51
|
Chatterjee R, Han G, Kern J, Gul S, Fuller FD, Garachtchenko A, Young ID, Weng TC, Nordlund D, Alonso-Mori R, Bergmann U, Sokaras D, Hatakeyama M, Yachandra VK, Yano J. Structural Changes Correlated with Magnetic Spin State Isomorphism in the S 2 State of the Mn 4CaO 5 Cluster in the Oxygen-Evolving Complex of Photosystem II. Chem Sci 2016; 7:5236-5248. [PMID: 28044099 PMCID: PMC5201215 DOI: 10.1039/c6sc00512h] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 04/26/2016] [Indexed: 12/19/2022] Open
Abstract
The Mn4CaO5 cluster in Photosystem II catalyzes the four-electron redox reaction of water oxidation in natural photosynthesis. This catalytic reaction cycles through four intermediate states (Si, i = 0 to 4), involving changes in the redox state of the four Mn atoms in the cluster. Recent studies suggest the presence and importance of isomorphous structures within the same redox/intermediate S-state. It is highly likely that geometric and electronic structural flexibility play a role in the catalytic mechanism. Among the catalytic intermediates that have been identified experimentally thus far, there is clear evidence of such isomorphism in the S2 state, with a high-spin (5/2) (HS) and a low spin (1/2) (LS) form, identified and characterized by their distinct electron paramagnetic resonance (EPR spectroscopy) signals. We studied these two S2 isomers with Mn extended X-ray absorption fine structure (EXAFS) and absorption and emission spectroscopy (XANES/XES) to characterize the structural and electronic structural properties. The geometric and electronic structure of the HS and LS S2 states are different as determined using Mn EXAFS and XANES/XES, respectively. The Mn K-edge XANES and XES for the HS form are different from the LS and indicate a slightly lower positive charge on the Mn atoms compared to the LS form. Based on the EXAFS results which are clearly different, we propose possible structural differences between the two spin states. Such structural and magnetic redox-isomers if present at room temperature, will likely play a role in the mechanism for water-exchange/oxidation in photosynthesis.
Collapse
Affiliation(s)
- Ruchira Chatterjee
- Molecular Biophysics and Integrated Bioimaging Division
, Lawrence Berkeley National Laboratory
,
MS 66-0200, 1 Cyclotron Rd.
, Berkeley
, CA 94720-8099
, USA
.
;
; Tel: +1 510 486 4366
; Tel: +1 510 486 4963
| | - Guangye Han
- Molecular Biophysics and Integrated Bioimaging Division
, Lawrence Berkeley National Laboratory
,
MS 66-0200, 1 Cyclotron Rd.
, Berkeley
, CA 94720-8099
, USA
.
;
; Tel: +1 510 486 4366
; Tel: +1 510 486 4963
| | - Jan Kern
- Molecular Biophysics and Integrated Bioimaging Division
, Lawrence Berkeley National Laboratory
,
MS 66-0200, 1 Cyclotron Rd.
, Berkeley
, CA 94720-8099
, USA
.
;
; Tel: +1 510 486 4366
; Tel: +1 510 486 4963
- LCLS
, SLAC National Accelerator Laboratory
,
Menlo Park
, CA
, USA
| | - Sheraz Gul
- Molecular Biophysics and Integrated Bioimaging Division
, Lawrence Berkeley National Laboratory
,
MS 66-0200, 1 Cyclotron Rd.
, Berkeley
, CA 94720-8099
, USA
.
;
; Tel: +1 510 486 4366
; Tel: +1 510 486 4963
| | - Franklin D. Fuller
- Molecular Biophysics and Integrated Bioimaging Division
, Lawrence Berkeley National Laboratory
,
MS 66-0200, 1 Cyclotron Rd.
, Berkeley
, CA 94720-8099
, USA
.
;
; Tel: +1 510 486 4366
; Tel: +1 510 486 4963
| | - Anna Garachtchenko
- Molecular Biophysics and Integrated Bioimaging Division
, Lawrence Berkeley National Laboratory
,
MS 66-0200, 1 Cyclotron Rd.
, Berkeley
, CA 94720-8099
, USA
.
;
; Tel: +1 510 486 4366
; Tel: +1 510 486 4963
| | - Iris D. Young
- Molecular Biophysics and Integrated Bioimaging Division
, Lawrence Berkeley National Laboratory
,
MS 66-0200, 1 Cyclotron Rd.
, Berkeley
, CA 94720-8099
, USA
.
;
; Tel: +1 510 486 4366
; Tel: +1 510 486 4963
| | - Tsu-Chien Weng
- Center for High Pressure Science &Technology Advanced Research
,
Shanghai
, China
| | - Dennis Nordlund
- SSRL
, SLAC National Accelerator Laboratory
,
Menlo Park
, CA
, USA
| | | | - Uwe Bergmann
- PULSE
, SLAC National Accelerator Laboratory
,
Menlo Park
, CA
, USA
| | | | | | - Vittal K. Yachandra
- Molecular Biophysics and Integrated Bioimaging Division
, Lawrence Berkeley National Laboratory
,
MS 66-0200, 1 Cyclotron Rd.
, Berkeley
, CA 94720-8099
, USA
.
;
; Tel: +1 510 486 4366
; Tel: +1 510 486 4963
| | - Junko Yano
- Molecular Biophysics and Integrated Bioimaging Division
, Lawrence Berkeley National Laboratory
,
MS 66-0200, 1 Cyclotron Rd.
, Berkeley
, CA 94720-8099
, USA
.
;
; Tel: +1 510 486 4366
; Tel: +1 510 486 4963
| |
Collapse
|
52
|
Gerey B, Gouré E, Fortage J, Pécaut J, Collomb MN. Manganese-calcium/strontium heterometallic compounds and their relevance for the oxygen-evolving center of photosystem II. Coord Chem Rev 2016. [DOI: 10.1016/j.ccr.2016.04.002] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
53
|
Leto DF, Massie AA, Colmer HE, Jackson TA. X-Band Electron Paramagnetic Resonance Comparison of Mononuclear Mn(IV)-oxo and Mn(IV)-hydroxo Complexes and Quantum Chemical Investigation of Mn(IV) Zero-Field Splitting. Inorg Chem 2016; 55:3272-82. [PMID: 27002928 DOI: 10.1021/acs.inorgchem.5b02309] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
X-band electron paramagnetic resonance (EPR) spectroscopy was used to probe the ground-state electronic structures of mononuclear Mn(IV) complexes [Mn(IV)(OH)2(Me2EBC)](2+) and [Mn(IV)(O)(OH)(Me2EBC)](+). These compounds are known to effect C-H bond oxidation reactions by a hydrogen-atom transfer mechanism. They provide an ideal system for comparing Mn(IV)-hydroxo versus Mn(IV)-oxo motifs, as they differ by only a proton. Simulations of 5 K EPR data, along with analysis of variable-temperature EPR signal intensities, allowed for the estimation of ground-state zero-field splitting (ZFS) and (55)Mn hyperfine parameters for both complexes. From this analysis, it was concluded that the Mn(IV)-oxo complex [Mn(IV)(O)(OH)(Me2EBC)](+) has an axial ZFS parameter D (D = +1.2(0.4) cm(-1)) and rhombicity (E/D = 0.22(1)) perturbed relative to the Mn(IV)-hydroxo analogue [Mn(IV)(OH)2(Me2EBC)](2+) (|D| = 0.75(0.25) cm(-1); E/D = 0.15(2)), although the complexes have similar (55)Mn values (a = 7.7 and 7.5 mT, respectively). The ZFS parameters for [Mn(IV)(OH)2(Me2EBC)](2+) were compared with values obtained previously through variable-temperature, variable-field magnetic circular dichroism (VTVH MCD) experiments. While the VTVH MCD analysis can provide a reasonable estimate of the magnitude of D, the E/D values were poorly defined. Using the ZFS parameters reported for these complexes and five other mononuclear Mn(IV) complexes, we employed coupled-perturbed density functional theory (CP-DFT) and complete active space self-consistent field (CASSCF) calculations with second-order n-electron valence-state perturbation theory (NEVPT2) correction, to compare the ability of these two quantum chemical methods for reproducing experimental ZFS parameters for Mn(IV) centers. The CP-DFT approach was found to provide reasonably acceptable values for D, whereas the CASSCF/NEVPT2 method fared worse, considerably overestimating the magnitude of D in several cases. Both methods were poor in reproducing experimental E/D values. Overall, this work adds to the limited investigations of Mn(IV) ground-state properties and provides an initial assessment for calculating Mn(IV) ZFS parameters with quantum chemical methods.
Collapse
Affiliation(s)
- Domenick F Leto
- Department of Chemistry and Center for Environmentally Beneficial Catalysis, University of Kansas , 1251 Wescoe Hall Drive, Lawrence, Kansas 66045, United States
| | - Allyssa A Massie
- Department of Chemistry and Center for Environmentally Beneficial Catalysis, University of Kansas , 1251 Wescoe Hall Drive, Lawrence, Kansas 66045, United States
| | - Hannah E Colmer
- Department of Chemistry and Center for Environmentally Beneficial Catalysis, University of Kansas , 1251 Wescoe Hall Drive, Lawrence, Kansas 66045, United States
| | - Timothy A Jackson
- Department of Chemistry and Center for Environmentally Beneficial Catalysis, University of Kansas , 1251 Wescoe Hall Drive, Lawrence, Kansas 66045, United States
| |
Collapse
|
54
|
Colmer HE, Howcroft AW, Jackson TA. Formation, Characterization, and O-O Bond Activation of a Peroxomanganese(III) Complex Supported by a Cross-Clamped Cyclam Ligand. Inorg Chem 2016; 55:2055-69. [PMID: 26908013 DOI: 10.1021/acs.inorgchem.5b02398] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Although there have been reports describing the nucleophilic reactivity of peroxomanganese(III) intermediates, as well as their conversion to high-valent oxo-bridged dimers, it remains a challenge to activate peroxomanganese(III) species for conversion to high-valent, mononuclear manganese complexes. Herein, we report the generation, characterization, and activation of a peroxomanganese(III) adduct supported by the cross-clamped, macrocyclic Me2EBC ligand (4,11-dimethyl-1,4,8,11-tetraazabicyclo[6.6.2]hexadecane). This ligand is known to support high-valent, mononuclear Mn(IV) species with well-defined spectroscopic properties, which provides an opportunity to identify mononuclear Mn(IV) products from O-O bond activation of the corresponding Mn(III)-peroxo adduct. The peroxomanganese(III) intermediate, [Mn(III)(O2)(Me2EBC)](+), was prepared at low-temperature by the addition of KO2 to [Mn(II)(Cl)2(Me2EBC)] in CH2Cl2, and this complex was characterized by electronic absorption, electron paramagnetic resonance (EPR), and Mn K-edge X-ray absorption (XAS) spectroscopies. The electronic structure of the [Mn(III)(O2)(Me2EBC)](+) intermediate was examined by density functional theory (DFT) and time-dependent (TD) DFT calculations. Detailed spectroscopic investigations of the decay products of [Mn(III)(O2)(Me2EBC)](+) revealed the presence of mononuclear Mn(III)-hydroxo species or a mixture of mononuclear Mn(IV) and Mn(III)-hydroxo species. The nature of the observed decay products depended on the amount of KO2 used to generate [Mn(III)(O2)(Me2EBC)](+). The Mn(III)-hydroxo product was characterized by Mn K-edge XAS, and shifts in the pre-edge transition energies and intensities relative to [Mn(III)(O2)(Me2EBC)](+) provide a marker for differences in covalency between peroxo and nonperoxo ligands. To the best of our knowledge, this work represents the first observation of a mononuclear Mn(IV) center upon decay of a nonporphyrinoid Mn(III)-peroxo center.
Collapse
Affiliation(s)
- Hannah E Colmer
- Department of Chemistry and Center for Environmentally Beneficial Catalysis, University of Kansas , Lawrence, Kansas 66045, United States
| | - Anthony W Howcroft
- Department of Chemistry and Center for Environmentally Beneficial Catalysis, University of Kansas , Lawrence, Kansas 66045, United States
| | - Timothy A Jackson
- Department of Chemistry and Center for Environmentally Beneficial Catalysis, University of Kansas , Lawrence, Kansas 66045, United States
| |
Collapse
|
55
|
Schreiber RE, Cohen H, Leitus G, Wolf SG, Zhou A, Que L, Neumann R. Reactivity and O2 Formation by Mn(IV)- and Mn(V)-Hydroxo Species Stabilized within a Polyfluoroxometalate Framework. J Am Chem Soc 2015; 137:8738-48. [PMID: 26070034 PMCID: PMC4939246 DOI: 10.1021/jacs.5b03456] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Manganese(IV,V)-hydroxo and oxo complexes are often implicated in both catalytic oxygenation and water oxidation reactions. Much of the research in this area is designed to structurally and/or functionally mimic enzymes. On the other hand, the tendency of such mimics to decompose under strong oxidizing conditions makes the use of molecular inorganic oxide clusters an enticing alternative for practical applications. In this context it is important to understand the reactivity of conceivable reactive intermediates in such an oxide-based chemical environment. Herein, a polyfluoroxometalate (PFOM) monosubstituted with manganese, [NaH2(Mn-L)W17F6O55](q-), has allowed the isolation of a series of compounds, Mn(II, III, IV and V), within the PFOM framework. Magnetic susceptibility measurements show that all the compounds are high spin. XPS and XANES measurements confirmed the assigned oxidation states. EXAFS measurements indicate that Mn(II)PFOM and Mn(III)PFOM have terminal aqua ligands and Mn(V)PFOM has a terminal hydroxo ligand. The data are more ambiguous for Mn(IV)PFOM where both terminal aqua and hydroxo ligands can be rationalized, but the reactivity observed more likely supports a formulation of Mn(IV)PFOM as having a terminal hydroxo ligand. Reactivity studies in water showed unexpectedly that both Mn(IV)-OH-PFOM and Mn(V)-OH-PFOM are very poor oxygen-atom donors; however, both are highly reactive in electron transfer oxidations such as the oxidation of 3-mercaptopropionic acid to the corresponding disulfide. The Mn(IV)-OH-PFOM compound reacted in water to form O2, while Mn(V)-OH-PFOM was surprisingly indefinitely stable. It was observed that addition of alkali cations (K(+), Rb(+), and Cs(+)) led to the aggregation of Mn(IV)-OH-PFOM as analyzed by electron microscopy and DOSY NMR, while addition of Li(+) and Na(+) did not lead to aggregates. Aggregation leads to a lowering of the entropic barrier of the reaction without changing the free energy barrier. The observation that O2 formation is fastest in the presence of Cs(+) and ∼fourth order in Mn(IV)-OH-PFOM supports a notion of a tetramolecular Mn(IV)-hydroxo intermediate that is viable for O2 formation in an oxide-based chemical environment. A bimolecular reaction mechanism involving a Mn(IV)-hydroxo based intermediate appears to be slower for O2 formation.
Collapse
Affiliation(s)
- Roy E. Schreiber
- Department of Organic Chemistry, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Hagai Cohen
- Department for Chemical Research Support, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Gregory Leitus
- Department for Chemical Research Support, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Sharon G. Wolf
- Department for Chemical Research Support, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Ang Zhou
- Department of Chemistry and Center for Metals in Biocatalysis, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Lawrence Que
- Department of Chemistry and Center for Metals in Biocatalysis, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Ronny Neumann
- Department of Organic Chemistry, Weizmann Institute of Science, Rehovot 76100, Israel
| |
Collapse
|
56
|
Rees JA, Martin-Diaconescu V, Kovacs JA, DeBeer S. X-ray Absorption and Emission Study of Dioxygen Activation by a Small-Molecule Manganese Complex. Inorg Chem 2015; 54:6410-22. [PMID: 26061165 PMCID: PMC4494871 DOI: 10.1021/acs.inorgchem.5b00699] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Manganese K-edge X-ray absorption (XAS) and Kβ emission (XES) spectroscopies were used to investigate the factors contributing to O-O bond activation in a small-molecule system. The recent structural characterization of a metastable peroxo-bridged dimeric Mn(III)2 complex derived from dioxygen has provided the first opportunity to obtain X-ray spectroscopic data on this type of species. Ground state and time-dependent density functional theory calculations have provided further insight into the nature of the transitions in XAS pre-edge and valence-to-core (VtC) XES spectral regions. An experimentally validated electronic structure description has also enabled the determination of structural and electronic factors that govern peroxo bond activation, and have allowed us to propose both a rationale for the metastability of this unique compound, as well as potential future ligand designs which may further promote or inhibit O-O bond scission. Finally, we have explored the potential of VtC XES as an element-selective probe of both the coordination mode and degree of activation of peroxomanganese adducts. The comparison of these results to a recent VtC XES study of iron-mediated dintrogen activation helps to illustrate the factors that may determine the success of this spectroscopic method for future studies of small-molecule activation at transition metal sites.
Collapse
Affiliation(s)
- Julian A. Rees
- Max-Planck-Institut für Chemische Energiekonversion, Stiftstrasse 34-36, Mülheim an der Ruhr D-45470, Germany
- Department of Chemistry, University of Washington, Box 351700, Seattle, Washington 98195-1700, United States
| | - Vlad Martin-Diaconescu
- Max-Planck-Institut für Chemische Energiekonversion, Stiftstrasse 34-36, Mülheim an der Ruhr D-45470, Germany
| | - Julie A. Kovacs
- Department of Chemistry, University of Washington, Box 351700, Seattle, Washington 98195-1700, United States
| | - Serena DeBeer
- Max-Planck-Institut für Chemische Energiekonversion, Stiftstrasse 34-36, Mülheim an der Ruhr D-45470, Germany
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
57
|
High-spin Mn-oxo complexes and their relevance to the oxygen-evolving complex within photosystem II. Proc Natl Acad Sci U S A 2015; 112:5319-24. [PMID: 25852147 DOI: 10.1073/pnas.1422800112] [Citation(s) in RCA: 109] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The structural and electronic properties of a series of manganese complexes with terminal oxido ligands are described. The complexes span three different oxidation states at the manganese center (III-V), have similar molecular structures, and contain intramolecular hydrogen-bonding networks surrounding the Mn-oxo unit. Structural studies using X-ray absorption methods indicated that each complex is mononuclear and that oxidation occurs at the manganese centers, which is also supported by electron paramagnetic resonance (EPR) studies. This gives a high-spin Mn(V)-oxo complex and not a Mn(IV)-oxy radical as the most oxidized species. In addition, the EPR findings demonstrated that the Fermi contact term could experimentally substantiate the oxidation states at the manganese centers and the covalency in the metal-ligand bonding. Oxygen-17-labeled samples were used to determine spin density within the Mn-oxo unit, with the greatest delocalization occurring within the Mn(V)-oxo species (0.45 spins on the oxido ligand). The experimental results coupled with density functional theory studies show a large amount of covalency within the Mn-oxo bonds. Finally, these results are examined within the context of possible mechanisms associated with photosynthetic water oxidation; specifically, the possible identity of the proposed high valent Mn-oxo species that is postulated to form during turnover is discussed.
Collapse
|
58
|
Krewald V, Retegan M, Cox N, Messinger J, Lubitz W, DeBeer S, Neese F, Pantazis DA. Metal oxidation states in biological water splitting. Chem Sci 2015; 6:1676-1695. [PMID: 29308133 PMCID: PMC5639794 DOI: 10.1039/c4sc03720k] [Citation(s) in RCA: 236] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Accepted: 12/31/2014] [Indexed: 12/20/2022] Open
Abstract
A central question in biological water splitting concerns the oxidation states of the manganese ions that comprise the oxygen-evolving complex of photosystem II.
A central question in biological water splitting concerns the oxidation states of the manganese ions that comprise the oxygen-evolving complex of photosystem II. Understanding the nature and order of oxidation events that occur during the catalytic cycle of five Si states (i = 0–4) is of fundamental importance both for the natural system and for artificial water oxidation catalysts. Despite the widespread adoption of the so-called “high-valent scheme”—where, for example, the Mn oxidation states in the S2 state are assigned as III, IV, IV, IV—the competing “low-valent scheme” that differs by a total of two metal unpaired electrons (i.e. III, III, III, IV in the S2 state) is favored by several recent studies for the biological catalyst. The question of the correct oxidation state assignment is addressed here by a detailed computational comparison of the two schemes using a common structural platform and theoretical approach. Models based on crystallographic constraints were constructed for all conceivable oxidation state assignments in the four (semi)stable S states of the oxygen evolving complex, sampling various protonation levels and patterns to ensure comprehensive coverage. The models are evaluated with respect to their geometric, energetic, electronic, and spectroscopic properties against available experimental EXAFS, XFEL-XRD, EPR, ENDOR and Mn K pre-edge XANES data. New 2.5 K 55Mn ENDOR data of the S2 state are also reported. Our results conclusively show that the entire S state phenomenology can only be accommodated within the high-valent scheme by adopting a single motif and protonation pattern that progresses smoothly from S0 (III, III, III, IV) to S3 (IV, IV, IV, IV), satisfying all experimental constraints and reproducing all observables. By contrast, it was impossible to construct a consistent cycle based on the low-valent scheme for all S states. Instead, the low-valent models developed here may provide new insight into the over-reduced S states and the states involved in the assembly of the catalytically active water oxidizing cluster.
Collapse
Affiliation(s)
- Vera Krewald
- Max Planck Institute for Chemical Energy Conversion , Stiftstr. 34-38 , 45470 Mülheim an der Ruhr , Germany .
| | - Marius Retegan
- Max Planck Institute for Chemical Energy Conversion , Stiftstr. 34-38 , 45470 Mülheim an der Ruhr , Germany .
| | - Nicholas Cox
- Max Planck Institute for Chemical Energy Conversion , Stiftstr. 34-38 , 45470 Mülheim an der Ruhr , Germany .
| | - Johannes Messinger
- Department of Chemistry , Chemical Biological Center (KBC) , Umeå University , 90187 Umeå , Sweden
| | - Wolfgang Lubitz
- Max Planck Institute for Chemical Energy Conversion , Stiftstr. 34-38 , 45470 Mülheim an der Ruhr , Germany .
| | - Serena DeBeer
- Max Planck Institute for Chemical Energy Conversion , Stiftstr. 34-38 , 45470 Mülheim an der Ruhr , Germany .
| | - Frank Neese
- Max Planck Institute for Chemical Energy Conversion , Stiftstr. 34-38 , 45470 Mülheim an der Ruhr , Germany .
| | - Dimitrios A Pantazis
- Max Planck Institute for Chemical Energy Conversion , Stiftstr. 34-38 , 45470 Mülheim an der Ruhr , Germany .
| |
Collapse
|
59
|
Colmer HE, Geiger RA, Leto DF, Wijeratne GB, Day VW, Jackson TA. Geometric and electronic structure of a peroxomanganese(III) complex supported by a scorpionate ligand. Dalton Trans 2014; 43:17949-63. [PMID: 25312785 PMCID: PMC4237624 DOI: 10.1039/c4dt02483d] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A monomeric Mn(II) complex has been prepared with the facially-coordinating Tp(Ph2) ligand, (Tp(Ph2) = hydrotris(3,5-diphenylpyrazol-1-yl)borate). The X-ray crystal structure shows three coordinating solvent molecules resulting in a six-coordinate complex with Mn-ligand bond lengths that are consistent with a high-spin Mn(II) ion. Treatment of this Mn(II) complex with excess KO2 at room temperature resulted in the formation of a Mn(III)-O2 complex that is stable for several days at ambient conditions, allowing for the determination of the X-ray crystal structure of this intermediate. The electronic structure of this peroxomanganese(III) adduct was examined by using electronic absorption, electron paramagnetic resonance (EPR), low-temperature magnetic circular dichroism (MCD), and variable-temperature variable-field (VTVH) MCD spectroscopies. Density functional theory (DFT), time-dependent (TD)-DFT, and multireference ab initio CASSCF/NEVPT2 calculations were used to assign the electronic transitions and further investigate the electronic structure of the peroxomanganese(III) species. The lowest ligand-field transition in the electronic absorption spectrum of the Mn(III)-O2 complex exhibits a blue shift in energy compared to other previously characterized peroxomanganese(III) complexes that results from a large axial bond elongation, reducing the metal-ligand covalency and stabilizing the σ-antibonding Mn dz(2) MO that is the donor MO for this transition.
Collapse
Affiliation(s)
- Hannah E Colmer
- Department of Chemistry, University of Kansas, 1251 Wescoe Hall Drive, Lawrence, KS 66045, USA.
| | | | | | | | | | | |
Collapse
|