51
|
Sun Y, Wallrabe H, Seo SA, Periasamy A. FRET microscopy in 2010: the legacy of Theodor Förster on the 100th anniversary of his birth. Chemphyschem 2011; 12:462-74. [PMID: 21344587 PMCID: PMC3422661 DOI: 10.1002/cphc.201000664] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2010] [Indexed: 11/09/2022]
Abstract
Theodor Förster would have been 100 years old this year, and he would have been astounded to see the impact of his scientific achievement, which is still evolving. Combining his quantitative approach of (Förster) resonance energy transfer (FRET) with state-of-the-art digital imaging techniques allows scientists to breach the resolution limits of light (ca. 200 nm) in light microscopy. The ability to deduce molecular or particle distances within a range of 1-10 nm in real time and to prove or disprove interactions between two or more components is of vital interest to researchers in many branches of science. While Förster's groundbreaking theory was published in the 1940s, the availability of suitable fluorophores, instruments, and analytical tools spawned numerous experiments in the last 20 years, as demonstrated by the exponential increase in publications. These cover basic investigation of cellular processes and the ability to investigate them when they go awry in pathological states, the dynamics involved in genetics, and following events in environmental sciences and methods in drug screening. This review covers the essentials of Theodor Förster's theory, describes the elements for successful implementation of FRET microscopy, the challenges and how to overcome them, and a leading-edge example of how Förster's scientific impact is still evolving in many directions. While this review cannot possibly do justice to the burgeoning field of FRET microscopy, a few interesting applications such as threecolor FRET, which greatly expands the opportunities for investigating interactions of cellular components compared with the traditional two-color method, are described, and an extensive list of references is provided for the interested reader to access.
Collapse
Affiliation(s)
- Yuansheng Sun
- W.M. Keck Center for Cellular Imaging, Departments of Biology and Biomedical Engineering, University of Virginia, Charlottesville, VA 22904
| | - Horst Wallrabe
- W.M. Keck Center for Cellular Imaging, Departments of Biology and Biomedical Engineering, University of Virginia, Charlottesville, VA 22904
| | - Soo-Ah Seo
- W.M. Keck Center for Cellular Imaging, Departments of Biology and Biomedical Engineering, University of Virginia, Charlottesville, VA 22904
| | - Ammasi Periasamy
- W.M. Keck Center for Cellular Imaging, Departments of Biology and Biomedical Engineering, University of Virginia, Charlottesville, VA 22904
| |
Collapse
|
52
|
Ma DL, Chan DSH, Man BYW, Leung CH. Oligonucleotide-based luminescent detection of metal ions. Chem Asian J 2011; 6:986-1003. [PMID: 21337527 DOI: 10.1002/asia.201000870] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2010] [Indexed: 01/20/2023]
Abstract
Metal ions are prevalent in biological systems and are critically involved in essential life processes. However, excess concentrations of metals can pose a serious danger to living organisms. Oligonucleotides represent a versatile sensing platform for the detection of various molecular entities including metal ions. This review summarizes the recent advances in the development of oligonucleotide-based luminescent detection methods for metal ions.
Collapse
Affiliation(s)
- Dik-Lung Ma
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, China.
| | | | | | | |
Collapse
|
53
|
Zhang L, Han B, Li T, Wang E. Label-free DNAzyme-based fluorescing molecular switch for sensitive and selective detection of lead ions. Chem Commun (Camb) 2011; 47:3099-101. [DOI: 10.1039/c0cc04523c] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
54
|
Zhang XB, Kong RM, Lu Y. Metal ion sensors based on DNAzymes and related DNA molecules. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2011; 4:105-28. [PMID: 21370984 PMCID: PMC3119750 DOI: 10.1146/annurev.anchem.111808.073617] [Citation(s) in RCA: 241] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Metal ion sensors are an important yet challenging field in analytical chemistry. Despite much effort, only a limited number of metal ion sensors are available for practical use because sensor design is often a trial-and-error-dependent process. DNAzyme-based sensors, in contrast, can be developed through a systematic selection that is generalizable for a wide range of metal ions. Here, we summarize recent progress in the design of DNAzyme-based fluorescent, colorimetric, and electrochemical sensors for metal ions, such as Pb(2+), Cu(2+), Hg(2+), and UO(2)(2+). In addition, we also describe metal ion sensors based on related DNA molecules, including T-T or C-C mismatches and G-quadruplexes.
Collapse
Affiliation(s)
- Xiao-Bing Zhang
- State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Rong-Mei Kong
- State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Yi Lu
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
| |
Collapse
|
55
|
Three-color spectral FRET microscopy localizes three interacting proteins in living cells. Biophys J 2010; 99:1274-83. [PMID: 20713013 DOI: 10.1016/j.bpj.2010.06.004] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2009] [Revised: 04/30/2010] [Accepted: 06/01/2010] [Indexed: 11/20/2022] Open
Abstract
FRET technologies are now routinely used to establish the spatial relationships between two cellular components (A and B). Adding a third target component (C) increases the complexity of the analysis between interactions AB/BC/AC. Here, we describe a novel method for analyzing a three-color (ABC) FRET system called three-color spectral FRET (3sFRET) microscopy, which is fully corrected for spectral bleedthrough. The approach quantifies FRET signals and calculates the apparent energy transfer efficiencies (Es). The method was validated by measurement of a genetic (FRET standard) construct consisting of three different fluorescent proteins (FPs), mTFP, mVenus, and tdTomato, linked sequentially to one another. In addition, three 2-FP reference constructs, tethered in the same way as the 3-FP construct, were used to characterize the energy transfer pathways. Fluorescence lifetime measurements were employed to compare the relative relationships between the FPs in cells producing the 3-FP and 2-FP fusion proteins. The 3sFRET microscopy method was then applied to study the interactions of the dimeric transcription factor C/EBPalpha (expressing mTFP or mVenus) with the heterochromatin protein 1alpha (HP1alpha, expressing tdTomato) in live-mouse pituitary cells. We show how the 3sFRET microscopy method represents a promising live-cell imaging technique to monitor the interactions between three labeled cellular components.
Collapse
|
56
|
Wang B, Cao L, Chiuman W, Li Y, Xi Z. Probing the function of nucleotides in the catalytic cores of the 8-17 and 10-23 DNAzymes by abasic nucleotide and C3 spacer substitutions. Biochemistry 2010; 49:7553-62. [PMID: 20698496 DOI: 10.1021/bi100304b] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
8-17 and 10-23 are the two most comprehensively studied RNA-cleaving DNAzymes to date and have the ability to carry out sequence-specific cleavage of both all-RNA or chimeric RNA/DNA substrates. Mutagenesis studies of 8-17 and 10-23 DNAzymes using alternative natural nucleotides to substitute a given nucleotide in the DNAzyme sequence have found that both DNAzymes are able to tolerate a variety of alterations at many sequence locations. Chemical modification studies employing nucleotides containing nonnatural nucleobases have led to findings that some specific entities of selected nucleobases are irreplaceable by other functional groups. In this work, we set out to carry out a mutagenesis study on both 8-17 and 10-23 by substituting individual nucleotides in their catalytic cores with a baseless (abasic) nucleotide or a baseless/sugarless nucleotide containing only acyclic C3 spacer. We observed that the substitution with an abasic nucleotide or C3 spacer at many locations within the catalytic core of both 8-17 and 10-23 was still able to support a significant level of catalytic activity of each DNAzyme, suggesting that both DNAzymes have considerable structural plasticity to maintain their catalytic functions. We also observed that almost all nucleobases in the catalytic core of each DNAzyme appeared to make either an absolutely essential contribution to the function of each DNAzyme or exhibit a "chaperone-like" activity that is important for the optimal function of each DNAzyme; in contrast, only one sugar ring in 8-17 and four in 10-23 were inferred to make some contribution to the optimal function of the relevant DNAzyme. Finally, our study also raised a possibility that the 10-23 DNAzyme might be a special structural variant of the larger 8-17 DNAzyme family.
Collapse
Affiliation(s)
- Bin Wang
- State Key Laboratory of Elemento-Organic Chemistry and Department of Chemical Biology, Nankai University, Tianjin, 300071, China
| | | | | | | | | |
Collapse
|
57
|
Mazumdar D, Nagraj N, Kim HK, Meng X, Brown AK, Sun Q, Li W, Lu Y. Activity, folding and Z-DNA formation of the 8-17 DNAzyme in the presence of monovalent ions. J Am Chem Soc 2010; 131:5506-15. [PMID: 19326878 DOI: 10.1021/ja8082939] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The effect of monovalent ions on both the reactivity and global folding of the 8-17 DNAzyme is investigated, and the results are compared with those of the hammerhead ribozyme, which has similar size and secondary structure. In contrast to the hammerhead ribozyme, the 8-17 DNAzyme activity is not detectable in the presence of 4 M K(+), Rb(+), or Cs(+) or in the presence of 80 mM, [Co(NH(3))(6)](3+). Only 4 M Li(+), NH(4)(+) and, to a lesser extent, Na(+) conferred detectable activity. The observed rate constants (k(obs) approximately 10(-3) min(-1) for Li(+) and NH(4)(+)) are approximately 1000-fold lower than that in the presence of 10 mM Mg(2+), and approximately 200,000-fold slower than that in the presence of 100 microM Pb(2+). Since the hammerhead ribozyme displays monovalent ion-dependent activity that is often within approximately 10-fold of divalent metal ion-dependent activity, these results suggest that the 8-17 DNAzyme, obtained by in vitro selections, has evolved to have a more stringent divalent metal ion requirement for high activity as compared to the naturally occurring ribozymes, making the 8-17 DNAzyme an excellent choice as a Pb(2+) sensor with high selectivity. In contrast to the activity data, folding was observed in the presence of all the monovalent ions investigated, although those monovalent ions that do not support DNAzyme activity have weaker binding affinity (K(d) approximately 0.35 M for Rb(+) and Cs(+)), while those that confer DNAzyme activity possess stronger affinity (K(d) approximately 0.22 M for Li(+), Na(+) and NH(4)(+)). In addition, a correlation between metal ion charge density, binding affinity and enzyme activity was found among mono- and divalent metal ions except Pb(2+); higher charge density resulted in stronger affinity and higher activity, suggesting that the observed folding and activity is at least partially due to electrostatic interactions between ions and the DNAzyme. Finally, circular dichroism (CD) study has revealed Z-DNA formation with the monovalent metal ions, Zn(2+) and Mg(2+); the K(d) values obtained using CD were in the same range as those obtained from folding studies using FRET. However, Z-DNA formation was not observed with Pb(2+). These results indicate that Pb(2+)-dependent function follows a different mechanism from the monovalent metal ions and other divalent metal ions; in the presence of latter metal ions, metal-ion dependent folding and structural changes, including formation of Z-DNA, play an important role in the catalytic function of the 8-17 DNAzyme.
Collapse
Affiliation(s)
- Debapriya Mazumdar
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | | | | | | | | | | | | | | |
Collapse
|
58
|
Sun Y, Shopova SI, Wu CS, Arnold S, Fan X. Bioinspired optofluidic FRET lasers via DNA scaffolds. Proc Natl Acad Sci U S A 2010; 107:16039-42. [PMID: 20798062 PMCID: PMC2941270 DOI: 10.1073/pnas.1003581107] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Optofluidic dye lasers hold great promise for adaptive photonic devices, compact and wavelength-tunable light sources, and micro total analysis systems. To date, however, nearly all those lasers are directly excited by tuning the pump laser into the gain medium absorption band. Here we demonstrate bioinspired optofluidic dye lasers excited by FRET, in which the donor-acceptor distance, ratio, and spatial configuration can be precisely controlled by DNA scaffolds. The characteristics of the FRET lasers such as spectrum, threshold, and energy conversion efficiency are reported. Through DNA scaffolds, nearly 100% energy transfer can be maintained regardless of the donor and acceptor concentration. As a result, efficient FRET lasing is achieved at an unusually low acceptor concentration of micromolar, over 1,000 times lower than that in conventional optofluidic dye lasers. The lasing threshold is on the order of μJ/mm(2). Various DNA scaffold FRET lasers are demonstrated to illustrate vast possibilities in optofluidic laser designs. Our work opens a door to many researches and applications such as intracavity bio/chemical sensing, biocontrolled photonic devices, and biophysics.
Collapse
Affiliation(s)
- Yuze Sun
- Biomedical Engineering Department, University of Michigan, 1101 Beal Avenue, Ann Arbor, MI 48109
- Department of Biological Engineering, Bond Life Sciences Center, University of Missouri, Columbia, MO 65211; and
| | - Siyka I. Shopova
- Department of Biological Engineering, Bond Life Sciences Center, University of Missouri, Columbia, MO 65211; and
- MicroParticle PhotoPhysics Lab, Polytechnic Institute of New York University, Brooklyn, NY 11201
| | - Chung-Shieh Wu
- Department of Biological Engineering, Bond Life Sciences Center, University of Missouri, Columbia, MO 65211; and
| | - Stephen Arnold
- MicroParticle PhotoPhysics Lab, Polytechnic Institute of New York University, Brooklyn, NY 11201
| | - Xudong Fan
- Biomedical Engineering Department, University of Michigan, 1101 Beal Avenue, Ann Arbor, MI 48109
- Department of Biological Engineering, Bond Life Sciences Center, University of Missouri, Columbia, MO 65211; and
| |
Collapse
|
59
|
Lam JCF, Li Y. Influence of Cleavage Site on Global Folding of an RNA-Cleaving DNAzyme. Chembiochem 2010; 11:1710-9. [DOI: 10.1002/cbic.201000144] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
60
|
Leung EKY, Sen D. The use of charge flow and quenching (CFQ) to probe nucleic acid folds and folding. Methods 2010; 52:141-9. [PMID: 20554046 DOI: 10.1016/j.ymeth.2010.06.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2010] [Indexed: 12/12/2022] Open
Abstract
Charge flow and quenching ("CFQ") is a relatively new, versatile, and easily carried out methodology for probing a number of unique features of DNA and RNA folded structures, and of their folding pathways. An electrical charge (an electron hole, or radical cation) is injected site-specifically into the end of a pre-determined reference helix within the larger DNA or RNA structure. The fate of the injected charge, as it percolates through the folded DNA or RNA is then monitored by mapping the oxidative consequences of the charge flow. Some of the kinds of structural and folding information that can be obtained from CFQ experiments include: a quantitative measure of helix-helix connectivity; the dynamics of specific bases; folding and unfolding pathways; the mapping of unusual, conformation-dependent, electronic properties of individual bases; extents of solvent exposure and susceptibility to quenching from the solvent. CFQ is a relatively new methodology, and is applicable to DNA and RNA structures and folds. In the near future it is expected that the range of applications of this methodology will increase dramatically.
Collapse
Affiliation(s)
- Edward K Y Leung
- Department of Biochemistry & Molecular Biology, The University of Chicago, Chicago, IL 60637, USA.
| | | |
Collapse
|
61
|
Xiang Y, Wang Z, Xing H, Wong NY, Lu Y. Label-free fluorescent functional DNA sensors using unmodified DNA: a vacant site approach. Anal Chem 2010; 82:4122-9. [PMID: 20465295 PMCID: PMC2884042 DOI: 10.1021/ac100244h] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
A general methodology to design label-free fluorescent functional DNA sensors using unmodified DNA via a vacant site approach is described. By extending one end of DNA with a loop, a vacant site that binds an extrinsic fluorophore, 2-amino-5,6,7-trimethyl-1,8-naphthyridine (ATMND), could be created at a selected position in the DNA duplex region of DNAzymes or aptamers. When the vacant site binds ATMND, ATMND's fluorescence is quenched. This fluorescence can be recovered when one strand of the duplex DNA is released through either metal ion-dependent cleavage by DNAzymes or analyte-dependent structural-switching by aptamers. Through this design, label-free fluorescent sensors for Pb(2+), UO(2)(2+), Hg(2+), and adenosine have been successfully developed. These sensors have high selectivity and sensitivity; detection limits as low as 3 nM, 8 nM, 30 nM, and 6 microM have been achieved for UO(2)(2+), Pb(2+), Hg(2+) and adenosine, respectively. Control experiments using vacant-site-free DNA duplexes and inactive variants of the functional DNAs indicate that the presence of the vacant site and the activity of the functional DNAs are essential for the performance of the proposed sensors. The vacant site approach demonstrated here can be used to design many other label-free fluorescent sensors to detect a wide range of analytes.
Collapse
Affiliation(s)
- Yu Xiang
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Zidong Wang
- Department of Material Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Hang Xing
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Ngo Yin Wong
- Department of Material Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Yi Lu
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Department of Material Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
62
|
Kim SH, Gunther JR, Katzenellenbogen JA. Monitoring a coordinated exchange process in a four-component biological interaction system: development of a time-resolved terbium-based one-donor/three-acceptor multicolor FRET system. J Am Chem Soc 2010; 132:4685-92. [PMID: 20230029 PMCID: PMC2860875 DOI: 10.1021/ja100248q] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Hormonal regulation of cellular function involves the binding of small molecules with receptors that then coordinate subsequent interactions with other signal transduction proteins. These dynamic, multicomponent processes are difficult to track in cells and even in reconstituted in vitro systems, and most methods can monitor only two-component interactions, often with limited capacity to follow dynamic changes. Through a judicious choice of three organic acceptor fluorophores paired with a terbium donor fluorophore, we have developed the first example of a one-donor/three-acceptor multicolor time-resolved fluorescence energy transfer (TR-FRET) system, and we have exemplified its use by monitoring a ligand-regulated protein-protein exchange process in a four-component biological system. By careful quantification of the emission from each of the three acceptors at the four channels for terbium donor emission, we demonstrate that any of these donor channels can be used to estimate the magnitude of the three FRET signals in this terbium-donor triple-acceptor system with minimal bleedthrough. Using this three-channel terbium-based, TR-FRET assay system, we show in one experiment that the addition of a fluorescein-labeled estrogen agonist displaces a SNAPFL-labeled antiestrogen from the ligand binding pocket of a terbium-labeled estrogen receptor, at the same time causing a Cy5-labeled coactivator to be recruited to the estrogen receptor. This experiment demonstrates the power of a four-color TR-FRET experiment, and it shows that the overall process of estrogen receptor ligand exchange and coactivator binding is a dynamic but precisely coordinated process.
Collapse
Affiliation(s)
- Sung Hoon Kim
- Department of Chemistry, University of Illinois, 600 S. Mathews Ave., Urbana, IL 61801
| | - Jillian R. Gunther
- Department of Chemistry, University of Illinois, 600 S. Mathews Ave., Urbana, IL 61801
| | | |
Collapse
|
63
|
Schlosser K, Li Y. A Versatile Endoribonuclease Mimic Made of DNA: Characteristics and Applications of the 8-17 RNA-Cleaving DNAzyme. Chembiochem 2010; 11:866-79. [DOI: 10.1002/cbic.200900786] [Citation(s) in RCA: 116] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
64
|
Kenward M, Dorfman KD. Coarse-Grained Brownian Dynamics Simulations of the 10-23 DNAzyme. Biophys J 2010; 97:2785-93. [PMID: 19917233 DOI: 10.1016/j.bpj.2009.09.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2009] [Revised: 09/01/2009] [Accepted: 09/02/2009] [Indexed: 11/18/2022] Open
Abstract
Deoxyribozymes (DNAzymes) are single-stranded DNA that catalyze nucleic acid biochemistry. Although a number of DNAzymes have been discovered by in vitro selection, the relationship between their tertiary structure and function remains unknown. We focus here on the well-studied 10-23 DNAzyme, which cleaves mRNA with a catalytic efficiency approaching that of RNase A. Using coarse-grained Brownian dynamics simulations, we find that the DNAzyme bends its substrate away from the cleavage point, exposing the reactive site and buckling the DNAzyme catalytic core. This hypothesized transition state provides microscopic insights into experimental observations concerning the size of the DNAzyme/substrate complex, the impact of the recognition arm length, and the sensitivity of the enzymatic activity to point mutations of the catalytic core. Upon cleaving the pertinent backbone bond in the substrate, we find that the catalytic core of the DNAzyme unwinds and the overall complex rapidly extends, in agreement with experiments on the related 8-17 DNAzyme. The results presented here provide a starting point for interpreting experimental data on DNAzyme kinetics, as well as developing more detailed simulation models. The results also demonstrate the limitations of using a simple physical model to understand the role of point mutations.
Collapse
Affiliation(s)
- Martin Kenward
- Department of Chemical Engineering and Materials Science, University of Minnesota-Twin Cities, Minneapolis, Minnesota, USA
| | | |
Collapse
|
65
|
Liu Y, Sen D. Local Rather than Global Folding Enables the Lead-dependent Activity of the 8-17 Deoxyribozyme: Evidence from Contact Photo-crosslinking. J Mol Biol 2010; 395:234-41. [DOI: 10.1016/j.jmb.2009.11.028] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2009] [Revised: 10/28/2009] [Accepted: 11/10/2009] [Indexed: 10/20/2022]
|
66
|
Person B, Stein IH, Steinhauer C, Vogelsang J, Tinnefeld P. Correlated Movement and Bending of Nucleic Acid Structures Visualized by Multicolor Single-Molecule Spectroscopy. Chemphyschem 2009; 10:1455-60. [DOI: 10.1002/cphc.200900109] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
67
|
Affiliation(s)
- Juewen Liu
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, USA
| | | | | |
Collapse
|
68
|
Brown AK, Liu J, He Y, Lu Y. Biochemical characterization of a uranyl ion-specific DNAzyme. Chembiochem 2009; 10:486-92. [PMID: 19142882 DOI: 10.1002/cbic.200800632] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Uranyl ion-specific DNAzyme: A DNAzyme (lower strand) cleaves the substrate (upper strand) in the presence of the uranyl ion. The enzyme folds into a bulged three-way-junction structure with catalytically important nucleotides residing in the bulge. A highly conserved GA mismatch is also crucial for the enzyme's activity.The biochemical characterization of a DNAzyme that is highly specific for uranyl (UO(2) (2+)) ions is described. Sequence alignment, enzyme truncation, and mutation studies have resulted in a conserved sequence that folds into a bulged stem-loop structure. Interestingly, a GA pair next to the scissile site is important for the uranyl ion-specific DNAzyme; this is reminiscent of the GT wobble base pair adjacent to the cleavage site that is crucial for the Pb(II)-specific 8-17 DNAzyme activity. Therefore wobble pairs might be important for formation of metal-specific metal-binding sites in DNAzymes. The DNAzyme binds the uranyl ion with a dissociation constant of 469 nM, which is among the strongest metal-binding affinities in nucleic acid enzymes reported to date. This explains why a catalytic beacon fluorescent sensor based on this enzyme has a detection limit (45 pM) that rivals the most-sensitive analytical instrument. It also has over 1 000 000-fold specificity for the uranyl ion over other metal ions. The DNAzyme can carry out multiple turnover reactions that follow the Michaelis-Menten equation, with a k(cat) of 1.46 min(-1) and a K(M) of 463 nM, similar to that of the 8-17 DNAzyme. The pH profile shows a bell-shaped curve that reaches a maximum at pH 5.5, at which the in vitro selection was carried out; this suggests that in vitro selection can be performed to obtain DNAzymes with optimal performance under specific conditions under which practical applications are required. These findings enrich our fundamental understanding of metal-binding sites in nucleic acids and allow the design of sensors with better performance.
Collapse
Affiliation(s)
- Andrea K Brown
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | | | | | | |
Collapse
|
69
|
Schlosser K, Li Y. Biologically Inspired Synthetic Enzymes Made from DNA. ACTA ACUST UNITED AC 2009; 16:311-22. [DOI: 10.1016/j.chembiol.2009.01.008] [Citation(s) in RCA: 201] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2008] [Revised: 01/12/2009] [Accepted: 01/14/2009] [Indexed: 10/21/2022]
|
70
|
Sadhu KK, Banerjee S, Datta A, Bharadwaj PK. Cryptand cage: perfect skeleton for transition metal induced two-step fluorescence resonance energy transfer. Chem Commun (Camb) 2009:4982-4. [DOI: 10.1039/b909553e] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
71
|
|
72
|
Jeyakumar M, Katzenellenbogen JA. A dual-acceptor time-resolved Föster resonance energy transfer assay for simultaneous determination of thyroid hormone regulation of corepressor and coactivator binding to the thyroid hormone receptor: Mimicking the cellular context of thyroid hormone action. Anal Biochem 2008; 386:73-8. [PMID: 19111515 DOI: 10.1016/j.ab.2008.11.039] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2008] [Revised: 11/20/2008] [Accepted: 11/21/2008] [Indexed: 11/18/2022]
Abstract
Previously, we reported the development of two in vitro time-resolved Föster resonance energy transfer (tr-FRET)-based assays for evaluating the potency and efficacy of different ligands of thyroid hormone receptor (TR) for regulating the recruitment of coregulators. We could measure independently, in separate assays, both the recruitment of SRC3 (steroid receptor coactivator 3, a transcriptional coactivator) and the dissociation of NCoR (nuclear receptor corepressor, a transcriptional corepressor) from a TR*retinoid X receptor (RXR) heterodimer bound to a DR+4 thyroid hormone response element (TRE). Here, by using the distinct emission peaks of Tb(3+), the donor fluorophore used to label the TRE-bound TR*RXR heterodimers, and selecting two distinct acceptor fluorophores, fluorescein and cyanine 5, to label of NCoR and SRC3, respectively, we have integrated our previous two assay formats into a single assay. Thus, we can measure the potency of TR ligands simultaneously for NCoR dissociation and SRC3 recruitment activities in a system that mimics many features of the cellular context of TR action. The performance of this dual assay was tested with a known, highly potent physiological TR ligand, triiodothyronine (T(3)), and with a synthetic TR antagonist, NH-3. Measured potencies and efficacies of these two TR ligands from this dual assay are highly comparable to those obtained from the two independent assays. Thus, this dual-acceptor tr-FRET assay further simplifies the measurement of ligand-modulated TR-coregulator interactions and should improve the overall efficiency of the screening process of TR drug discovery programs.
Collapse
Affiliation(s)
- M Jeyakumar
- Department of Chemistry, University of Illinois, Urbana, IL 61801, USA
| | | |
Collapse
|
73
|
Liu P, Ahmed S, Wohland T. The F-techniques: advances in receptor protein studies. Trends Endocrinol Metab 2008; 19:181-90. [PMID: 18387308 DOI: 10.1016/j.tem.2008.02.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2007] [Revised: 02/13/2008] [Accepted: 02/22/2008] [Indexed: 11/20/2022]
Abstract
Recent developments in advanced microscopy techniques, the so-called F-techniques, including Förster resonance energy transfer, fluorescence correlation spectroscopy and fluorescence lifetime imaging, have led to a wide range of novel applications in biology. The F-techniques provide quantitative information on biomolecules and their interactions and give high spatial and temporal resolution. In particular, their application to receptor protein studies has led to new insights into receptor localization, oligomerization, activation and function in vivo. This review focuses on the application of the F-techniques to the study of receptor molecules and mechanisms in the last three years and provides information on new modalities that will further improve their applicability and widen the range of biological questions that can be addressed.
Collapse
Affiliation(s)
- Ping Liu
- Department of Chemistry, National University of Singapore, Singapore
| | | | | |
Collapse
|
74
|
Liu Y, Sen D. A contact photo-cross-linking investigation of the active site of the 8-17 deoxyribozyme. J Mol Biol 2008; 381:845-59. [PMID: 18586041 DOI: 10.1016/j.jmb.2008.06.036] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2008] [Revised: 05/30/2008] [Accepted: 06/08/2008] [Indexed: 11/19/2022]
Abstract
The small RNA-cleaving 8-17 deoxyribozyme (DNAzyme) has been the subject of extensive mechanistic and structural investigation, including a number of recent single-molecule studies of its global folding. Little detailed insight exists, however, into this DNAzyme's active site; for instance, the identity of specific nucleotides that are proximal to or in contact with the scissile site in the substrate. Here, we report a systematic replacement of a number of bases within the magnesium-folded DNAzyme-substrate complex with thio- and halogen-substituted base analogues, which were then photochemically activated to generate contact cross-links within the complex. Mapping of the cross-links revealed a striking pattern of DNAzyme-substrate cross-links but an absence of significant intra-DNAzyme cross-links. Notably, the two nucleotides directly flanking the scissile phosphodiester cross-linked strongly with functionally important elements within the DNAzyme, the thymine of a G.T wobble base pair, a WCGR bulge loop, and a terminal AGC loop. Mutation of the wobble base pair to a G-C pair led to a significant folding instability of the DNAzyme-substrate complex. The cross-linking patterns obtained were used to generate a model for the DNAzyme's active site that had the substrate's scissile phosphodiester sandwiched between the DNAzyme's wobble thymine and its AGC and WCGR loops.
Collapse
Affiliation(s)
- Yong Liu
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada V5A 1S6
| | | |
Collapse
|
75
|
Zhao W, Lam JCF, Chiuman W, Brook MA, Li Y. Enzymatic cleavage of nucleic acids on gold nanoparticles: a generic platform for facile colorimetric biosensors. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2008; 4:810-816. [PMID: 18537135 DOI: 10.1002/smll.200700757] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
The enzymatic cleavage of nucleic acids (DNA or DNA with a single RNA linkage) on well-dispersed gold nanoparticles (AuNPs) is exploited in the design of facile colorimetric biosensors. The assays are performed at salt concentrations such that DNA-modified AuNPs are barely stabilized by the electrostatic and steric stabilization. Enzymatic cleavage of DNA chains on the AuNP surface destabilizes the AuNPs, resulting in a rapid aggregation driven by van der Waals attraction, and a red-to-purple color change. Two different systems are chosen, DNase I (a DNA endonuclease) and 8-17 (a Pb(2+)-depedent RNA-cleaving DNAzyme), to demonstrate the utility of our assay for the detection of metal ions and sensing enzyme activities. Compared with previous studies in which AuNP aggregates are converted into dispersed AuNPs by enzymatic cleavage of DNA crosslinkers, the present assay is technically simpler. Moreover, the accessibility of DNA to biomolecular recognition elements (e.g. enzymes) on well-dispersed AuNPs in our assay appears to be higher than that embedded inside aggregates. This biosensing system should be readily adaptable to other enzymes or substrates for detection of analytes such as small molecules, proteases and their inhibitors.
Collapse
Affiliation(s)
- Weian Zhao
- Department of Chemistry, McMaster University, 1280 Main St. West, Hamilton, ON L8S 4M1, Canada
| | | | | | | | | |
Collapse
|
76
|
Kvach MV, Ustinov AV, Stepanova IA, Malakhov AD, Skorobogatyi MV, Shmanai VV, Korshun VA. A Convenient Synthesis of Cyanine Dyes: Reagents for the Labeling of Biomolecules. European J Org Chem 2008. [DOI: 10.1002/ejoc.200701190] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
77
|
Engineering Redox-Sensitive Linkers for Genetically Encoded FRET-Based Biosensors. Exp Biol Med (Maywood) 2008; 233:238-48. [DOI: 10.3181/0707-rm-192] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The ability to sense intracellular or intraorganellar reduction/oxidation conditions would provide a powerful tool for studying normal cell proliferation, differentiation, and apoptosis. Genetically encoded biosensors enable monitoring of the intracellular redox environment. We report the development of chimeric polypeptides useful as redox-sensitive linkers in conjunction with Förster resonance energy transfer (FRET). α-helical linkers differing in length were combined with motifs that are sensitive to the redox state of the environment. The first category of linkers included a redox motif found in the thioredoxin family of oxidoreductases. This motif was flanked by two α-helices of equal length. The second and third categories of redox linkers were composed of α-helices with embedded adjacent and dispersed vicinal cysteine residues, respectively. The linkers containing redox switches were placed between a FRET pair of enhanced cyan and yellow fluorescent proteins and these constructs were tested subsequently for their efficacy. A robust method of FRET analysis, the ( ratio) A method, was used. This method uses two fluorescence spectra performed directly on the FRET construct without physical separation of the fluorophores. The cyan/yellow construct carrying one of the designed redox linkers, RL5, exhibited a 92% increase in FRET efficiency from its reduced to oxidized states. Responsiveness of the cyan-RL5-yellow construct to changes in the intracellular redox environment was confirmed in mammalian cells by flow cytometry.
Collapse
|
78
|
Schlosser K, Gu J, Sule L, Li Y. Sequence-function relationships provide new insight into the cleavage site selectivity of the 8-17 RNA-cleaving deoxyribozyme. Nucleic Acids Res 2008; 36:1472-81. [PMID: 18203744 PMCID: PMC2275145 DOI: 10.1093/nar/gkm1175] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Many sequence variations of the 8–17 RNA-cleaving deoxyribozyme have been isolated through in vitro selection. In an effort to understand how these sequence variations affect cleavage site selectivity, we systematically mutated the catalytic core of 8–17 and measured the cleavage activity of each mutant deoxyribozyme against all 16 possible chimeric (RNA/DNA) dinucleotide junctions. We observed sequence-function relationships that suggest how the following non-conserved positions in the catalytic core influence selectivity at the dinucleotide (5′ rN18-N1.1 3′) cleavage site: (i) positions 2.1 and 12 represent a primary determinant of the selectivity at the 3′ position (N1.1) of the cleavage site; (ii) positions 15 and 15.0 represent a primary determinant of the selectivity at the 5′ position (rN18) of the cleavage site and (iii) the sequence of the 3-bp intramolecular stem has relatively little influence on cleavage site selectivity. Furthermore, we report for the first time that 8–17 variants have the collective ability to cleave all dinucleotide junctions with rate enhancements of at least 1000-fold over background. Three optimal 8–17 variants, identified from ∼75 different sequences that were examined, can collectively cleave 10 of 16 junctions with useful rates of ≥0.1 min−1, and exhibit an overall hierarchy of reactivity towards groups of related junctions according to the order NG > NA > NC > NT.
Collapse
Affiliation(s)
- Kenny Schlosser
- Department of Biochemistry and Biomedical Sciences and Department of Chemistry, McMaster University, Hamilton, Ontario, Canada
| | | | | | | |
Collapse
|
79
|
Abstract
Studies of catalytically active DNA sequences have expanded considerably since the first artificial deoxyribozyme was identified in 1994. Nevertheless, the field is still quite young, and advances in both fundamental understanding and practical applications of deoxyribozymes are still developing. Deoxyribozymes that either cleave or ligate two RNA substrates have been most widely investigated, and this review describes recent advances in the fundamental studies and applications of these DNA enzymes. Deoxyribozymes with catalytic activities other than RNA ligation and cleavage are also increasingly pursued, and this review covers several key examples.
Collapse
Affiliation(s)
- Claudia Höbartner
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, IL 61801, USA
| | | |
Collapse
|
80
|
Dijk EW, Feringa BL, Roelfes G. DNA in Metal Catalysis. TOP ORGANOMETAL CHEM 2008. [DOI: 10.1007/3418_2008_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
81
|
Kim HK, Liu J, Li J, Nagraj N, Li M, Pavot CMB, Lu Y. Metal-Dependent Global Folding and Activity of the 8-17 DNAzyme Studied by Fluorescence Resonance Energy Transfer. J Am Chem Soc 2007; 129:6896-902. [PMID: 17488081 DOI: 10.1021/ja0712625] [Citation(s) in RCA: 128] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The 8-17 DNAzyme is a DNA metalloenzyme catalyzing RNA transesterification in the presence of divalent metal ions, with activity following the order Pb2+ >> Zn2+ >>Mg2+. Since the DNAzyme has been used as a metal ion sensor, its metal-induced global folding was studied by fluorescence resonance energy transfer (FRET) by labeling the three stems of the DNAzyme with the Cy3/Cy5 FRET pair two stems at a time in order to gain deeper insight into the role of different metal ions in its structure and function. FRET results indicated that, in the presence of Zn2+ and Mg2+, the DNAzyme folds into a compact structure, stem III approaching a configuration defined by stems I and II without changing the angle between stems I and II. Correlations between metal-induced folding and activity were also studied. For Zn2+ and Mg2+, the metal ion with higher affinity for the DNAzyme in global folding (Kd(Zn) = 52.6 microM and Kd(Mg) = 1.36 mM) also displays higher affinity in activity (Kd(Zn) = 1.15 mM and Kd(Mg) = 53 mM) under the same conditions. Global folding was saturated at much lower concentrations of Zn2+ and Mg2+ than the cleavage activities, indicating the global folding of the DNAzyme occurs before the cleavage activity for those metal ions. Surprisingly, no Pb2+-dependent global folding was observed. These results suggest that for Pb2+ global folding of the DNAzyme may not be a necessary step in its function, which may contribute to the DNAzyme having the highest activity in the presence of Pb2+.
Collapse
Affiliation(s)
- Hee-Kyung Kim
- Department of Chemistry and Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | | | | | | | | | | | | |
Collapse
|
82
|
Bode BE, Margraf D, Plackmeyer J, Dürner G, Prisner TF, Schiemann O. Counting the Monomers in Nanometer-Sized Oligomers by Pulsed Electron−Electron Double Resonance. J Am Chem Soc 2007; 129:6736-45. [PMID: 17487970 DOI: 10.1021/ja065787t] [Citation(s) in RCA: 164] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In a lot of cases active biomolecules are complexes of higher order, thus methods capable of counting the number of building blocks and elucidating their geometric arrangement are needed. Therefore, we experimentally validate here spin-counting via 4-pulse electron-electron double resonance (PELDOR) on well-defined test samples. Two biradicals, a symmetric and an asymmetric triradical, and a tetraradical were synthesized in a convergent reaction scheme via palladium-catalyzed cross-coupling reactions. PELDOR was then used to obtain geometric information and the number of spin centers per molecule in a single experiment. The measurement yielded the expected distances (2.2-3.8 nm) and showed that different spin-spin distances in one molecule can be resolved even if the difference amounts to only 5 A. The number of spins n has been determined to be 2.1 in both biradicals, to 3.1 and 3.0 in the symmetric and asymmetric triradicals, respectively, and to 3.9 in the tetraradical. The overall error of PELDOR spin-counting was found to be 5% for up to four spins. Thus, this method is a valuable tool to determine the number of constituting spin-bearing monomers in biologically relevant homo- and heterooligomers and how their oligomerization state and geometric arrangement changes during function.
Collapse
Affiliation(s)
- Bela E Bode
- Institute of Physical and Theoretical Chemistry, Center for Biomolecular Magnetic Resonance, J. W. Goethe-University, Frankfurt am Main, Germany
| | | | | | | | | | | |
Collapse
|
83
|
Leung EKY, Sen D. Electron Hole Flow Patterns through the RNA-Cleaving 8-17 Deoxyribozyme Yield Unusual Information about Its Structure and Folding. ACTA ACUST UNITED AC 2007; 14:41-51. [PMID: 17254951 DOI: 10.1016/j.chembiol.2006.11.006] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2006] [Revised: 10/31/2006] [Accepted: 11/06/2006] [Indexed: 11/21/2022]
Abstract
DNA double helices have been shown to conduct electron holes over significant distances. Here, we report on the hole flow patterns within a more intricately folded DNA complex, the 8-17 deoxyribozyme bound to a DNA pseudosubstrate, incorporating three helical elements and two catalytically relevant loops. The observed hole flow patterns within the complex permitted a quantitative assessment of the stacking preferences of the three constituent helices and provided evidence for significant transitions within the complex's global geometry. The patterns further suggested varying levels of solvent exposure of the complex's constituent parts, and revealed that a catalytically relevant cytosine within the folded complex exists in an unusual structural/electronic environment. Our data suggest that the study of charge flow may provide novel perspectives on the structure and folding of intricately folded DNAs and RNAs.
Collapse
Affiliation(s)
- Edward K Y Leung
- Department of Molecular Biology & Biochemistry, Simon Fraser University, Burnaby, British Columbia, V5A 1S6, Canada
| | | |
Collapse
|
84
|
Lee NK, Kapanidis AN, Koh HR, Korlann Y, Ho SO, Kim Y, Gassman N, Kim SK, Weiss S. Three-color alternating-laser excitation of single molecules: monitoring multiple interactions and distances. Biophys J 2006; 92:303-12. [PMID: 17040983 PMCID: PMC1697855 DOI: 10.1529/biophysj.106.093211] [Citation(s) in RCA: 129] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
We introduce three-color alternating-laser excitation (3c-ALEX), a fluorescence resonance energy transfer (FRET) method that measures up to three intramolecular distances and complex interaction stoichiometries of single molecules in solution. This tool extends substantially the capabilities of two-color ALEX, which employs two alternating lasers to study molecular interactions (through probe stoichiometry S) and intramolecular distances (through FRET efficiency E), and sorts fluorescent molecules in multi-dimensional probe-stoichiometry and FRET-efficiency histograms. Probe-stoichiometry histograms allowed analytical sorting, identification, and selection of diffusing species; selected molecules were subsequently represented in FRET-efficiency histograms, generating up to three intramolecular distances. Using triply labeled DNAs, we established that 3c-ALEX enables 1), FRET-independent analysis of three-component interactions; 2), observation and sorting of singly, doubly, and triply labeled molecules simultaneously present in solution; 3), measurements of three intramolecular distances within single molecules from a single measurement; and 4), dissection of conformational heterogeneity with improved resolution compared to conventional single-molecule FRET. We also used 3c-ALEX to study large biomolecules such as RNA polymerase-DNA transcription complexes, and monitor the downstream translocation of RNA polymerase on DNA from two perspectives within the complex. This study paves the way for advanced single-molecule analysis of complex mixtures and biomolecular machinery.
Collapse
Affiliation(s)
- Nam Ki Lee
- School of Chemistry, Seoul National University, Seoul, Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
85
|
Ohya Y, Nakajima A, Ouchi T. Time-resolved Laser Spectroscopic Analysis of Multi-step Fluorescence Resonance Energy Transfer on Chromophore Array Constructed by Oligo-DNA Assembly. Supramol Chem 2006. [DOI: 10.1080/10610270500054101] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Yuichi Ohya
- a Department of Applied Chemistry , Faculty of Engineering and High Technology Research Center, Kansai University, Suita , Osaka, 564-8680, Japan
| | - Atsushi Nakajima
- a Department of Applied Chemistry , Faculty of Engineering and High Technology Research Center, Kansai University, Suita , Osaka, 564-8680, Japan
| | - Tatsuro Ouchi
- a Department of Applied Chemistry , Faculty of Engineering and High Technology Research Center, Kansai University, Suita , Osaka, 564-8680, Japan
| |
Collapse
|
86
|
|
87
|
Snippe M, Goldbach R, Kormelink R. Tomato spotted wilt virus particle assembly and the prospects of fluorescence microscopy to study protein-protein interactions involved. Adv Virus Res 2006; 65:63-120. [PMID: 16387194 DOI: 10.1016/s0065-3527(05)65003-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Marjolein Snippe
- Department of Asthma, Allergy, and Respiratory Diseases, King's College, London, WC2R 2LS United Kingdom
| | | | | |
Collapse
|
88
|
Silverman SK. In vitro selection, characterization, and application of deoxyribozymes that cleave RNA. Nucleic Acids Res 2005; 33:6151-63. [PMID: 16286368 PMCID: PMC1283523 DOI: 10.1093/nar/gki930] [Citation(s) in RCA: 215] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Over the last decade, many catalytically active DNA molecules (deoxyribozymes; DNA enzymes) have been identified by in vitro selection from random-sequence DNA pools. This article focuses on deoxyribozymes that cleave RNA substrates. The first DNA enzyme was reported in 1994 and cleaves an RNA linkage. Since that time, many other RNA-cleaving deoxyribozymes have been identified. Most but not all of these deoxyribozymes require a divalent metal ion cofactor such as Mg2+ to catalyze attack by a specific RNA 2′-hydroxyl group on the adjacent phosphodiester linkage, forming a 2′,3′-cyclic phosphate and a 5′-hydroxyl group. Several deoxyribozymes that cleave RNA have utility for in vitro RNA biochemistry. Some DNA enzymes have been applied in vivo to degrade mRNAs, and others have been engineered into sensors. The practical impact of RNA-cleaving deoxyribozymes should continue to increase as additional applications are developed.
Collapse
Affiliation(s)
- Scott K Silverman
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, IL 61801, USA.
| |
Collapse
|
89
|
Peracchi A, Bonaccio M, Clerici M. A mutational analysis of the 8-17 deoxyribozyme core. J Mol Biol 2005; 352:783-94. [PMID: 16125199 DOI: 10.1016/j.jmb.2005.07.059] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2005] [Revised: 07/20/2005] [Accepted: 07/21/2005] [Indexed: 11/24/2022]
Abstract
The 8-17 deoxyribozyme is a small RNA-cleaving DNA enzyme of significant applicative interest. We measured the kinetics of over 60 variants of 8-17, mutated within the "core" region. The data were analyzed according to a conceptual framework in which deleterious substitutions can either decrease the stability of the reaction's transition state, or favor unreactive ground-state conformations. In agreement with earlier in vitro evolution studies, the most severe functional effects were observed upon mutating four conserved residues, whose role was further explored by replacing them with non-standard nucleotides. Removal or modification of individual functional groups on the A6 and G7 bases suggested that these residues are involved in a close-contact interaction and form a network of functionally important hydrogen bonds. Mutagenesis of residues C13 and G14 was less revealing, but argued strongly against a role of C13 as a general acid/base catalyst. The use of non-standard nucleotides also led to the identification of one deoxyribozyme variant that, under some ionic conditions, is substantially more active than the wild-type construct. Finally, the effects of mutations in the intramolecular "core stem" correlated only in part with changes in helical stability, suggesting that a stable stem is required but not sufficient for optimal activity.
Collapse
Affiliation(s)
- Alessio Peracchi
- Department of Biochemistry and Molecular Biology, University of Parma, 43100 Parma, Italy.
| | | | | |
Collapse
|
90
|
Majumdar ZK, Hickerson R, Noller HF, Clegg RM. Measurements of internal distance changes of the 30S ribosome using FRET with multiple donor-acceptor pairs: quantitative spectroscopic methods. J Mol Biol 2005; 351:1123-45. [PMID: 16055154 DOI: 10.1016/j.jmb.2005.06.027] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2005] [Accepted: 06/10/2005] [Indexed: 11/26/2022]
Abstract
We present analytical and experimental procedures for determining distance changes within the 30 S subunit of the Escherichia coli ribosome using Förster resonance energy transfer (FRET). We discuss ways to contend with complexities when using FRET to measure distance changes within large multi-subunit macromolecular complexes, such as the ribosome. Complications can arise due to non-stoichiometric labeling of donor and acceptor probes, as well as environmental effects that are specific to each conjugation site. We show how to account for changes in extinction coefficients, quenching, labeling stoichiometry and other variations in the spectroscopic properties of the dye to enable more accurate calculation of distances from FRET data. We also discuss approximations that concern the orientation of the transition moments of the two dye molecules, as well as the impact of other errors in the measurement of absolute distances. Thirteen dye-pair locations with different distances using 18 independent FRET pairs conjugated to specific 30 S protein residues have been used to determine distance changes within the 30 S subunit upon association with the 50 S subunit, forming the 70 S ribosome. Here, we explain the spectroscopic methods we have used, which should be of general interest in studies that aim at obtaining quantitative distance information from FRET.
Collapse
Affiliation(s)
- Zigurts K Majumdar
- Laboratory for Fluorescence Dynamics, Department of Physics, University of Illinois at Urbana-Champaign, IL 61801, USA
| | | | | | | |
Collapse
|
91
|
Jäger M, Michalet X, Weiss S. Protein-protein interactions as a tool for site-specific labeling of proteins. Protein Sci 2005; 14:2059-68. [PMID: 15987886 PMCID: PMC2279317 DOI: 10.1110/ps.051384705] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Probing structures and dynamics within biomolecules using ensemble and single-molecule fluorescence resonance energy transfer requires the conjugation of fluorophores to proteins in a site-specific and thermodynamically nonperturbative fashion. Using single-molecule fluorescence-aided molecular sorting and the chymotrypsin inhibitor 2-subtilisin BPN' complex as an example, we demonstrate that protein-protein interactions can be exploited to afford site-specific labeling of a recombinant double-cysteine variant of CI2 without the need for extensive and time-consuming chromatography. The use of protein-protein interactions for site-specific labeling of proteins is compatible with and complementary to existing chemistries for selective labeling of N-terminal cysteines, and could be extended to label multiple positions within a given polypeptide chain.
Collapse
Affiliation(s)
- Marcus Jäger
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095, USA
| | | | | |
Collapse
|
92
|
Abstract
Fluorescence resonance energy transfer (FRET) measured at the single-molecule level can reveal conformational changes of biomolecules and intermolecular interactions in physiologically relevant conditions. Thus far single-molecule FRET has been measured only between two fluorophores. However, for many complex systems, the ability to observe changes in more than one distance is desired and FRET measured between three spectrally distinct fluorophores can provide a more complete picture. We have extended the single-molecule FRET technique to three colors, using the DNA four-way (Holliday) junction as a model system that undergoes two-state conformational fluctuations. By labeling three arms of the junction with Cy3 (donor), Cy5 (acceptor 1), and Cy5.5 (acceptor 2), distance changes between the donor and acceptor 1, and between the donor and acceptor 2, can be measured simultaneously. Thus we are able to show that the acceptor 1 arm moves away from the donor arm at the same time as the acceptor 2 arm approaches the donor arm, and vice versa, marking the first example of observing correlated movements of two different segments of a single molecule. Our data further suggest that Holliday junction does not spend measurable time with any of the helices unstacked, and that the parallel conformations are not populated to a detectable degree.
Collapse
Affiliation(s)
- Sungchul Hohng
- Physics Department, University of Illinois, Urbana-Champaign, Urbana, Illinois, USA
| | | | | |
Collapse
|
93
|
Galperin E, Verkhusha VV, Sorkin A. Three-chromophore FRET microscopy to analyze multiprotein interactions in living cells. Nat Methods 2004; 1:209-17. [PMID: 15782196 DOI: 10.1038/nmeth720] [Citation(s) in RCA: 162] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2004] [Accepted: 10/06/2004] [Indexed: 12/31/2022]
Abstract
Nearly every major process in a cell is carried out by assemblies of multiple dynamically interacting protein molecules. To study multi-protein interactions within such molecular machineries, we have developed a fluorescence microscopy method called three-chromophore fluorescence resonance energy transfer (3-FRET). This method allows analysis of three mutually dependent energy transfer processes between the fluorescent labels, such as cyan, yellow and monomeric red fluorescent proteins. Here, we describe both theoretical and experimental approaches that discriminate the parallel versus the sequential energy transfer processes in the 3-FRET system. These approaches were established in vitro and in cultured mammalian cells, using chimeric proteins consisting of two or three fluorescent proteins linked together. The 3-FRET microscopy was further applied to the analysis of three-protein interactions in the constitutive and activation-dependent complexes in single endosomal compartments. These data highlight the potential of 3-FRET microscopy in studies of spatial and temporal regulation of signaling processes in living cells.
Collapse
Affiliation(s)
- Emilia Galperin
- Department of Pharmacology, University of Colorado Health Sciences Center, Aurora, Colorado 80045, USA
| | | | | |
Collapse
|
94
|
Cruz RPG, Withers JB, Li Y. Dinucleotide junction cleavage versatility of 8-17 deoxyribozyme. ACTA ACUST UNITED AC 2004; 11:57-67. [PMID: 15112995 DOI: 10.1016/j.chembiol.2003.12.012] [Citation(s) in RCA: 147] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2003] [Revised: 10/09/2003] [Accepted: 10/22/2003] [Indexed: 11/21/2022]
Abstract
We conducted 16 parallel in vitro selection experiments to isolate catalytic DNAs from a common DNA library for the cleavage of all 16 possible dinucleotide junctions of RNA incorporated into a common DNA/RNA chimeric substrate sequence. We discovered hundreds of sequence variations of the 8-17 deoxyribozyme--an RNA-cleaving catalytic DNA motif previously reported--from nearly all 16 final pools. Sequence analyses identified four absolutely conserved nucleotides in 8-17. Five representative 8-17 variants were tested for substrate cleavage in trans, and together they were able to cleave 14 dinucleotide junctions. New 8-17 variants required Mn2+ to support their broad dinucleotide cleavage capabilities. We hypothesize that 8-17 has a tertiary structure composed of an enzymatic core executing catalysis and a structural facilitator providing structural fine tuning when different dinucleotide junctions are given as cleavage sites.
Collapse
Affiliation(s)
- Rani P G Cruz
- Department of Biochemistry, McMaster University, Hamilton, Canada
| | | | | |
Collapse
|
95
|
Bonaccio M, Credali A, Peracchi A. Kinetic and thermodynamic characterization of the RNA-cleaving 8-17 deoxyribozyme. Nucleic Acids Res 2004; 32:916-25. [PMID: 14963261 PMCID: PMC373389 DOI: 10.1093/nar/gkh250] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The 8-17 deoxyribozyme is a small DNA catalyst of significant applicative interest. We have analyzed the kinetic features of a well behaved 8-17 construct and determined the influence of several reaction conditions on such features, providing a basis for further exploration of the deoxyribozyme mechanism. The 8-17 bound its substrate with a rate constant approximately 10-fold lower than those typical for the annealing of short complementary oligonucleotides. The observed free energy of substrate binding indicates that an energetic penalty near to +7 kcal/mol is attributable to the deoxyribozyme core. Substrate cleavage required divalent metal ion cofactors, and the dependence of activity on the concentration of Mg2+, Ca2+ or Mn2+ suggests the occurrence of a single, low-specificity binding site for activating ions. The efficiency of activation correlated with the Lewis acidity of the ion cofactor, compatible with a metal-assisted deprotonation of the reactive 2'-hydroxyl group. However, alternative roles of the metal ions cannot be excluded, because those ions that are stronger Lewis acids are also capable of forming stronger interactions with ligands such as the phosphate oxygens. The apparent enthalpy of activation for the 8-17 reaction was close to the values observed for hydroxide-catalyzed and hammerhead ribozyme-catalyzed RNA cleavage.
Collapse
Affiliation(s)
- Maria Bonaccio
- Department of Biochemistry and Molecular Biology, University of Parma, 43100 Parma, Italy
| | | | | |
Collapse
|
96
|
Jiang P, Guo Z. Fluorescent detection of zinc in biological systems: recent development on the design of chemosensors and biosensors. Coord Chem Rev 2004. [DOI: 10.1016/j.cct.2003.10.013] [Citation(s) in RCA: 739] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
97
|
Bunt G, Wouters FS. Visualization of Molecular Activities Inside Living Cells with Fluorescent Labels. INTERNATIONAL REVIEW OF CYTOLOGY 2004; 237:205-77. [PMID: 15380669 DOI: 10.1016/s0074-7696(04)37005-1] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
Abstract
The major task of modern cell biology is to identify the function and relation of the many different gene products, discovered by genomics and proteomics approaches, in the context of the living cell. To achieve this goal, an increasing toolbox of custom-designed biosensors based on fluorescent labels is available to study the molecular activities of the cellular machinery. An overview of the current status of the young field of molecular-cellular physiology is presented that includes the application of fluorescent labels in the design of biosensors and the major detection schemes used to extract their sensing information. In particular, the use of the photophysical phenomenon of Förster resonance energy transfer (FRET) as a powerful indicator of cellular biochemical events is discussed. In addition, we will point out the challenges and directions of the field and project the short-term future for the application of fluorescence-based biosensors in biology.
Collapse
Affiliation(s)
- Gertrude Bunt
- Max-Planck-Institute for Experimental Medicine, Molecular Biology of Neuronal Signals, Göttingen, Germany
| | | |
Collapse
|
98
|
Abstract
Deoxyribozyme (DNAzyme) carrying peroxidase activity was immobilized on two types of particles and the enzymatic activity was measured. The DNA recognizing porphyrin were prepared according to Travascio et al. ([1998] Chem Biol 5:505-517) and the interactions with hemin were investigated by ultraviolet absorbance and circular dichroism spectroscopies. The DNA interacted with hemin and significant conformational change was induced by the interaction. Therefore, the end of this DNA was modified with a thiol group and it was immobilized on thiol-containing polysaccharide beads or on gold particles. The DNA immobilized on the gold particle showed activity catalyzing the peroxidation reaction. No significant reduction of activity was observed even after immobilization. The immobilized DNAzyme could be repeatedly utilized without significant loss of activity. In addition, heat treatment did not reduce the activity, although a protein enzyme, horseradish peroxidase, lost its activity after the heat treatment. The repertoire of DNAzyme is still currently limited. However, in the future the utilization of DNAzyme in the field of biotechnology will be important with the increase of discoveries of new functional DNAzymes.
Collapse
Affiliation(s)
- Yoshihiro Ito
- Kanagawa Academy of Science and Technology, KSP East 309, 3-2-1 Sakado, Takatsu-ku, Kawasaki 213-0012, Japan
| | | |
Collapse
|
99
|
Dioubankova NN, Malakhov AD, Stetsenko DA, Gait MJ, Volynsky PE, Efremov RG, Korshun VA. Pyrenemethyl ara-uridine-2'-carbamate: a strong interstrand excimer in the major groove of a DNA duplex. Chembiochem 2003; 4:841-7. [PMID: 12964158 DOI: 10.1002/cbic.200300678] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The synthesis of new nucleoside derivatives, ara-uridine-2'-carbamates, and their incorporation into synthetic DNA oligomers is described. The modification directs ligands into the major groove of duplex DNA and somewhat destabilizes the duplexes of modified oligonucleotides with complementary DNA or RNA. In the case of pyrenemethyl carbamate modification in DNA-DNA duplexes, the destabilization is considerably reduced. The pyrenemethyl derivative also shows remarkable spectral properties: a "reversed" absorbance change for pyrene at 350 nm in the course of denaturation of the DNA duplex, as compared to the change seen in the nucleotide absorbance at 260 nm. This derivatization also causes pronounced sequence-dependent excimer formation in the major groove.
Collapse
Affiliation(s)
- Natalia N Dioubankova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya 16/10, 117997 Moscow, Russia
| | | | | | | | | | | | | |
Collapse
|
100
|
Haustein E, Jahnz M, Schwille P. Triple FRET: a tool for studying long-range molecular interactions. Chemphyschem 2003; 4:745-8. [PMID: 12901306 DOI: 10.1002/cphc.200200634] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Elke Haustein
- Experimental Biophysics Group, MPI for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | | | | |
Collapse
|