Parida K, Mishra KG, Dash SK. Adsorption of toxic metal ion Cr(VI) from aqueous state by TiO2-MCM-41: equilibrium and kinetic studies.
JOURNAL OF HAZARDOUS MATERIALS 2012;
241-242:395-403. [PMID:
23092612 DOI:
10.1016/j.jhazmat.2012.09.052]
[Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2012] [Revised: 09/23/2012] [Accepted: 09/24/2012] [Indexed: 05/09/2023]
Abstract
This paper deals with the immobilization of various weight percentage of TiO(2) on mesoporous MCM-41, characterization of the materials by X-ray diffraction (XRD), nitrogen adsorption-desorption, Fourier Transform Infrared (FTIR) analysis, UV-vis diffuse reflectance spectroscopy (DRS) and evaluation of the adsorption capacity toward Cr(VI) removal. It is found that the MCM-41 structure retained after loading of TiO(2) but the surface area and pore diameter decreased due to pore blockage. Adsorption of Cr(VI) from aqueous state was investigated on TiO(2)-MCM-41 by changing various parameters such as pH, metal ion concentration, and the temperature. When TiO(2) loading was more than 20 wt.%, the adsorption activity (25)TiO(2)-MCM-41 reduced significantly due to considerable decrease in the surface area. It is also observed that TiO(2) and neat MCM-41 exhibits very less Cr(VI) adsorption compared to TiO(2)-MCM-41. The adsorption of Cr(VI) onto (20)TiO(2)-MCM-41 at pH~5.5 and temperature 323 K was 91% at 100mg/L Cr(VI) metal ion concentration in 80 min. The experimental data fitted well to Langmuir and Freundlich isotherms. The adsorption of Cr(VI) on TiO(2)-MCM-41 followed a second order kinetics with higher values of intra-particle diffusion rate. Thermodynamic parameters suggested that the adsorption process is endothermic in nature and desorption studies indicated a chemisorption mode.
Collapse