51
|
Novak L. Self-Diffusion Coefficient and Viscosity in Fluids. INTERNATIONAL JOURNAL OF CHEMICAL REACTOR ENGINEERING 2011. [DOI: 10.1515/1542-6580.2640] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Rate-based models suitable for equipment or transport-reaction modeling require a capability for predicting transport coefficients over a sufficient range of temperature and pressure. This paper demonstrates a relatively simple novel approach to correlate and estimate transport coefficients for pure components over the entire fluid region.The use of Chapman-Enskog transport coefficients for reducing self-diffusion coefficient and viscosity to dimensionless form results in relatively simple mathematical relationships between component dimensionless transport coefficients and residual entropy over the entire fluid region. Dimensionless self-diffusion coefficients and viscosities were calculated from extensive molecular dynamics simulation data and experimental data on argon, methane, ethylene, ethane, propane, and n-decane. These dimensionless transport coefficients were plotted against dimensionless residual entropy calculated from highly accurate reference equations of state.Based on experimental data, the new scaling model introduced here shows promise as: (1) an equation of state-based transport coefficient correlation over the entire fluid region (liquid, gas, and critical fluid), (2) a component transport coefficient correlation for testing transport data consistency, and (3) a component transport coefficient correlation for interpolation and extrapolation of self-diffusion coefficient and viscosity.
Collapse
|
55
|
Galliero G. Lennard-Jones fluid-fluid interfaces under shear. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2010; 81:056306. [PMID: 20866321 DOI: 10.1103/physreve.81.056306] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2009] [Revised: 03/09/2010] [Indexed: 05/29/2023]
Abstract
Using nonequilibrium molecular dynamics simulations on simple Lennard-Jones binary mixtures, we have studied the behavior of planar fluid-fluid interfaces undergoing shear flow. When the miscibility is low enough, a slip together with a partial depletion have been noticed at the interface between the two fluid phases. The slip length can reach a value equal to some molecular diameters and the corresponding interfacial viscosity can be two times smaller than the value in the bulk. It is shown how the omission of this slip may lead to flow-rate misevaluation when dealing with a multiphase flow in a nanoporous medium even for non polymer fluids. In addition, using the simulation results, a simple relation between interfacial tension and interfacial viscosity is proposed for the monoatomic systems studied in this work. Finally, it is shown that the interfacial viscosity cannot be fully accounted for by estimating the local viscosity deduced from the local thermodynamic properties of the interface.
Collapse
Affiliation(s)
- Guillaume Galliero
- Laboratoire des Fluides Complexes (UMR-5150 with CNRS and TOTAL), Université de Pau et des Pays de l'Adour, BP 1155, 64013 Pau Cedex, France.
| |
Collapse
|
57
|
Galliero G, Boned C. Thermal conductivity of the Lennard-Jones chain fluid model. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2009; 80:061202. [PMID: 20365156 DOI: 10.1103/physreve.80.061202] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2009] [Revised: 11/04/2009] [Indexed: 05/29/2023]
Abstract
Nonequilibrium molecular dynamics simulations have been performed to estimate, analyze, and correlate the thermal conductivity of a fluid composed of short Lennard-Jones chains (up to 16 segments) over a large range of thermodynamic conditions. It is shown that the dilute gas contribution to the thermal conductivity decreases when the chain length increases for a given temperature. In dense states, simulation results indicate that the residual thermal conductivity of the monomer increases strongly with density, but is weakly dependent on the temperature. Compared to the monomer value, it has been noted that the residual thermal conductivity of the chain was slightly decreasing with its length. Using these results, an empirical relation, including a contribution due to the critical enhancement, is proposed to provide an accurate estimation of the thermal conductivity of the Lennard-Jones chain fluid model (up to 16 segments) over the domain 0.8<or=T*<or=6 and 0<or=rho<or=1. Additionally, it has been noted that all reduced thermal conductivity values of the Lennard-Jones chain fluid model merge on the same "universal" curve when plotted as a function of the excess entropy. Furthermore, it is shown that the reduced configurational thermal conductivity of the Lennard-Jones chain fluid model is approximately proportional to the reduced excess entropy for all fluid states and all chain lengths.
Collapse
Affiliation(s)
- Guillaume Galliero
- Laboratoire des Fluides Complexes, UMR-5150, CNRS and TOTAL, Université de Pau et des Pays de l'Adour, BP 1155, F-64013 Pau Cedex, France.
| | | |
Collapse
|
58
|
Galliero G, Boned C. Shear viscosity of the Lennard-Jones chain fluid in its gaseous, supercritical, and liquid states. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2009; 79:021201. [PMID: 19391730 DOI: 10.1103/physreve.79.021201] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2008] [Indexed: 05/27/2023]
Abstract
Extensive nonequilibrium molecular dynamics (NEMD) simulations have been carried out in order to estimate the Newtonian shear viscosity of a fluid composed of short chains (up to 16 segments) of jointed spheres [Lennard-Jones chain (LJC)] over a large range of thermodynamic conditions. Using the NEMD results, it is shown that the zero-density contribution decreases with the chain length for a given temperature and is simply proportional to N-1/2 , where N is the number of spheres composing the chain. In addition, it has been noticed that the residual shear viscosity is proportional to the chain length. Then, using these results, a relation is proposed to correlate the shear viscosity of the LJC fluid using the LJ fluid (the monomer) as a reference. It is shown that this correlation is able to provide an excellent estimation of the LJC fluid viscosity compared to NEMD results for N<or=16 over the domain 0<or=rho <or=1.1 and 0.7<or=T <or=6 . Finally, it is shown that the LJC model is unambiguously more efficient than a simple LJ approximation when applied to estimate the shear viscosity of n -butane, if only the sphere or segment diameter is used as an adjustable parameter in both models.
Collapse
Affiliation(s)
- Guillaume Galliero
- Laboratoire des Fluides Complexes (UMR-5150 with CNRS and TOTAL), Université de Pau et des Pays de l'Adour, BP 1155, F-64013 PAU Cedex, France.
| | | |
Collapse
|
65
|
Galliero G, Nieto-Draghi C, Boned C, Avalos JB, Mackie AD, Baylaucq A, Montel F. Molecular Dynamics Simulation of Acid Gas Mixtures: A Comparison between Several Approximations. Ind Eng Chem Res 2007. [DOI: 10.1021/ie061616l] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Guillaume Galliero
- Laboratoire d'Etude des Transferts d'Energie et de Matière (EA 2546), Université de Marne-la-Vallée, Cité Descartes, Champs-sur-Marne, 77454 Marne-la-Vallée Cedex 2, France, Institut Français du Pétrole, 1-4 Avenue de Bois Préau, 92852 Rueil-Malmaison Cedex, France, Laboratoire des Fluides Complexes (UMR-5150), Université de Pau et des Pays de l'Adour, BP 1155, F-64013 Pau Cedex, France, Departament d'Enginyeria Química, Escola Tecnica Superior d'Enginyeria Quimica (ETSEQ), Universitat Rovira i Virgili,
| | - Carlos Nieto-Draghi
- Laboratoire d'Etude des Transferts d'Energie et de Matière (EA 2546), Université de Marne-la-Vallée, Cité Descartes, Champs-sur-Marne, 77454 Marne-la-Vallée Cedex 2, France, Institut Français du Pétrole, 1-4 Avenue de Bois Préau, 92852 Rueil-Malmaison Cedex, France, Laboratoire des Fluides Complexes (UMR-5150), Université de Pau et des Pays de l'Adour, BP 1155, F-64013 Pau Cedex, France, Departament d'Enginyeria Química, Escola Tecnica Superior d'Enginyeria Quimica (ETSEQ), Universitat Rovira i Virgili,
| | - Christian Boned
- Laboratoire d'Etude des Transferts d'Energie et de Matière (EA 2546), Université de Marne-la-Vallée, Cité Descartes, Champs-sur-Marne, 77454 Marne-la-Vallée Cedex 2, France, Institut Français du Pétrole, 1-4 Avenue de Bois Préau, 92852 Rueil-Malmaison Cedex, France, Laboratoire des Fluides Complexes (UMR-5150), Université de Pau et des Pays de l'Adour, BP 1155, F-64013 Pau Cedex, France, Departament d'Enginyeria Química, Escola Tecnica Superior d'Enginyeria Quimica (ETSEQ), Universitat Rovira i Virgili,
| | - Josep B. Avalos
- Laboratoire d'Etude des Transferts d'Energie et de Matière (EA 2546), Université de Marne-la-Vallée, Cité Descartes, Champs-sur-Marne, 77454 Marne-la-Vallée Cedex 2, France, Institut Français du Pétrole, 1-4 Avenue de Bois Préau, 92852 Rueil-Malmaison Cedex, France, Laboratoire des Fluides Complexes (UMR-5150), Université de Pau et des Pays de l'Adour, BP 1155, F-64013 Pau Cedex, France, Departament d'Enginyeria Química, Escola Tecnica Superior d'Enginyeria Quimica (ETSEQ), Universitat Rovira i Virgili,
| | - Allan D. Mackie
- Laboratoire d'Etude des Transferts d'Energie et de Matière (EA 2546), Université de Marne-la-Vallée, Cité Descartes, Champs-sur-Marne, 77454 Marne-la-Vallée Cedex 2, France, Institut Français du Pétrole, 1-4 Avenue de Bois Préau, 92852 Rueil-Malmaison Cedex, France, Laboratoire des Fluides Complexes (UMR-5150), Université de Pau et des Pays de l'Adour, BP 1155, F-64013 Pau Cedex, France, Departament d'Enginyeria Química, Escola Tecnica Superior d'Enginyeria Quimica (ETSEQ), Universitat Rovira i Virgili,
| | - Antoine Baylaucq
- Laboratoire d'Etude des Transferts d'Energie et de Matière (EA 2546), Université de Marne-la-Vallée, Cité Descartes, Champs-sur-Marne, 77454 Marne-la-Vallée Cedex 2, France, Institut Français du Pétrole, 1-4 Avenue de Bois Préau, 92852 Rueil-Malmaison Cedex, France, Laboratoire des Fluides Complexes (UMR-5150), Université de Pau et des Pays de l'Adour, BP 1155, F-64013 Pau Cedex, France, Departament d'Enginyeria Química, Escola Tecnica Superior d'Enginyeria Quimica (ETSEQ), Universitat Rovira i Virgili,
| | - François Montel
- Laboratoire d'Etude des Transferts d'Energie et de Matière (EA 2546), Université de Marne-la-Vallée, Cité Descartes, Champs-sur-Marne, 77454 Marne-la-Vallée Cedex 2, France, Institut Français du Pétrole, 1-4 Avenue de Bois Préau, 92852 Rueil-Malmaison Cedex, France, Laboratoire des Fluides Complexes (UMR-5150), Université de Pau et des Pays de l'Adour, BP 1155, F-64013 Pau Cedex, France, Departament d'Enginyeria Química, Escola Tecnica Superior d'Enginyeria Quimica (ETSEQ), Universitat Rovira i Virgili,
| |
Collapse
|
67
|
Galliéro G, Boned C, Baylaucq A, Montel F. Molecular dynamics comparative study of Lennard-Jones -6 and exponential -6 potentials: application to real simple fluids (viscosity and pressure). PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2006; 73:061201. [PMID: 16906812 DOI: 10.1103/physreve.73.061201] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2005] [Revised: 02/28/2006] [Indexed: 05/11/2023]
Abstract
In this work, using molecular dynamics simulation, the viscosity (dynamic property) and the pressure (static property) of spherical fluid particles interacting through Lennard-Jones -6 and exponential -6 potentials are computed. Simulations are performed for going from 10 to 20 for the Lennard-Jones potential and from 12 to 22 for the exponential one. Six different thermodynamic states are tested that cover a large range of conditions, from sub- to supercritical temperature and from low to high density. To compare in a consistent manner the results for the various potentials tested, the simulations are carried out for the same set of reduced thermodynamic conditions (using the critical point). It is found that a perfect corresponding-states formulation is not possible between these potentials. Then, these potentials are applied on real simple fluids (argon, oxygen, nitrogen, methane, ethane, and one mixture, air) and the calculated viscosity and pressure values are compared with reference values. It appears that, using the appropriate , both potential families lead to a good accuracy in pressure and viscosity using the same set of molecular parameters for both properties, the average absolute deviations being always lower than 5% for the studied states. In addition, it is shown that the exponential potential results do not outperform the Lennard-Jones ones. Furthermore, for all compounds except for methane, the best results are obtained for the Lennard-Jones 12-6 and the exponential 14-6 potentials. This result partly explains why, despite no theoretical background, the Lennard-Jones 12-6 potential is so widely used. Finally, it is shown that a van der Waals one-fluid model performs extremely well for the studied mixture (air).
Collapse
Affiliation(s)
- Guillaume Galliéro
- Laboratoire d'Etude des Transfert d'Energie et de Matière, Université de Marne-la-Vallée, Bâtiment Lavoisier, Cité Descartes, Champs-sur-Marne, 77454 Marne-la-Vallée Cedex 2, France.
| | | | | | | |
Collapse
|