente Rodríguez-González
- Photocatalysis International Research Center, Research Institute for Science & Technology, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
- Instituto Potosino de Investigación Científica y Tecnológica (IPICYT), División de Materiales Avanzados, Camino a la Presa San José 2055, Lomas 4a, Sección, 78216, San Luis Potosí, Mexico
| | - Sergio Obregón
- Universidad Autónoma de Nuevo León, UANL, CICFIM-Facultad de Ciencias Físico Matemáticas, Av. Universidad S/N, San Nicolás de los Garza, 66455, Nuevo León, Mexico
| | - Olga A Patrón-Soberano
- Instituto Potosino de Investigación Científica y Tecnológica (IPICYT), División de Biología Molecular, Camino a la Presa San José 2055, Lomas 4a, Sección, 78216, San Luis Potosí, Mexico
| | - Chiaki Terashima
- Photocatalysis International Research Center, Research Institute for Science & Technology, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Akira Fujishima
- Photocatalysis International Research Center, Research Institute for Science & Technology, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| |
Collapse
|
59
|
Luo H, Qi J, Zhou M, Liu G, Lu Y, Zhang R, Zeng C. Enhanced electron transfer on microbial electrosynthesis biocathode by polypyrrole-coated acetogens. BIORESOURCE TECHNOLOGY 2020; 309:123322. [PMID: 32305841 DOI: 10.1016/j.biortech.2020.123322] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 04/02/2020] [Accepted: 04/03/2020] [Indexed: 06/11/2023]
Abstract
Extracellular electron transfer (EET) is a significant pathway to transport electrons between bacteria and electrode in microbial electrosynthesis systems (MESs). To enhance EET in the MES, a high-conductivity polymer, polypyrrole (PPy), was coated on the surface of mixed culture acetogens in situ and the PPy-coated bacteria were inoculated on the cathode of MES. The charge transfer resistance of PPy-coated biocathode was 33%-70% of that with PPy-uncoated. Acetate production rate and Faradic efficiency in PPy-coated biocathodes increased by 3 to 6 times. After 960 h operation, Acetobacterium, Desulfovibrio, and Acinetobacter dominate the community on the coated and uncoated biocathode. Quinone loop and NADH dehydrogenase to ubiquinone were involved in electron transfer pathway of biocathode and stimulated by PPy coating. Low-level expression of C-type cytochromes on biocathode indicated its less important role in inward EET. The study provided useful information for applications of high-conductivity chemicals in microbial electrosynthesis.
Collapse
Affiliation(s)
- Haiping Luo
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Jiaxin Qi
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Meizhou Zhou
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Guangli Liu
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Yaobin Lu
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Renduo Zhang
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Cuiping Zeng
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China.
| |
Collapse
|
60
|
Das S, Das I, Ghangrekar M. Role of applied potential on microbial electrosynthesis of organic compounds through carbon dioxide sequestration. JOURNAL OF ENVIRONMENTAL CHEMICAL ENGINEERING 2020. [DOI: 10.1016/j.jece.2020.104028] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
61
|
Tian S, He J, Huang H, Song TS, Wu X, Xie J, Zhou W. Perovskite-Based Multifunctional Cathode with Simultaneous Supplementation of Substrates and Electrons for Enhanced Microbial Electrosynthesis of Organics. ACS APPLIED MATERIALS & INTERFACES 2020; 12:30449-30456. [PMID: 32558536 DOI: 10.1021/acsami.0c07910] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Microbial electrosynthesis (MES) is an electricity-driven technology for the microbial reduction of CO2 to organic commodities. However, the limited solubility of CO2 in a solution and the inefficient electron transfer make it impossible for microorganisms to obtain an efficient surface for catalytic interaction, thus resulting in the low efficiency of MES. To address this, we introduce a multifunctional perovskite-based cathode material Pr0.5(Ba0.5Sr0.5)0.5Co0.8Fe0.2O3-δ-carbon felt (Pr0.5BSCF-CF), which provides a simultaneously significant increase in CO2 absorption and hydrogen production. As a result, the volumetric acetate production rate of MES obtained by Pr0.5BSCF-CF is 0.24 ± 0.01 g L-1 day-1, and it achieves a maximum acetate titer of 13.74 ± 0.20 g L-1 within 70 days. An adequate supply of CO2 and H2 also provides a sufficient amount of substrates and energy for the self-replication of the biocatalysts in the MES reactor. This effect not only increases the amount of biocatalysts but also optimizes the functions of the biocatalysts; the above benefits further improve the production efficiency of the MES system. This strategy demonstrates that the development of perovskite-based multifunctional cathodes with a simultaneous supplementation of substrates and electrons is a promising approach toward improving the MES efficiency.
Collapse
Affiliation(s)
- Shihao Tian
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, P. R. China
- College of Life Science and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, P. R. China
| | - Juan He
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, P. R. China
- College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, P. R. China
| | - Haifeng Huang
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, P. R. China
- College of Life Science and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, P. R. China
| | - Tian-Shun Song
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, P. R. China
- College of Life Science and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, P. R. China
- Jiangsu Branch of China Academy of Science & Technology Development, Nanjing 210008, P. R. China
| | - Xinhao Wu
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, P. R. China
- College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, P. R. China
| | - Jingjing Xie
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, P. R. China
- College of Life Science and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, P. R. China
- Jiangsu Branch of China Academy of Science & Technology Development, Nanjing 210008, P. R. China
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing 211816, P. R. China
| | - Wei Zhou
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, P. R. China
- College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, P. R. China
| |
Collapse
|
62
|
Bian B, Bajracharya S, Xu J, Pant D, Saikaly PE. Microbial electrosynthesis from CO 2: Challenges, opportunities and perspectives in the context of circular bioeconomy. BIORESOURCE TECHNOLOGY 2020; 302:122863. [PMID: 32019708 DOI: 10.1016/j.biortech.2020.122863] [Citation(s) in RCA: 95] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 01/17/2020] [Accepted: 01/20/2020] [Indexed: 06/10/2023]
Abstract
Recycling CO2 into organic products through microbial electrosynthesis (MES) is attractive from the perspective of circular bioeconomy. However, several challenges need to be addressed before scaling-up MES systems. In this review, recent advances in electrode materials, microbe-catalyzed CO2 reduction and MES energy consumption are discussed in detail. Anode materials are briefly reviewed first, with several strategies proposed to reduce the energy input for electron generation and enhance MES bioeconomy. This was followed by discussions on MES cathode materials and configurations for enhanced chemolithoautotroph growth and CO2 reduction. Various chemolithoautotrophs, effective for CO2 reduction and diverse bioproduct formation, on MES cathode were also discussed. Finally, research efforts on developing cost-effective process for bioproduct extraction from MES are presented. Future perspectives to improve product formation and reduce energy cost are discussed to realize the application of the MES as a chemical production platform in the context of building a circular economy.
Collapse
Affiliation(s)
- Bin Bian
- King Abdullah University of Science and Technology, Water Desalination and Reuse Center, Biological and Environmental Science and Engineering Division, Thuwal 23955 6900, Saudi Arabia
| | - Suman Bajracharya
- King Abdullah University of Science and Technology, Water Desalination and Reuse Center, Biological and Environmental Science and Engineering Division, Thuwal 23955 6900, Saudi Arabia
| | - Jiajie Xu
- King Abdullah University of Science and Technology, Water Desalination and Reuse Center, Biological and Environmental Science and Engineering Division, Thuwal 23955 6900, Saudi Arabia
| | - Deepak Pant
- Flemish Institute for Technological Research (VITO), Separation and Conversion Technology, Boeretang 200, Mol 2400, Belgium; Centre for Advanced Process Technology for Urban Resource Recovery (CAPTURE), 9000 Ghent, Belgium
| | - Pascal E Saikaly
- King Abdullah University of Science and Technology, Water Desalination and Reuse Center, Biological and Environmental Science and Engineering Division, Thuwal 23955 6900, Saudi Arabia.
| |
Collapse
|
63
|
|
64
|
LaBelle EV, Marshall CW, May HD. Microbiome for the Electrosynthesis of Chemicals from Carbon Dioxide. Acc Chem Res 2020; 53:62-71. [PMID: 31809012 DOI: 10.1021/acs.accounts.9b00522] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The price for renewable electricity is rapidly decreasing, and the availability of such energy is expected to increase in the coming years. This is a welcomed outcome considering that mitigation of climate disruption due to the use of fossil carbon is reaching a critical stage. However, the economy will remain dependent on carbon-based chemicals and the problem of electricity storage persists. Therefore, the development of electrosynthetic processes that convert electricity and CO2 into chemicals and energy dense fuels, perhaps even food, would be desirable. Electrochemistry has been applied to the manufacture of many valuable products and at a large industrial scale, but it is difficult to produce multicarbon chemicals from CO2 by chemistry alone. Being that the biological world possesses expertise at the construction of C-C bonds, it is being examined in conjunction with electrochemistry to discover new ways of synthesizing chemicals from electricity and CO2. One approach is microbial electrosynthesis. This Account describes the development of a microbial electrosynthesis system by the authors. A biocathode consisting of a carbon-based electrode and a microbial community produced short chain fatty acids, primarily acetate. The device works by electrolysis of water, but microbes facilitate electron transfer from the cathode while reducing CO2 by the Wood-Ljungdahl pathway possessed by an Acetobacterium sp. While this acetogenic microorganism dominates the microbiome growing on the cathode surface, 13 total species of microbes overall were ecologically selected on the cathode and genomes for each have been assembled. The combined species may contribute to the stability of the microbiome, a common feature of naturally selected microbial communities. The microbial electrosynthesis system was demonstrated to operate continuously at a cathode for more than 2 years and could also be used with intermittent power, thus demonstrating the stability of the microbiome living at the cathode. In addition to the description of reactor design and startup procedures, the possible mechanisms of electron transfer are described in this Account. While mysteries remain to be solved, much evidence indicates that the microbiome may facilitate electron transfer by supplying catalyst(s) external to the bacterial cells and onto the cathode surface. This may be in the form of a hydrogen-producing catalyst that enhances hydrogen generation by an inert carbon-based electrode. Through the enrichment of the electrosynthetic microbiome along with several modifications in reactor design and operation, the productivity and efficiency were improved. In addition to the intrinsic value of the current products, coupling the process with a secondary stage might be used to produce more valuable products from the acetic acid stream such as lipids, biocrude oil, or higher value food supplements. Alternatively, additional work on the mechanism of electron transfer, reactor design/operation, and modification of the microbes through synthetic biology, particularly to enhance carbon efficiency into higher value chemicals, are the needed next steps to advance microbial electrosynthesis so that it may be used to transform renewable electrons and CO2 directly into products and help solve the problem of climate disruption.
Collapse
Affiliation(s)
- Edward V. LaBelle
- Department of Organismic & Evolutionary Biology, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Christopher W. Marshall
- Department of Biological Sciences, Marquette University, Milwaukee, Wisconsin 53233, United States
| | - Harold D. May
- Department of Microbiology & Immunology, Hollings Marine Laboratory, Medical University of South Carolina, Charleston, South Carolina 29412, United States
| |
Collapse
|
65
|
Philips J. Extracellular Electron Uptake by Acetogenic Bacteria: Does H 2 Consumption Favor the H 2 Evolution Reaction on a Cathode or Metallic Iron? Front Microbiol 2020; 10:2997. [PMID: 31998274 PMCID: PMC6966493 DOI: 10.3389/fmicb.2019.02997] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 12/11/2019] [Indexed: 12/30/2022] Open
Abstract
Some acetogenic bacteria are capable of using solid electron donors, such as a cathode or metallic iron [Fe(0)]. Acetogens using a cathode as electron donor are of interest for novel applications such as microbial electrosynthesis, while microorganisms using Fe(0) as electron donor cause detrimental microbial induced corrosion. The capacity to use solid electron donors strongly differs between acetogenic strains, which likely relates to their extracellular electron transfer (EET) mechanism. Different EET mechanisms have been proposed for acetogenic bacteria, including a direct mechanism and a H2 dependent indirect mechanism combined with extracellular hydrogenases catalyzing the H2 evolution reaction on the cathode or Fe(0) surface. Interestingly, low H2 partial pressures often prevail during acetogenesis with solid electron donors. Hence, an additional mechanism is here proposed: the maintenance of low H2 partial pressures by microbial H2 consumption, which thermodynamically favors the H2 evolution reaction on the cathode or Fe(0) surface. This work elaborates how the H2 partial pressure affects the H2 evolution onset potential and the H2 evolution rate on a cathode, as well as the free energy change of the anoxic corrosion reaction. In addition, the H2 consumption characteristics, i.e., H2 threshold (thermodynamic limit for H2 consumption) and H2 consumption kinetic parameters, of acetogenic bacteria are reviewed and evidence is discussed for strongly different H2 consumption characteristics. Different acetogenic strains are thus expected to maintain different H2 partial pressures on a cathode or Fe(0) surface, while those that maintain lower H2 partial pressures (lower H2 threshold, higher H2 affinity) more strongly increase the H2 evolution reaction. Consequently, I hypothesize that the different capacities of acetogenic bacteria to use solid electron donors are related to differences in their H2 consumption characteristics. The focus of this work is on acetogenic bacteria, but similar considerations are likely also relevant for other hydrogenotrophic microorganisms.
Collapse
Affiliation(s)
- Jo Philips
- Department of Engineering, Aarhus University, Aarhus, Denmark
| |
Collapse
|
66
|
Xing W, Wang Y, Hao T, He Z, Jia F, Yao H. pH control and microbial community analysis with HCl or CO 2 addition in H 2-based autotrophic denitrification. WATER RESEARCH 2020; 168:115200. [PMID: 31655440 DOI: 10.1016/j.watres.2019.115200] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 10/13/2019] [Accepted: 10/15/2019] [Indexed: 06/10/2023]
Abstract
H2-based autotrophic denitrification is promising to remove nitrate from water or wastewater lacking organic carbon sources, and pH is one of its most important process parameters. HCl and CO2 addition are known as adequate pH control methods for practical purposes. However, because of H2, added CO2 may participate in microbial metabolisms and affect denitrification mechanisms. Here, a combined micro-electrolysis and autotrophic denitrification (CEAD) reactor, in which H2 is generated based on galvanic-cell reactions between zero-valent iron and carbon, was optimized and continuously operated for 233 days by adding HCl or CO2 to control pH in the range of 7.2-8.2. Microbial communities were compared between the two pH-control methods through high-throughput sequencing of 16S rRNA, nirS, and nirK genes. Under a low COD/N ratio of 0.5 in the influent (with ∼36 mgNO3--N/L), when adding HCl, the total nitrogen (TN) removal efficiency reached 91.4% ± 0.9% with a 28-h hydraulic retention time (HRT). When adding CO2, the TN removal efficiency was improved to 96.5% ± 1.7% with 24-h HRT. Significant differences of 16S rRNA and nirS genes between the two pH-control stages indicated the variation of microbial communities and nirS-type denitrifiers. With HCl addition, Thiobacillus, unclassified Comamonadaceae, Arenimonas, Limnobacter, and Thermomonas, which were reported previously as likely autotrophic or heterotrophic denitrifiers, were most dominant in the biofilms. With CO2 addition, the biofilms became dominated by Anaerolineaceae and Methylocystaceae (related to organic carbon metabolism), Denitratisoma (likely heterotrophic denitrifier), and uncultured bacteria TK10 and AKYG587. The results suggest that the added CO2 not only contributed to pH control but also participated in microbial metabolisms. This study provides useful insights into microbial mechanisms and further optimization of H2-based autotrophic denitrification in water and wastewater treatment.
Collapse
Affiliation(s)
- Wei Xing
- Department of Civil and Environmental Engineering, Beijing Key Laboratory of Aqueous Typical Pollutants Control and Water Quality Safeguard, School of Civil Engineering, Beijing Jiaotong University, Beijing, 100044, China.
| | - Yan Wang
- Department of Civil and Environmental Engineering, Beijing Key Laboratory of Aqueous Typical Pollutants Control and Water Quality Safeguard, School of Civil Engineering, Beijing Jiaotong University, Beijing, 100044, China
| | - Tianyu Hao
- Department of Civil and Environmental Engineering, Beijing Key Laboratory of Aqueous Typical Pollutants Control and Water Quality Safeguard, School of Civil Engineering, Beijing Jiaotong University, Beijing, 100044, China
| | - Zhenglan He
- Department of Civil and Environmental Engineering, Beijing Key Laboratory of Aqueous Typical Pollutants Control and Water Quality Safeguard, School of Civil Engineering, Beijing Jiaotong University, Beijing, 100044, China
| | - Fangxu Jia
- Department of Civil and Environmental Engineering, Beijing Key Laboratory of Aqueous Typical Pollutants Control and Water Quality Safeguard, School of Civil Engineering, Beijing Jiaotong University, Beijing, 100044, China
| | - Hong Yao
- Department of Civil and Environmental Engineering, Beijing Key Laboratory of Aqueous Typical Pollutants Control and Water Quality Safeguard, School of Civil Engineering, Beijing Jiaotong University, Beijing, 100044, China.
| |
Collapse
|
67
|
Li J, Li Z, Xiao S, Fu Q, Kobayashi H, Zhang L, Liao Q, Zhu X. Startup cathode potentials determine electron transfer behaviours of biocathodes catalysing CO2 reduction to CH4 in microbial electrosynthesis. J CO2 UTIL 2020. [DOI: 10.1016/j.jcou.2019.09.013] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
68
|
Annie Modestra J, Venkata Mohan S. Capacitive biocathodes driving electrotrophy towards enhanced CO 2 reduction for microbial electrosynthesis of fatty acids. BIORESOURCE TECHNOLOGY 2019; 294:122181. [PMID: 31610485 DOI: 10.1016/j.biortech.2019.122181] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 09/16/2019] [Accepted: 09/18/2019] [Indexed: 06/10/2023]
Abstract
Electron transfer towards biocathode is a rate limiting step for CO2 reduction during microbial electrosynthesis (MES). Current study is designed to offer an understanding on electrotrophy using four different electrode materials viz., carbon cloth (CC), stainless-steel mesh (SS), combination of both (CC-SS) and a hybrid material (CC-SS-AC with activated carbon (AC)) as capacitive biocathodes for MES. Non turn-over and turn-over electrochemical investigations revealed electrode properties in terms of electron transfer, capacitance and redox catalytic currents relatively higher with CC-SS-AC and CC-SS. Acetic acid production was higher in CC-SS-AC (4.31 g/l) than CC-SS (4.21 g/l), CC (3.5 g/l) and SS (2.83 g/l) along with noticeable ethanol production with all the biocathodes except SS. Interestingly, long-term operation of all biocathodes witnessed reduction in resistance visualized through Nyquist impedance spectra relatively efficient with CC-SS-AC. Biocompatible property of CC-SS-AC with increased surface area was presumed to be a critical factor for enhancing electrotrophy linked with capacitive nature of biocathode towards enhanced bioelectrochemical CO2 reduction.
Collapse
Affiliation(s)
- J Annie Modestra
- Bioengineering and Environmental Sciences Lab, Department of Energy and Environmental Engineering, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500 007, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-Indian Institute of Chemical Technology (CSIR-IICT) Campus, Hyderabad, India
| | - S Venkata Mohan
- Bioengineering and Environmental Sciences Lab, Department of Energy and Environmental Engineering, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500 007, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-Indian Institute of Chemical Technology (CSIR-IICT) Campus, Hyderabad, India.
| |
Collapse
|
69
|
Sánchez C, Dessì P, Duffy M, Lens PNL. Microbial electrochemical technologies: Electronic circuitry and characterization tools. Biosens Bioelectron 2019; 150:111884. [PMID: 31780409 DOI: 10.1016/j.bios.2019.111884] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 11/05/2019] [Accepted: 11/12/2019] [Indexed: 02/08/2023]
Abstract
Microbial electrochemistry merges microbiology, electrochemistry and electronics to provide a set of technologies for environmental engineering applications. Understanding the electronic concepts is crucial for effectively adopting these systems, but the importance of electronic circuitry is often overlooked by microbial electrochemistry researchers. This review provides the background on the electronics and electrochemical concepts involved in the study of microorganisms interacting with electricity, and their applications in microbial electrochemical technology (MET). The potentiostat circuitry is described along with its working principles. Electrochemical analyses are presented together with the rational and parameters employed to study MET devices and electroactive microorganisms. Finally, future directions are delineated towards the adoption of MET, and the related electronics, in environmental engineering applications.
Collapse
Affiliation(s)
- Carlos Sánchez
- Microbiology Department, School of Natural Sciences, National University of Ireland, Galway, University Road, Galway, Ireland.
| | - Paolo Dessì
- Microbiology Department, School of Natural Sciences, National University of Ireland, Galway, University Road, Galway, Ireland
| | - Maeve Duffy
- Electrical and Electronic Engineering, School of Engineering, National University of Ireland, Galway, University Road, Galway, Ireland
| | - Piet N L Lens
- Microbiology Department, School of Natural Sciences, National University of Ireland, Galway, University Road, Galway, Ireland
| |
Collapse
|
70
|
Hirose A, Kouzuma A, Watanabe K. Towards development of electrogenetics using electrochemically active bacteria. Biotechnol Adv 2019; 37:107351. [DOI: 10.1016/j.biotechadv.2019.02.007] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 01/09/2019] [Accepted: 02/15/2019] [Indexed: 12/20/2022]
|
71
|
Karthikeyan R, Singh R, Bose A. Microbial electron uptake in microbial electrosynthesis: a mini-review. ACTA ACUST UNITED AC 2019; 46:1419-1426. [DOI: 10.1007/s10295-019-02166-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 03/23/2019] [Indexed: 10/27/2022]
Abstract
Abstract
Microbial electron uptake (EU) is the biological capacity of microbes to accept electrons from electroconductive solid materials. EU has been leveraged for sustainable bioproduction strategies via microbial electrosynthesis (MES). MES often involves the reduction of carbon dioxide to multi-carbon molecules, with electrons derived from electrodes in a bioelectrochemical system. EU can be indirect or direct. Indirect EU-based MES uses electron mediators to transfer electrons to microbes. Although an excellent initial strategy, indirect EU requires higher electrical energy. In contrast, the direct supply of cathodic electrons to microbes (direct EU) is more sustainable and energy efficient. Nonetheless, low product formation due to low electron transfer rates during direct EU remains a major challenge. Compared to indirect EU, direct EU is less well-studied perhaps due to the more recent discovery of this microbial capability. This mini-review focuses on the recent advances and challenges of direct EU in relation to MES.
Collapse
Affiliation(s)
- Rengasamy Karthikeyan
- grid.4367.6 0000 0001 2355 7002 Department of Biology Washington University in Saint Louis One Brookings Drive 63130 St. Louis MO USA
| | - Rajesh Singh
- grid.4367.6 0000 0001 2355 7002 Department of Biology Washington University in Saint Louis One Brookings Drive 63130 St. Louis MO USA
| | - Arpita Bose
- grid.4367.6 0000 0001 2355 7002 Department of Biology Washington University in Saint Louis One Brookings Drive 63130 St. Louis MO USA
| |
Collapse
|
72
|
Zhao TT, Feng GH, Chen W, Song YF, Dong X, Li GH, Zhang HJ, Wei W. Artificial bioconversion of carbon dioxide. CHINESE JOURNAL OF CATALYSIS 2019. [DOI: 10.1016/s1872-2067(19)63408-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
73
|
Irfan M, Bai Y, Zhou L, Kazmi M, Yuan S, Maurice Mbadinga S, Yang SZ, Liu JF, Sand W, Gu JD, Mu BZ. Direct microbial transformation of carbon dioxide to value-added chemicals: A comprehensive analysis and application potentials. BIORESOURCE TECHNOLOGY 2019; 288:121401. [PMID: 31151767 DOI: 10.1016/j.biortech.2019.121401] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Revised: 04/27/2019] [Accepted: 04/29/2019] [Indexed: 06/09/2023]
Abstract
Carbon dioxide storage in petroleum and other geological reservoirs is an economical option for long-term separation of this gas from the atmosphere. Other options include applications through conversion to valuable chemicals. Microalgae and plants perform direct fixation of carbon dioxide to biomass, which is then used as raw material for further microbial transformation (MT). The approach by microbial transformation can achieve reduction of carbon dioxide and production of biofuels. This review addresses the research and technological processes related to direct MT of carbon dioxide, factors affecting their efficiency in operation and the review of economic feasibility. Additionally, some commercial plants making utilization of CO2 around the globe are also summarized along with different value-added chemicals (methane, acetate, fatty acids and alcohols) as reported in literature. Further information is also provided for a better understanding of direct CO2 MT and its future prospects leading to a sustainable and clean environment.
Collapse
Affiliation(s)
- Muhammad Irfan
- State Key Laboratory of Bioreactor Engineering and School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China; Department of Chemical, Polymer and Composite Materials Engineering, University of Engineering and Technology, KSK Campus, Lahore 54890, Pakistan
| | - Yang Bai
- State Key Laboratory of Bioreactor Engineering and School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Lei Zhou
- State Key Laboratory of Bioreactor Engineering and School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Mohsin Kazmi
- State Key Laboratory of Bioreactor Engineering and School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China; Department of Chemical, Polymer and Composite Materials Engineering, University of Engineering and Technology, KSK Campus, Lahore 54890, Pakistan
| | - Shan Yuan
- State Key Laboratory of Bioreactor Engineering and School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Serge Maurice Mbadinga
- State Key Laboratory of Bioreactor Engineering and School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Shi-Zhong Yang
- State Key Laboratory of Bioreactor Engineering and School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Jin Feng Liu
- State Key Laboratory of Bioreactor Engineering and School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Wolfgang Sand
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China; Biofilm Centre, University of Duisburg-Essen, Essen, Germany
| | - Ji-Dong Gu
- School of Biological Sciences, University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Bo-Zhong Mu
- State Key Laboratory of Bioreactor Engineering and School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China; Engineering Research Center of MEOR, East China University of Science and Technology, Ministry of Education, Shanghai 200237, China.
| |
Collapse
|
74
|
Experimental evaluation of the influential factors of acetate production driven by a DC power system via CO2 reduction through microbial electrosynthesis. BIORESOUR BIOPROCESS 2019. [DOI: 10.1186/s40643-019-0265-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
|
75
|
Chen D, Shen J, Jiang X, Su G, Han W, Sun X, Li J, Mu Y, Wang L. Simultaneous debromination and mineralization of bromophenol in an up-flow electricity-stimulated anaerobic system. WATER RESEARCH 2019; 157:8-18. [PMID: 30947080 DOI: 10.1016/j.watres.2019.03.054] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 02/27/2019] [Accepted: 03/26/2019] [Indexed: 05/20/2023]
Abstract
Due to highly recalcitrant and toxicological nature of halogenated organic compounds, conventional anaerobic dehalogenation is often limited by low removal rate and poor process stability. Besides, the reduction intermediates or products formed during dehalogenation process, which are still toxic, required further energy-intensive aerobic post-treatment. In this study, an up-flow electricity-stimulated anaerobic system (ESAS) was developed by installing cathode underneath and anode above to realize simultaneous anaerobic debromination and mineralization of 4-bromophenol (4-BP). When cathode potential was -600 mV, high TOC removal efficiency (98.78 ± 0.96%), complete removal of 4-BP and phenol could be achieved at 4-BP loading rate of 0.58 mol m-3 d-1, suggesting debrominated product of 4-BP from cathode (i.e., phenol) would be utilized as the fuel by the bioanode of ESAS. Under high 4-BP loading rate (2.32 mol m-3 d-1) and low electron donor dosage (4.88 mM), 4-BP could be completely removed at acetate usage ratio as low as 4.21 ± 1.42 mol acetate mol-1 4-BP removal in ESAS, whereas only 13.45 ± 1.38% of 4-BP could be removed at acetate usage ratio as high as 31.28 ± 3.38 mol acetate mol-1 4-BP removal in control reactor. Besides, electrical stimulation distinctly facilitated the growth of various autotrophic dehalogenation species, phenol degradation related species, fermentative species, homoacetogens and electrochemically active species in ESAS. Moreover, based on the identified intermediates and the bacterial taxonomic analysis, possible metabolism mechanism involved in enhanced anaerobic debromination and mineralization of 4-BP in ESAS was proposed.
Collapse
Affiliation(s)
- Dan Chen
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Jinyou Shen
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China.
| | - Xinbai Jiang
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Guanyong Su
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Weiqing Han
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Xiuyun Sun
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Jiansheng Li
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Yang Mu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Applied Chemistry, University of Science and Technology of China, Hefei, 230026, China.
| | - Lianjun Wang
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| |
Collapse
|
76
|
Hou X, Huang L, Zhou P, Tian F, Tao Y, Li Puma G. Electrosynthesis of acetate from inorganic carbon (HCO 3-) with simultaneous hydrogen production and Cd(II) removal in multifunctional microbial electrosynthesis systems (MES). JOURNAL OF HAZARDOUS MATERIALS 2019; 371:463-473. [PMID: 30875574 DOI: 10.1016/j.jhazmat.2019.03.028] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 03/05/2019] [Accepted: 03/06/2019] [Indexed: 06/09/2023]
Abstract
The simultaneous production of acetate from bicarbonate (from CO2 sequestration) and hydrogen gas, with concomitant removal of Cd(II) heavy metal in water is demonstrated in multifunctional metallurgical microbial electrosynthesis systems (MES) incorporating Cd(II) tolerant electrochemically active bacteria (EAB) (Ochrobactrum sp. X1, Pseudomonas sp. X3, Pseudomonas delhiensis X5, and Ochrobactrum anthropi X7). Strain X5 favored the production of acetate, while X7 preferred the production of hydrogen. The rate of Cd(II) removal by all EAB (1.20-1.32 mg/L/h), and the rates of acetate production by X5 (29.4 mg/L/d) and hydrogen evolution by X7 (0.0187 m3/m3/d) increased in the presence of a circuital current. The production of acetate and hydrogen was regulated by the release of extracellular polymeric substances (EPS), which also exhibited invariable catalytic activity toward the reduction of Cd(II) to Cd(0). The intracellular activities of glutathione (GSH), catalase (CAT), superoxide dismutase (SOD) and dehydrogenase were altered by the circuital current and Cd(II) concentration, and these regulated the products distribution. Such understanding enables the targeted manipulation of the MES operational conditions that favor the production of acetate from CO2 sequestration with simultaneous hydrogen production and removal/recovery of Cd(II) from metal-contaminated and organics-barren waters.
Collapse
Affiliation(s)
- Xia Hou
- Key Laboratory of Industrial Ecology and Environmental Engineering, Ministry of Education (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Liping Huang
- Key Laboratory of Industrial Ecology and Environmental Engineering, Ministry of Education (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China.
| | - Peng Zhou
- College of Chemistry, Dalian University of Technology, Dalian 116024, China
| | - Fuping Tian
- College of Chemistry, Dalian University of Technology, Dalian 116024, China
| | - Ye Tao
- Key Laboratory of Industrial Ecology and Environmental Engineering, Ministry of Education (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Gianluca Li Puma
- Environmental Nanocatalysis & Photoreaction Engineering, Department of Chemical Engineering, Loughborough University, Loughborough LE11 3TU, United Kingdom.
| |
Collapse
|
77
|
Abstract
The availability of renewable energy technologies is increasing dramatically across the globe thanks to their growing maturity. However, large scale electrical energy storage and retrieval will almost certainly be a required in order to raise the penetration of renewable sources into the grid. No present energy storage technology has the perfect combination of high power and energy density, low financial and environmental cost, lack of site restrictions, long cycle and calendar lifespan, easy materials availability, and fast response time. Engineered electroactive microbes could address many of the limitations of current energy storage technologies by enabling rewired carbon fixation, a process that spatially separates reactions that are normally carried out together in a photosynthetic cell and replaces the least efficient with non-biological equivalents. If successful, this could allow storage of renewable electricity through electrochemical or enzymatic fixation of carbon dioxide and subsequent storage as carbon-based energy storage molecules including hydrocarbons and non-volatile polymers at high efficiency. In this article we compile performance data on biological and non-biological component choices for rewired carbon fixation systems and identify pressing research and engineering challenges.
Collapse
|
78
|
Bajracharya S, Vanbroekhoven K, Buisman CJN, Strik DPBTB, Pant D. Bioelectrochemical conversion of CO 2 to chemicals: CO 2 as a next generation feedstock for electricity-driven bioproduction in batch and continuous modes. Faraday Discuss 2019; 202:433-449. [PMID: 28657636 DOI: 10.1039/c7fd00050b] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The recent concept of microbial electrosynthesis (MES) has evolved as an electricity-driven production technology for chemicals from low-value carbon dioxide (CO2) using micro-organisms as biocatalysts. MES from CO2 comprises bioelectrochemical reduction of CO2 to multi-carbon organic compounds using the reducing equivalents produced at the electrically-polarized cathode. The use of CO2 as a feedstock for chemicals is gaining much attention, since CO2 is abundantly available and its use is independent of the food supply chain. MES based on CO2 reduction produces acetate as a primary product. In order to elucidate the performance of the bioelectrochemical CO2 reduction process using different operation modes (batch vs. continuous), an investigation was carried out using a MES system with a flow-through biocathode supplied with 20 : 80 (v/v) or 80 : 20 (v/v) CO2 : N2 gas. The highest acetate production rate of 149 mg L-1 d-1 was observed with a 3.1 V applied cell-voltage under batch mode. While running in continuous mode, high acetate production was achieved with a maximum rate of 100 mg L-1 d-1. In the continuous mode, the acetate production was not sustained over long-term operation, likely due to insufficient microbial biocatalyst retention within the biocathode compartment (i.e. suspended micro-organisms were washed out of the system). Restarting batch mode operations resulted in a renewed production of acetate. This showed an apparent domination of suspended biocatalysts over the attached (biofilm forming) biocatalysts. Long term CO2 reduction at the biocathode resulted in the accumulation of acetate, and more reduced compounds like ethanol and butyrate were also formed. Improvements in the production rate and different biomass retention strategies (e.g. selecting for biofilm forming micro-organisms) should be investigated to enable continuous biochemical production from CO2 using MES. Certainly, other process optimizations will be required to establish MES as an innovative sustainable technology for manufacturing biochemicals from CO2 as a next generation feedstock.
Collapse
Affiliation(s)
- Suman Bajracharya
- Separation and Conversion Technology, Flemish Institute for Technological Research (VITO), Boeretang 200, Mol 2400, Belgium.
| | | | | | | | | |
Collapse
|
79
|
Tian S, Wang H, Dong Z, Yang Y, Yuan H, Huang Q, Song TS, Xie J. Mo 2C-induced hydrogen production enhances microbial electrosynthesis of acetate from CO 2 reduction. BIOTECHNOLOGY FOR BIOFUELS 2019; 12:71. [PMID: 30976321 PMCID: PMC6442412 DOI: 10.1186/s13068-019-1413-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 03/15/2019] [Indexed: 06/09/2023]
Abstract
BACKGROUND Microbial electrosynthesis (MES) is a biocathode-driven process, in which electroautotrophic microorganisms can directly uptake electrons or indirectly via H2 from the cathode as energy sources and CO2 as only carbon source to produce chemicals. RESULTS This study demonstrates that a hydrogen evolution reaction (HER) catalyst can enhance MES performance. An active HER electrocatalyst molybdenum carbide (Mo2C)-modified electrode was constructed for MES. The volumetric acetate production rate of MES with 12 mg cm-2 Mo2C was 0.19 ± 0.02 g L-1 day-1, which was 2.1 times higher than that of the control. The final acetate concentration reached 5.72 ± 0.6 g L-1 within 30 days, and coulombic efficiencies of 64 ± 0.7% were yielded. Furthermore, electrochemical study, scanning electron microscopy, and microbial community analyses suggested that Mo2C can accelerate the release of hydrogen, promote the formation of biofilms and regulate the mixed microbial flora. CONCLUSION Coupling a HER catalyst to a cathode of MES system is a promising strategy for improving MES efficiency.
Collapse
Affiliation(s)
- Shihao Tian
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, 211816 People’s Republic of China
- College of Life Science and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816 People’s Republic of China
| | - Haoqi Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, 211816 People’s Republic of China
- College of Life Science and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816 People’s Republic of China
| | - Zhiwei Dong
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, 211816 People’s Republic of China
- College of Life Science and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816 People’s Republic of China
| | - Yang Yang
- Jiangsu Branch of China Academy of Science & Technology Development, Nanjing, 210008 People’s Republic of China
| | - Hao Yuan
- Jiangsu Branch of China Academy of Science & Technology Development, Nanjing, 210008 People’s Republic of China
| | - Qiong Huang
- Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control (AEMPC), Nanjing University of Information Science & Technology, Nanjing, 210044 People’s Republic of China
| | - Tian-shun Song
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, 211816 People’s Republic of China
- College of Life Science and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816 People’s Republic of China
- Jiangsu Branch of China Academy of Science & Technology Development, Nanjing, 210008 People’s Republic of China
- Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control (AEMPC), Nanjing University of Information Science & Technology, Nanjing, 210044 People’s Republic of China
| | - Jingjing Xie
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, 211816 People’s Republic of China
- College of Life Science and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816 People’s Republic of China
- Jiangsu Branch of China Academy of Science & Technology Development, Nanjing, 210008 People’s Republic of China
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing, 211816 People’s Republic of China
| |
Collapse
|
80
|
A variety of hydrogenotrophic enrichment cultures catalyse cathodic reactions. Sci Rep 2019; 9:2356. [PMID: 30787309 PMCID: PMC6382808 DOI: 10.1038/s41598-018-38006-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 12/18/2018] [Indexed: 12/03/2022] Open
Abstract
Biocathodes where living microorganisms catalyse reduction of CO2 can potentially be used to produce valuable chemicals. Microorganisms harbouring hydrogenases may play a key role for biocathode performance since H2 generated on the electrode surface can act as an electron donor for CO2 reduction. In this study, the possibility of catalysing cathodic reactions by hydrogenotrophic methanogens, acetogens, sulfate-reducers, denitrifiers, and acetotrophic methanogens was investigated. The cultures were enriched from an activated sludge inoculum and performed the expected metabolic functions. All enrichments formed distinct microbial communities depending on their electron donor and electron acceptor. When the cultures were added to an electrochemical cell, linear sweep voltammograms showed a shift in current generation close to the hydrogen evolution potential (−1 V versus SHE) with higher cathodic current produced at a more positive potential. All enrichment cultures except the denitrifiers were also used to inoculate biocathodes of microbial electrolysis cells operated with H+ and bicarbonate as electron acceptors and this resulted in current densities between 0.1–1 A/m2. The microbial community composition of biocathodes inoculated with different enrichment cultures were as different from each other as they were different from their suspended culture inoculum. It was noteworthy that Methanobacterium sp. appeared on all the biocathodes suggesting that it is a key microorganism catalysing biocathode reactions.
Collapse
|
81
|
Rago L, Zecchin S, Villa F, Goglio A, Corsini A, Cavalca L, Schievano A. Bioelectrochemical Nitrogen fixation (e-BNF): Electro-stimulation of enriched biofilm communities drives autotrophic nitrogen and carbon fixation. Bioelectrochemistry 2019; 125:105-115. [DOI: 10.1016/j.bioelechem.2018.10.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 10/11/2018] [Accepted: 10/12/2018] [Indexed: 10/28/2022]
|
82
|
Wu Z, Wang J, Liu J, Wang Y, Bi C, Zhang X. Engineering an electroactive Escherichia coli for the microbial electrosynthesis of succinate from glucose and CO 2. Microb Cell Fact 2019; 18:15. [PMID: 30691454 PMCID: PMC6348651 DOI: 10.1186/s12934-019-1067-3] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 01/20/2019] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Electrochemical energy is a key factor of biosynthesis, and is necessary for the reduction or assimilation of substrates such as CO2. Previous microbial electrosynthesis (MES) research mainly utilized naturally electroactive microbes to generate non-specific products. RESULTS In this research, an electroactive succinate-producing cell factory was engineered in E. coli T110(pMtrABC, pFccA-CymA) by expressing mtrABC, fccA and cymA from Shewanella oneidensis MR-1, which can utilize electricity to reduce fumarate. The electroactive T110 strain was further improved by incorporating a carbon concentration mechanism (CCM). This strain was fermented in an MES system with neutral red as the electron carrier and supplemented with HCO3+, which produced a succinate yield of 1.10 mol/mol glucose-a 1.6-fold improvement over the parent strain T110. CONCLUSIONS The strain T110(pMtrABC, pFccA-CymA, pBTCA) is to our best knowledge the first electroactive microbial cell factory engineered to directly utilize electricity for the production of a specific product. Due to the versatility of the E. coli platform, this pioneering research opens the possibility of engineering various other cell factories to utilize electricity for bioproduction.
Collapse
Affiliation(s)
- Zaiqiang Wu
- Center for Molecular Metabolism, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Junsong Wang
- Center for Molecular Metabolism, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China.
| | - Jun Liu
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Ave, Tianjin Airport Economic Park, Tianjin, 300308, China
| | - Yan Wang
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Ave, Tianjin Airport Economic Park, Tianjin, 300308, China
| | - Changhao Bi
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Ave, Tianjin Airport Economic Park, Tianjin, 300308, China.
| | - Xueli Zhang
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Ave, Tianjin Airport Economic Park, Tianjin, 300308, China.
| |
Collapse
|
83
|
Zhu H, Dong Z, Huang Q, Song TS, Xie J. Fe3O4/granular activated carbon as an efficient three-dimensional electrode to enhance the microbial electrosynthesis of acetate from CO2. RSC Adv 2019; 9:34095-34101. [PMID: 35529973 PMCID: PMC9073640 DOI: 10.1039/c9ra06255f] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 10/05/2019] [Indexed: 11/21/2022] Open
Abstract
Microbial electrosynthesis (MES) allows the transformation of CO2 into value-added products by coupling with renewable energy.
Collapse
Affiliation(s)
- Hao Zhu
- State Key Laboratory of Materials-Oriented Chemical Engineering
- Nanjing Tech University
- Nanjing 211816
- PR China
- College of Life Science and Pharmaceutical Engineering
| | - Zhiwei Dong
- State Key Laboratory of Materials-Oriented Chemical Engineering
- Nanjing Tech University
- Nanjing 211816
- PR China
- College of Life Science and Pharmaceutical Engineering
| | - Qiong Huang
- Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control (AEMPC)
- Nanjing University of Information Science & Technology
- Nanjing 210044
- PR China
| | - Tian-shun Song
- State Key Laboratory of Materials-Oriented Chemical Engineering
- Nanjing Tech University
- Nanjing 211816
- PR China
- College of Life Science and Pharmaceutical Engineering
| | - Jingjing Xie
- State Key Laboratory of Materials-Oriented Chemical Engineering
- Nanjing Tech University
- Nanjing 211816
- PR China
- College of Life Science and Pharmaceutical Engineering
| |
Collapse
|
84
|
Dong Z, Wang H, Tian S, Yang Y, Yuan H, Huang Q, Song TS, Xie J. Fluidized granular activated carbon electrode for efficient microbial electrosynthesis of acetate from carbon dioxide. BIORESOURCE TECHNOLOGY 2018; 269:203-209. [PMID: 30173066 DOI: 10.1016/j.biortech.2018.08.103] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 08/24/2018] [Accepted: 08/25/2018] [Indexed: 06/08/2023]
Abstract
The electricity-driven bioreduction of carbon dioxide to multi-carbon organic compounds, particularly acetate, has been achieved in microbial electrosynthesis (MES). MES performance can be limited by the amount of cathode surface area available for biofilm formation and slow substrate mass transfer. Here, a fluidized three-dimensional electrode, containing granular activated carbon (GAC) particles, was constructed via MES. The volumetric acetate production rate increased by 2.8 times through MES with 16 g L-1 GAC (0.14 g L-1 d-1) compared with that of the control (no GAC), and the final acetate concentration reached 3.92 g L-1 within 24 days. Electrochemical, scanning electron microscopy, and microbial community analyses suggested that GAC might improve the performance of MES by accelerating direct and indirect (via H2) electron transfer because GAC could provide a high electrode surface and a favorable mass transport. This study attempted to improve the efficiency of MES and presented promising opportunities for MES scale-up.
Collapse
Affiliation(s)
- Zhiwei Dong
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, PR China; College of Life Science and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, PR China
| | - Haoqi Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, PR China; College of Life Science and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, PR China
| | - Shihao Tian
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, PR China; College of Life Science and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, PR China
| | - Yang Yang
- Jiangsu Branch of China Academy of Science & Technology Development, Nanjing 210008, PR China
| | - Hao Yuan
- Jiangsu Branch of China Academy of Science & Technology Development, Nanjing 210008, PR China
| | - Qiong Huang
- Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control (AEMPC), Nanjing University of Information Science & Technology, Nanjing 210044, PR China
| | - Tian-Shun Song
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, PR China; College of Life Science and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, PR China; Jiangsu Branch of China Academy of Science & Technology Development, Nanjing 210008, PR China; Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control (AEMPC), Nanjing University of Information Science & Technology, Nanjing 210044, PR China.
| | - Jingjing Xie
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, PR China; College of Life Science and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, PR China; Jiangsu Branch of China Academy of Science & Technology Development, Nanjing 210008, PR China; Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing 211816, PR China
| |
Collapse
|
85
|
Philips J, Monballyu E, Georg S, De Paepe K, Prévoteau A, Rabaey K, Arends JBA. AnAcetobacteriumstrain isolated with metallic iron as electron donor enhances iron corrosion by a similar mechanism asSporomusa sphaeroides. FEMS Microbiol Ecol 2018; 95:5184449. [DOI: 10.1093/femsec/fiy222] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 11/14/2018] [Indexed: 02/02/2023] Open
Affiliation(s)
- Jo Philips
- Center for Microbial Ecology and Technology (CMET), Ghent University, Coupure Links 653, Ghent 9000, Belgium
| | - Eva Monballyu
- Center for Microbial Ecology and Technology (CMET), Ghent University, Coupure Links 653, Ghent 9000, Belgium
| | - Steffen Georg
- Center for Microbial Ecology and Technology (CMET), Ghent University, Coupure Links 653, Ghent 9000, Belgium
| | - Kim De Paepe
- Center for Microbial Ecology and Technology (CMET), Ghent University, Coupure Links 653, Ghent 9000, Belgium
| | - Antonin Prévoteau
- Center for Microbial Ecology and Technology (CMET), Ghent University, Coupure Links 653, Ghent 9000, Belgium
| | - Korneel Rabaey
- Center for Microbial Ecology and Technology (CMET), Ghent University, Coupure Links 653, Ghent 9000, Belgium
| | - Jan B A Arends
- Center for Microbial Ecology and Technology (CMET), Ghent University, Coupure Links 653, Ghent 9000, Belgium
| |
Collapse
|
86
|
Golden J, Yates MD, Halsted M, Tender L. Application of electrochemical surface plasmon resonance (ESPR) to the study of electroactive microbial biofilms. Phys Chem Chem Phys 2018; 20:25648-25656. [PMID: 30289415 DOI: 10.1039/c8cp03898h] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Electrochemical surface plasmon resonance (ESPR) monitors faradaic processes optically by the change in refractive index that occurs with a change in redox state at the electrode surface. Here we apply ESPR to investigate the anode-grown Geobacter sulfurreducens biofilm (GSB), a model system used to study electroactive microbial biofilms (EABFs) which perform electrochemical reactions using electrodes as metabolic electron acceptors or donors. A substantial body of evidence indicates that electron transfer reactions among hemes of c-type cytochromes (c-Cyt) play major roles in the extracellular electron transfer (EET) pathways that connect intracellular metabolic processes of cells in an EABF to the electrode surface. The results reported here reveal that when the potential of the electrode is changed from relatively oxidizing (0.40 V vs. SHE) to reducing (-0.55 V vs. SHE) and then back to oxidizing, 70% of c-Cyt residing closest to the biofilm/electrode (within hundreds of nm from the electrode surface) appear to remain trapped in the reduced state, requiring as long as 12 hours to be re-oxidized. c-Cyt storing electrons cannot contribute to EET, yet turnover current resulting from cellular oxidation of acetate coupled with EET to the electrode surface is unaffected. This suggests that a relatively small fraction of c-Cyt residing closest to the biofilm/electrode interface is involved in EET while the majority store electrons. The results also reveal that biomass density at the biofilm/electrode interface increases rapidly during lag phase, reaching its maximum value at the onset of exponential biofilm growth when turnover current begins to rapidly increase.
Collapse
Affiliation(s)
- Joel Golden
- Center for Bio/Molecular Science and Engineering, Naval Research Laboratory, Washington DC, 20375, USA.
| | | | | | | |
Collapse
|
87
|
Del Pilar Anzola Rojas M, Zaiat M, Gonzalez ER, De Wever H, Pant D. Effect of the electric supply interruption on a microbial electrosynthesis system converting inorganic carbon into acetate. BIORESOURCE TECHNOLOGY 2018; 266:203-210. [PMID: 29982040 DOI: 10.1016/j.biortech.2018.06.074] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2018] [Revised: 06/21/2018] [Accepted: 06/22/2018] [Indexed: 06/08/2023]
Abstract
Microbial electrosynthesis (MES) technology relies on the direct use of electrons to convert CO2 into long chain organic chemicals. Therefore, MES has been proposed to be coupled to the renewable electricity supply, mainly from solar and wind sources. However, those energies suffer fluctuations and interruptions of variable duration, which can have an adverse effect on MES performance. Such effects on MES has been evaluated for the first time under different interruptions time. H-cell-MES reactors were disconnected from power supply during 4, 6, 8, 16, 32 and 64 h. Interruptions affected the acetate production rate, causing a decrease of until 77% after 64 h off. However, after all the interruptions, the acetate production was restored, taking between 7 and 16 h for the reduction current to turn steady. Therefore, microbial community on MES proved to be resilient and able to recover the electro-autotrophic activity despite the duration of current supply interruptions.
Collapse
Affiliation(s)
- Mélida Del Pilar Anzola Rojas
- Separation and Conversion Technology, Flemish Institute for Technological Research (VITO), Boeretang 200, 2400 Mol, Belgium; São Carlos Institute of Chemistry, University of São Paulo (USP), Brazil
| | - Marcelo Zaiat
- Laboratory of Biological Processes, Center for Research, Development and Innovation in Environmental Engineering, São Carlos School of Engineering, University of São Paulo (USP), Brazil
| | | | - Heleen De Wever
- Separation and Conversion Technology, Flemish Institute for Technological Research (VITO), Boeretang 200, 2400 Mol, Belgium
| | - Deepak Pant
- Separation and Conversion Technology, Flemish Institute for Technological Research (VITO), Boeretang 200, 2400 Mol, Belgium.
| |
Collapse
|
88
|
Srikanth S, Singh D, Vanbroekhoven K, Pant D, Kumar M, Puri SK, Ramakumar SSV. Electro-biocatalytic conversion of carbon dioxide to alcohols using gas diffusion electrode. BIORESOURCE TECHNOLOGY 2018; 265:45-51. [PMID: 29879650 DOI: 10.1016/j.biortech.2018.02.058] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 02/09/2018] [Accepted: 02/13/2018] [Indexed: 06/08/2023]
Abstract
Impact of gas diffusion electrodes (GDEs) was evaluated in enhancing the CO2 bio-availability for its transformation to C4-organics, especially to alcohols using selective mixed culture. Observed current density was more stable (9-11 A/m2) than submerged experiments reported and significantly varied with pH and respective CO2 solubility. Uncontrolled operating pH (starting with 8.0) showed its impact on shifting/triggering alternate metabolic pathways to increase the carbon length (butyric acid) as well as producing more reduced end products, i.e. alcohols. During the experiments, CO2 was transformed initially to a mixture of volatile fatty acids dominated with formic and acetic acids, and upon their accumulation, ethanol and butanol production was triggered. Overall, 21 g/l of alcohols and 13 g/l of organic acids were accumulated in 90 days with a coulombic efficiency (CE) of 49%. Ethanol and butanol occupied respectively about 45% and 16% of total products, indicating larger potential of this technology.
Collapse
Affiliation(s)
- Sandipam Srikanth
- Industrial Biotechnology Department, Research and Development Center, Indian Oil Corporation Limited, Sector-13, Faridabad, Haryana 121007, India
| | - Dheer Singh
- Industrial Biotechnology Department, Research and Development Center, Indian Oil Corporation Limited, Sector-13, Faridabad, Haryana 121007, India
| | - K Vanbroekhoven
- Separation and Conversion Technology, Flemish Institute for Technological Research (VITO), Boeretang 200, Mol 2400, Belgium
| | - Deepak Pant
- Separation and Conversion Technology, Flemish Institute for Technological Research (VITO), Boeretang 200, Mol 2400, Belgium
| | - Manoj Kumar
- Industrial Biotechnology Department, Research and Development Center, Indian Oil Corporation Limited, Sector-13, Faridabad, Haryana 121007, India.
| | - S K Puri
- Industrial Biotechnology Department, Research and Development Center, Indian Oil Corporation Limited, Sector-13, Faridabad, Haryana 121007, India
| | - S S V Ramakumar
- Industrial Biotechnology Department, Research and Development Center, Indian Oil Corporation Limited, Sector-13, Faridabad, Haryana 121007, India
| |
Collapse
|
89
|
Kornienko N, Zhang JZ, Sakimoto KK, Yang P, Reisner E. Interfacing nature's catalytic machinery with synthetic materials for semi-artificial photosynthesis. NATURE NANOTECHNOLOGY 2018; 13:890-899. [PMID: 30291349 DOI: 10.1038/s41565-018-0251-7] [Citation(s) in RCA: 213] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 07/31/2018] [Indexed: 05/23/2023]
Abstract
Semi-artificial photosynthetic systems aim to overcome the limitations of natural and artificial photosynthesis while providing an opportunity to investigate their respective functionality. The progress and studies of these hybrid systems is the focus of this forward-looking perspective. In this Review, we discuss how enzymes have been interfaced with synthetic materials and employed for semi-artificial fuel production. In parallel, we examine how more complex living cellular systems can be recruited for in vivo fuel and chemical production in an approach where inorganic nanostructures are hybridized with photosynthetic and non-photosynthetic microorganisms. Side-by-side comparisons reveal strengths and limitations of enzyme- and microorganism-based hybrid systems, and how lessons extracted from studying enzyme hybrids can be applied to investigations of microorganism-hybrid devices. We conclude by putting semi-artificial photosynthesis in the context of its own ambitions and discuss how it can help address the grand challenges facing artificial systems for the efficient generation of solar fuels and chemicals.
Collapse
Affiliation(s)
- Nikolay Kornienko
- Department of Chemistry, University of Cambridge, Cambridge, UK
- Department of Chemistry, University of California, Berkeley, CA, USA
| | - Jenny Z Zhang
- Department of Chemistry, University of Cambridge, Cambridge, UK
| | - Kelsey K Sakimoto
- Department of Chemistry, University of California, Berkeley, CA, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA
| | - Peidong Yang
- Department of Chemistry, University of California, Berkeley, CA, USA.
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
- Kavli Energy NanoSciences Institute, Berkeley, CA, USA.
- Department of Materials Science and Engineering, University of California, Berkeley, CA, USA.
| | - Erwin Reisner
- Department of Chemistry, University of Cambridge, Cambridge, UK.
| |
Collapse
|
90
|
Li X, Angelidaki I, Zhang Y. Salinity-gradient energy driven microbial electrosynthesis of value-added chemicals from CO 2 reduction. WATER RESEARCH 2018; 142:396-404. [PMID: 29909219 DOI: 10.1016/j.watres.2018.06.013] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 04/18/2018] [Accepted: 06/06/2018] [Indexed: 06/08/2023]
Abstract
Biological conversion of CO2 to value-added chemicals and biofuels has emerged as an attractive strategy to address the energy and environmental concerns caused by the over-reliance on fossil fuels. In this study, an innovative microbial reverse-electrodialysis electrolysis cell (MREC), which combines the strengths of reverse electrodialysis (RED) and microbial electrosynthesis technology platforms, was developed to achieve efficient CO2-to-value chemicals bioconversion by using the salinity gradient energy as driven energy sources. In the MREC, maximum acetate and ethanol concentrations of 477.5 ± 33.2 and 46.2 ± 8.2 mg L-1 were obtained at the cathode, catalyzed by Sporomusa ovata with production rates of 165.79 ± 11.52 and 25.11 ± 4.46 mmol m-2 d-1, respectively. Electron balance analysis indicates that 94.4 ± 3.9% of the electrons derived from wastewater and salinity gradient were recovered in acetate and ethanol. This work for the first time proved the potential of innovative MREC configuration has the potential as an efficient technology platform for simultaneous CO2 capture and electrosynthesis of valuable chemicals.
Collapse
Affiliation(s)
- Xiaohu Li
- Department of Environmental Engineering, Technical University of Denmark, DK-2800, Lyngby, Denmark
| | - Irini Angelidaki
- Department of Environmental Engineering, Technical University of Denmark, DK-2800, Lyngby, Denmark
| | - Yifeng Zhang
- Department of Environmental Engineering, Technical University of Denmark, DK-2800, Lyngby, Denmark.
| |
Collapse
|
91
|
Srikanth S, Kumar M, Puri SK. Bio-electrochemical system (BES) as an innovative approach for sustainable waste management in petroleum industry. BIORESOURCE TECHNOLOGY 2018; 265:506-518. [PMID: 29886049 DOI: 10.1016/j.biortech.2018.02.059] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2017] [Revised: 02/09/2018] [Accepted: 02/13/2018] [Indexed: 06/08/2023]
Abstract
Petroleum industry is one of the largest and fast growing industries due to the ever increasing global energy demands. Petroleum refinery produces huge quantities of wastes like oily sludge, wastewater, volatile organic compounds, waste catalyst, heavy metals, etc., because of its high capacity and continuous operation of many units. Major challenge to this industry is to manage the huge quantities of waste generated from different processes due to the complexity of waste as well as changing stringent environmental regulations. To decrease the energy loss for treatment and also to conserve the energy stored in the chemical bonds of these waste organics, bio-electrochemical system (BES) may be an efficient tool that reduce the economics of waste disposal by transforming the waste into energy pool. The present review discusses about the feasibility of using BES as a potential option for harnessing energy from different waste generated from petroleum refineries.
Collapse
Affiliation(s)
- Sandipam Srikanth
- Industrial Biotechnology Department, Research and Development Center, Indian Oil Corporation Limited, Sector-13, Faridabad, Haryana 121007, India
| | - Manoj Kumar
- Industrial Biotechnology Department, Research and Development Center, Indian Oil Corporation Limited, Sector-13, Faridabad, Haryana 121007, India.
| | - S K Puri
- Industrial Biotechnology Department, Research and Development Center, Indian Oil Corporation Limited, Sector-13, Faridabad, Haryana 121007, India
| |
Collapse
|
92
|
Srikanth S, Kumar M, Singh D, Singh MP, Puri SK, Ramakumar SSV. Long-term operation of electro-biocatalytic reactor for carbon dioxide transformation into organic molecules. BIORESOURCE TECHNOLOGY 2018; 265:66-74. [PMID: 29883848 DOI: 10.1016/j.biortech.2017.12.075] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 12/22/2017] [Accepted: 12/23/2017] [Indexed: 06/08/2023]
Abstract
Electro-biocatalytic reactor was operated using selectively enriched mixed culture biofilm for about 320 days with CO2/bicarbonate as C-source. Biocathode consumed higher current (-16.2 ± 0.3 A/m2) for bicarbonate transformation yielding high product synthesis (0.74 g/l/day) compared to CO2 (-9.5 ± 2.8 A/m2; 0.41 g/l/day). Product slate includes butanol and butyric acid when CO2 gets transformed but propionic acid replaced both when bicarbonate gets transformed. Based on electroanalysis, the electron transfer might be H2 mediated along with direct transfer under bicarbonate turnover conditions, while it was restricted to direct under CO2. Efficiency and stability of biofilm was tested by removing the planktonic cells, and also confirmed in terms of Coulombic (85-97%) and carbon conversion efficiencies (42-48%) along with production rate (1.2-1.7 kg/m2 electrode) using bicarbonate as substrate. Selective enrichment of microbes and their growth as biofilm along with soluble CO2 have helped in efficient transformation of CO2 up to C4 organic molecules.
Collapse
Affiliation(s)
- Sandipam Srikanth
- Industrial Biotechnology Department, Research and Development Center, Indian Oil Corporation Limited, Sector-13, Faridabad, Haryana 121007, India
| | - Manoj Kumar
- Industrial Biotechnology Department, Research and Development Center, Indian Oil Corporation Limited, Sector-13, Faridabad, Haryana 121007, India.
| | - Dheer Singh
- Industrial Biotechnology Department, Research and Development Center, Indian Oil Corporation Limited, Sector-13, Faridabad, Haryana 121007, India
| | - M P Singh
- Industrial Biotechnology Department, Research and Development Center, Indian Oil Corporation Limited, Sector-13, Faridabad, Haryana 121007, India
| | - S K Puri
- Industrial Biotechnology Department, Research and Development Center, Indian Oil Corporation Limited, Sector-13, Faridabad, Haryana 121007, India
| | - S S V Ramakumar
- Industrial Biotechnology Department, Research and Development Center, Indian Oil Corporation Limited, Sector-13, Faridabad, Haryana 121007, India
| |
Collapse
|
93
|
Rengasamy K, Ranaivoarisoa T, Singh R, Bose A. An insoluble iron complex coated cathode enhances direct electron uptake by Rhodopseudomonas palustris TIE-1. Bioelectrochemistry 2018; 122:164-173. [DOI: 10.1016/j.bioelechem.2018.03.015] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 03/27/2018] [Accepted: 03/28/2018] [Indexed: 10/17/2022]
|
94
|
Electro-Microbiology as a Promising Approach Towards Renewable Energy and Environmental Sustainability. ENERGIES 2018. [DOI: 10.3390/en11071822] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Microbial electrochemical technologies provide sustainable wastewater treatment and energy production. Despite significant improvements in the power output of microbial fuel cells (MFCs), this technology is still far from practical applications. Extracting electrical energy and harvesting valuable products by electroactive bacteria (EAB) in bioelectrochemical systems (BESs) has emerged as an innovative approach to address energy and environmental challenges. Thus, maximizing power output and resource recovery is highly desirable for sustainable systems. Insights into the electrode-microbe interactions may help to optimize the performance of BESs for envisioned applications, and further validation by bioelectrochemical techniques is a prerequisite to completely understand the electro-microbiology. This review summarizes various extracellular electron transfer mechanisms involved in BESs. The significant role of characterization techniques in the advancement of the electro-microbiology field is discussed. Finally, diverse applications of BESs, such as resource recovery, and contributions to the pursuit of a more sustainable society are also highlighted.
Collapse
|
95
|
Yates M, Strycharz-Glaven S, Golden J, Roy J, Tsoi S, Erickson J, El-Naggar M, Calabrese Barton S, Tender L. Characterizing Electron Transport through Living Biofilms. J Vis Exp 2018. [PMID: 29912193 DOI: 10.3791/54671] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Here we demonstrate the method of electrochemical gating used to characterize electrical conductivity of electrode-grown microbial biofilms under physiologically relevant conditions.1 These measurements are performed on living biofilms in aqueous medium using source and drain electrodes patterned on a glass surface in a specialized configuration referred to as an interdigitated electrode (IDA) array. A biofilm is grown that extends across the gap connecting the source and drain. Potentials are applied to the electrodes (ES and ED) generating a source-drain current (ISD) through the biofilm between the electrodes. The dependency of electrical conductivity on gate potential (the average of the source and drain potentials, EG = [ED + ES]/2) is determined by systematically changing the gate potential and measuring the resulting source-drain current. The dependency of conductivity on gate potential provides mechanistic information about the extracellular electron transport process underlying the electrical conductivity of the specific biofilm under investigation. The electrochemical gating measurement method described here is based directly on that used by M. S. Wrighton2,3 and colleagues and R. W. Murray4,5,6 and colleagues in the 1980's to investigate thin film conductive polymers.
Collapse
Affiliation(s)
- Matthew Yates
- Center for Bio/Molecular Science and Engineering, Naval Research Laboratory
| | | | - Joel Golden
- Center for Bio/Molecular Science and Engineering, Naval Research Laboratory
| | - Jared Roy
- Center for Bio/Molecular Science and Engineering, Naval Research Laboratory; George Mason University
| | | | - Jeffrey Erickson
- Center for Bio/Molecular Science and Engineering, Naval Research Laboratory
| | - Mohamed El-Naggar
- Departments of Physics, Biological Sciences, and Chemistry, University of Southern California
| | | | - Leonard Tender
- Center for Bio/Molecular Science and Engineering, Naval Research Laboratory;
| |
Collapse
|
96
|
Yates MD, Barr Engel S, Eddie BJ, Lebedev N, Malanoski AP, Tender LM. Redox-gradient driven electron transport in a mixed community anodic biofilm. FEMS Microbiol Ecol 2018; 94:4990946. [DOI: 10.1093/femsec/fiy081] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 05/01/2018] [Indexed: 11/13/2022] Open
Affiliation(s)
- Matthew D Yates
- Center for Bio/Molecular Science and Engineering, Naval Research Laboratory, 4555 Overlook Ave SW, Washington, DC, 20375, USA
| | - Sarah Barr Engel
- Department of Civil and Environmental Engineering, Cornell University, 220 Hollister Hall, Ithaca, NY, 14853, USA
| | - Brian J Eddie
- Center for Bio/Molecular Science and Engineering, Naval Research Laboratory, 4555 Overlook Ave SW, Washington, DC, 20375, USA
| | - Nikolai Lebedev
- Center for Bio/Molecular Science and Engineering, Naval Research Laboratory, 4555 Overlook Ave SW, Washington, DC, 20375, USA
| | - Anthony P Malanoski
- Center for Bio/Molecular Science and Engineering, Naval Research Laboratory, 4555 Overlook Ave SW, Washington, DC, 20375, USA
| | - Leonard M Tender
- Center for Bio/Molecular Science and Engineering, Naval Research Laboratory, 4555 Overlook Ave SW, Washington, DC, 20375, USA
| |
Collapse
|
97
|
Kouzuma A, Ishii S, Watanabe K. Metagenomic insights into the ecology and physiology of microbes in bioelectrochemical systems. BIORESOURCE TECHNOLOGY 2018; 255:302-307. [PMID: 29426790 DOI: 10.1016/j.biortech.2018.01.125] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 01/19/2018] [Accepted: 01/20/2018] [Indexed: 06/08/2023]
Abstract
In bioelectrochemical systems (BESs), electrons are transferred between electrochemically active microbes (EAMs) and conductive materials, such as electrodes, via extracellular electron transfer (EET) pathways, and electrons thus transferred stimulate intracellular catabolic reactions. Catabolic and EET pathways have extensively been studied for several model EAMs, such as Shewanella oneidensis MR-1 and Geobacter sulfurreducens PCA, whereas it is also important to understand the ecophysiology of EAMs in naturally occurring microbiomes, such as those in anode biofilms in microbial fuel cells treating wastewater. Recent studies have exploited metagenomics and metatranscriptomics (meta-omics) approaches to characterize EAMs in BES-associated microbiomes. Here we review recent BES studies that used meta-omics approaches and show that these studies have discovered unexpected features of EAMs and deepened our understanding of functions and behaviors of microbes in BESs. It is desired that more studies will employ meta-omics approaches for advancing our knowledge on microbes in BESs.
Collapse
Affiliation(s)
- Atsushi Kouzuma
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, Japan
| | - Shun'ichi Ishii
- R&D Center for Submarine Resources, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Nankoku, Kochi, Japan
| | - Kazuya Watanabe
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, Japan.
| |
Collapse
|
98
|
Lim HG, Lee JH, Noh MH, Jung GY. Rediscovering Acetate Metabolism: Its Potential Sources and Utilization for Biobased Transformation into Value-Added Chemicals. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:3998-4006. [PMID: 29637770 DOI: 10.1021/acs.jafc.8b00458] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
One of the great advantages of microbial fermentation is the capacity to convert various carbon compounds into value-added chemicals. In this regard, there have been many efforts to engineer microorganisms to facilitate utilization of abundant carbon sources. Recently, the potential of acetate as a feedstock has been discovered; efforts have been made to produce various biochemicals from acetate based on understanding of its metabolism. In this review, we discuss the potential sources of acetate and summarized the recent progress to improve acetate utilization with microorganisms. Furthermore, we also describe representative studies that engineered microorganisms for the production of biochemicals from acetate.
Collapse
|
99
|
Zou S, He Z. Efficiently "pumping out" value-added resources from wastewater by bioelectrochemical systems: A review from energy perspectives. WATER RESEARCH 2018; 131:62-73. [PMID: 29274548 DOI: 10.1016/j.watres.2017.12.026] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2017] [Revised: 12/11/2017] [Accepted: 12/12/2017] [Indexed: 06/07/2023]
Abstract
Bioelectrochemical systems (BES) can accomplish simultaneous wastewater treatment and resource recovery via interactions between microbes and electrodes. Often deemed as "energy efficient" technologies, BES have not been well evaluated for their energy performance, such as energy production and consumption. In this work, we have conducted a review and analysis of energy balance in BES with parameters like normalized energy recovery, specific energy consumption, and net energy production. Several BES representatives based on their functions were selected for analysis, including direct electricity generation in microbial fuel cells, hydrogen production in microbial electrolysis cells, nitrogen recovery in BES, chemical production in microbial electrosynthesis cells, and desalination in microbial desalination cells. Energy performance was normalized to water volume (kWh m-3), organic removal (kWh kg COD-1), nitrogen recovery (kWh kg N-1), chemical production (kWh kg-1), or removed salt during desalination (kWh kg-1). The key operating factors such as pumping system (recirculation/feeding pumps) and external power supply were discussed for their effects on energy performance. This is an in-depth analysis of energy performance of various BES and expected to encourage more thinking, analysis, and presentation of energy data towards appropriate research and development of BES technology for resource recovery from wastewater.
Collapse
Affiliation(s)
- Shiqiang Zou
- Department of Civil and Environmental Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA
| | - Zhen He
- Department of Civil and Environmental Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA.
| |
Collapse
|
100
|
Liu H, Song T, Fei K, Wang H, Xie J. Microbial electrosynthesis of organic chemicals from CO2 by Clostridium scatologenes ATCC 25775T. BIORESOUR BIOPROCESS 2018. [DOI: 10.1186/s40643-018-0195-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|