51
|
Filipiak P, Bobrowski K, Hug GL, Schöneich C, Marciniak B. N-Terminal Decarboxylation as a Probe for Intramolecular Contact Formation in γ-Glu-(Pro) n-Met Peptides. J Phys Chem B 2020; 124:8082-8098. [PMID: 32813519 PMCID: PMC7503560 DOI: 10.1021/acs.jpcb.0c04371] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The kinetics of intramolecular-contact formation between remote functional groups in peptides with restricted conformational flexibility were examined using designed peptides with variable-length proline bridges. As probes for this motion, free radicals were produced using the •OH-induced oxidation at the C-terminal methionine residue of γ-Glu-(Pro)n-Met peptides (n = 0-3). The progress of the radicals' motion along the proline bridges was monitored as the radicals underwent reactions along the peptides' backbones. Of particular interest was the reaction between the sulfur atom located in the side chain of the oxidized Met residue and the unprotonated amino group of the glutamic acid moiety. Interactions between them were probed by the radiation-chemical yields (expressed as G values) of the formation of C-centered, α-aminoalkyl radicals (αN) on the Glu residue. These radicals were monitored directly or via their reaction with p-nitroacetophenone (PNAP) to generate the optically detected PNAP•- radical anions. The yields of these αN radicals were found to be linearly dependent on the number of Pro residues. A constant decrease by 0.09 μM J-1 per spacing Pro residue of the radiation-chemical yields of G(αN) was observed. Previous reports support the conclusion that the αN radicals in these cases would have to result from (S∴N)+-bonded cyclic radical cations that arose as a result from direct contact between the ends of the peptides. Furthermore, by analogy with the rate constants for the formation of intramolecularly (S∴S)+-bonded radical cations in Met-(Pro)n-Met peptides ( J. Phys. Chem. B 2016, 120, 9732), the rate constants for the formation of intramolecularly (S∴N)+-bonded radical cations are activated to the same extent for all of the γ-Glu-(Pro)n-Met peptides. Thus, the continuous decrease of G(αN) with the number of Pro residues (from 0 to 3) suggests that the formation of a contact between the S-atom in the C-terminal Met residue and the N-atom of a deprotonated N-terminal amino group of Glu is controlled in peptides with 0 to 3 Pro residues by the relative diffusion of the S•+ and unoxidized N-atom. The overall rate constants of cyclization to form the (S∴N)-bonded radical cations were estimated to be 3.8 × 106, 1.8 × 106, and 8.1 × 105 s-1 for peptides with n = 0, 1, and 2 Pro residues, respectively. If activation is the same for all of the peptides, then these rate constants are a direct indication for the end-to-end dynamics along the chain.
Collapse
Affiliation(s)
- Piotr Filipiak
- Faculty of Chemistry, Adam Mickiewicz University, 61-614 Poznan, Poland.,Center for Advanced Technology, Adam Mickiewicz University, 61-614 Poznan, Poland
| | - Krzysztof Bobrowski
- Institute of Nuclear Chemistry and Technology, 03-195 Warsaw, Poland.,Radiation Laboratory, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Gordon L Hug
- Faculty of Chemistry, Adam Mickiewicz University, 61-614 Poznan, Poland.,Radiation Laboratory, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Christian Schöneich
- School of Pharmacy, Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, Kansas 66047, United States
| | - Bronislaw Marciniak
- Faculty of Chemistry, Adam Mickiewicz University, 61-614 Poznan, Poland.,Center for Advanced Technology, Adam Mickiewicz University, 61-614 Poznan, Poland
| |
Collapse
|
52
|
Affiliation(s)
- R. Daniel Little
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, California 93106, United States
| |
Collapse
|
53
|
Zhang X, Paton RS. Stereoretention in styrene heterodimerisation promoted by one-electron oxidants. Chem Sci 2020; 11:9309-9324. [PMID: 34123173 PMCID: PMC8163378 DOI: 10.1039/d0sc03059g] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Radical cations generated from the oxidation of C
Created by potrace 1.16, written by Peter Selinger 2001-2019
]]>
C π-bonds are synthetically useful reactive intermediates for C–C and C–X bond formation. Radical cation formation, induced by sub-stoichiometric amounts of external oxidant, are important intermediates in the Woodward–Hoffmann thermally disallowed [2 + 2] cycloaddition of electron-rich alkenes. Using density functional theory (DFT), we report the detailed mechanisms underlying the intermolecular heterodimerisation of anethole and β-methylstyrene to give unsymmetrical, tetra-substituted cyclobutanes. Reactions between trans-alkenes favour the all-trans adduct, resulting from a kinetic preference for anti-addition reinforced by reversibility at ambient temperatures since this is also the thermodynamic product; on the other hand, reactions between a trans-alkene and a cis-alkene favour syn-addition, while exocyclic rotation in the acyclic radical cation intermediate is also possible since C–C forming barriers are higher. Computations are consistent with the experimental observation that hexafluoroisopropanol (HFIP) is a better solvent than acetonitrile, in part due to its ability to stabilise the reduced form of the hypervalent iodine initiator by hydrogen bonding, but also through the stabilisation of radical cationic intermediates along the reaction coordinate. A computational study details the mechanism, catalytic cycle and origins of stereoselectivity underlying hole-catalyzed intermolecular alkene heterodimerisation to give unsymmetrical, tetra-substituted cyclobutanes.![]()
Collapse
Affiliation(s)
- Xinglong Zhang
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford Mansfield Road Oxford OX1 3TA UK
| | - Robert S Paton
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford Mansfield Road Oxford OX1 3TA UK.,Department of Chemistry, Colorado State University Fort Collins CO 80523 USA
| |
Collapse
|
54
|
Neugebauer H, Bohle F, Bursch M, Hansen A, Grimme S. Benchmark Study of Electrochemical Redox Potentials Calculated with Semiempirical and DFT Methods. J Phys Chem A 2020; 124:7166-7176. [DOI: 10.1021/acs.jpca.0c05052] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Hagen Neugebauer
- Mulliken Center for Theoretical Chemistry, Institute for Physical and Theoretical Chemistry, University of Bonn, Beringstr. 4, 53115 Bonn, Germany
| | - Fabian Bohle
- Mulliken Center for Theoretical Chemistry, Institute for Physical and Theoretical Chemistry, University of Bonn, Beringstr. 4, 53115 Bonn, Germany
| | - Markus Bursch
- Mulliken Center for Theoretical Chemistry, Institute for Physical and Theoretical Chemistry, University of Bonn, Beringstr. 4, 53115 Bonn, Germany
| | - Andreas Hansen
- Mulliken Center for Theoretical Chemistry, Institute for Physical and Theoretical Chemistry, University of Bonn, Beringstr. 4, 53115 Bonn, Germany
| | - Stefan Grimme
- Mulliken Center for Theoretical Chemistry, Institute for Physical and Theoretical Chemistry, University of Bonn, Beringstr. 4, 53115 Bonn, Germany
| |
Collapse
|
55
|
Loipersberger M, Zee DZ, Panetier JA, Chang CJ, Long JR, Head-Gordon M. Computational Study of an Iron(II) Polypyridine Electrocatalyst for CO2 Reduction: Key Roles for Intramolecular Interactions in CO2 Binding and Proton Transfer. Inorg Chem 2020; 59:8146-8160. [DOI: 10.1021/acs.inorgchem.0c00454] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Matthias Loipersberger
- Pitzer Center for Theoretical Chemistry, Department of Chemistry, University of California, Berkeley, California 94720, United States
- Joint Center for Artificial Photosynthesis, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - David Z. Zee
- Joint Center for Artificial Photosynthesis, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Julien A. Panetier
- Joint Center for Artificial Photosynthesis, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Department of Chemistry, State University of New York at Binghamton, Binghamton, New York 13902, United States
| | - Christopher J. Chang
- Department of Chemistry, University of California, Berkeley, California 94720, United States
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Department of Molecular and Cell Biology, University of California, Berkeley, California 94720, United States
| | - Jeffrey R. Long
- Department of Chemistry, University of California, Berkeley, California 94720, United States
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Department of Chemical & Biomolecular Engineering, University of California, Berkeley, California 94720, United States
| | - Martin Head-Gordon
- Pitzer Center for Theoretical Chemistry, Department of Chemistry, University of California, Berkeley, California 94720, United States
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| |
Collapse
|
56
|
Wu B, Zhang L, Wei S, Ou'Yang L, Yin R, Zhang S. Reduction of chromate with UV/diacetyl for the final effluent to be below the discharge limit. JOURNAL OF HAZARDOUS MATERIALS 2020; 389:121841. [PMID: 31848094 DOI: 10.1016/j.jhazmat.2019.121841] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Revised: 12/05/2019] [Accepted: 12/05/2019] [Indexed: 06/10/2023]
Abstract
Reduction of Cr(VI) to Cr(III) is helpful to lower the toxicity risk and also necessary for the removal of chromium from waste streams through alkaline precipitation. We compared the reduction of Cr(VI) in six UV systems with oxalic acid (OA), ethylenediaminetetraacetic acid (EDTA), salicylic acid (SA), hydroquinone (HQ), acetylacetone (AA) and diacetyl (BD) as chelating or non-chelating photo-activators. Overall, HQ, AA and BD were much more efficient than the carboxylic acids for the photo-reduction of Cr(VI). By introduction of UV to HQ system, the pseudo-first-order rate constant of Cr(VI) reduction at pH 5.1 was increased about 50 times. However, due to the formation of colloidal polymers, the UV/HQ treated solutions were dark in color and had a high turbidity (82 NTU). The effects of AA and BD on the photoreduction of Cr(VI) were similar. The UV/BD treated solution was colorless and clear with a turbidity lower than 1 NTU and a residual Cr less than 0.1 mg/L. The results demonstrate that UV/BD is a promising approach for the treatment of Cr(VI)-laden wastewater. The findings here also suggest that utilization of diketones in redox conversion of contaminants is a topic deserving further research.
Collapse
Affiliation(s)
- Bingdang Wu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Li Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Shijie Wei
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Lixue Ou'Yang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Ran Yin
- Department of Civil and Environmental Engineering, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Shujuan Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China.
| |
Collapse
|
57
|
Gao Y, Wu Z, Yu L, Wang Y, Pan Y. Alkyl Carbazates for Electrochemical Deoxygenative Functionalization of Heteroarenes. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202001571] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Yongyuan Gao
- State Key Laboratory of Coordination ChemistryJiangsu Key Laboratory of Advanced Organic MaterialsSchool of Chemistry and Chemical EngineeringNanjing University Nanjing 210023 China
| | - Zhengguang Wu
- State Key Laboratory of Coordination ChemistryJiangsu Key Laboratory of Advanced Organic MaterialsSchool of Chemistry and Chemical EngineeringNanjing University Nanjing 210023 China
| | - Lei Yu
- State Key Laboratory of Coordination ChemistryJiangsu Key Laboratory of Advanced Organic MaterialsSchool of Chemistry and Chemical EngineeringNanjing University Nanjing 210023 China
| | - Yi Wang
- State Key Laboratory of Coordination ChemistryJiangsu Key Laboratory of Advanced Organic MaterialsSchool of Chemistry and Chemical EngineeringNanjing University Nanjing 210023 China
| | - Yi Pan
- State Key Laboratory of Coordination ChemistryJiangsu Key Laboratory of Advanced Organic MaterialsSchool of Chemistry and Chemical EngineeringNanjing University Nanjing 210023 China
| |
Collapse
|
58
|
Gao Y, Wu Z, Yu L, Wang Y, Pan Y. Alkyl Carbazates for Electrochemical Deoxygenative Functionalization of Heteroarenes. Angew Chem Int Ed Engl 2020; 59:10859-10863. [DOI: 10.1002/anie.202001571] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 03/07/2020] [Indexed: 12/14/2022]
Affiliation(s)
- Yongyuan Gao
- State Key Laboratory of Coordination ChemistryJiangsu Key Laboratory of Advanced Organic MaterialsSchool of Chemistry and Chemical EngineeringNanjing University Nanjing 210023 China
| | - Zhengguang Wu
- State Key Laboratory of Coordination ChemistryJiangsu Key Laboratory of Advanced Organic MaterialsSchool of Chemistry and Chemical EngineeringNanjing University Nanjing 210023 China
| | - Lei Yu
- State Key Laboratory of Coordination ChemistryJiangsu Key Laboratory of Advanced Organic MaterialsSchool of Chemistry and Chemical EngineeringNanjing University Nanjing 210023 China
| | - Yi Wang
- State Key Laboratory of Coordination ChemistryJiangsu Key Laboratory of Advanced Organic MaterialsSchool of Chemistry and Chemical EngineeringNanjing University Nanjing 210023 China
| | - Yi Pan
- State Key Laboratory of Coordination ChemistryJiangsu Key Laboratory of Advanced Organic MaterialsSchool of Chemistry and Chemical EngineeringNanjing University Nanjing 210023 China
| |
Collapse
|
59
|
Kim J, Kang B, Hong SH. Direct Allylic C(sp3)–H Thiolation with Disulfides via Visible Light Photoredox Catalysis. ACS Catal 2020. [DOI: 10.1021/acscatal.0c01232] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Jungwon Kim
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
- Department of Chemistry, College of Natural Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Byungjoon Kang
- Department of Chemistry, College of Natural Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Soon Hyeok Hong
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| |
Collapse
|
60
|
Chang H, Zheng W, Zhu D, Xie H. DFT study on C-S bond dissociation enthalpies of thiol-derived peptide models. J Sulphur Chem 2020. [DOI: 10.1080/17415993.2020.1740224] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Huifang Chang
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai, People’s Republic of China
| | - Wenrui Zheng
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai, People’s Republic of China
| | - Danfeng Zhu
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai, People’s Republic of China
| | - Hongyun Xie
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai, People’s Republic of China
| |
Collapse
|
61
|
Ketkov S. Substituent effects on the electronic structures of sandwich compounds: new understandings provided by DFT-assisted laser ionization spectroscopy of bisarene complexes. Dalton Trans 2020; 49:569-577. [PMID: 31903470 DOI: 10.1039/c9dt04440j] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Recent advances on substituent effects in transition metal bisarene complexes studied with high-resolution threshold ionization spectroscopy are reviewed to demonstrate new aspects of the ligand influence on electronic structures of sandwich molecules. Unprecedented accuracy in the determination of ionization energies provided by the laser techniques makes it possible to reveal and describe quantitatively such fine phenomena as isotope effects, the mutual substituent influence or variations of substituent effects on replacing the central metal atom with its Group analogues. In combination with DFT calculations, laser ionization spectroscopy unveils mechanisms of the ligand influence on unique redox properties of sandwich complexes which are of key importance for their practical use.
Collapse
Affiliation(s)
- Sergey Ketkov
- G.A. Razuvaev Institute of Organometallic Chemistry RAS, Tropinin St. 49, GSP-445, Nizhny Novgorod 603950, Russian Federation.
| |
Collapse
|
62
|
Zhu D, Zheng W, Chang H, Xie H. A theoretical study on the p Ka values of selenium compounds in aqueous solution. NEW J CHEM 2020. [DOI: 10.1039/d0nj01124j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The pKa values of different kinds of selenium compounds (R-SeH) were investigated by using the ωB97XD method with a SMD model.
Collapse
Affiliation(s)
- Danfeng Zhu
- College of Chemistry and Chemical Engineering
- Shanghai University of Engineering Science
- Shanghai 201620
- China
| | - Wenrui Zheng
- College of Chemistry and Chemical Engineering
- Shanghai University of Engineering Science
- Shanghai 201620
- China
| | - Huifang Chang
- College of Chemistry and Chemical Engineering
- Shanghai University of Engineering Science
- Shanghai 201620
- China
| | - Hongyun Xie
- College of Chemistry and Chemical Engineering
- Shanghai University of Engineering Science
- Shanghai 201620
- China
| |
Collapse
|
63
|
Abreha BG, Agarwal S, Foster I, Blaiszik B, Lopez SA. Virtual Excited State Reference for the Discovery of Electronic Materials Database: An Open-Access Resource for Ground and Excited State Properties of Organic Molecules. J Phys Chem Lett 2019; 10:6835-6841. [PMID: 31642678 DOI: 10.1021/acs.jpclett.9b02577] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
This letter announces the Virtual Excited State Reference for the Discovery of Electronic Materials Database (VERDE materials DB), the first database to include downloadable excited-state structures (S0, S1, T1) and photophysical properties. VERDE materials DB is searchable, open-access via www.verdedb.org , and focused on light-responsive π-conjugated organic molecules with applications in green chemistry, organic solar cells, and organic redox flow batteries. It includes results of our active and past virtual screening studies; to date, more than 13 000 density functional theory (DFT) calculations have been performed on 1 500 molecules to obtain frontier molecular orbitals and photophysical properties, including excitation energies, dipole moments, and redox potentials. To improve community access, we have made VERDE materials DB available via an integration with the Materials Data Facility. We are leveraging VERDE materials DB to train machine learning algorithms to identify new materials and structure-property relationships between molecular ground- and excited-states. We present a case-study involving photoaffinity labels, including predictions of new diazirine-based photoaffinity labels anticipated to have high photostabilities.
Collapse
Affiliation(s)
- Biruk G Abreha
- Northeastern University , Boston , Massachusetts 02115 , United States
| | - Snigdha Agarwal
- Northeastern University , Boston , Massachusetts 02115 , United States
| | - Ian Foster
- Argonne National Laboratory , Lemont , Illinois 60439 , United States
- University of Chicago , Chicago , Illinois 60637 , United States
| | - Ben Blaiszik
- Argonne National Laboratory , Lemont , Illinois 60439 , United States
- University of Chicago , Chicago , Illinois 60637 , United States
| | - Steven A Lopez
- Northeastern University , Boston , Massachusetts 02115 , United States
| |
Collapse
|
64
|
Kim MJ, Kang YK. Predicting Potential Inversion Behavior of Ru–aqua Complexes via Using Cost Effective DFT Calculations. B KOREAN CHEM SOC 2019. [DOI: 10.1002/bkcs.11878] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Moon Ju Kim
- Department of ChemistrySangmyung University Seoul 03016 Korea
| | - Youn K. Kang
- Department of ChemistrySangmyung University Seoul 03016 Korea
| |
Collapse
|
65
|
Xu L, Coote ML. Improving the Accuracy of PCM-UAHF and PCM-UAKS Calculations Using Optimized Electrostatic Scaling Factors. J Chem Theory Comput 2019; 15:6958-6967. [DOI: 10.1021/acs.jctc.9b00888] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Longkun Xu
- ARC Centre of Excellence for Electromaterials Science, Research School of Chemistry, Australian National University, Canberra, Australian Capital Territory 2601, Australia
| | - Michelle L. Coote
- ARC Centre of Excellence for Electromaterials Science, Research School of Chemistry, Australian National University, Canberra, Australian Capital Territory 2601, Australia
| |
Collapse
|
66
|
Neff RK, Su YL, Liu S, Rosado M, Zhang X, Doyle MP. Generation of Halomethyl Radicals by Halogen Atom Abstraction and Their Addition Reactions with Alkenes. J Am Chem Soc 2019; 141:16643-16650. [DOI: 10.1021/jacs.9b05921] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Robynne K. Neff
- Department of Chemistry, The University of Texas at San Antonio, San Antonio, Texas 78249, United States
| | - Yong-Liang Su
- Department of Chemistry, The University of Texas at San Antonio, San Antonio, Texas 78249, United States
| | - Siqi Liu
- College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Melina Rosado
- Department of Chemistry, The University of Texas at San Antonio, San Antonio, Texas 78249, United States
| | - Xinhao Zhang
- Lab of Computational Chemistry and Drug Design, State Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Michael P. Doyle
- Department of Chemistry, The University of Texas at San Antonio, San Antonio, Texas 78249, United States
| |
Collapse
|
67
|
Xu L, Coote ML. Methods To Improve the Calculations of Solvation Model Density Solvation Free Energies and Associated Aqueous pKa Values: Comparison between Choosing an Optimal Theoretical Level, Solute Cavity Scaling, and Using Explicit Solvent Molecules. J Phys Chem A 2019; 123:7430-7438. [DOI: 10.1021/acs.jpca.9b04920] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Longkun Xu
- ARC Centre of Excellence for Electromaterials Science, Research School of Chemistry, Australian National University, Canberra, Australian Capital Territory 2601, Australia
| | - Michelle L. Coote
- ARC Centre of Excellence for Electromaterials Science, Research School of Chemistry, Australian National University, Canberra, Australian Capital Territory 2601, Australia
| |
Collapse
|
68
|
Ma ZY, Guo LN, You Y, Yang F, Hu M, Duan XH. Visible Light Driven Alkylation of C(sp 3)-H Bonds Enabled by 1,6-Hydrogen Atom Transfer/Radical Relay Addition. Org Lett 2019; 21:5500-5504. [PMID: 31246029 DOI: 10.1021/acs.orglett.9b01804] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A visible-light-driven sulfamate esters guided alkylation of unactivated C(sp3)-H bonds enabled by a 1,6-HAT/radical addition cascade is described. Not only structurally diverse Michael acceptors but also styrenes are amenable to this alkylation reaction. Notably, the N-H bonds activation radical relay refrained from prefunctionalization and using excess external oxidants.
Collapse
Affiliation(s)
- Zhi-Yong Ma
- Department of Chemistry, School of Science, Xi'an Key Laboratory of Sustainable Energy Material Chemistry and MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter , Xi'an Jiaotong University , Xi'an 710049 , P. R. China
| | - Li-Na Guo
- Department of Chemistry, School of Science, Xi'an Key Laboratory of Sustainable Energy Material Chemistry and MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter , Xi'an Jiaotong University , Xi'an 710049 , P. R. China
| | - Ying You
- Department of Chemistry, School of Science, Xi'an Key Laboratory of Sustainable Energy Material Chemistry and MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter , Xi'an Jiaotong University , Xi'an 710049 , P. R. China
| | - Fan Yang
- Department of Chemistry, School of Science, Xi'an Key Laboratory of Sustainable Energy Material Chemistry and MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter , Xi'an Jiaotong University , Xi'an 710049 , P. R. China
| | - Mingyou Hu
- Department of Chemistry, School of Science, Xi'an Key Laboratory of Sustainable Energy Material Chemistry and MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter , Xi'an Jiaotong University , Xi'an 710049 , P. R. China
| | - Xin-Hua Duan
- Department of Chemistry, School of Science, Xi'an Key Laboratory of Sustainable Energy Material Chemistry and MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter , Xi'an Jiaotong University , Xi'an 710049 , P. R. China.,State Key Laboratory of Applied Organic Chemistry , Lanzhou University , Lanzhou 730000 , P. R. China
| |
Collapse
|
69
|
Krapivin VB, Sen’ VD, Luzhkov VB. Quantum chemical calculations of the one-electron oxidation potential of nitroxide spin labels in biologically active compounds. Chem Phys 2019. [DOI: 10.1016/j.chemphys.2019.02.021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
70
|
Kim D, Rahaman SMW, Mercado BQ, Poli R, Holland PL. Roles of Iron Complexes in Catalytic Radical Alkene Cross-Coupling: A Computational and Mechanistic Study. J Am Chem Soc 2019; 141:7473-7485. [PMID: 31025567 PMCID: PMC6953484 DOI: 10.1021/jacs.9b02117] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A growing and useful class of alkene coupling reactions involve hydrogen atom transfer (HAT) from a metal-hydride species to an alkene to form a free radical, which is responsible for subsequent bond formation. Here, we use a combination of experimental and computational investigations to map out the mechanistic details of iron-catalyzed reductive alkene cross-coupling, an important representative of the HAT alkene reactions. We are able to explain several observations that were previously mysterious. First, the rate-limiting step in the catalytic cycle is the formation of the reactive Fe-H intermediate, elucidating the importance of the choice of reductant. Second, the success of the catalytic system is attributable to the exceptionally weak (17 kcal/mol) Fe-H bond, which performs irreversible HAT to alkenes in contrast to previous studies on isolable hydride complexes where this addition was reversible. Third, the organic radical intermediates can reversibly form organometallic species, which helps to protect the free radicals from side reactions. Fourth, the previously accepted quenching of the postcoupling radical through stepwise electron transfer/proton transfer is not as favorable as alternative mechanisms. We find that there are two feasible pathways. One uses concerted proton-coupled electron transfer (PCET) from an iron(II) ethanol complex, which is facilitated because the O-H bond dissociation free energy is lowered by 30 kcal/mol upon metal binding. In an alternative pathway, an O-bound enolate-iron(III) complex undergoes proton shuttling from an iron-bound alcohol. These kinetic, spectroscopic, and computational studies identify key organometallic species and PCET steps that control selectivity and reactivity in metal-catalyzed HAT alkene coupling, and create a firm basis for elucidation of mechanisms in the growing class of HAT alkene cross-coupling reactions.
Collapse
Affiliation(s)
- Dongyoung Kim
- Department of Chemistry, Yale University, New Haven, Connecticut 06511, United States
| | - S. M. Wahidur Rahaman
- LCC-CNRS, Université de Toulouse, INPT, 205 Route de Narbonne, BP 44099, F-31077 Toulouse Cedex 4, France
| | - Brandon Q. Mercado
- Department of Chemistry, Yale University, New Haven, Connecticut 06511, United States
| | - Rinaldo Poli
- LCC-CNRS, Université de Toulouse, INPT, 205 Route de Narbonne, BP 44099, F-31077 Toulouse Cedex 4, France
| | - Patrick L. Holland
- Department of Chemistry, Yale University, New Haven, Connecticut 06511, United States
| |
Collapse
|
71
|
Desulfurization of benzothiophene from model diesel fuel using experimental (dynamic electroreduction) and theoretical (DFT) approaches. Sep Purif Technol 2019. [DOI: 10.1016/j.seppur.2018.11.057] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
72
|
Fu MC, Shang R, Zhao B, Wang B, Fu Y. Photocatalytic decarboxylative alkylations mediated by triphenylphosphine and sodium iodide. Science 2019; 363:1429-1434. [DOI: 10.1126/science.aav3200] [Citation(s) in RCA: 368] [Impact Index Per Article: 73.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 11/20/2018] [Accepted: 02/20/2019] [Indexed: 12/31/2022]
Abstract
Most photoredox catalysts in current use are precious metal complexes or synthetically elaborate organic dyes, the cost of which can impede their application for large-scale industrial processes. We found that a combination of triphenylphosphine and sodium iodide under 456-nanometer irradiation by blue light–emitting diodes can catalyze the alkylation of silyl enol ethers by decarboxylative coupling with redox-active esters in the absence of transition metals. Deaminative alkylation using Katritzky’s N-alkylpyridinium salts and trifluoromethylation using Togni’s reagent are also demonstrated. Moreover, the phosphine/iodide-based photoredox system catalyzes Minisci-type alkylation of N-heterocycles and can operate in tandem with chiral phosphoric acids to achieve high enantioselectivity in this reaction.
Collapse
Affiliation(s)
- Ming-Chen Fu
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Urban Pollutant Conversion, Anhui Province Key Laboratory of Biomass Clean Energy, iChEM, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Rui Shang
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Urban Pollutant Conversion, Anhui Province Key Laboratory of Biomass Clean Energy, iChEM, University of Science and Technology of China, Hefei, Anhui 230026, China
- Department of Chemistry, School of Science, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Bin Zhao
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Urban Pollutant Conversion, Anhui Province Key Laboratory of Biomass Clean Energy, iChEM, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Bing Wang
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Urban Pollutant Conversion, Anhui Province Key Laboratory of Biomass Clean Energy, iChEM, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Yao Fu
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Urban Pollutant Conversion, Anhui Province Key Laboratory of Biomass Clean Energy, iChEM, University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
73
|
Buzzetti L, Crisenza GEM, Melchiorre P. Mechanistic Studies in Photocatalysis. Angew Chem Int Ed Engl 2019; 58:3730-3747. [DOI: 10.1002/anie.201809984] [Citation(s) in RCA: 357] [Impact Index Per Article: 71.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Indexed: 12/18/2022]
Affiliation(s)
- Luca Buzzetti
- ICIQ—Institute of Chemical Research of Catalonia the Barcelona Institute of Science and Technology Avenida Països Catalans 16 43007 Tarragona Spain
| | - Giacomo E. M. Crisenza
- ICIQ—Institute of Chemical Research of Catalonia the Barcelona Institute of Science and Technology Avenida Països Catalans 16 43007 Tarragona Spain
| | - Paolo Melchiorre
- ICIQ—Institute of Chemical Research of Catalonia the Barcelona Institute of Science and Technology Avenida Països Catalans 16 43007 Tarragona Spain
- ICREA—Catalan Institution for Research and Advanced Studies Passeig Lluís Companys 23 08010 Barcelona Spain
- IIT—Istituto Italiano di TecnologiaLaboratory of Asymmetric Catalysis and Photochemistry Via Morego 30 16163 Genoa Italy
| |
Collapse
|
74
|
Adeniyi AA, Conradie J. Computational insight into the contribution of para-substituents on the reduction potential, proton affinity, and electronic properties of nitrobenzene compounds. J Mol Model 2019; 25:78. [DOI: 10.1007/s00894-019-3946-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 01/29/2019] [Indexed: 11/24/2022]
|
75
|
Yan H, Hou Z, Xu H. Photoelectrochemical C−H Alkylation of Heteroarenes with Organotrifluoroborates. Angew Chem Int Ed Engl 2019; 58:4592-4595. [DOI: 10.1002/anie.201814488] [Citation(s) in RCA: 138] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Indexed: 11/08/2022]
Affiliation(s)
- Hong Yan
- State Key Laboratory of Physical Chemistry of Solid Surfaces College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 P. R. China
| | - Zhong‐Wei Hou
- State Key Laboratory of Physical Chemistry of Solid Surfaces College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 P. R. China
| | - Hai‐Chao Xu
- State Key Laboratory of Physical Chemistry of Solid Surfaces College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 P. R. China
| |
Collapse
|
76
|
Influence of substituents on the reduction potential and pKa values of β-diketones tautomers: A theoretical study. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2018.12.030] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
77
|
Yan H, Hou Z, Xu H. Photoelectrochemical C−H Alkylation of Heteroarenes with Organotrifluoroborates. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201814488] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Hong Yan
- State Key Laboratory of Physical Chemistry of Solid Surfaces College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 P. R. China
| | - Zhong‐Wei Hou
- State Key Laboratory of Physical Chemistry of Solid Surfaces College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 P. R. China
| | - Hai‐Chao Xu
- State Key Laboratory of Physical Chemistry of Solid Surfaces College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 P. R. China
| |
Collapse
|
78
|
Buzzetti L, Crisenza GEM, Melchiorre P. Mechanistische Studien in der Photokatalyse. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201809984] [Citation(s) in RCA: 95] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Luca Buzzetti
- ICIQ—Institute of Chemical Research of Catalonia the Barcelona Institute of Science and Technology Avenida Països Catalans 16 43007 Tarragona Spanien
| | - Giacomo E. M. Crisenza
- ICIQ—Institute of Chemical Research of Catalonia the Barcelona Institute of Science and Technology Avenida Països Catalans 16 43007 Tarragona Spanien
| | - Paolo Melchiorre
- ICIQ—Institute of Chemical Research of Catalonia the Barcelona Institute of Science and Technology Avenida Països Catalans 16 43007 Tarragona Spanien
- ICREA—Catalan Institution for Research and Advanced Studies Passeig Lluís Companys 23 08010 Barcelona Spanien
- IIT—Istituto Italiano di TecnologiaLaboratory of Asymmetric Catalysis and Photochemistry Via Morego 30 16163 Genoa Italy
| |
Collapse
|
79
|
Ning D, Liu Q, Wang Q, Du XM, Li Y, Ruan WJ. Pyrene-based MOFs as fluorescent sensors for PAHs: an energetic pathway of the backbone structure effect on response. Dalton Trans 2019; 48:5705-5712. [PMID: 30968928 DOI: 10.1039/c9dt00492k] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The sensing performance of metal-organic frameworks (MOFs), a novel kind of crystalline fluorescent sensing materials, would be profoundly affected by their backbone structures. The current understanding about the backbone effect is limited to the modulation of analyte accommodation through pore structures. Herein, three topologically different pyrene-based MOFs, including NU-1000, NU-901 and ROD-7, were investigated as potential fluorescent sensors for polycyclic aromatic hydrocarbons (PAHs). Although these MOFs are constructed by the same photoactive component, they exhibited distinct sensing behaviors. NU-1000 gave different forms of fluorescent response to acenaphthylene, pyrene and fluoranthene with detection limits at the ng L-1 level. In contrast, NU-901 and ROD-7 were unresponsive to all tested PAHs. Experimental and computational investigations illustrate that this distinction is due to the variance in the excited state energy. The strong inter-ligand interaction in NU-901 and ROD-7 lowers their excited state energy and thus thermodynamically inhibits the photo-induced electron transfer and excimer/exciplex formation, which works in the NU-1000 system. This work proves for the first time that the topological structure of MOFs could affect their sensing performance in an energetic way.
Collapse
Affiliation(s)
- Di Ning
- College of Chemistry, Nankai University, No. 94 of Weijin Road, Tianjin 300071, China.
| | | | | | | | | | | |
Collapse
|
80
|
Zhu D, Zheng W, Zheng Y, Chang H, Xie H. A theoretical study on one-electron redox potentials of organotrifluoroborate anions. NEW J CHEM 2019. [DOI: 10.1039/c9nj01061k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The E° values of different kinds of organotrifluoroborate anions were investigated by using the M05-2X method with a PCM–UAHF model.
Collapse
Affiliation(s)
- Danfeng Zhu
- College of Chemistry and Chemical Engineering
- Shanghai University of Engineering Science
- Shanghai 201620
- China
| | - Wenrui Zheng
- College of Chemistry and Chemical Engineering
- Shanghai University of Engineering Science
- Shanghai 201620
- China
| | - Yuanyuan Zheng
- College of Chemistry and Chemical Engineering
- Shanghai University of Engineering Science
- Shanghai 201620
- China
| | - Huifang Chang
- College of Chemistry and Chemical Engineering
- Shanghai University of Engineering Science
- Shanghai 201620
- China
| | - Hongyun Xie
- College of Chemistry and Chemical Engineering
- Shanghai University of Engineering Science
- Shanghai 201620
- China
| |
Collapse
|
81
|
Vidyasagar A, Shi J, Kreitmeier P, Reiser O. Bromo- or Methoxy-Group-Promoted Umpolung Electron Transfer Enabled, Visible-Light-Mediated Synthesis of 2-Substituted Indole-3-glyoxylates. Org Lett 2018; 20:6984-6989. [DOI: 10.1021/acs.orglett.8b02725] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Adiyala Vidyasagar
- University of Regensburg, Institute of Organic Chemistry, Universitätsstr. 31, 93053, Regensburg, Germany
| | - Jinwei Shi
- University of Regensburg, Institute of Organic Chemistry, Universitätsstr. 31, 93053, Regensburg, Germany
| | - Peter Kreitmeier
- University of Regensburg, Institute of Organic Chemistry, Universitätsstr. 31, 93053, Regensburg, Germany
| | - Oliver Reiser
- University of Regensburg, Institute of Organic Chemistry, Universitätsstr. 31, 93053, Regensburg, Germany
| |
Collapse
|
82
|
Antuch M, Millet P. Approach to the Mechanism of Hydrogen Evolution Electrocatalyzed by a Model Co Clathrochelate: A Theoretical Study by Density Functional Theory. Chemphyschem 2018; 19:2549-2558. [PMID: 29924920 DOI: 10.1002/cphc.201800383] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Indexed: 11/08/2022]
Abstract
The hydrogen evolution reaction (HER) has attracted much attention within the scientific community because of increasing demands of modern society for clean and renewable energy sources. Molecular complexes of 3d-transition metals, such as cobalt, hold potential to replace platinum for the HER in acidic media. Among these, cage complexes such as tris-glyoximate metal clathrochelates, have demonstrated promising catalytic properties towards the HER. However, it is not clear whether the catalytic activity of this molecule stems from metal-centered activation of H+ , due to a low oxidation state of the metal stabilized by the surrounding organic cage, or if it is the organic cage playing a further cooperative role in bringing protons together. Herein, we report on a density functional theory study of two possible mechanisms for the HER catalyzed by a model Co clathrochelate. To assess the putative ligand involvement in the mechanism, several combinations of single and double protonation sites were investigated. The structural and energetic analysis of relevant intermediates suggests that the electrocatalytic mechanism is not based on the cooperation between the ligand and the metal. Instead, it is mainly due to the activation of H+ by the Co metallocenter. Our calculations further suggest that the last step in the mechanism is a proton coupled electron transfer step.
Collapse
Affiliation(s)
- Manuel Antuch
- Équipe de Recherche et d'Innovation en Électrochimie pour L'Énergie (ERIEE) Institut de Chimie Moléculaire et des Matériaux d'Orsay (ICMMO) (UMR CNRS 8182), Université Paris-Saclay, Paris-Sud, 91405, Orsay, France
| | - Pierre Millet
- Équipe de Recherche et d'Innovation en Électrochimie pour L'Énergie (ERIEE) Institut de Chimie Moléculaire et des Matériaux d'Orsay (ICMMO) (UMR CNRS 8182), Université Paris-Saclay, Paris-Sud, 91405, Orsay, France
| |
Collapse
|
83
|
Francisco da Silva A, João da Silva Filho A, Vasconcellos MLAA, Luís de Santana O. One-Electron Reduction Potentials: Calibration of Theoretical Protocols for Morita⁻Baylis⁻Hillman Nitroaromatic Compounds in Aprotic Media. Molecules 2018; 23:molecules23092129. [PMID: 30149493 PMCID: PMC6225277 DOI: 10.3390/molecules23092129] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 08/09/2018] [Accepted: 08/11/2018] [Indexed: 11/17/2022] Open
Abstract
Nitroaromatic compounds—adducts of Morita–Baylis–Hillman (MBHA) reaction—have been applied in the treatment of malaria, leishmaniasis, and Chagas disease. The biological activity of these compounds is directly related to chemical reactivity in the environment, chemical structure of the compound, and reduction of the nitro group. Because of the last aspect, electrochemical methods are used to simulate the pharmacological activity of nitroaromatic compounds. In particular, previous studies have shown a correlation between the one-electron reduction potentials in aprotic medium (estimated by cyclic voltammetry) and antileishmanial activities (measured by the IC50) for a series of twelve MBHA. In the present work, two different computational protocols were calibrated to simulate the reduction potentials for this series of molecules with the aim of supporting the molecular modeling of new pharmacological compounds from the prediction of their reduction potentials. The results showed that it was possible to predict the experimental reduction potential for the calibration set with mean absolute errors of less than 25 mV (about 0.6 kcal·mol−1).
Collapse
|
84
|
Computational electrochemistry of a novel ferrocene derivative. J Mol Graph Model 2018; 85:84-90. [PMID: 30125780 DOI: 10.1016/j.jmgm.2018.08.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 08/02/2018] [Accepted: 08/03/2018] [Indexed: 11/23/2022]
Abstract
In this study, the structural and redox properties of a novel ferrocene derivative in dichlomethane solvent were investigated. For this aim, various exchange-correlation functionals and basis sets in gas phase with different continuum solvation models and cavities in liquid phase were applied. The results indicated that UM06/6-31++G(d,p)/SDD level of theory successfully calculated bond lengths and angles with MADs = 0.02 Å and 0.78 deg., respectively. Also, its combination with CPCM-Pauling-UHF/6-31+G(d)/SDD level of theory in liquid phase effectively computed the redox potential with 0.06 V deviation from the experimental value. Moreover, transferability of the proposed method was studied through ferrocene molecule and its new synthesized derivative.
Collapse
|
85
|
Christman WE, Morrow TJ, Arulsamy N, Hulley EB. Absolute Estimates of PdII(η2-Arene) C–H Acidity. Organometallics 2018. [DOI: 10.1021/acs.organomet.8b00348] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- William E. Christman
- Department of Chemistry, University of Wyoming, Laramie, Wyoming 82071, United States
| | - Travis J. Morrow
- Department of Chemistry, University of Wyoming, Laramie, Wyoming 82071, United States
| | - Navamoney Arulsamy
- Department of Chemistry, University of Wyoming, Laramie, Wyoming 82071, United States
| | - Elliott B. Hulley
- Department of Chemistry, University of Wyoming, Laramie, Wyoming 82071, United States
| |
Collapse
|
86
|
McAtee RC, Beatty JW, McAtee CC, Stephenson CRJ. Radical Chlorodifluoromethylation: Providing a Motif for (Hetero)arene Diversification. Org Lett 2018; 20:3491-3495. [PMID: 29856642 PMCID: PMC6011751 DOI: 10.1021/acs.orglett.8b01249] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
A method for the radical chlorodifluoromethylation of (hetero)arenes using chlorodifluoroacetic anhydride is reported. This operationally simple protocol proceeds under mild photochemical conditions with high functional group compatibility and complements the large body of literature for the trifluoromethylation of (hetero)arenes. Introduction of the chlorodifluoromethyl motif enables rapid diversification to a wide array of aromatic scaffolds. This work showcases the chlorodifluoromethyl group as an attractive entryway to otherwise synthetically challenging electron-rich difluoromethyl(hetero)arenes. Furthermore, facile conversion of the CF2Cl moiety into the corresponding aryl esters, gem-difluoroenones, and β-keto-esters is demonstrated.
Collapse
Affiliation(s)
- Rory C McAtee
- Willard Henry Dow Laboratory, Department of Chemistry , University of Michigan , 930 North University Avenue , Ann Arbor , Michigan 48109 , United States
| | - Joel W Beatty
- Willard Henry Dow Laboratory, Department of Chemistry , University of Michigan , 930 North University Avenue , Ann Arbor , Michigan 48109 , United States
| | - Christopher C McAtee
- Willard Henry Dow Laboratory, Department of Chemistry , University of Michigan , 930 North University Avenue , Ann Arbor , Michigan 48109 , United States
| | - Corey R J Stephenson
- Willard Henry Dow Laboratory, Department of Chemistry , University of Michigan , 930 North University Avenue , Ann Arbor , Michigan 48109 , United States
| |
Collapse
|
87
|
Lian P, Johnston RC, Parks JM, Smith JC. Quantum Chemical Calculation of pKas of Environmentally Relevant Functional Groups: Carboxylic Acids, Amines, and Thiols in Aqueous Solution. J Phys Chem A 2018; 122:4366-4374. [DOI: 10.1021/acs.jpca.8b01751] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Peng Lian
- UT/ORNL Center for Molecular Biophysics, Biosciences Division, Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, Tennessee 37831-6309, United States
| | - Ryne C. Johnston
- UT/ORNL Center for Molecular Biophysics, Biosciences Division, Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, Tennessee 37831-6309, United States
| | - Jerry M. Parks
- UT/ORNL Center for Molecular Biophysics, Biosciences Division, Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, Tennessee 37831-6309, United States
| | - Jeremy C. Smith
- UT/ORNL Center for Molecular Biophysics, Biosciences Division, Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, Tennessee 37831-6309, United States
| |
Collapse
|
88
|
Tran TT, Gan MR, Tzeng YP, Shaw H, Hoang TK, Kuo MY, Su YO. Experimental and computational study on the electrochemistry of meso-tetrasubstituted porphyrins: Effects of resonance and inductive substituents. J Electroanal Chem (Lausanne) 2018. [DOI: 10.1016/j.jelechem.2018.02.048] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
89
|
Zheng Y, Zheng W, Wang J, Chang H, Zhu D. Computational Study on N-N Homolytic Bond Dissociation Enthalpies of Hydrazine Derivatives. J Phys Chem A 2018; 122:2764-2780. [PMID: 29470086 DOI: 10.1021/acs.jpca.7b12094] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The hydrazine derivatives have been regarded as the important building blocks in organic chemistry for the synthesis of organic N-containing compounds. It is important to understand the structure-activity relationship of the thermodynamics of N-N bonds, in particular, their strength as measured by using the homolytic bond dissociation enthalpies (BDEs). We calculated the N-N BDEs of 13 organonitrogen compounds by eight composite high-level ab initio methods including G3, G3B3, G4, G4MP2, CBS-QB3, ROCBS-QB3, CBS-Q, and CBS-APNO. Then 25 density functional theory (DFT) methods were selected for calculating the N-N BDEs of 58 organonitrogen compounds. The M05-2X method can provide the most accurate results with the smallest root-mean-square error (RMSE) of 8.9 kJ/mol. Subsequently, the N-N BDE predictions of different hydrazine derivatives including cycloalkylhydrazines, N-heterocyclic hydrazines, arylhydrazines, and hydrazides as well as the substituent effects were investigated in detail by using the M05-2X method. In addition, the analysis including the natural bond orbital (NBO) as well as the energies of frontier orbitals were performed in order to further understand the essence of the N-N BDE change patterns.
Collapse
Affiliation(s)
- Yuanyuan Zheng
- College of Chemistry and Chemical Engineering , Shanghai University of Engineering Science , Shanghai 201620 , China
| | - Wenrui Zheng
- College of Chemistry and Chemical Engineering , Shanghai University of Engineering Science , Shanghai 201620 , China
| | - Jiaoyang Wang
- College of Chemistry and Chemical Engineering , Shanghai University of Engineering Science , Shanghai 201620 , China
| | - Huifang Chang
- College of Chemistry and Chemical Engineering , Shanghai University of Engineering Science , Shanghai 201620 , China
| | - Danfeng Zhu
- College of Chemistry and Chemical Engineering , Shanghai University of Engineering Science , Shanghai 201620 , China
| |
Collapse
|
90
|
Ree N, Andersen CL, Kilde MD, Hammerich O, Nielsen MB, Mikkelsen KV. The quest for determining one-electron redox potentials of azulene-1-carbonitriles by calculation. Phys Chem Chem Phys 2018; 20:7438-7446. [PMID: 29484319 DOI: 10.1039/c7cp08687c] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Electrochemical processes drive many chemical and biochemical reactions. Theoretical methods to accurately predict redox potentials are therefore crucial for understanding these reactions and designing new chemical species with desired properties. We have investigated a theoretical methodology using electronic structure methods based on density functional theory and continuum solvation models. These methods have been validated with linear correlation plots comparing theoretical and experimental results for the redox properties of a series of azulene derivatives. The results showed excellent correlations despite only minor structural variations of the azulenes, which support this rather simple theoretical methodology for determining redox potentials of organic molecules. Furthermore, we have estimated the absolute redox potential of the ferrocene/ferrocenium redox couple to be 4.8 ± 0.1 V in dichloromethane, which is slightly lower than previous estimates.
Collapse
Affiliation(s)
- Nicolai Ree
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, 2100 Copenhagen Ø, Denmark.
| | | | | | | | | | | |
Collapse
|
91
|
Zhang FQ, Gao JP, Yan LK, Guan W, Yao RX, Zhang XM. Unveiling the relative stability and proton binding of non-classical Wells-Dawson isomers of [(NaF 6)W 18O 54(OH) 2] 7- and [(SbO 6)W 18O 54(OH) 2] 9-: a DFT study. Dalton Trans 2018; 46:16145-16158. [PMID: 29130092 DOI: 10.1039/c7dt03200e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Density functional theory calculations combined with the energy and building-block decomposition analyses have been carried out to investigate the structures, stability orders, redox potentials and proton binding of the six Baker-Figgis isomers (α, β, γ, α*, β* and γ*) of [(SbO6)W18O54(OH)2]9- {H2SbW18} and [(NaF6)W18O54(OH)2]7- {H2NaW18} anions at the level of PBEsol-D3/TZP. Both bonding energy and Gibbs free energy analyses exhibit that the two non-classical Wells-Dawson (WD) species behave quite differently from each other. The pyroanimonate {H2SbW18}, with a stability order of γ* > β* > α > α* > β > γ, is a non-classical WD species, while the hexafluoride {H2NaW18} (α > β > γ > γ* > β* > α*) is a transition intermediate between classical and non-classical WD types, possessing both non-classical ([XW18O60(OH)2]n-, X = I, Te and W) and classical [Si2W18O62]8- properties. Energy decomposition analyses (EDA) reveal that spatial arrangement (Ehost), host-guest fragment interaction energy (FIE), and structural distortion energy (DE) are three key factors governing the relative stability of isomers; among these, DE is always dominant, while FIE and Ehost are subordinated but are still important. Building-block decomposition analyses (BDA) disclose that the octahedral {MO6} units of the equatorial belt, particularly the staggered belt, are always more distorted than those of the two polar caps inside each structure. The theoretical redox potentials demonstrate that the oxidizing power increases with a trend of α < β < γ and α* < β* < γ* for both species, and the first redox potential is closely related to the energy level of the LUMO of each anion. Evaluation of the proton inclusion energies suggests that {H2NaW18} can only embed two protons, while {H2SbW18} may encapsulate four; the number of embedded protons is controlled by both the charge of the heteroatom X and the volume of the tetrahedral {O4}/{OF3} cavity.
Collapse
Affiliation(s)
- Fu-Qiang Zhang
- School of Chemistry & Material Science, Shanxi Normal University, Linfen, P. R. China.
| | | | | | | | | | | |
Collapse
|
92
|
Noble A, Mega RS, Pflästerer D, Myers EL, Aggarwal VK. Visible-Light-Mediated Decarboxylative Radical Additions to Vinyl Boronic Esters: Rapid Access to γ-Amino Boronic Esters. Angew Chem Int Ed Engl 2018; 57:2155-2159. [PMID: 29316095 PMCID: PMC5838549 DOI: 10.1002/anie.201712186] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Indexed: 12/20/2022]
Abstract
The synthesis of alkyl boronic esters by direct decarboxylative radical addition of carboxylic acids to vinyl boronic esters is described. The reaction proceeds under mild photoredox catalysis and involves an unprecedented single-electron reduction of an α-boryl radical intermediate to the corresponding anion. The reaction is amenable to a diverse range of substrates, including α-amino, α-oxy, and alkyl carboxylic acids, thus providing a novel method to rapidly access boron-containing molecules of potential biological importance.
Collapse
Affiliation(s)
- Adam Noble
- School of ChemistryUniversity of BristolCantock's CloseBristolBS8 1TSUK
| | - Riccardo S. Mega
- School of ChemistryUniversity of BristolCantock's CloseBristolBS8 1TSUK
| | - Daniel Pflästerer
- School of ChemistryUniversity of BristolCantock's CloseBristolBS8 1TSUK
| | - Eddie L. Myers
- School of ChemistryUniversity of BristolCantock's CloseBristolBS8 1TSUK
| | | |
Collapse
|
93
|
Baggioli A, Sansotera M, Navarrini W. Thermodynamics of aqueous perfluorooctanoic acid (PFOA) and 4,8-dioxa-3H-perfluorononanoic acid (DONA) from DFT calculations: Insights into degradation initiation. CHEMOSPHERE 2018; 193:1063-1070. [PMID: 29874733 DOI: 10.1016/j.chemosphere.2017.11.115] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 11/18/2017] [Accepted: 11/21/2017] [Indexed: 06/08/2023]
Abstract
Modern fluorosurfactants introduced during and after perfluoroalkyl carboxylates/sulfonates phase-out present chemical features designed to facilitate abatement, hence reducing persistence. However, the implications of such features on environmental partitioning and stability are yet to be fully appreciated, partly due to experimental difficulties inherent to the handling of their (diluted) aqueous solutions. In this work, rigorous quantum chemistry calculations were carried out in order to provide theoretical insights into the thermodynamics of hydroperfluorosurfactants in aqueous medium. Estimates of acid dissociation constant (pKa), standard reduction potential (E0), and bond dissociation enthalpy (BDE) and free energy (BDFE) were computed for perfluorooctanoic acid (PFOA), 4,8-dioxa-3H-perfluorononanoic acid (DONA) and their anionic forms via ensemble averaging at density functional theory level with implicit solvent models. A ‹pKa› in the neighborhood of zero and a E0 of about 2.2 V were obtained for PFOA. Predictions for the acidic function of DONA compare well with PFOA's, with a pKa of 0.8-1.5 and a E0 of 2.07-2.15 V. Deprotonation thus represents the dominant phenomenon at environmental conditions. Calculations indicate that H-abstraction of the aliphatic proton of DONA by a hydroxyl radical is the thermodynamically favored reaction path in oxidative media, whereas hydrolysis is not a realistic scenario due to the high dissociation constant. Short intramolecular interactions available to the peculiar hydrophobic tail of DONA were also reviewed, and the relevance of the full conformational space of the fluorinated side chain discussed.
Collapse
Affiliation(s)
- Alberto Baggioli
- Dipartimento di Chimica, Materiali e Ingegneria Chimica "Giulio Natta", Politecnico di Milano, Via L. Mancinelli 7, 20131 Milano, Italy; Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (UdR-PoliMi), via G. Giusti, 9, 50121 Firenze, Italy.
| | - Maurizio Sansotera
- Dipartimento di Chimica, Materiali e Ingegneria Chimica "Giulio Natta", Politecnico di Milano, Via L. Mancinelli 7, 20131 Milano, Italy; Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (UdR-PoliMi), via G. Giusti, 9, 50121 Firenze, Italy
| | - Walter Navarrini
- Dipartimento di Chimica, Materiali e Ingegneria Chimica "Giulio Natta", Politecnico di Milano, Via L. Mancinelli 7, 20131 Milano, Italy; Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (UdR-PoliMi), via G. Giusti, 9, 50121 Firenze, Italy
| |
Collapse
|
94
|
Noble A, Mega RS, Pflästerer D, Myers EL, Aggarwal VK. Visible-Light-Mediated Decarboxylative Radical Additions to Vinyl Boronic Esters: Rapid Access to γ-Amino Boronic Esters. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201712186] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Adam Noble
- School of Chemistry; University of Bristol; Cantock's Close Bristol BS8 1TS UK
| | - Riccardo S. Mega
- School of Chemistry; University of Bristol; Cantock's Close Bristol BS8 1TS UK
| | - Daniel Pflästerer
- School of Chemistry; University of Bristol; Cantock's Close Bristol BS8 1TS UK
| | - Eddie L. Myers
- School of Chemistry; University of Bristol; Cantock's Close Bristol BS8 1TS UK
| | | |
Collapse
|
95
|
Anjali BA, Suresh CH. Electronic effect of ligands vs. reduction potentials of Fischer carbene complexes of chromium: a molecular electrostatic potential analysis. NEW J CHEM 2018. [DOI: 10.1039/c8nj04184a] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Molecular electrostatic potential at the chromium centre (VCr) emerges as a powerful predictor of reduction potential (E0).
Collapse
Affiliation(s)
- Bai Amutha Anjali
- Chemical Sciences and Technology Division
- CSIR-National Institute for Interdisciplinary Science and Technology
- Trivandrum 695019
- India
- Academy of Scientific & Innovative Research (AcSIR)
| | - Cherumuttathu H. Suresh
- Chemical Sciences and Technology Division
- CSIR-National Institute for Interdisciplinary Science and Technology
- Trivandrum 695019
- India
- Academy of Scientific & Innovative Research (AcSIR)
| |
Collapse
|
96
|
Eslami S, Ebrahimzadeh MA, Biparva P. Green synthesis of safe zero valent iron nanoparticles by Myrtus communis leaf extract as an effective agent for reducing excessive iron in iron-overloaded mice, a thalassemia model. RSC Adv 2018; 8:26144-26155. [PMID: 35541956 PMCID: PMC9082760 DOI: 10.1039/c8ra04451a] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 06/27/2018] [Indexed: 11/21/2022] Open
Abstract
Green synthesis of Myrtus communis-Zero Valent Iron Nanoparticles (MC-ZVINs) was carried out in an alkaline environment.
Collapse
Affiliation(s)
- Shahram Eslami
- Pharmaceutical Sciences Research Center
- Hemoglobinopathy Institute
- Department of Medicinal Chemistry
- Faculty of Pharmacy
- Mazandaran University of Medical Sciences
| | - Mohammad Ali Ebrahimzadeh
- Pharmaceutical Sciences Research Center
- Hemoglobinopathy Institute
- Department of Medicinal Chemistry
- Faculty of Pharmacy
- Mazandaran University of Medical Sciences
| | - Pourya Biparva
- Department of Basic Sciences
- Sari University of Agricultural Sciences and Natural Resources
- Sari
- Iran
| |
Collapse
|
97
|
Rodríguez-Prieto F, Corbelle CC, Fernández B, Pedro JA, Ríos Rodríguez MC, Mosquera M. Fluorescence quenching of the N-methylquinolinium cation by pairs of water or alcohol molecules. Phys Chem Chem Phys 2018; 20:307-316. [DOI: 10.1039/c7cp07057h] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The proposed mechanism involves an electron transfer from H2O/ROH to the excited quinolinium, concerted with proton transfer to the second hydroxy molecule.
Collapse
Affiliation(s)
- Flor Rodríguez-Prieto
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS)
- Universidade de Santiago de Compostela
- E-15782 Santiago de Compostela
- Spain
- Departamento de Química Física
| | - Carlos Costa Corbelle
- Departamento de Química Física
- Facultade de Química
- Universidade de Santiago de Compostela
- E-15782 Santiago de Compostela
- Spain
| | - Berta Fernández
- Departamento de Química Física
- Facultade de Química
- Universidade de Santiago de Compostela
- E-15782 Santiago de Compostela
- Spain
| | - Jorge A. Pedro
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS)
- Universidade de Santiago de Compostela
- E-15782 Santiago de Compostela
- Spain
| | - M. Carmen Ríos Rodríguez
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS)
- Universidade de Santiago de Compostela
- E-15782 Santiago de Compostela
- Spain
- Departamento de Química Física
| | - Manuel Mosquera
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS)
- Universidade de Santiago de Compostela
- E-15782 Santiago de Compostela
- Spain
- Departamento de Química Física
| |
Collapse
|
98
|
Close DM, Wardman P. Calculation of Standard Reduction Potentials of Amino Acid Radicals and the Effects of Water and Incorporation into Peptides. J Phys Chem A 2017; 122:439-445. [PMID: 29219315 DOI: 10.1021/acs.jpca.7b10766] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Guanine (Guo) is generally accepted as the most easily oxidized DNA base when cells are subjected to ionizing radiation; calculations of the standard reduction potential of the guanyl radical, Eo(Guo•+/Guo) are within ∼0.1 V of experimental values in aqueous solution extrapolated to standard conditions. While a number of experimental studies have shown some amino acid radicals have redox properties at pH 7 which suggest or confirm a capacity for radical "repair" by electron transfer from the amino acid to Guo•+ (or its deprotonated conjugate), the redox properties of the radicals of other amino acids, including methionine, lysine and cystine, are less well characterized. In addition, the effects of incorporation of the amino acids into peptides, or the effects of water of hydration on calculated potentials, have not been extensively studied. In this work, calculations of standard reduction potentials of radicals from model amino acids as they appear in histone proteins are performed. To predict redox properties at pH 7, acid dissociation constants (pKas) of both radical and ground state amino acids are required. In some instances these are not experimentally determined and calculated pKas have been derived for some common amino acids and compared with experimental values.
Collapse
Affiliation(s)
- David M Close
- Department of Physics, East Tennessee State University , Johnson City, Tennessee 37614, United States
| | - Peter Wardman
- Gray Cancer Institute, CRUK/MRC Oxford Institute for Radiation Oncology, University of Oxford , Oxford OX3 7DQ, U.K
| |
Collapse
|
99
|
Borodin O, Ren X, Vatamanu J, von Wald Cresce A, Knap J, Xu K. Modeling Insight into Battery Electrolyte Electrochemical Stability and Interfacial Structure. Acc Chem Res 2017; 50:2886-2894. [PMID: 29164857 DOI: 10.1021/acs.accounts.7b00486] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Electroactive interfaces distinguish electrochemistry from chemistry and enable electrochemical energy devices like batteries, fuel cells, and electric double layer capacitors. In batteries, electrolytes should be either thermodynamically stable at the electrode interfaces or kinetically stable by forming an electronically insulating but ionically conducting interphase. In addition to a traditional optimization of electrolytes by adding cosolvents and sacrificial additives to preferentially reduce or oxidize at the electrode surfaces, knowledge of the local electrolyte composition and structure within the double layer as a function of voltage constitutes the basis of manipulating an interphase and expanding the operating windows of electrochemical devices. In this work, we focus on how the molecular-scale insight into the solvent and ion partitioning in the electrolyte double layer as a function of applied potential could predict changes in electrolyte stability and its initial oxidation and reduction reactions. In molecular dynamics (MD) simulations, highly concentrated lithium aqueous and nonaqueous electrolytes were found to exclude the solvent molecules from directly interacting with the positive electrode surface, which provides an additional mechanism for extending the electrolyte oxidation stability in addition to the well-established simple elimination of "free" solvent at high salt concentrations. We demonstrate that depending on their chemical structures, the anions could be designed to preferentially adsorb or desorb from the positive electrode with increasing electrode potential. This provides additional leverage to dictate the order of anion oxidation and to effectively select a sacrificial anion for decomposition. The opposite electrosorption behaviors of bis(trifluoromethane)sulfonimide (TFSI) and trifluoromethanesulfonate (OTF) as predicted by MD simulation in highly concentrated aqueous electrolytes were confirmed by surface enhanced infrared spectroscopy. The proton transfer (H-transfer) reactions between solvent molecules on the cathode surface coupled with solvent oxidation were found to be ubiquitous for common Li-ion electrolyte components and dependent on the local molecular environment. Quantum chemistry (QC) calculations on the representative clusters showed that the majority of solvents such as carbonates, phosphates, sulfones, and ethers have significantly lower oxidation potential when oxidation is coupled with H-transfer, while without H-transfer their oxidation potentials reside well beyond battery operating potentials. Thus, screening of the solvent oxidation limits without considering H-transfer reactions is unlikely to be relevant, except for solvents containing unsaturated functionalities (such as C═C) that oxidize without H-transfer. On the anode, the F-transfer reaction and LiF formation during anion and fluorinated solvent reduction could be enhanced or diminished depending on salt and solvent partitioning in the double layer, again giving an additional tool to manipulate the order of reductive decompositions and interphase chemistry. Combined with experimental efforts, modeling results highlight the promise of interphasial compositional control by either bringing the desired components closer to the electrode surface to facilitate redox reaction or expelling them so that they are kinetically shielded from the potential of the electrode.
Collapse
Affiliation(s)
- Oleg Borodin
- Electrochemistry
Branch, Sensors and Electron Devices Directorate, US Army Research Laboratory, 2800 Powder Mill Rd., Adelphi, Maryland 20783, United States
| | - Xiaoming Ren
- Electrochemistry
Branch, Sensors and Electron Devices Directorate, US Army Research Laboratory, 2800 Powder Mill Rd., Adelphi, Maryland 20783, United States
| | - Jenel Vatamanu
- Electrochemistry
Branch, Sensors and Electron Devices Directorate, US Army Research Laboratory, 2800 Powder Mill Rd., Adelphi, Maryland 20783, United States
| | - Arthur von Wald Cresce
- Electrochemistry
Branch, Sensors and Electron Devices Directorate, US Army Research Laboratory, 2800 Powder Mill Rd., Adelphi, Maryland 20783, United States
| | - Jaroslaw Knap
- Simulation Sciences Branch, RDRL-CIH-C, US Army Research Laboratory, Aberdeen Proving Ground, Maryland 21005-5066, United States
| | - Kang Xu
- Electrochemistry
Branch, Sensors and Electron Devices Directorate, US Army Research Laboratory, 2800 Powder Mill Rd., Adelphi, Maryland 20783, United States
| |
Collapse
|
100
|
Yokota Y, Akiyama S, Kaneda Y, Imanishi A, Inagaki K, Morikawa Y, Fukui KI. Computational investigations of electronic structure modifications of ferrocene-terminated self-assembled monolayers: effects of electron donating/withdrawing functional groups attached on the ferrocene moiety. Phys Chem Chem Phys 2017; 19:32715-32722. [PMID: 29199295 DOI: 10.1039/c7cp07279a] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The electrochemical properties of chemically modified electrodes have long been a significant focus of research. Although the electronic states are directly related to the electrochemical properties, there have been only limited systematic efforts to reveal the electronic structures of adsorbed redox molecules with respect to the local environment of the redox center. In this study, density functional theory (DFT) calculations were performed for ferrocene-terminated self-assembled monolayers with different electron-donating abilities, which can be regarded as the simplest class of chemically modified electrodes. We revealed that the local electrostatic potentials, which are changed by the electron donating/withdrawing functional groups at the ferrocene moiety and the dipole field of coadsorbed inert molecules, practically determine the density of states derived from the highest occupied molecular orbital (HOMO) and its vicinities (HOMO-1 and HOMO-2) with respect to the electrode Fermi level. Therefore, to design new, sophisticated electrodes with chemical modification, one should consider not only the electronic properties of the constituent molecules, but also the local electrostatic potentials formed by these molecules and coadsorbed inert molecules.
Collapse
Affiliation(s)
- Yasuyuki Yokota
- Surface and Interface Science Laboratory, RIKEN, Wako, Saitama 351-0198, Japan.
| | | | | | | | | | | | | |
Collapse
|